Basic Electronics Series

Series vs. Parallel -Ohm's Law Applied

Series Circuits

- Only one path for the current to follow.
- Values of resistors add to get the total
- The same current flows through each and every resistor
- The total current is controlled by the total resistance
- The voltage drops proportionally across each of the resistances in the circuit.
- The sum of the individual voltage drops is equal to the source voltage.

Series Circuit

- Only one path for all current to follow.
- Voltage drops across each component.
- The same current flows through all components in the series path.
- LED ${ }_{1}$ drops 3.2 V , and R_{1} drops balance (1.3V)
- LED $_{1}$ current 20.967 mA ($1.3 \mathrm{~V} / 62 \Omega$)

Parallel Circuits

- Multiple paths for current to follow.
- The total resistance is lower than the lowest resistance in the circuit.
- The current splits proportionally among the parallel branches based on the resistance of each branch.
- The source voltage is applied to each parallel branch of the circuit.
- While the currents in the individual parallel branches may be different, the same current flows through each component in a series path in each parallel branch.

Parallel Circuit

- Multiple paths for current to follow
- Source voltage (9V) is applied to each branch
- Overall current divides by branch resistances
- A different current flow will be present in each branch, based upon the resistance of the branch

Parallel Circuit

- $L^{2} E D_{1}$ drops $3.2 \mathrm{~V}-\mathrm{R}_{1}$ drops balance (5.8 V)
- LED $_{1}$ current $=19.333 \mathrm{~mA}$ ($5.8 \mathrm{~V} / 300 \Omega$)
- LED_{2} drops $2.1 \mathrm{~V}-\mathrm{R}_{2}$ drops 6.9 V , current $=20.910 \mathrm{~mA}$
- LED_{3} drops $3.6 \mathrm{~V}-\mathrm{R}_{3}$ drops 5.4 V , current $=20.000 \mathrm{~mA}$
- LED_{4} drops $2.3 \mathrm{~V}-\mathrm{R}_{4}$ drops 6.7 V , current $=20.303 \mathrm{~mA}$
- LED_{5} drops $1.7 \mathrm{~V}-\mathrm{R}_{5}$ drops 7.2 V , current $=10.588 \mathrm{~mA}$ NOTE: Forward voltage of each LED is found on LED datasheet.

Resistance Formulas

- Series resistances
- $\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3} \ldots$ etc.
- Parallel resistances
- If only two resistances - product over sum
- $\mathrm{R}_{\mathrm{T}}=\left(\mathrm{R}_{1} \times \mathrm{R}_{2}\right) /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$
- If more than two resistances...
- $1 / R_{T}=1 / R_{1}+1 / R_{2}+1 / R_{3} \ldots$ etc. or
- $\mathrm{R}_{\mathrm{T}}=1 /\left(1 / \mathrm{R}_{1}+1 / \mathrm{R}_{2}+1 / \mathrm{R}_{3} \ldots\right.$ etc. $)$
- If combination of series and parallel, work out parallel resistance first, then add that to the series resistance.

BT1 24YDC

- What is the total resistance?
- $\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3} \ldots$
- $\mathrm{R}_{\mathrm{T}}=111,000 \Omega$
- What is the current through R2?
- I = E / R
- $\mathrm{I}=24 / 111,000=0.0002162162 \mathrm{~A}$
- $\mathrm{I}=0.21262162 \mathrm{~mA}$

- What is the voltage drop across $R_{1}, R_{2}, \& R_{3}$?
- $\mathrm{I}=24 / 111,000=0.0002162162 \mathrm{~A}$
- $\mathrm{E}_{\mathrm{R} 1}=\mathrm{Ix} \mathrm{R}_{\mathrm{R} 1}=0.0002162162 \times 1,000$
- $\mathrm{E}_{\mathrm{R} 1}=0.2162162 \mathrm{~V}$
- $\mathrm{E}_{\mathrm{R} 2}=\mathrm{I} \times \mathrm{R}_{\mathrm{R} 2}=0.0002162162 \times 10,000$
- $\mathrm{E}_{\mathrm{R} 2}=2.162162 \mathrm{~V}$
- $\mathrm{E}_{\mathrm{R} 3}=\mathrm{Ix} \mathrm{R}_{\mathrm{R} 3}=0.0002162162 \times 100,000$
- $\mathrm{E}_{\mathrm{R} 3}=21.62162 \mathrm{~V}$

