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Abstract

In this paper, I suggest a novel systemic risk measure using a network approach. I con-
struct stock networks using the Minimum Spanning Tree (MST) based on the Pearson
and Spearman rank correlation matrices of stock returns listed in S & P 500. I use
two network centralities which I suggest as another factor to explain the risk-adjusted
volatilities of stocks, which is unexplained by the Fama-French five factors and the mo-
mentum factor, to quantify connectedness among stocks: the degree based on direct
connections among stocks and the community’s influence strength based on indirect
connections in communities, detected by modularity maximization. The statistical and
dynamic properties of network centralities for the Pearson and Spearman rank corre-
lation matrices are almost identical, and stocks in similar industry sectors are in the
same community for both correlation matrices. Systemic risk is defined by multiplying
the risks due to direct and indirect connections among stocks without a particular as-
sumption of the return distribution. An increase in systemic risk is observed in the US
financial recessions: the recession after the dot-com bubble and the subprime mortgage
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1 Introduction

Most stocks are strongly correlated with each other, and negative shock can propagate
through a strong correlation. In particular, the negative shock from one financial institution
can be amplified through shock propagation in the stock market. During the subprime
mortgage crisis, the bankruptcy of Lehman Brothers propagated to the US stock market
and the global stock market via strong connections among stocks and stock markets. After
the subprime mortgage crisis, understanding the risk from the negative shock of a small part
of the market to the whole market via strong connections in the market, called “systemic
risk,” has been importantE]. To identify and measure systemic risk, we need to understand
the structure of connections in the market.

With the development of network theory, we can understand the interaction behaviors
of agents in the system. Network theory has been applied to economics and finance (see
Allen and Babus| (2009); |Goyal| (2009); |Jackson| (2014)); |Carvalho and Tahbaz-Salehi| (2019)).
In particular, network theory can be useful for measuring the effect of networks on risk
due to interactions (see |Allen and Babus| (2009)). Bardoscia et al| (2021) also suggest that
the methodologies in complex networks can be useful for analyzing the risk due to com-
plex network structures emerging by the nonlinear and complex interaction among financial
institutions in the financial market.

In this paper, I suggest a novel systemic risk measure based on connections among
stocks in the US stock market. The stock networks that describe the interaction struc-
ture among stocks are constructed using the Minimum Spanning Tree (MST') based on the
cross-correlation matrix among daily stock returns listed in S & P 500 from 1996 to 2021.
To confirm the robustness of the US stock networks, I use two kinds of cross-correlation
matrices: the Pearson and Spearman rank correlation matrices. To identify the character-

istics of the interaction among stocks, I use two network centrality measures that quantify

!There are some the review papers of systemic risk explain the progress and development of the research
about systemic risk (see Bisias et al. (2012)); |Adrian, Covitz and Liang| (2015); |Engle| (2018); |Jackson and
Pernoud| (2021)).



the influence of stocks in the US stock network: the degree centrality based on direct con-
nections of stocks and the community’s influence strength based on indirect connections of
stocks in the same community. Communities in the US stock market are detected using
modularity maximization and show the clusters of stocks strongly correlated. The statistical
and dynamic properties of the network centralities in the US stock networks for the Pearson
and Spearman rank correlation matrices are almost identical. Clusters of stocks in similar
industry sectors are observed in the US stock networks for the Pearson and Spearman rank
correlation matrices using community detection.

To measure the systemic risk due to connections among stocks in the US stock market,
I use two network centralities as another factor to explain the risk-adjusted volatilities of
stocks, which is unexplained volatility by the six-factor model consisting of the Fama-French
five factors and the momentum factor. Then, I regress the risk-adjusted volatility on the
network centrality. The systemic risk in the stock market is defined by the product of the
absolute values of the regression coefficients of degree centrality and community’s influence
strength on the risk-adjusted volatility and measures the risk due to direct and indirect
connections among stocks without a particular assumption of the return distribution. The
regression coefficients of degree centrality and the community’s influence strength quantify
the risks due to direct and indirect connections among stocks, respectively. The regression co-
efficients of degree centralities of stocks each year are negative since high market-capitalized
stocks have a higher degree centrality and lower volatility than low market-capitalized stocks.
The dramatic increase in the absolute value is observed in the US financial recessions: the
recession after the dot-com bubble and the subprime mortgage crisis. The regression coeffi-
cients of the community’s influence strengths of stocks are positive due to a stronger positive
correlation among stocks in the stock market as the stock market is more unstable. The dra-
matic increase in the absolute value is also observed in the US financial recessions. Finally,
an increase in systemic risk is observed in the US financial recessions.

