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Abstract

In this paper, I suggest a novel systemic risk measure using a network approach. I con-

struct stock networks using the Minimum Spanning Tree (MST) based on the Pearson

and Spearman rank correlation matrices of stock returns listed in S & P 500. I use

two network centralities which I suggest as another factor to explain the risk-adjusted

volatilities of stocks, which is unexplained by the Fama-French five factors and the mo-

mentum factor, to quantify connectedness among stocks: the degree based on direct

connections among stocks and the community’s influence strength based on indirect

connections in communities, detected by modularity maximization. The statistical and

dynamic properties of network centralities for the Pearson and Spearman rank corre-

lation matrices are almost identical, and stocks in similar industry sectors are in the

same community for both correlation matrices. Systemic risk is defined by multiplying

the risks due to direct and indirect connections among stocks without a particular as-

sumption of the return distribution. An increase in systemic risk is observed in the US

financial recessions: the recession after the dot-com bubble and the subprime mortgage

crisis.
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1 Introduction

Most stocks are strongly correlated with each other, and negative shock can propagate

through a strong correlation. In particular, the negative shock from one financial institution

can be amplified through shock propagation in the stock market. During the subprime

mortgage crisis, the bankruptcy of Lehman Brothers propagated to the US stock market

and the global stock market via strong connections among stocks and stock markets. After

the subprime mortgage crisis, understanding the risk from the negative shock of a small part

of the market to the whole market via strong connections in the market, called “systemic

risk,” has been important1. To identify and measure systemic risk, we need to understand

the structure of connections in the market.

With the development of network theory, we can understand the interaction behaviors

of agents in the system. Network theory has been applied to economics and finance (see

Allen and Babus (2009); Goyal (2009); Jackson (2014); Carvalho and Tahbaz-Salehi (2019)).

In particular, network theory can be useful for measuring the effect of networks on risk

due to interactions (see Allen and Babus (2009)). Bardoscia et al. (2021) also suggest that

the methodologies in complex networks can be useful for analyzing the risk due to com-

plex network structures emerging by the nonlinear and complex interaction among financial

institutions in the financial market.

In this paper, I suggest a novel systemic risk measure based on connections among

stocks in the US stock market. The stock networks that describe the interaction struc-

ture among stocks are constructed using the Minimum Spanning Tree (MST) based on the

cross-correlation matrix among daily stock returns listed in S & P 500 from 1996 to 2021.

To confirm the robustness of the US stock networks, I use two kinds of cross-correlation

matrices: the Pearson and Spearman rank correlation matrices. To identify the character-

istics of the interaction among stocks, I use two network centrality measures that quantify

1There are some the review papers of systemic risk explain the progress and development of the research
about systemic risk (see Bisias et al. (2012); Adrian, Covitz and Liang (2015); Engle (2018); Jackson and
Pernoud (2021).
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the influence of stocks in the US stock network: the degree centrality based on direct con-

nections of stocks and the community’s influence strength based on indirect connections of

stocks in the same community. Communities in the US stock market are detected using

modularity maximization and show the clusters of stocks strongly correlated. The statistical

and dynamic properties of the network centralities in the US stock networks for the Pearson

and Spearman rank correlation matrices are almost identical. Clusters of stocks in similar

industry sectors are observed in the US stock networks for the Pearson and Spearman rank

correlation matrices using community detection.

To measure the systemic risk due to connections among stocks in the US stock market,

I use two network centralities as another factor to explain the risk-adjusted volatilities of

stocks, which is unexplained volatility by the six-factor model consisting of the Fama-French

five factors and the momentum factor. Then, I regress the risk-adjusted volatility on the

network centrality. The systemic risk in the stock market is defined by the product of the

absolute values of the regression coefficients of degree centrality and community’s influence

strength on the risk-adjusted volatility and measures the risk due to direct and indirect

connections among stocks without a particular assumption of the return distribution. The

regression coefficients of degree centrality and the community’s influence strength quantify

the risks due to direct and indirect connections among stocks, respectively. The regression co-

efficients of degree centralities of stocks each year are negative since high market-capitalized

stocks have a higher degree centrality and lower volatility than low market-capitalized stocks.

