
Antenna Rotator Controller Build

It is kind of funny how things work out. I
bought a missile-launcher type of mast for the
specific purpose of supporting my new hex-
beam 6-band folded-dipole antenna. The
antenna covers 20-meters, 17-meters, 15-
meters, 12-meters, 10-meters, and 6-meters,
with the driven elements of each band in a
“W” shape, and the reflectors arranged in an
open half-hexagon opposite the driven
elements. Each of the band elements
occupies a specific slot in the concentric
hexagons, with the longest (20-meter)
naturally to the outside and the shortest (6-
meter) to the center. This antenna is highly
directional, which brings us to the topic of this
article.

For best results, a directional antenna requires a means of turning or “aiming” the antenna in the
desired direction, that being the direction of maximum forward gain. Following the very good
advice of fellow club members Frank Romeo N3PUU and Al Arrison KB2AYU, I designed a
two-level rotator motor support system, with the rotator motor mounted to the lower-level
platform, while the upper-level plate holds a hefty thrust bearing intended to support the antenna
mast against lateral forces such as heavy wind gusts.

The rotator motor itself is a Yaesu G-800-series unit, which operates on voltages up to 24VDC,
with a 5VDC sensing circuit that outputs a voltage from 0VDC to 4.5VDC, proportional to the
rotator’s angular position between 0° and 450°, a full one and one half turns of the mast.

Once the rotator was designed and built, the next logical need was for a unit to control the rotator
motor from within the shack. In my situation, the hex-beam is located about a hundred and
twenty-five feet from the shack, a not unreasonable distance. What was needed was a controller
that could output the required motor voltage of up to 24VDC, with the ability to reverse the
polarity of these outputs in order to reverse the motor and therefore the rotator direction. In
addition, the unit would need to be able to power and read the control circuit, interpreting the 0-
4.5VDC position voltage signal correctly. Furthermore, there was a need to be able to control
the rotational speed, ramping it up and slowing it down as required as the limits of the desired
travel approach. My desire was for an azimuth-only rotator controller (Figure 1), as I have no
need or capability for any elevation adjustment.

Once again, I turned to Frank Romeo N3PUU for advice. Frank had built just such a controller
for the GCARC Clubhouse HF station. I wanted to duplicate his build for my own station, as it
was well-suited to the task at hand. Frank was extremely helpful to me, sharing freely of his
design, including providing part numbers where available for the components used in his build.

Figure 1 ‐ Rotator controller

Copyright © 2023 by CMS Pitman, NJ USA - Page 1

Frank’s design was based on the design published by Anthony Good K3NG, a Radio Amateur
from Jim Thorpe, Pennsylvania. The K3NG design included far more capability than I needed,
so it was a matter of paring it down to just those features that I wanted to include, and then also
to make some minor modifications to the programming of the microcontroller (µC) to tailor the
operation to my needs.

The rotator controller, as shown
in the schematic at Figure 2, is
based on an Arduino Mega 2560
controlling a dual H-bridge motor
driver board. A simple 5VDC-
output power supply board is
incorporated as a part of the
unit, and the front panel uses a
sixteen-character per row, two-
row backlit LCD panel for
communication of the unit
status. On the front panel, there
are controls for parking the
rotator, turning the rotator in the
clockwise direction, turning it in
the counter-clockwise direction,
controlling the rotator motor
speed, and setting the rotator to

a preset angular position. Of course, there is also a power switch mounted there. The rear
panel has the 24VDC power inlet jack, the USB type “B” jack for the Arduino board, and the
barrier-type terminal strip carrying the leads to and from the rotator motor.

The Arduino Mega 2560 (Figure 3) is used with a blank 2560 shield board (Figure 4), onto which
certain specific components have been added. First off, pin headers must be installed along the
right and left edges of the board, inserting
them into the analog and digital ports from
the underside of the board, thus enabling
the board to be stacked onto the Arduino
Mega 2560. Specifically, a total of fifteen
pins (one eight-pin strip and one seven-
pin strip) are installed to the right-hand
edge, from port 15 up the right edge of the
board to port 13. Then, three eight-pin
strips are installed to the left-hand edge of
the board, including the stretch from port
A8 to A15, from A0 to A7, and from VIN up
to and including the unmarked port just past the IOREF port. The remainder of the modifications
to the shield board are made on top of the board.