The remaining part of this paper is as follows. Section [2 presents the literature related to



my research and the contribution of my research to the literature. Section |3 shows the data
set used in my research. Section [4] describes the methodology that I use in data analysis.
Section [f| represents testable hypotheses, and the results are represented in Section[6] Finally,

I conclude and discuss my paper in Section [7}

2 Literature Review

The application of network theory to measuring systemic risk in the financial market has
grown exponentially. Previous research on systemic risk has focused on the banking system
and the stock market. The systemic risk in the banking system has been measured using the
interbank network based on the credit relationship among banks by the money flows between
lenders and borrowers in the interbank lending market. Thus, it is not hard to understand
interactions among banks and quantify the risk in the interbank networks. In this section, I
introduce the literature related to the empirical analysis of interbank networks. [

Fender and McGuire| (2010) suggest a framework that measures system-wide funding risk
and the transmission of shocks across countries via the global interbank networks constructed
by the credit relationship among banks. They find that the strength of linkages from the
banks in the US to the banks in other countries, measured by changes in net interbank claims
(assets minus liabilities) of banks in the US on banks in the banks in other countries during
the subprime mortgage crisis in the US is observed. The result shows that the negative
shocks of the banks in the US during the financial crisis were transmitted to other countries
via interbank networks.

Gofman| (2017) shows that financial stability can be improved by restricting the inter-

connectedness of banks using the over-the-counter interbank lending market in the US. The

2Model studies about systemic risk in the banking system using interbank networks have also been
conducted. Most studies have focused on the channels of amplifying negative shocks from a few banks via
interbank networks, such as correlated portfolios across banks, fire sales on market prices, counterparty risk,
etc. (see the survey paper of \Jackson and Pernoud| (2021))). The model studies can give us an understanding
of the relationship between systemic risk and the interbank network structure not observed by the empirical
analysis due to the need for more data.



result shows that financial stability can be worsened by strong interconnectedness among
banks.

Anderson, Paddrik and Wang| (2019) analyze the bank networks constructed using the
data on balance sheets of banks and interbank deposits in 1862 and 1867 in Pennsylvania.
They focus on the effect of the National Banking Acts (NBAs) on the interbank networks.
They find that the interbank networks were denser, and interbank deposits were concentrated
on a few banks due to the NBAs. They also find the robustness to mild shocks in a more
concentrated bank network but the fragility to large shocks to the financial center banks.
Their study shows the mechanism of how the policy of the banking industry affects the
banking system from the perspective of interbank networks.

Craig and Ma (2022)) analyze the interbank networks in the German interbank lending
market based on the credit relationship among banks. They find a few large banks in the
core and many smaller banks in the periphery of the networks. Large banks have a role in
intermediate funding flows between many smaller banks. They also suggest a model that
explains the link formation among banks. They estimate unobserved monitoring costs using
their model and the data, and an increase in the estimated unobserved monitoring costs is
observed during the subprime mortgage crisis in the US.

The studies on systemic risk using interbank networks are limited to systemic risk in
the banking industry. However, during the financial crisis, the whole industry sectors in the
economy are in crisis. It implies that we need to consider connections among all industry
sections in the economic system to precisely measure systemic risk. If we use the data in the
stock market, we can solve the limitation of the study using interbank networks.

The systemic risk in the stock market has been measured using stock networks. The stock
networks can be constructed using the cross-correlation matrix of stock returns. The cross-
correlation matrix of stock returns includes information about relationships among stocks.
Thus, we can find hidden networks using the cross-correlation matrix of stock returns, and the

networks can provide useful information about stock connections to measure systemic risk in



the stock market. Then, we can understand the shock propagation among different industry
sectors if we use the stock networks. In this section, I introduce literature on constructing
stock networks using the cross-correlation matrix of stock returns and measuring systemic
risk using the stock networks or the cross-correlation matrix (including the covariance matrix)
of stock returns.

Mantegna| (1999) suggests a way to construct the stock network using a cross-correlation
matrix of returns in the US stock market. The stock network is constructed using the
Minimum Spanning Tree (MST), in which a stock is more likely to be linked to another
stock whose distance from the stock is shorter. The higher the correlation between two
stocks is, the shorter the distance between two stocks. He finds that the stocks in the same
industrial sectors are clustered in the network and shows that the stock network using an
MST can be useful information to understand the stock market’s structure. This clustering
of the stocks in the same industrial sectors is also observed in other research (see MacMahon
and Garlaschelli (2015)).

Kritzman et al. (2010) suggest the absorption ratio as an indicator of systemic risk
measure using the principle components of the covariance matrix of stock returns in the US
stock market. They find an increase in the absorption ratio during the subprime mortgage
crisis in the US. It shows that the cross-correlation matrix of stock returns in the stock
market can be useful for measuring systemic risk in the stock market.

Song et al. (2011)) analyze the worldwide stock markets using the global stock market net-
works constructed by the cross-correlation matrix among returns of worldwide stock market
indices. They find an increase in the average correlation coefficient among worldwide stock
market indices during the subprime mortgage crisis in the US. They also find an increase
in the mutual information of connections among stock markets in the global stock market
networks during the subprime mortgage crisis. The results show that the correlation and
the information flow among the global stock markets significantly increase during the global

financial crisis.