The dramatic increase in the absolute value is observed in the US financial recessions: the

recession after the dot-com bubble and the subprime mortgage crisis. The regression coeffi-

cients of the community’s influence strengths of stocks are positive due to a stronger positive

correlation among stocks in the stock market as the stock market is more unstable. The dra-

matic increase in the absolute value is also observed in the US financial recessions. Finally,

an increase in systemic risk is observed in the US financial recessions.

The remaining part of this paper is as follows. Section 2 presents the literature related to
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my research and the contribution of my research to the literature. Section 3 shows the data

set used in my research. Section 4 describes the methodology that I use in data analysis.

Section 5 represents testable hypotheses, and the results are represented in Section 6. Finally,

I conclude and discuss my paper in Section 7.

2 Literature Review

The application of network theory to measuring systemic risk in the financial market has

grown exponentially. Previous research on systemic risk has focused on the banking system

and the stock market. The systemic risk in the banking system has been measured using the

interbank network based on the credit relationship among banks by the money flows between

lenders and borrowers in the interbank lending market. Thus, it is not hard to understand

interactions among banks and quantify the risk in the interbank networks. In this section, I

introduce the literature related to the empirical analysis of interbank networks. 2

Fender and McGuire (2010) suggest a framework that measures system-wide funding risk

and the transmission of shocks across countries via the global interbank networks constructed

by the credit relationship among banks. They find that the strength of linkages from the

banks in the US to the banks in other countries, measured by changes in net interbank claims

(assets minus liabilities) of banks in the US on banks in the banks in other countries during

the subprime mortgage crisis in the US is observed. The result shows that the negative

shocks of the banks in the US during the financial crisis were transmitted to other countries

via interbank networks.

Gofman (2017) shows that financial stability can be improved by restricting the inter-

connectedness of banks using the over-the-counter interbank lending market in the US. The

2Model studies about systemic risk in the banking system using interbank networks have also been
conducted. Most studies have focused on the channels of amplifying negative shocks from a few banks via
interbank networks, such as correlated portfolios across banks, fire sales on market prices, counterparty risk,
etc. (see the survey paper of Jackson and Pernoud (2021)). The model studies can give us an understanding
of the relationship between systemic risk and the interbank network structure not observed by the empirical
analysis due to the need for more data.
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result shows that financial stability can be worsened by strong interconnectedness among

banks.

Anderson, Paddrik and Wang (2019) analyze the bank networks constructed using the

data on balance sheets of banks and interbank deposits in 1862 and 1867 in Pennsylvania.

They focus on the effect of the National Banking Acts (NBAs) on the interbank networks.

They find that the interbank networks were denser, and interbank deposits were concentrated

on a few banks due to the NBAs. They also find the robustness to mild shocks in a more

concentrated bank network but the fragility to large shocks to the financial center banks.

Their study shows the mechanism of how the policy of the banking industry affects the

banking system from the perspective of interbank networks.

Craig and Ma (2022) analyze the interbank networks in the German interbank lending

market based on the credit relationship among banks. They find a few large banks in the

core and many smaller banks in the periphery of the networks. Large banks have a role in

intermediate funding flows between many smaller banks. They also suggest a model that

explains the link formation among banks. They estimate unobserved monitoring costs using

their model and the data, and an increase in the estimated unobserved monitoring costs is

observed during the subprime mortgage crisis in the US.

The studies on systemic risk using interbank networks are limited to systemic risk in

the banking industry. However, during the financial crisis, the whole industry sectors in the

economy are in crisis. It implies that we need to consider connections among all industry

sections in the economic system to precisely measure systemic risk. If we use the data in the

stock market, we can solve the limitation of the study using interbank networks.

The systemic risk in the stock market has been measured using stock networks. The stock

networks can be constructed using the cross-correlation matrix of stock returns. The cross-

correlation matrix of stock returns includes information about relationships among stocks.

Thus, we can find hidden networks using the cross-correlation matrix of stock returns, and the

networks can provide useful information about stock connections to measure systemic risk in
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the stock market. Then, we can understand the shock propagation among different industry

sectors if we use the stock networks. In this section, I introduce literature on constructing

stock networks using the cross-correlation matrix of stock returns and measuring systemic

risk using the stock networks or the cross-correlation matrix (including the covariance matrix)

of stock returns.