A pin-header row of twelve pins must be installed in a line across the shield board, in alignment
with the second GND port on the left edge of the board, directly opposite the p

Figure 2 ‐ Rotator controller schema c diagram

Figure 3 ‐ Arduino Mega 2560

Copyright © 2023 by CMS Pitman, NJ USA - Page 2

in 6 port on the right edge. Underneath the shield
board, all of these pins must be soldered together.
The first hole is already tied to the GND port. Next,
a similar row of seven pins must be installed in
alignment with the +5V port on the left edge of the
shield board. These pins too must all be soldered
together; again, the first hole is already connected to
the +5V port. In a similar manner, single pins are
installed in alignment with the VIN, the A0, the A1,
the A2, the A3, and the A4 ports along the left edge

of the shield board. Along the right edge of the shield board, single pins are installed in alignment
with the ports numbered 2 through 13. A lone single pin is installed in the fifth hole inboard from
the AREF port hole on the shield board’s right edge.

Next up is to install a low-pass filter consisting of a 4.7nF 3kV ceramic disc capacitor, a 250mW
5% 1kΩ carbon film resistor, and a 150µH conformally-coated wirewound inductor. The
placement of this filter is not critical, so long as it ties in to the proper port of the Arduino and is
properly connected to the external circuit. The way that I installed the LPF is as follows:

 the resistor is formed to a lead spacing of 0.4” and placed with one lead in the first hole
next to the port A0 pin, occupying holes 1 through 5 in the A0 row;

 the capacitor is inserted with one lead into hole 6 in the A0 row perpendicular to the A0
row, so that its opposite lead will fall into hole 6 of the first GND row of the shield board;

 the inductor is formed to a lead spacing of 0.4” and placed with one pin in hole 6 of the
A1 row, occupying holes 6 through 10 of that row;

 a single header pin is installed into hole 10 of the A0 row;
 the various adjacent component leads are soldered together, thus connecting one end of

the resistor to the A0 pin, connecting the RLC joint in the center of the filter, and
connecting the pin in hole 10 of the A0 row to the second end of the inductor; and

 the ground end of the capacitor must be soldered to the row of ground pins.

The shield board must also have a provision for adjusting the
contrast of the LCD panel. This is accomplished by installing
a single-turn trimmer potentiometer into the area between the
+5VDC pin row and the lone header pin installed in the AREF
row. Install the trimpot so that its single pin side is towards,
aligned with, and two rows down from the lone pin in the
AREF row, placing that pin of the trimpot into the port 13 row.
That pin of the trimpot must be soldered to the single header
pin two rows above it. Of the two remaining pins, the one to
the left must be tied into the +5V pin row, while the trimpot
pin on the right gets tied directly to the GND pin row. The
Arduino shield board is now fully prepared, and it is time to
start preparing the BTS-7960 43A dual H-bridge (Figure 5)
board.

Figure 4 ‐ Mega 2560 shield board

Figure 5 ‐ BTS‐7960 dual H‐bridge board

Copyright © 2023 by CMS Pitman, NJ USA - Page 3

At least one and maybe two modifications are required to be made to the H-bridge board. The
first mod, necessary in all cases, is to desolder and remove the four-pin terminal block from the
upper edge of the board, where the 24VDC current in and motor current out points are located.
The easiest way to remove this connector is to first cover the pin area with rosin flux, and then
to solder a three-quarter-inch long segment of bare solid 10AWG wire across all four pins of the
connector, using plenty of solder to secure the wire to the pins. Then, working with the foil side
of the PCB upward and the connector facing downward, simply heat and melt the solder that

was flooded onto the pins, keeping the iron moving to melt the
entire solder pool. Once the solder is adequately melted, the
connector will simply fall out of the board. Clean up the board using
solder wick to remove the remaining solder and to open the
component pin holes, finishing the job with some 99% IPA to
remove the remaining flux.

