Copyright ©2023 CMS Pitman, NJ USA

Basic Electronics Series

Understanding the Decibel Scale

Eliminating the Confusion

- The decibel scale is confusing to most new ham operators
- It is a logarithmic scale
- As such, it is NOT linear
- In the Technician Class training and study guides, are taught two things:
 - Doubling or halving a power level is a change of plus or minus 3dB, depending upon direction
 - A change with a factor of 10X is a change of plus or minus 10 dB, again dependent upon direction of change

The decibel is used as a means of comparison of two values.

- The most common comparisons are to power levels, as in between two diffent antennas, or with and without an amplifier
- dB are also used in discussing audio levels
- There must be a base value or a basis for comparison, which is effectively used as a comparison standard
- Using the decibel allows comparison of very large and/or very small values without having to manipulate a large string of zeroes

Comparison Example

Suppose a ham transmits an outbound signal at an RF signal strength of 100 W, and that signal is received at some remote point, with a 10µV signal being induced on the receiving antenna. That $10\mu V$ signal, through a 50Ω impedance coaxial cable to the receiver, will develop a power level of 2pW (picowatts), or 0.00000000002 watts. This means that the transmitted signal was 50 trillion (5 x 10^{13}) times stronger than the received signal.

Comparison Example Continued

- Manipulating those values, with all of those zeroes, is likely to result in arithmetic errors.
- The decibel scale makes such comparisons cleaner and more elegant.
- The decibel scale is based on positive and negative powers of 10
- A 1 to 1 comparison, *i.e.*, no change, is a dB change.

Nuppight 2023 CMS	Pitman, Pousers of 10	Base ₁₀ Logarithm	=	Log Value
10,000,000	1 x 10 ⁷	log ₁₀ (10,000,000)	=	7 ^{1V1}S
1,000,000	1 x 10 ⁶	log ₁₀ (1,000,000)	=	6
100,000	1 x 10 ⁵	log ₁₀ (100,000)	=	5
10,000	1 x 10 ⁴	log ₁₀ (10,000)	=	4
1,000	1 x 10 ³	log ₁₀ (1,000)	=	3
100	1 x 10 ²	log ₁₀ (100)	=	2
10	1 x 10 ¹	log ₁₀ (10)	=	1
1	1	log ₁₀ (1)	=	0
.10	1 x 10 ⁻¹	log ₁₀ (0.1)	=	-1
.01	1 x 10 ⁻²	log ₁₀ (0.01)	=	-2
.001	1 x 10 ⁻³	log ₁₀ (0.001)	=	-3
.0001	1 x 10 ⁻⁴	log ₁₀ (0.0001)	=	-4
.00001	1 x 10 ⁻⁵	log ₁₀ (0.00001)	=	-5
.000001	1 x 10 ⁻⁶	log ₁₀ (0.000001)	=	-6
.0000001	1 x 10 ⁻⁷	log ₁₀ (0.000001)	=	-7
.0000001	1 x 10 ⁻⁸	log ₁₀ (0.0000001)	=	-8

Logarithm Table on Previou Slide

- Table is truncated for presentation size
- Scale can go on infinitely.
- According to table...
 - log₁₀ of 10,000 is 4
 - log₁₀ of 0.001 is -3
 - Iog₁₀ of 100 is 2
 - log₁₀ of 1,000 is 3
 - Iog₁₀ of 0.00001 is -5

- The Base₁₀ logarithm of a number is also known as a *bel*, after Alexander Graham Bell.
- Ten decibels are equal, in sum, to one bel, as a <u>decibel</u> is equivalent to one-tenth of a bel.
- The chart and table on the next two slides depict the relationships between decibels and Base₁₀ logarithms

d B _{Copyrigt}	t ©2023 CMS Pitman, OWSAR Ratio		dB	Power Ratio	
100	10,000,000,000		0	1	3
90	1,000,000,000		-1	0.794	
80	100,000,000		-3	0.501 (≈1/2)	
70	10,000,000		-6	0.251	
60	1,000,000		-10	0.1	
50	100,000		-20	0.01	
40	10,000		-30	0.001	
30	1,000		-40	0.000 1	
20	100		-50	0.000 01	
10	10		-60	0.000 001	
6	3.981		-70	0.000 000 1	
3	1.995 (≈2)		-80	00.000 000 01	
1	1.259		-90	0.000 000 001	
0	1	-	100	0.000 000 000 1	

Notes on the Decibel Table

- The power ratios are understood to be ratios to a value of 1:
 - 3dB is equivalent to a power ratio of about 2:1
 - 10dB is equivalent to a power ratio of 10:1
 - 20dB is equivalent to a power ratio of 100:1
 - 30dB is equivalent to a power ratio of 1,000:1
 - -6dB is equivalent to a power ratio of 0.251:1
 - -20dB is equivalent to a power ratio of 0.01:1

Calculations

Gain is calculated using the formula Gain (dB) = 10 x log(P2/P1)

- Suppose we were to be comparing a 4-element Yagi to a dipole, and the published spec on the Yagi says it has about a 6dB signal gain over the dipole. What exactly does that mean?
- The table and/or the chart will reveal that a 6dB power gain is a gain of about four times the power.
- Here is how that is worked out...
 - Gain (dB) = 10 x log (4/1) (4 times the power)
 - Gain (dB) = 10x 0.602 (from a calculator log 4 = .60206
 - Gain (dB) = 6.02

- The log₁₀ of the 100W outbound signal is 2
- The log₁₀ of the 2pW received signal is roughly -12 (it is actually -11.69897, which rounded to the nearest whole number is -12).
- A scientific calculator tells us that the log₁₀ of 50,000,000,000,000 is 13.69897 (note the span from the log₁₀ of the 100W signal and the log₁₀ of the 2pW signal – the total span is 13.69897!
- 13.69897 x 10 = 136.9897, or 137dB
- Isn't that a whole lot easier than dealing with a number like 50 trillion?

What are dBd and dBi?

- dBd and dBi are comparative values with respect to specific standard antenna types
 - dBd is antenna gain compared to a half-wave dipole antenna in its direction of maximum radiation
 - dBi is antenna gain compared to an isotropic radiator
- An isotropic radiator is a theoretical point-sized antenna that is assumed to radiate equally and evenly in all directions.
 - Thus, the 3-D radiation pattern of an isotropic antenna is a sphere centered around the antenna point.
 - It is theoretical only and does not exist in reality.

Relationship of dBd and dBi

- There is a fixed relationship between these two comparative values...
 - Gain in dBd = Gain in dBi 2.15dB
 - Gain in dBi = Gain in dBd + 2.15dB
- Example if an antenna has 6dB more gain than an isotropic radiator, how much gain does it have compared to a dipole?
 - Gain in dBd = Gain in dBi 2.15dB
 - Gain in dBd = 6dBi 2.15 dB = 3.85 dBd

Copyright ©2023 CMS Pitman, NJ USA

Questions??

Understanding the Decibel