Billio et al.| (2012) analyze the interconnections among stocks based on principle compo-
nents analysis (PCA) using the covariance matrix of monthly stock returns of four sectors;
hedge funds, banks, broker/dealers, and insurance companies, and the stock networks con-
structed using Granger-causality among stocks in the four sectors. They find an increase
in the number of connections among stocks during the subprime mortgage crisis in the US.
They also observe that banks and insurers more significantly impact hedge funds and bro-
ker/dealers than vice versa, and this asymmetry is enhanced during the subprime mortgage
crisis in the US (2007-2009). Their results show that the asymmetry of the connections with
banks can be a systemic risk measure in the financial market.

Wang, Xie and Stanley| (2018) suggest another way to construct the global financial
market network using a cross-correlation matrix of returns estimated by partial correlation
coefficients. Using the MST based on partial correlation coefficients, they construct the
networks and find that geographical characteristics cluster financial markets. Also, they show
that network centrality measures (influence strength, betweenness centrality, and closeness
centrality), which show the influence of stocks in the stock networks, detect the change in
the global financial market network structure due to extreme events, such as the subprime
mortgage crisis in the US.

Gong et al.| (2019)) suggest a systemic risk measure based on Granger-causality connec-
tions among financial companies’ returns in the Chinese financial market, combined with a
Value-at-Risk (VaR), traditionally used in measuring risk based on a particular assumption
of the return distribution. They find an increase in the connectedness in the Chinese finan-
cial market during the subprime mortgage crisis in the US. They also find an increase in the
systemic risk in the Chinese financial market during the subprime mortgage crisis in the US.
It indicates that risk measure based on a Value-at-Risk is closely connected with connections
among financial institutions in the financial market.

My paper contributes to the literature focused on measuring systemic risk in the stock

market using networks based on a cross-correlation matrix of stock returns (see Mantegna



(1999); Kritzman et al.| (2010); Song et al.| (2011)); Billio et al. (2012); Wang, Xie and Stanley
(2018)). In particular, I introduce two network centralities in the stock network as another
factor to explain the risk-adjusted volatilities of stocks, which is unexplained by the six fac-
tor model (the Fama-French five factors and the momentum factor), and suggest a systemic
risk measure using the relationship between the risk-adjusted volatility and the network cen-
trality. Thus, my research also contributes to the research of systemic risk using network
information and Value-at-Risk (see Gong et al. (2019))). In addition, my systemic risk mea-
sure does not assume any particular assumption of the stock return distribution. Thus, it is
easy to measure. As a result of data analysis, my systemic risk measure shows a consistent
result with the previous research (see |Song et al.| (2011)); Billio et al. (2012); |Gong et al.

(2019)). Therefore, my study develops a new systemic risk measure in the stock market.

3 Data sets

I use returns of common stocks listed in S & P 500 from 01/01/1996 to 12/31/2021.
Daily returns are used to construct stock networks. To construct these networks, we need
the cross-correlation matrix of stock returns. The cross-correlation matrix is measured using
the daily data for a year. The daily data is enough to measure the cross-correlation matrix
for a year with a high statistical significance]] The stock network for each year describes
the interaction structure of the US stocks based on the correlation among stocks for each
year. Thus, we can measure the change in the interaction structure in the US stock market
from year to year. Risk-adjusted volatilities are estimated using the six-factor model, which
includes the Fama-French five factors and the momentum factor in the US stock market from
01/01/1996 to 12/31/2021 (see Fama and French (2015)). I use the data from the Center for
Research in Security Prices database (CRSP) to construct stock networks and the Wharton

Research Data Services (WRDS) data to construct risk-adjusted volatilities.

3Daily stock returns have been used to measure the cross-correlation matrix for a year in the previous
research, and the results have shown a high statistical significance (see Mantegna| (1999); Song et al.| (2011));
Wang, Xie and Stanley| (2018])).
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Figure 1: An example of a small network. There are six nodes and seven links in the network.

4 Methodology

4.1 What is a network?

A network is used to describe the interaction structure among agents in the system.ﬁ
A network consists of nodes and links. A node represents an agent in the system. A link
between two nodes represents the relationship between two agents. In the stock network, a
node denotes a stock. A link denotes the relationship between two stocks in the stock market.
In my research, a link is constructed by the distance measure based on the correlation between
two stocks. If the correlation between two stocks is higher, their distance is shorter, and
they are more likely to be tied in the network. Thus, two stocks can be linked if two stocks
are highly correlated in the stock market.