The second modification can be done in some different ways. This
mod involves the eight header pins at the lower right corner where
the communication from the Arduino meets the H-bridge board.
The problem, as I saw it, was that these header pins came straight
out from the board, which puts them into an interference situation

with the H-bridge board bracket (Figure 6) as well as with the edge of the Arduino and its shield
boards. I built two copies of this controller (more about that later), and I handled this problem in
two different ways on the two builds. In the first build, I removed the straight header pins and
replaced them with a 45° header set, to which the requisite wires would simply plug onto just as
they would have onto the original straight header. In the second build, I did away with the pin
header there altogether, opting instead to simply solder the wire leads directly into the pin header
holes in the PCB. This turned out to be the better alternative in the long run. The wires were
still plug-ins at their opposite ends, so ease of disconnection for testing, repair or replacement
was still maintained, but the connection at the H-bridge board was now more compact as well
as being more reliable. The H-bridge board itself is mounted vertically to a custom 3-D printed
bracket, which in turn is mounted to the floor of the enclosure, placing the board-mounted heat
sink towards the outside of the enclosure and the motor current connections at the top of the
board. The mounting position of the H-bridge board is well-considered, as the heat sink channels
are thus arranged in a vertical orientation, providing for better cooling with a chimney effect, and
the high-current motor leads are at the top of the board, where any heat radiated from them will
be unable to do any harm to other components above them.

Because of the fact that the H-bridge requires a +24VDC
supply, the unit is powered by an off-the-shelf 117VAC
input to 24VDC/3A output power supply. I designed and
built a small +5VDC supply that draws off the incoming
+24VDC, and I used that to power the control circuitry of
the H-bridge board as well as the Arduino. Because I
already needed the +5VDC supply as above, there was
no sense in not also powering the Arduino from that
same +5VDC supply, which is capable of delivering a full
ampere of current. However, doing so required a little

Figure 6 ‐ H‐bridge board bracket

Figure 7 ‐ Arduino fuse to be removed

Copyright © 2023 by CMS Pitman, NJ USA - Page 4

bit of surgery to the Arduino, as we do not want two competing power supplies to the Arduino,
nor do we want the +5VDC from the onboard supply feeding back to the host PC when the
rotator controller is connected to a PC for CAT control of the radio system. To that end, the fuse
on the Arduino must be removed.

The fuse on the Arduino Mega 2560 (Figure 7) is a self-resetting type and is located directly
adjacent to the USB connector shell. Judicious application of heat via a soldering iron will allow
removal of the fuse from the board. Do this carefully so as not to damage the board pads or
substrate. Note however that once the fuse has been removed, it will no longer be possible to
power the Arduino through the USB cable in the usual manner.

Let’s move on to the +5VDC supply. This power supply
is an incredibly simple contrivance, consisting of three
components and a few header pins on a small printed
circuit board. The board (Figure 8) carries a pair of
electrolytic capacitors – a 0.22µF input capacitor and a
0.1µF output capacitor – as well as a common LM7805
three-pin voltage regulator IC. The board has four
single header pins, one each for input voltage, output
voltage, and the input and output ground leads. The
incoming power to the voltage regulator comes directly
from the +24VDC supply via the power switch; the

output is routed to the VIN port of the Arduino via that pin on the shield board. The input ground
is the negative side of the incoming 24VDC supply, and the output ground is routed to the Arduino
GND port on the shield board.

The POWER switch on the front panel (Figure 9) is a latching pushbutton switch of the SPST
type. This switch and the other pushbutton switches are all of a single family (DS-228) of
switches having commonality in size and physical appearance. Of course, I selected different
colors for different functions, to help make switch recognition a bit easier. While all of these
pushbutton switches are SPST normally-open types, only the power switch is a latching switch.

