

Basic Electronic Series

Ohm's Law

Fundamentals

- "Electricity" is the movement or flow of free electrons from one atom to another.
- Electrons are negatively-charged sub-atomic particles, which orbit in rings around the nucleus of an atom.
- Atoms with tightly-bound outer ring electrons exhibit little movement of electrons from one atom to another - called insulators.
- Atoms with loosely-bound outer ring electrons exhibit ready movement of electrons from § one atom to another – called conductors.

Fundamentals

- The flow of electrons is called *current*.
- The effect of a material opposing the flow of electrons is called resistance.
- The force that causes electrons to flow is called *electro-motive force (EMF)*, or more commonly and simply, *voltage*. Voltage is akin to *electrical pressure*.
- There is a certain fixed relationship between these three factors – voltage, current, and resistance.

The Relationship

- The relationship between voltage, current, and resistance is summed up in a principle known as Ohm's Law.
 - Named for German physicist Georg Ohm
 - Published treatise in 1827 that laid the groundwork for the modern iteration of Ohm's Law
- The current through a conductor between two points in a circuit is directly proportional to the voltage across those two points.
 - The quality of that conductor that allows for the flow of a specific current through that conductor is its resistance.

Mathematically...

- Ohm's Law can be expressed using the equation
 - Where...
 - I represents the current in the circuit;
 - E represents the voltage applied to the circuit; and

I = E/R

- R represents the resistance of the circuit.
- Ohm's Law can be expressed in other forms through mathematics

Mathematically...

 $E = I \times R$

n

R = E / I

Other forms of Ohm's Law:

Used to solve for the unknown value

Ohm's Law Wheel

Ohm's Law Circle

- The Ohm's Law Circle is a handy tool for remembering the various forms of Ohm's Law, and it aids in working out the math.
 - When working Ohm's Law problems, we are given two of the three factors and have to solve for the third or missing element.
 - Cover the element you are solving for, and the formula will be shown by the remaining two factors multiplication or division.

Solve for Current

Solve for Voltage

Solve for Resistance

Ohm's Law Circle

Cover the "I" and you are left with E / R

Cover the "E" and you are left with I x R

Cover the "R" and you are left with E / I

- 12VDC applied through a resistance of 100Ω – solve for current
 - I = E / R
 - I = 12 / 100
 - I = 0.12A

- 500mA flowing through 1KΩ solve for voltage
 - $E = I \ge R$
 - E = 0.5 x 1000
 - E = 500V

- 1500mA flowing in a circuit with 13.8V supply – solve for resistance
 - $\bullet R = E / I$
 - R = 13.8 / 1.5
 - R = 9.2Ω

Power Calculations

- Power is a measure of the electrical energy consumed, measured in watts.
- The standard power formula is:

$$P = I \times E$$

- Where...
 - P = power in Watts
 - I = current in Amperes
 - E = EMF in Volts

Power Calculations

 $P = E^2 / R$

Power is also sometimes expressed as the formula

• Where...

- P = power in Watts
- E = EMF in Volts
- R = resistance in Ohms
- Formula comes directly from Ohm's Law in that the "I" is substituted by its formulaic E/R equivalent, thus power in watts is equal to the formulaic E x E/R, or E²/R.

Power Calculations

The same could be done if the voltage was the unknown factor, but current and resistance are provided. Now, the formula becomes:

$$P = I^2 x R \text{ or } P = I^2 R$$

- Where...
 - P is power in Watts
 - I is current in Amperes
 - R is resistance in Ohms
- This again is a formulaic substitution of I x R for voltage, giving us P = I x I x R or P=I²R

- How much power is consumed in a circuit where 21.5 amps is being drawn by a radio operating on 13.8 volts?
- $\bullet P = I \ge E$
- P = 21.5 x 13.8
- P = 296.7W

- How much power is being consumed in a circuit wherein 13.8V is applied through a resistance of 2.2KΩ?
- $\bullet P = E^2 / R$
- $P = 13.8 \times 13.8 / 2200$
- P = 190.44 / 2200
- P = 0.086563636W or 86.563636mW

- How much power is being consumed in a circuit in which 3575mA is flowing through a resistance of 330KΩ?
- $\bullet P = I^2 R$
- P = 3.575 x 3.575 x 330000
- P = 12.780625 x 330000
- P = 4217.60625W or 4.21760625kW

Any Questions?