Mantegna (1999) suggests a way to construct the stock network using a cross-correlation

matrix of returns in the US stock market. The stock network is constructed using the

Minimum Spanning Tree (MST), in which a stock is more likely to be linked to another

stock whose distance from the stock is shorter. The higher the correlation between two

stocks is, the shorter the distance between two stocks. He finds that the stocks in the same

industrial sectors are clustered in the network and shows that the stock network using an

MST can be useful information to understand the stock market’s structure. This clustering

of the stocks in the same industrial sectors is also observed in other research (see MacMahon

and Garlaschelli (2015)).

Kritzman et al. (2010) suggest the absorption ratio as an indicator of systemic risk

measure using the principle components of the covariance matrix of stock returns in the US

stock market. They find an increase in the absorption ratio during the subprime mortgage

crisis in the US. It shows that the cross-correlation matrix of stock returns in the stock

market can be useful for measuring systemic risk in the stock market.

Song et al. (2011) analyze the worldwide stock markets using the global stock market net-

works constructed by the cross-correlation matrix among returns of worldwide stock market

indices. They find an increase in the average correlation coefficient among worldwide stock

market indices during the subprime mortgage crisis in the US. They also find an increase

in the mutual information of connections among stock markets in the global stock market

networks during the subprime mortgage crisis. The results show that the correlation and

the information flow among the global stock markets significantly increase during the global

financial crisis.
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Billio et al. (2012) analyze the interconnections among stocks based on principle compo-

nents analysis (PCA) using the covariance matrix of monthly stock returns of four sectors;

hedge funds, banks, broker/dealers, and insurance companies, and the stock networks con-

structed using Granger-causality among stocks in the four sectors. They find an increase

in the number of connections among stocks during the subprime mortgage crisis in the US.

They also observe that banks and insurers more significantly impact hedge funds and bro-

ker/dealers than vice versa, and this asymmetry is enhanced during the subprime mortgage

crisis in the US (2007-2009). Their results show that the asymmetry of the connections with

banks can be a systemic risk measure in the financial market.

Wang, Xie and Stanley (2018) suggest another way to construct the global financial

market network using a cross-correlation matrix of returns estimated by partial correlation

coefficients. Using the MST based on partial correlation coefficients, they construct the

networks and find that geographical characteristics cluster financial markets. Also, they show

that network centrality measures (influence strength, betweenness centrality, and closeness

centrality), which show the influence of stocks in the stock networks, detect the change in

the global financial market network structure due to extreme events, such as the subprime

mortgage crisis in the US.

Gong et al. (2019) suggest a systemic risk measure based on Granger-causality connec-

tions among financial companies’ returns in the Chinese financial market, combined with a

Value-at-Risk (VaR), traditionally used in measuring risk based on a particular assumption

of the return distribution. They find an increase in the connectedness in the Chinese finan-

cial market during the subprime mortgage crisis in the US. They also find an increase in the

systemic risk in the Chinese financial market during the subprime mortgage crisis in the US.

It indicates that risk measure based on a Value-at-Risk is closely connected with connections

among financial institutions in the financial market.

My paper contributes to the literature focused on measuring systemic risk in the stock

market using networks based on a cross-correlation matrix of stock returns (see Mantegna
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(1999); Kritzman et al. (2010); Song et al. (2011); Billio et al. (2012); Wang, Xie and Stanley

(2018)). In particular, I introduce two network centralities in the stock network as another

factor to explain the risk-adjusted volatilities of stocks, which is unexplained by the six fac-

tor model (the Fama-French five factors and the momentum factor), and suggest a systemic

risk measure using the relationship between the risk-adjusted volatility and the network cen-

trality. Thus, my research also contributes to the research of systemic risk using network

information and Value-at-Risk (see Gong et al. (2019)). In addition, my systemic risk mea-

sure does not assume any particular assumption of the stock return distribution. Thus, it is

easy to measure. As a result of data analysis, my systemic risk measure shows a consistent

result with the previous research (see Song et al. (2011); Billio et al. (2012); Gong et al.