The CW and CCW controls are normally-open
momentary pushbutton switches, each of which
grounds the port to which the switch is
connected when the switch is closed (i.e., when
the button is pressed). So long as either of
these two switches is held closed, the rotator
will turn in the direction indicated by the switch
that is pressed. The directional view of the
rotator is as if it were being looked at from
above. The PARK switch is a similar switch,
which also grounds its connected port.
However, with this switch, pressing it and
grounding the PARK port of the Arduino triggers
a planned motion which rotates the motor to a
specific pre-programmed rotational angle.

Figure 8 ‐ +5VDC power supply board

Figure 9 ‐ Rear view of front panel controls

Copyright © 2023 by CMS Pitman, NJ USA - Page 5

Often, an antenna owner will want to park an antenna so that it offers the least amount of wind
load in the direction of the prevailing local wind. Unfortunately, this practice can also result in
premature wear to the rotational sensing potentiometer and the teeth of the internal gears due
to the constant vibration of the antenna in that one fixed position. In any event, the PARK switch
function is to return the rotator to its pre-programmed parking position and stop it there.

The next control up for discussion is the PRESET control. This device is a rotary encoder with
an incorporated SPST switch, which is activated by pressing in on the control knob. The encoder
is a PEC11-type having thirty detents per revolution and producing fifteen pulses per revolution.
Because of the nature of rotary encoders, the direction in which the control has been rotated is
readable by the software. The basic K3NG firmware release has this encoder’s output producing
a turning motion of one-half of a degree per pulse. This is defined in the rotator_settings.h file
at Line 178, which reads “#define AZ_POSITION_ROTARY_ENCODER_DEG_PER_PULSE
0.5” which can be modified, as I did, to a more useful value. I set this value to 2.0 degrees per
pulse.

Here is what all of that is about. When setting a preset position for the antenna, the procedure
is to dial in the azimuth desired by rotating the encoder control knob. While a setting of 0.5°/pulse
gives high resolution, it also means that it will take much more spinning of the knob to reach a
given value. Suppose, for example, that the antenna is currently aimed to an azimuthal direction
of 180°, or due south. If you want to change that to 0° (due north), it will take 360 pulses at the
standard degrees per pulse value setting. With the encoder producing 15 pulses per revolution,
it will take 360/15 or twenty-four full turns of the encoder knob to dial in that preset position. By
changing the value to 2°/pulse, we now have the ability to traverse the 180° of antenna rotation

in only six turns of the encoder. That is
because the new setting gives us 30°
of antenna rotation for each full rotation
of the encoder knob or shaft. With a
desired change of 180° in antenna
position, and 30° of antenna swing per
turn of the encoder knob, we get six
turns instead of twenty-four turns to
achieve a 180° antenna direction
change. That makes perfect sense,
seeing as how the rate is four times as
fast with the new setting. There is one
small drawback to this setting, in that

the finest antenna position resolution is now two degrees instead of one-half of a degree. If that
is objectional, a fair compromise would be to set the degrees per pulse setting to 1.0, which
would double the original rate but still give a resolution of one degree.

Once the desired azimuthal angle is dialed into the controller display window, simply press the
encoder knob inward on the panel to initiate the movement of the antenna. The antenna will
begin rotating to its new position, will slow down when approaching the set position, and will stop
when it gets there.

Figure 10 ‐ Rotator controller display opera onal

Copyright © 2023 by CMS Pitman, NJ USA - Page 6

The SPEED control on the front panel is a 100kΩ single-turn linear potentiometer used to set
the maximum rotational speed of the antenna while the motor is turning. Rotating this control
imposes a proportional voltage on the Arduino port A1, which is read by the µC software and
used to control the speed in accordance with that proportional voltage input.