Figure (1] depicts an example of a small network. The network consists of six nodes and
seven links. The number of node 4’s links is four, and the number of links of node 1 is two.
The nodes connected to node ¢ are called the neighbors of node i. Nodes 2, 3, 5, and 6

are connected to node 4. Thus, nodes 2, 3, 5, and 6 are the neighbors of node 4. If this

4Several textbooks introduce network methodology (see [Easley and Kleinberg (2010); [Jackson| (2010);
Barabasi| (2016]); Newman| (2018)). These books introduce a lot of networks in several systems, such as
citation networks, friendship networks, customer-supplier networks, input-output networks, stock networks,
Etc. Also, the books introduce applications of networks to several areas, such as economics, sociology,
physics, biology, Etc.



network is the stock network, stock 4 has greater influence than others because the number
of stocks connected to stock 4 is the highest. Also, the shortest path length between node
1 and node 4 is 2. Using the number of neighbors and the shortest path length, we can
define several centralities that quantify the influence of a node in the network. I explain the

network centralities used in my research in Section [£.3]

4.2 Network construction

My methodologies to construct stock networks are based on the cross-correlation ma-
trices of stock returns (see Mantegnal (1999); Wang, Xie and Stanley (2018)). I get the
cross-correlation matrix from the stock returns time series using two methods to check the
robustness of stock networks: Pearson correlation and Spearman rank correlation.

The return of stock i at time ¢ (r;(¢)) in S & P 500 is calculated by the difference between
log stock i’s price at time ¢ (log (P;(t))) and log stock i’s price at time t — 1 (log (P;(t — 1))):
ri(t) = log (Pi(t)) —log (P;(t —1))). Daily stock returns are used to estimate the cross-
correlation matrices of stock returns.

The cross-correlation matrix of N stocks’ returns at time ¢ (C(t)) is calculated by using
the Pearson correlation coefficient or Spearman rank correlation between two stock returns

as follows:

pu(t) -+ pin(t)
chy=| :+ . , (1)
pni(t) - pan(t)
where p;;(t) denotes the correlation coefficient between stock ¢’s return and stock j’s return
using the data from¢t —1—Landt—1 (1 <4,7 <N, —1 < p;;(t) <1). L denotes the time
window to calculate the cross-correlation matrix.

I define the distance measure between two stocks using the correlation between two

stocks as follows: d;;(t) = \/2(1 — p;;(t)) (0 < d;;(t) < 2), where d;;(t) denotes the distance



between stocks i and j at time ¢. If p;;(t) = 1, then d;;(t) = 0. If p;;(t) = —1, then d;;(t) = 2.
Thus, the higher the correlation between stocks ¢ and j at time ¢ is, the shorter d;;(¢) is.
Using the distance measure, I define the distance matrix of N stocks at time ¢ (D(t)) as

follows:

dir(t) -+ din(t)
pt)y=| : -~ i | (2)
dy1(t) -+ dyn(t)

d;;(t) satisfies three axioms of a metric space: (i) d;;(t) = 0; (ii) d;;(t) = dj;(¢); (iii)
dir(t) < dij(t) + djx(t). d;j(t) means the farness between stocks ¢ and j in the stock market,
and we can define any measure based on D(t) in the stock market because d;;(t) spans a
metric space. Also, we can construct a network that describes the interaction structure based
on a distance measure in a metric space. In this paper, I focus on the interaction structure
of the US stocks based on D(t). The interaction structures can be constructed using a
Minimum Spanning Tree (MST). I use the MST of the US stocks using Kruskal (1956) has
been widely used in building an MST. The MST of stocks is constructed by following four
steps:

(i) Sort all elements of the distance matrix in ascending order.

(ii) Choose the element that has the smallest value and add the link to the network.
d;;(t) is not chosen in this step (*. d;;(t) = 0).

(iii) Choose the next smallest element and add the link to the network, which should be
a tree [J] after adding the link.

(iv) Repeat (iii) until all nodes are connected in the network.

The constructed MST includes the hidden structure of stock connections in the corre-

lation among stocks. By steps (ii) and (iii) in constructing the MST of stocks, strongly

5A tree is a network in which any two nodes are linked by one path without a loop. A loop is a path
that connects a node to itself. For example, the network in Figure[I]is not a tree because there exists a loop.
For example, node 1 is connected to itself:1 — 2 — 4 — 3 — 1.

10



correlated stocks are linked with filtering out weak correlations. Thus, the MST of stocks
can have a more important correlation structure hidden in the correlation matrix of stocks.
Understanding the correlation structure among stocks is necessary to measure systemic risk
in the stock market since systemic risk propagates through strongly correlated stocks. It
implies that the MST in the stock market delivers valuable information to measure systemic
risk in the stock market.

After constructing the MST, I measure the influence of a node or a stock in the MST

using the following two centralities and classify communities in the MST.

4.3 Network centralities and community detection in the stock

network

A centrality quantifies the influence of a node in the network. To understand the inter-
action behaviors of agents in the network and network structure, we need to identify the
influence of nodes in the network. Thus, a network centrality is one of the most important
measures in network analysis and a useful proxy to measure the connectivity of networks (see
Chapter 2 in [Jackson| (2010))). In this paper, I use two network centralities to measure the
connectivity of the US stock networks: degree centrality and community’s influence strength.

