Basic Electronics Series

Understanding the Decibel Scale

Eliminating the Confusion

- The decibel scale is confusing to most new ham operators
- It is a logarithmic scale
- As such, it is NOT linear
- In the Technician Class training and study guides, are taught two things:
- Doubling or halving a power level is a change of plus or minus 3dB, depending upon direction
- A change with a factor of 10 X is a change of plus or minus 10 dB , again dependent upon direction of change
- The decibeel is used as a means of comparison of two values.
- The most common comparisons are to power levels, as in between two diffent antennas, or with and without an amplifier
- dB are also used in discussing audio levels
- There must be a base value or a basis for comparison, which is effectively used as a comparison standard
- Using the decibel allows comparison of very large and/or very small values without having to manipulate a large string of zeroes

Comparison Example

- Suppose a ham transmits an outbound signal at an RF signal strength of 100 W , and that signal is received at some remote point, with a $10 \mu \mathrm{~V}$ signal being induced on the receiving antenna. That $10 \mu \mathrm{~V}$ signal, through a 50Ω impedance coaxial cable to the receiver, will develop a power level of 2 pW (picowatts), or 0.000000000002 watts. This means that the transmitted signal was 50 trillion (5×10^{13}) times stronger than the received signal.

Comparison Example

 Continued- Manipulating those values, with all of those zeroes, is likely to result in arithmetic errors.
- The decibel scale makes such comparisons cleaner and more elegant.
- The decibel scale is based on positive and negative powers of 10
- A 1 to 1 comparison, i.e., no change, is a OdB change.

Noumpeatres cus pirman.Rovsers of 10	Base $_{10}$ Logarithm	$=$	Log Value	
$10,000,000$	1×10^{7}	$\log _{10}(10,000,000)$	$=$	7
$1,000,000$	1×10^{6}	$\log _{10}(1,000,000)$	$=$	6
100,000	1×10^{5}	$\log _{10}(100,000)$	$=$	5
10,000	1×10^{4}	$\log _{10}(10,000)$	$=$	4
1,000	1×10^{3}	$\log _{10}(1,000)$	$=$	3
100	1×10^{2}	$\log _{10}(100)$	$=$	2
10	1×10^{1}	$\log _{10}(10)$	$=$	1
1	1	$\log _{10}(1)$	$=$	0
.10	1×10^{-1}	$\log _{10}(0.1)$	$=$	-1
.01	1×10^{-2}	$\log _{10}(0.01)$	$=$	-2
.001	1×10^{-3}	$\log _{10}(0.001)$	$=$	-3
.0001	1×10^{-4}	$\log _{10}(0.0001)$	$=$	-4
.00001	1×10^{-5}	$\log _{10}(0.00001)$	$=$	-5
.000001	1×10^{-6}	$\log _{10}(0.000001)$	$=$	-6
.0000001	1×10^{-7}	$\log _{10}(0.0000001)$	$=$	-7
.00000001	1×10^{-8}	$\log _{10}(0.00000001)$	$=$	-8

Logarithm Table on Previous

Slide

- Table is truncated for presentation size
- Scale can go on infinitely.
- According to table...
- $\log _{10}$ of 10,000 is 4
- $\log _{10}$ of 0.001 is -3
- $\log _{10}$ of 100 is 2
- $\log _{10}$ of 1,000 is 3
- $\log _{10}$ of 0.00001 is -5

Logarithms and Decibels

- The Base $_{10}$ logarithm of a number is also known as a bel, after Alexander Graham Bell.
- Ten decibels are equal, in sum, to one bel, as a decibel is equivalent to one-tenth of a bel.
- The chart and table on the next two slides depict the relationships between decibels and Base_{10} logarithms

dBcoprigiteozes cus pimpawerr Ratio	
100	$10,000,000,000$
90	$1,000,000,000$
80	$100,000,000$
70	$10,000,000$
60	$1,000,000$
50	100,000
40	10,000
30	1,000
20	100
10	10
6	3.981
3	$1.995(\approx 2)$
1	1.259
0	1

dB	Power Ratio
0	1
-1	0.794
-3	$0.501(\approx 1 / 2)$
-6	0.251
-10	0.1
-20	0.01
-30	0.001
-40	0.0001
-50	0.00001
-60	0.000001
-70	0.0000001
-80	00.00000001
-90	0.000000001
-100	0.0000000001

Notes on the Decibel Table

- The power ratios are understood to be ratios to a value of 1:
- 3dB is equivalent to a power ratio of about 2:1
- 10dB is equivalent to a power ratio of 10:1
- 20 dB is equivalent to a power ratio of 100:1
- 30 dB is equivalent to a power ratio of $1,000: 1$
- -6dB is equivalent to a power ratio of 0.251:1
- -20dB is equivalent to a power ratio of 0.01:1

Calculations

- Gain is calculated using the formula

$$
\text { Gain }(d B)=10 x \log (P 2 / P 1)
$$

- Suppose we were to be comparing a 4-element Yagi to a dipole, and the published spec on the Yagi says it has about a 6dB signal gain over the dipole. What exactly does that mean?
- The table and/or the chart will reveal that a 6dB power gain is a gain of about four times the power.
- Here is how that is worked out...
- Gain (dB) $=10 \times \log$ (4/1) (4 times the power)
- Gain $(\mathrm{dB})=10 \times 0.602$ (from a calculator $-\log 4=$. 60206
- Gain (dB) = 6.02

Back to the Example...

- The $\log _{10}$ of the 100 W outbound signal is 2
- The $\log _{10}$ of the 2 pW received signal is roughly -12 (it is actually -11.69897, which rounded to the nearest whole number is -12).
- A scientific calculator tells us that the $\log _{10}$ of $50,000,000,000,000$ is 13.69897 (note the span from the $\log _{10}$ of the 100 W signal and the $\log _{10}$ of the 2 pW signal - the total span is 13.69897 !
- $13.69897 \times 10=136.9897$, or 137 dB
- Isn't that a whole lot easier than dealing with a number like 50 trillion?

What are dBd and dBi?

- dBd and dBi are comparative values with respect to specific standard antenna types
- dBd is antenna gain compared to a half-wave dipole antenna in its direction of maximum radiation
- dBi is antenna gain compared to an isotropic radiator
- An isotropic radiator is a theoretical point-sized antenna that is assumed to radiate equally and evenly in all directions.
- Thus, the 3-D radiation pattern of an isotropic antenna is a sphere centered around the antenna point.
- It is theoretical only and does not exist in reality.

Relationship of dBd and dBi

- There is a fixed relationship between these two comparative values...
- Gain in dBd = Gain in dBi - 2.15dB
- Gain in dBi = Gain in dBd + 2.15dB
- Example - if an antenna has 6dB more gain than an isotropic radiator, how much gain does it have compared to a dipole?
- Gain in dBd = Gain in dBi - 2.15dB
- Gain in dBd $=6 \mathrm{dBi}-2.15 \mathrm{~dB}=3.85 \mathrm{dBd}$

Questions??