The front panel display (Figure 10) will show three basic pieces of information, the current
azimuthal direction in degrees and cardinal compass directions, the target azimuthal angle in
degrees, and the direction of motion, either clockwise (CW) or counter-clockwise (CCW). Once
antenna rotation is complete, the display will revert to a simple “Azimuth xxx°” display, possibly
with a cardinal compass direction above it. The display unit is a white-on-blue backlit LCD panel

having a 16x2 character by row format. While other
LCD panel colors are available, I find the white-on-blue
to be the easiest on the eyes, which is why I chose that
particular unit. The LCD panel contrast is adjustable via
a trimmer potentiometer mounted to the Arduino shield
board. In this case, the trimpot is a Kyocera 601040
100kΩ miniature top-adjust potentiometer. It is
connected with one end at +5VDC, the opposite end to
ground, and the wiper is tied to the VO pin of the LCD
panel, pin 3.

Power entry at the rear of the controller enclosure is
made via a 5.5mm x 2.1mm coaxial DC power jack with
its center pin being the positive side of the circuit. The

positive lead is routed to the front panel POWER switch, and then from there to the H-bridge
board’s BAT+ pin, and also to the +5VDC supply (voltage regulator) board’s power input pin.
The negative lead is connected to the H-bridge board’s BAT- pin and also to the voltage regulator
board’s ground input pin.

The voltage regulator’s +5VDC output is routed to the VIN port on the Arduino shield, and the
ground side of the voltage regulator board is connected to the GND port on the Arduino shield
board.

Provision is made on the enclosure rear panel for
a USB connection to the Arduino Mega 2560
board, necessary for CAT control of the antenna
rotator. The enclosure rear panel also carries a
Molex 38721-6705 five-terminal barrier-type
terminal strip (Figure 11) with turrets on the inside
of the controller. This terminal strip is the
communications point between the controller and
the rotator motor. Two of the terminals are used
by the motor power leads, while the remaining
three are tied to the rotator unit’s position-sensing
potentiometer. A 4.7µF 50V axial aluminum
electrolytic capacitor is installed between the +5VDC terminal (Terminal 1) and the GND terminal
(Terminal 3) on the terminal strip inside the enclosure.

Figure 11 ‐ Rear panel terminal strip

Figure 12 ‐ Rear panel exterior view

Copyright © 2023 by CMS Pitman, NJ USA - Page 7

The enclosure is a two-piece black steel over white aluminum sheet metal assembly, part
number 208911 from Jameco Electronics. It includes ventilation openings in both sides of the
upper half of the enclosure. Most of the labeling of this project was handled through the use of
black-on-clear printed labels produced by my Dymo Rhino 5200 label printer. The exceptions
are the CMS logos on the rear and front panels (Figures 12 & 13), which are water-slide decals
printed on my color laser printer.

The Arduino Mega 2560 and its accompanying shield board are secured to the floor of the
enclosure via 4-40 hardware and tubular spacers, as is the voltage regulator PCB. The custom

3D-printed H-bridge board bracket is also
mounted to the floor of the enclosure, being
placed directly on the floor and being secured
by 4-40 machine screws with hex nuts and
lock washers. The LCD panel is secured to
the front panel with 4-40 hardware and tubular
spacers.

Most of the interior wiring (Figure 14) is made
up of 22AWG stranded hook-up wire with
crimped-on terminals to fit the header pins.
While this could easily have been done using
off-the-shelf Berg or DuPont wires with female

connectors, the quality of many of those wires is sketchy at best. As I have the terminals,
housings, wire, and crimper all on hand, it was a simple and natural decision to “roll my own”
wires. This had the added advantage that I could make each wire in the color and length that I
wanted, and I could assemble many of the wires that connected to adjacent pins into single
multi-pin plugs. That alone made it much easier and neater to wire things up. However, for
added security, I also chose to hot-glue (Figure 15) many of these wire connectors into place
once they were all connected properly and the unit was tested.

I mentioned earlier that I have built two copies of this controller, and so I did. The first one that
I had built was placed on loan to the GCARC Clubhouse for temporary use in the VHF room. I
soon decided to make that loan a permanent donation, which is why I ended up building a second
copy of the unit. While they were originally carbon-copies of each other, I have since made
some modifications to the controller at the Clubhouse.