BT 1 12YDC

- What is the total resistance?
- $\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3} \ldots$
- $\mathrm{R}_{\mathrm{T}}=3,000 \Omega$
- What is the current through R_{2} ?
- I = E / R
- $I=12 / 3,000=0.004 \mathrm{~A}$
- $\mathrm{I}=4 \mathrm{~mA}$

- What is the total resistance?
- $\mathrm{R}_{\mathrm{T}}=\left(\mathrm{R}_{1} \times \mathrm{R}_{2}\right) /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)=100,000 / 20,000 \ldots$
- $R_{T}=5,000 \Omega$
- What is the current through R_{1} ?
- $\mathrm{I}=\mathrm{E} / \mathrm{R}$
- $\mathrm{I}_{\mathrm{T}}=12 / 5,000=0.0024 \mathrm{~A}$
- $\mathrm{I}=1.2 \mathrm{~mA}$
- R_{1} and R_{2} are same value - current splits

- What is the total resistance?
- $\mathrm{R}_{\mathrm{T}}=\left(\mathrm{R}_{1} \times \mathrm{R}_{2}\right) /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)=108,900 / 660$
- $\mathrm{R}_{\mathrm{T}}=165 \Omega$
- What is the current through R_{2} ?
- $I=E / R$
- $I=13.8 / 330=0.0418181818$
- $\mathrm{I}=41.81818 \mathrm{~mA}$
- $\mathrm{I}_{\mathrm{R} 2}=41.81818 \mathrm{~mA} / 2$, as $\mathrm{R}_{1}=\mathrm{R}_{2}$ so current splits evenly between the two resistive paths
- $\mathrm{I}_{\mathrm{R} 2}=20.90909 \mathrm{~mA}$

- What is the total resistance?
- $1 / \mathrm{R}_{\mathrm{T}}=1 / \mathrm{R}_{1}+1 / \mathrm{R}_{2}+1 / \mathrm{R}_{3}$
- $1 / \mathrm{R}_{\mathrm{T}}=0.001+0.0001+0.00001=0.00111$
- $\mathrm{R}_{\mathrm{T}}=1 / 0.00111=900.9009 \Omega$
- What is the total current in the circuit?
- $\mathrm{I}=\mathrm{E} / \mathrm{R}$
- $\mathrm{I}_{\mathrm{T}}=12 / 900.9=0.01332 \mathrm{~A}$
- $\mathrm{I}_{\mathrm{T}}=13.32 \mathrm{~mA}$

- What is the total current in the circuit?
- $\mathrm{I}_{\mathrm{T}}=\mathrm{I}_{\mathrm{R} 1}+\mathrm{I}_{\mathrm{R} 2}+\mathrm{I}_{\mathrm{R} 3}=0.01332 \mathrm{~A}$
- What is the power consumed in the circuit?
- $\mathrm{P}=\mathrm{IxE}$
- $\mathrm{P}=12 \times 0.01332$
- $\mathrm{P}=0.15984 \mathrm{~W}$
- $\mathrm{P}=159.84 \mathrm{~mW}$