The degree centrality quantifies the connectivity of a node based on a direct connection.

The degree centrality of node i at time ¢ (DC;(t)) is defined as follows:

k(1)
TNO -1 @

DC;(t)
where k;(t) denotes the number of node #’s links in the stock network at time ¢. N(t) denotes
the total number of nodes in the stock network at time ¢. In the stock network, the degree
centrality captures the simple connectivity of a stock or the unweighted connectivity of a

stock.

The community’s influence strength quantifies the strength of the community’s members’

11



influence. The community’s influence strength of a node i at time t (C1S;(t)) is defined as

follows:

ZjECZ'(t),j;éi DCj (t)
=1

CISi(t) = (4)

where ¢;(t) is the community in the stock network at time ¢, to which stock ¢ belongs. |c;(t)]
denotes the number of stocks in community ¢;(¢). The community’s influence strength in
the stock network captures the average influence of other stocks based on connectivity in the
same community or the average indirect connection of a node.

I detect communities in the stock network to measure the community’s influence strength
of nodes using the maximizing modularity method widely used in detecting communities in
a network (see [Porter et al.| (2009)); MacMahon and Garlaschelli (2015)); |[Fortunato and Hric

(2016))). The modularity of the stock network N; at time ¢ (Q(N;)) is defined as follows:

QN = ~— [Aij (t) = Py (D)]0(ci(2), ¢5(1)), (5)

- 2my -
where my = 537, Aij(t): (1)Ay(t) = Aj(t) = 1if stocks i and j are linked in the stock
network N;; (2)A;;(t) = Aji(t) = 0 otherwise. P;;(t) denotes the expected weight of a link
between stocks i and j at time t: P;(t) = %7 where k;(t) = >, Aij (), k() = 32, Aji(t).
d(ci(t), cj(t)) denotes whether stocks ¢ and j are in the same community in the stock network
N (1) 6(ci(t),c;(t)) = 1 if stocks @ and j are in the same community (i.e., ¢;(t) = ¢;(t));
(2) 0(ci(y),c;(t)) = 0 otherwise (i.e., ¢;(t) # ¢j(t)). Q(IVy) is from -1 (all links are between
communities) to 1 (all links are within communities). Communities in N; are detected by

maximizing Q(NV;). Communities in the stock networks are the clusters of stocks connected

through strong cross-correlation.

12



4.4 Risk-adjusted volatilities

I construct risk-adjusted volatilities using a similar approach as Rossi et al| (2015)). I
regress the excess daily log return of stock i at time ¢, 7¢(¢), on the excess daily log returns
on the US stock market index return, r5,(t), returns on a US size factor, SM B(t), a US
value-growth factor, HM L(t), returns on a US profitability factor, RMW (t), returns on a
US investment factor, CMA(t), and a US momentum factor, MOM ()| The excess daily
log return of a stock is calculated by the difference between the daily log return of a stock

and the log of gross one daily treasury bill rate.

75 (t) = ai(t) + Briry,(t) + BosSMB(t) + B3 HM L(t) + By RMW (t) (6)

+ B5i CMA(t) + Be: MOM(t) + €(1).

The risk-adjusted return of stock i at time ¢ (779 (¢)) is defined by the sum of estimated
a;(t) and €(t): 7Y (t) = @;(t) + &(t). The risk-adjusted return captures the unexplained
return by the six factors in the excess stock return. The risk-adjusted volatility is defined
by the absolute value of the risk-adjusted turn: V¥ (¢) = |[#*Y(¢)] = |&(t) + &(t)|. Each
Bri(k = 1,2,...,6) denotes the risk related to each factor. Thus, risk-adjusted volatility
captures the volatility unexplained by the six factors in excess stock Volatilitym I suggest
that the risk-adjusted volatility can be explained by the stock networks, and the relationship

between the risk-adjusted volatility and the stock networks can be a measure of systemic

risk to explain financial crisis.

6Wharton Research Data Services (WRDS) provides the daily and monthly Fama-French factors data,
which includes five factors and the momentum factor. I use the six-factor data provided in WRDS.

"In general, the daily volatility of a stock is estimated by the historical volatility of a daily stock using
the standard deviation of a daily stock return. The absolute value of a daily stock return can also be used
for a stock’s daily volatility and is more useful to detect extreme events and risks in the stock market than
the historical volatility of a stock using the standard deviation (see |[Zheng et al.| (2014).