One day, during a re-calibration of the controller, the
unit went blank, and then started displaying gibberish
and impossible values on the LCD panel. I initially
thought that what was needed was a simple reload of
the operating software to the microcontroller. I hooked
the unit up to my laptop USB port and copied the
software in successfully, but that did not solve the
problem. The unit still booted up to gibberish, and then
began showing azimuth angles in the four- and five-
digit range. I next brought the unit to my shop, opened
it up, and found that the only thing wrong was that the

Figure 13 ‐ Front panel exterior view

Figure 14 ‐ Interior wiring view

Copyright © 2023 by CMS Pitman, NJ USA - Page 8

firmware/software in the µC had been corrupted at the bootloader level. I stripped out the
Arduino shield so that I could get to the ICSP programming header, burned a new bootloader to
the board, and then re-installed the software. This time, it was successful, and the unit operated
as it should, and I did a successful calibration of the unit. I returned it to the Clubhouse, putting
it back into service.

A week later, the same problem occurred, again
during another attempted re-calibration. Again, I
brought it home and stripped it down to the
Arduino so that I could once again burn a new
bootloader to the µC. Again, the repair took and
the unit worked properly, and I was able to
calibrate it with no problem. Naturally, I brought it
back to the Clubhouse and placed it back into
service.

Once again, the same problem occurred. This
time, I decided to do something just a little bit

differently. I completely disassembled the unit, removing the Arduino Mega 2560 from the unit.
I then de-soldered and removed the ICSP header, replacing it with a six-position pin socket of
the same configuration. Next, I added a set of long header pins to the shield board in alignment
with the pin socket on the Arduino board, in such a manner that the pins would mate into the
new pin socket when the shield was installed back onto the Arduino, and that the upper ends of
these six pins were available to be used as a pass-through ICSP header on the shield. I re-
assembled everything, and then tested the job by burning a new bootloader through the new
ICSP header pins, and then afterwards installing the software through the USB in the normal
manner. My reasoning was that while I did not know why the calibration process was corrupting
the boot loader, at least I could re-burn the bootloader without having to disassemble the boards
to get access to the ICSP header.

I returned the unit to service, and this time I assisted in the calibration process. For whatever
reason, this time the calibration went off without any problems. That unit is still operating there
at the clubhouse as it was designed to do.

The reason that I mention all of this is that it points out a valid modification that any builder might
want to make to the Arduino Mega 2560 and the shield board. It is probably a good idea to make
the ICSP header accessible by simply removing the controller cover, and without the need to
disassemble the unit any further.

The software for this controller is readily available online – just Google “K3NG rotator controller”
to find it. Modify the rotator_pins.h file as necessary in accordance with the file notes, and also
modify the rotator_settings.h file of you want to change the encoder resolution. The Arduino
IDE software is required for compiling and uploading the programming to the Arduino Mega
2560. This software is available online at no charge.

Take your time with the wiring to ensure proper connections of the various Arduino ports with
their associated inputs and/or outputs. Also, take your time with making the necessary openings
in the enclosure panels to get the best possible appearance. The large opening for the LCD

Figure 15 ‐ Hot‐glued wiring connectors

Copyright © 2023 by CMS Pitman, NJ USA - Page 9

panel was made by drilling a series of adjacent holes, cutting away the waste between the holes,
and then filing the opening to size with the aid of a piece of square metal-lathe bit stock clamped
along the openings, one at a time, in turn around the opening. The file will cut the aluminum,
but will glide right over the tool steel bit stock, leaving a nice clean edge and a squared-off
opening. This tip, too, was thanks to Frank Romeo N3PUU. He is a wealth of information!