- What is the total resistance?
- $1 / \mathrm{R}_{\mathrm{T}}=1 / \mathrm{R}_{1}+1 / \mathrm{R}_{2}+1 / \mathrm{R}_{3}$
- $1 / \mathrm{R}_{\mathrm{T}}=0.001+0.0001+0.00001=0.00111$
- $\mathrm{R}_{\mathrm{T}}=1 / 0.00111=900.9009 \Omega$
- What is the current through R3?
- $\mathrm{I}=\mathrm{E} / \mathrm{R}$
- $\mathrm{I}_{\mathrm{R} 3}=12 / 100,000=0.00012 \mathrm{~A}$
- $\mathrm{I}_{\mathrm{R} 3}=0.12 \mathrm{~mA}$

- What is the total resistance?
- $1 / \mathrm{R}_{\mathrm{T}}=1 / \mathrm{R}_{1}+1 / \mathrm{R}_{2}+1 / \mathrm{R}_{3}$
- $1 / \mathrm{R}_{\mathrm{T}}=0.0001+0.0001+0.0001=0.0003$
- $\mathrm{R}_{\mathrm{T}}=1 / 0.0003=3,333.3333 \Omega$
- What is the total current in the circuit?
- $\mathrm{I}=\mathrm{E} / \mathrm{R}$
- $\mathrm{I}_{\mathrm{T}}=13.8 / 3,333.3333=0.00414 \mathrm{~A}$
- $\mathrm{I}_{\mathrm{T}}=4.14 \mathrm{~mA}$

- What is the power consumed in this circuit?
- $\mathrm{P}=\mathrm{Ix} \mathrm{R}$... or $\mathrm{P}=\mathrm{E}^{2} / \mathrm{R}$
- $\mathrm{E}=13.8 \mathrm{~V}$ and $\mathrm{R}=30 \Omega$
- $\mathrm{P}=(13.8 \times 13.8) / 30$
- $\mathrm{P}=190.44 / 30$
- $\mathrm{P}=6.348 \mathrm{~W}$

- What is the total resistance in this circuit? - Solve for parallel resistance first...
- $\mathrm{R}_{(\mathrm{R} 2+\mathrm{R} 3)}=1,000,000 / 2,000=500 \Omega$ - Then add series resistance...
- $\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1}+\left(\mathrm{R}_{2}+\mathrm{R}_{3}\right)=100+500$
- $\mathrm{R}_{\mathrm{T}}=600 \Omega$
- Most working circuits are combinations of series and parallel circuits in some form.

Capacitance Formulas

- Parallel Capacitances
- $\mathrm{C}_{\mathrm{T}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3} \ldots$ etc.
- Series Capacitances
- If only two capacitances - product over sum
- $\mathrm{C}_{\mathrm{T}}=\left(\mathrm{C}_{1} \times \mathrm{C}_{2}\right) /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)$
- If more than two capacitances...
- $1 / \mathrm{C}_{\mathrm{T}}=1 / \mathrm{C}_{1}+1 / \mathrm{C}_{2}+1 / \mathrm{C}_{3} \ldots$ etc., or
- $\mathrm{C}_{\mathrm{T}}=1 /\left(1 / \mathrm{C}_{1}+1 / \mathrm{C}_{2}+1 / \mathrm{C}_{3}\right.$...etc. $)$
- If combination of series and parallel, work out series capacitance first, then add that to the parallel capacitance.

Inductance Formulas

- Series inductances
- $\mathrm{L}_{\mathrm{T}}=\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3} \ldots$ etc.
- Parallel inductances
- If only two inductances - product over sum
- $\mathrm{R}_{\mathrm{T}}=\left(\mathrm{L}_{1} \times \mathrm{L}_{2}\right) /\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)$
- If more than two inductances...
- $1 / \mathrm{L}_{\mathrm{T}}=1 / \mathrm{L}_{1}+1 / \mathrm{L}_{2}+1 / \mathrm{L}_{3} \ldots$ etc. or
- $\mathrm{L}_{\mathrm{T}}=1 /\left(1 / \mathrm{L}_{1}+1 / \mathrm{L}_{2}+1 / \mathrm{L}_{3} \ldots\right.$..etc. $)$
- If combination of series and parallel, work out parallel inductance first, then add that to the series inductance.