13



4.5 The regression and systemic risk measure

The research aims to measure systemic risk using the relationship between the risk-
adjusted volatility of the stock (V¥(t)), which is the unexplained volatility by the six
factors, and the stock networks or the stock network effect on the risk-adjusted volatility of
the stock. To measure the network effect on the risk-adjusted volatility of the stock, I run

the regression for all stocks listed in S & P 500 at year y; as follows:

Vz‘adj (t) = Cy, + 5NET,ytNETi(yt) + UNET,i(t)a (7)

where ¥, is the year, including the date t (¢t € y;). NET;(y,) denotes the network measure
of stock 7 in the stock network constructed using the data in year y,. The degree centrality
or community’s influence strength of a stock 7 in the stock network constructed using the
data in year y, are used for NET;(y:). Snpr,, measures the risk associated with the network
measure N ET;(y;) in the stock network at year y;, and NET;(y;) can be another factor
to explain the volatility, which is not explained by the six-factor model consisting of the
Fama-French five factors and the momentum factor.

I suggest a systemic risk measure in the stock market at year y; using Bygr,, as follows:

SRyer(yt) = |Booy - |Bersyls (8)

where |Spc,y,| denotes the amplitude of risk-adjusted volatility change due to an increase of
average direct connections among stocks in the stock network at year y,. Thus, it measures
the risk due to the direct connections among stocks. |Bcrs,,| denotes the amplitude of
risk-adjusted volatility change due to an increase of average network connections of others
in the same community in the stock network at year y; and measures the risk due to the
indirect connections by other stocks. Thus, SRygr(y;) measures the amplitude of risk-
adjusted volatility change due to increased average connections, including direct connections

and indirect connections among stocks, in the stock network at year gy,. The amplitude

14



of volatility change per one connection will be larger during a financial crisis than during
a normal period since the stock market will fluctuate more during a crisis via connections
among stocks. Previous studies have shown that the information flow related to the change
of stock volatility via connections in the stock network increases as the stock market is riskier
(see [Song et al. (2011); Billio et al.| (2012); \Gong et al.| (2019)). It implies that the volatility
change per connection increases as the stock market is riskier. A systemic risk measure
should explain the financial market fluctuation due to the propagation of negative shock
by the failure of financial institutions via connections among financial institutions (see the
definition of systemic risk in|[Schwarcz| (2008)). SRy gr(y:) measures volatility per connection
without a particular assumption of return distribution and is more intuitive than previous
systemic risk measures using PCA and VaR (see Billio et al.| (2012)); |Gong et al.| (2019)).
Thus, SRygr(y:) will be the systemic risk measure in the stock market based on connections
among stocks at year y;, which can explain the risk unexplained by the Fama-French five

factors and the momentum factor.

5 Testable Hypotheses

The first hypothesis (H1) that [ want to test is as follows:

H1. The effect of the degree centrality of stock on the risk-adjusted volatility is negative

due to the low volatility of high-capitalized stocks with high degree centrality (Bpc,, <0).

According to [Li et al| (2019)), the portfolio constructed by stocks in the network’s pe-
riphery performs better than others in the network’s core. In general, nodes located in the
core have a higher degree centrality than the periphery in the network. Thus, the degree
centrality of the stock would be negatively correlated with the risk-adjusted return. The
low risk-adjusted return implies low risk-adjusted volatility. It indicates that the degree

centrality of the stock is negatively correlated with the risk-adjusted volatility.
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The second hypothesis (H2) that I want to test is as follows:

H2. The effect of the community’s influence strength on the risk-adjusted volatility is

positive due to the positive correlation among stocks in the same community (Bers,y, > 0).

As T have already explained in the literature review, previous research has shown that
the stocks in the same industry group are strongly connected and in the same community
detected in the stock network (see |Mantegna (1999); MacMahon and Garlaschelli (2015))).
In addition, Song et al. (2011) show a correlation among stocks becomes higher as the stock
market is more unstable. In particular, they observe a significant increase in correlation
among stocks in the financial crisis. It implies that the number of stocks positively correlated
in the stock market increases as the stock market is unstable. In general, the stock market
volatility increases as the stock market is unstable. Thus, the effect of the community’s
influence strength on the risk-adjusted volatility is positive.

The third hypothesis (H3) that I want to test is as follows:

H3. SRyer(y:) is higher as the stock market is more unstable.

As I have already explained in the literature review, it has been observed that the in-
formation flow among stocks via stock networks, measured by connectedness in the stock
market, increases as the stock market is more unstable (see Song et al.| (2011); Billio et al.
(2012); |Gong et al.| (2019))). It implies that the relationship between the volatility and con-
nections among stocks is stronger as the stock market is riskier. Thus, SRygr(y:), which
measures the amplitude of the relationship between the risk-adjusted volatility and aver-
age stock connections in the stock market, including direct and indirect connections among

stocks, is higher as the stock market is more unstable.
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Descriptive statistics

Panel A: Degree centrality

Cross-correlation Standard .. .
. Average . Minimum Maximum
matrix type deviation
Pearson 0.004 0.004 0.002 0.100
Spearman 0.004 0.004 0.002 0.065
Panel B: Community’s influence strength
Cross—cqrelatmn Average Stapdz}rd Minimum Maximum
matrix type deviation
Pearson 0.004 0.001 0.002 0.005
Spearman 0.004 0.004 0.002 0.005

Table 3: The descriptive statistics of degree centralities and community’s influence
strengths of nodes in the US stock networks.