All of the other openings cut in the enclosure panels were simple round holes, easily drilled.
However, there is another tip worth mentioning, which I use regularly when I am drilling holes of
more than about an eighth of an inch in diameter into sheet metal on the drill press. Take a
square of old cotton cloth, e.g., a scrap from an old tee shirt, about two inches on each side.
Center-punch the hole center lightly. Then, fold the cloth scrap in half twice, producing a four-
ply cloth stack about an inch square. Place the folded cloth scrap over the hole location, and
hold the cloth in place while you start the drill motor. Bring the twist drill bit down onto the cloth
and then, using light pressure, drill through both the cloth and the sheet metal. The result will
be a nice round and clean hole in the sheet metal, without any grabbing of the metal by the twist
drill and therefore no spinning of the metal in the drill press. I use this trick quite often – it works
every time. While step drill bits will also make round holes without the grabbing and spinning,
the hole diameter selection from a step bit is nowhere near as wide as the offerings of my entire
half-inch drill index. Another advantage of this tip is the fact that there will usually be little or no
burr around the hole on the back side of the metal sheet. When using this tip, cut and fold a
new scrap of cloth for each hole that you drill.

Any way you look at it, this project was one that was well worth taking on. I enjoyed the build
process both times. I have not yet added the ICSP header to the copy of the controller in my
shack, but if I ever need to open up the controller to reload the software, I will make the
modification at that point in time.

 Calibration of the unit is necessary to
synchronize the display to the actual azimuthal
angle of the antenna. This is easily done through
the use of the PuTTY software package. PuTTY
will launch a terminal window that is in
communication with the controller. We start by
issuing a “C” command to the controller, which
returns the current azimuthal angle. The
controller then prompts the user to manually
rotate the antenna fully clockwise, after which the
“F” command is sent to the controller. That

command causes the controller to store the fully clockwise position on non-volatile memory, after
which the user issues the “O” command. The controller now prompts the user to manually rotate
the antenna fully counter-clockwise. With the antenna fully counter-clockwise, the user presses
the “ENTER” key to store the offset into non-volatile memory and complete the calibration
process. In order to properly synchronize the calibrated controller to the antenna, the assembly
should be so mounted that when the controller is at its zero-degree (0°) position, the antenna is
pointing due north. In this circumstance, the zero-degree and fully clockwise position should
then coincide at due north. The controller provides for an additional half-turn of azimuthal

Figure 16 ‐ PuTTY user interface

Copyright © 2023 by CMS Pitman, NJ USA - Page 10

overlap in its control capability, as does the Yaesu G-800 rotator motor. The main PuTTY user
interface and its “About PuTTY” window are shown in Figure 16.

PuTTY is readily available online as freeware under the MIT open-source license, and is
downloadable both as executables and as source code. Executables are available for 32-bit
versions and both Arm and x86 64-bit versions of Windows MSI installers, as well as being
offered as a Unix source archive. As of the time that this is being written, the current version of
PuTTY is version 0.78, which was released on 29 October 2022. The current version of PuTTY
can be downloaded at h ps://www.chiark.greenend.org.uk/~sgtatham/pu y/latest.html at any time.

A commonly-used PC interface for
controlling the antenna rotation is a
nice piece of software called PST
Rotator. Because I do not have an
elevation component to this rotator, I
use the PST Rotator AZ version of the
software (Figure 17). This software is
extremely useful and flexible, and it
also includes an interface for fine-tuning the antenna offsets. Several presets can be defined
and then the antenna can be swung to those points at a single click of the mouse. While not
free, the cost is very reasonable and well worth the few dollars charged. I recommend this
software to anyone using automated antenna rotation systems. It plays quite nicely with most
radio CAT systems.

I am happy with the results of this project, in both of its completed devices. Even if the basic
design is not my own, and even if I copied the construction details of the unit that Frank had
built, enough of my own work went into this project that I do not feel ashamed in writing it up.
The idea is to encourage others who may need such a controller to home-brew one as I did.
Feel free to copy my work… it is freely shared as was the work of those who went before me. It
should also be noted that in my labeling of the unit, where I usually indicate that the device is a
product of my shop, this time I also gave props to both N3PUU and K3NG, as is only right.

Feel free to reach out to me at chris@ad2cs.com with any questions or for help with any aspect
of the build of this rotator controller.

Figure 17 ‐ PST Rotator user interface

Copyright © 2023 by CMS Pitman, NJ USA - Page 11