6 Results

Figures [2| and |3 show the stock networks constructed using MSTs based on the Pear-
son correlation matrix among stocks and Spearman rank correlation matrix among stocks,
respectively. We can see the interaction structures among stocks using the stock networks.
The connections among stocks are heterogeneous, and clusters are observed in the stock
networks.

I apply community detection to the US stock networks to identify the clusters in the US
stock networks. Figures [] and 5] show the communities detected in the US stock networks
constructed using MSTs based on the Pearson correlation matrix among stocks and Spear-
man rank correlation matrix among stocks, respectively. Stocks with the same color are in
the same community. 22 communities are detected in the US stock network based on the
Pearson correlation matrix, and 23 communities are detected in the US stock network based
on the Spearman rank correlation matrix.

Table [3] shows the descriptive statistics of network centralities of nodes in the US stock
networks using the Pearson correlation matrix among stocks and Spearman rank correlation
matrix among stocks. The descriptive statistics for the Pearson and Spearman correlation

matrices are almost identical. It implies that the characteristics of the US stock networks
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Dynamics of average degree centrality
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Figure 6: The dynamics of the average degree centralities in the US stock networks using
the Pearson and Spearman rank correlation matrices. Red-filled circles (Blue-filled squares)
indicate the average degree centrality in the US stock networks using the Pearson correlation
(Spearman rank correlation). Light gray (Dark gray) bars indicate 95 percent confidence
intervals of the average degree centrality in the US stock network using the Pearson correla-
tion (Spearman rank correlation).

Dynamics of average community's influence strength
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Figure 7: The dynamics of the average community’s influence strengths in the US stock
networks using the Pearson and Spearman rank correlation matrices. Red-filled circles (Blue-
filled squares) indicate the average community’s influence strength in the US stock networks
using the Pearson correlation (Spearman rank correlation). Light gray (Dark gray) bars
indicate 95 percent confidence intervals of the average community’s influence strength in the
US stock network using the Pearson correlation (Spearman rank correlation).
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Figure 8: The dynamics of Spc,, in the US stock networks using the Pearson and Spearman
rank correlation matrices. Red-filled (Blue-filled) circles indicate the Spc,, in the US stock
networks using the Pearson correlation (Spearman rank correlation). Light gray bars indicate
95 percent confidence intervals of the Bpc,, in the US stock network using the Pearson
correlation or Spearman rank correlation. (1) indicates the period of recession after the
dot-com bubble in the US. (2) indicates the period of the subprime mortgage crisis in the
Us.

constructed using the Pearson correlation matrix among stocks and Spearman correlation
matrix among stocks are similar.

Figure [6] shows the dynamics of average degree centralities in the US stock networks
using the Pearson and Spearman rank correlation matrices. The dynamical properties of
degree centralities in the US stock networks for the Pearson and Spearman rank correlation
matrices are almost the same. The dynamic properties of the average community’s influence
strengths in the US stock networks for the Pearson and Spearman rank correlation matrices
are almost identical (see Figure (7). Those results also support the similarity of structural

properties of the US stock networks for the Pearson and Spearman rank correlation matrices.
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Figure 9: The dynamics of B¢rg,, in the US stock networks using the Pearson and Spearman
rank correlation matrices. Red-filled (Blue-filled) circles indicate the fcrg,, in the US stock
networks using the Pearson correlation (Spearman rank correlation). Light gray bars indicate
95 percent confidence intervals of the Bcrg,, in the US stock network using the Pearson
correlation or Spearman rank correlation. (1) indicates the period of recession after the
dot-com bubble in the US. (2) indicates the period of the subprime mortgage crisis in the
Us.

6.1 The regression and systemic risk measure results

Figure |8 shows the dynamics of 8pc,, in the US stock networks using the Pearson and
Spearman rank correlation matrices. All 8pc s are estimated with a significance level at 1
percent level. All estimated coefficients Spc,,s are negative for the Pearson and Spearman
rank correlation matrices. The result strongly supports H1. In addition, |Spc,,| increases
during the US financial recessions: (1) the recession after the dot-com bubble; (2) the sub-
prime mortgage crisis. It implies that the risk due to direct connections among stocks in the
US stock market increases during the US financial recessions.

Figure @ depicts the dynamics of Bcrsy, in the US stock networks using the Pearson

and Spearman rank correlation matrices. All Bcrgy,s are estimated with a significance
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Dynamics of systemic risk
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Figure 10: The dynamics of SRypr(y:) in the US stock networks using the Pearson and
Spearman rank correlation matrices. Red-filled (Blue-filled) circles indicate the SRypr(y:)
in the US stock networks using the Pearson correlation (Spearman rank correlation). Light
gray bars indicate 95 percent confidence intervals of the SRygr(y;) in the US stock network
using the Pearson correlation or Spearman rank correlation. (1) indicates the period of
recession after the dot-com bubble in the US. (2) indicates the period of the subprime
mortgage crisis in the US.

level at 1 percent level. All estimated coefficients Scrg,y,s are positive for the Pearson and
Spearman rank correlation matrices. The result strongly supports H2. In addition, |Bcrs,y,|
increases during the US financial recessions: (1) the recession after the dot-com bubble; (2)
the subprime mortgage crisis. It implies that the risk due to indirect connections among
stocks in the US stock market increases during the US financial recessions.

Figure |10 shows the dynamics of SRygr(y:) in the US stock networks using the Pear-
son and Spearman rank correlation matrices. SRypr(y;) increases during the US financial
recessions: (1) the recession after the dot-com bubble; (2) the subprime mortgage crisis. It
implies that systemic risk in the US stock market due to direct and indirect connections
among stocks increases during the US financial recessions. The result strongly supports H3.

All results using the Pearson and Spearman correlation matrices among stocks are almost
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identical. It shows that the results using the MST based on the cross-correlation matrix
among stocks are robust regardless of the type of cross-correlation matrix. My results are
consistent with previous studies about measuring systemic risk in the stock market based on
network connectivity (see Billio et al. (2012)); Gong et al. (2019))). Thus, my systemic risk

measure (SRypr(y:)) can be a novel systemic risk measure.

7 Conclusion and discussion

In this paper, I suggest a novel systemic risk measure based on connections among stocks
in the US stock market. I construct the US stock networks using a Minimum Spanning
Tree (MST) based on a cross-correlation matrix among daily stock returns listed in S & P
500 from 1996 to 2021. To confirm the robustness of the stock networks, I use two types
of correlation matrices: the Pearson and Spearman rank correlation matrices. The stock
networks describe the interaction structure among stocks connected by a strong positive
correlation in the US stock market. To identify the characteristics of the stock networks, I
use two network centralities: the degree centrality and the community’s influence strength.
The degree centrality quantifies the direct connections of stocks in the US stock network. The
community’s influence strength quantifies the indirect connections of stocks by other stocks
in the same community. The communities are detected using the maximum modularity
method. The stocks in similar industry sectors are observed in the same community, and
the statistical and dynamic properties of network centralities in the US stock networks using
the Pearson and Spearman rank correlation matrices are almost identical.

To quantify systemic risk in the US stock market, I use the network centrality as an-
other factor to explain the risk-adjusted volatilities of stocks, unexplained by the risks due
to the Fama-French five factors and the momentum factor, and regress the risk-adjusted
volatility on the network centrality of stocks. The effect of degree centrality on the risk-

adjusted volatility is negative, and the effect of the community’s influence of strength on
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the risk-adjusted volatility is positive. The systemic risk measure, defined by the multipli-
cation between the absolute values of the regression coefficients of degree centrality and the
community’s influence strength on the risk-adjusted volatility, explains the effect of stock
connections, including direct and indirect connections in the stock market. An increase in
systemic risk is observed during the US financial recession: the recession after the dot-com
bubble and the subprime mortgage crisis.

My study contributes to the studies on measuring systemic risk. First, my research pro-
vides risk factors related to network structures constructed by a cross-correlation among
stocks to measure systemic risk, such as the degree centrality and community’s influence
strength, unexplained by the Fama-French five factors and the momentum factor. In addi-
tion, my systemic risk measure does not assume a particular assumption of return distribution
and is easy to understand.

Future research using my research could be as follows. My study cannot identify the
source to make a positive correlation among stocks since I use network centrality as an
independent variable using the stock network based on the cross-correlation matrix of stock
returns. However, in the banking sectors, the credit relationship among banks can make a
positive correlation among banks in the stock market and can be the channel of systemic
risk. In other sectors, the customer-supplier relationship among stocks can be the source
of positive correlation among stocks. |Cohen and Frazzini (2008)) analyze the relationship
between the network constructed by the customer-supplier relationship of firms and stock
returns. They find that customer-supplier networks predict stock returns. Thus, if the
network analyses of banking sectors using the credit relationship and other sectors using
the customer-supplier relationship among stocks are added to my analysis, we can further
understand systemic risk in the stock market.

In addition, if we analyze the connections among the global stock markets, we can measure
systemic risk more precisely. All stock markets are globally connected, and the stocks in the

US stock markets can be affected by the stocks in the stock markets in other countries, such
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as UK, China, and Japan stock markets. Song et al. (2011)) find that the information flow
among the global stock markets increased during the subprime mortgage crisis in the US.
Wang, Xie and Stanley (2018)) show that the correlation among the global stock markets
becomes enhanced, and transmission of information among the global stock market is done
more quickly during the subprime mortgage crisis in the US than in other normal periods. It
implies that systemic risk in the stock market will propagate globally via connections with
the stock markets in other countries. Thus, if the analysis of the global stock networks is

added to my analysis, we can measure systemic risk in the stock market more precisely.
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