(2019)). Therefore, my study develops a new systemic risk measure in the stock market.

3 Data sets

I use returns of common stocks listed in S & P 500 from 01/01/1996 to 12/31/2021.

Daily returns are used to construct stock networks. To construct these networks, we need

the cross-correlation matrix of stock returns. The cross-correlation matrix is measured using

the daily data for a year. The daily data is enough to measure the cross-correlation matrix

for a year with a high statistical significance.3 The stock network for each year describes

the interaction structure of the US stocks based on the correlation among stocks for each

year. Thus, we can measure the change in the interaction structure in the US stock market

from year to year. Risk-adjusted volatilities are estimated using the six-factor model, which

includes the Fama-French five factors and the momentum factor in the US stock market from

01/01/1996 to 12/31/2021 (see Fama and French (2015)). I use the data from the Center for

Research in Security Prices database (CRSP) to construct stock networks and the Wharton

Research Data Services (WRDS) data to construct risk-adjusted volatilities.

3Daily stock returns have been used to measure the cross-correlation matrix for a year in the previous
research, and the results have shown a high statistical significance (see Mantegna (1999); Song et al. (2011);
Wang, Xie and Stanley (2018)).
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Figure 1: An example of a small network. There are six nodes and seven links in the network.

4 Methodology

4.1 What is a network?

A network is used to describe the interaction structure among agents in the system.4

A network consists of nodes and links. A node represents an agent in the system. A link

between two nodes represents the relationship between two agents. In the stock network, a

node denotes a stock. A link denotes the relationship between two stocks in the stock market.

In my research, a link is constructed by the distance measure based on the correlation between

two stocks. If the correlation between two stocks is higher, their distance is shorter, and

they are more likely to be tied in the network. Thus, two stocks can be linked if two stocks

are highly correlated in the stock market.

Figure 1 depicts an example of a small network. The network consists of six nodes and

seven links. The number of node 4’s links is four, and the number of links of node 1 is two.

The nodes connected to node i are called the neighbors of node i. Nodes 2, 3, 5, and 6

are connected to node 4. Thus, nodes 2, 3, 5, and 6 are the neighbors of node 4. If this

4Several textbooks introduce network methodology (see Easley and Kleinberg (2010); Jackson (2010);
Barabási (2016); Newman (2018)). These books introduce a lot of networks in several systems, such as
citation networks, friendship networks, customer-supplier networks, input-output networks, stock networks,
Etc. Also, the books introduce applications of networks to several areas, such as economics, sociology,
physics, biology, Etc.
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network is the stock network, stock 4 has greater influence than others because the number

of stocks connected to stock 4 is the highest. Also, the shortest path length between node

1 and node 4 is 2. Using the number of neighbors and the shortest path length, we can

define several centralities that quantify the influence of a node in the network. I explain the

network centralities used in my research in Section 4.3.

4.2 Network construction

My methodologies to construct stock networks are based on the cross-correlation ma-

trices of stock returns (see Mantegna (1999); Wang, Xie and Stanley (2018)). I get the

cross-correlation matrix from the stock returns time series using two methods to check the

robustness of stock networks: Pearson correlation and Spearman rank correlation.

The return of stock i at time t (ri(t)) in S & P 500 is calculated by the difference between

log stock i’s price at time t (log (Pi(t))) and log stock i’s price at time t− 1 (log (Pi(t− 1))):

ri(t) ≡ log (Pi(t))− log (Pi(t− 1))). Daily stock returns are used to estimate the cross-

correlation matrices of stock returns.

The cross-correlation matrix of N stocks’ returns at time t (C(t)) is calculated by using

the Pearson correlation coefficient or Spearman rank correlation between two stock returns

as follows:

C(t) =


ρ11(t) · · · ρ1N(t)

...
. . .

...

ρN1(t) · · · ρNN(t)

 , (1)

where ρij(t) denotes the correlation coefficient between stock i’s return and stock j’s return

using the data from t− 1−L and t− 1 (1 ≤ i, j ≤ N , −1 ≤ ρij(t) ≤ 1). L denotes the time

window to calculate the cross-correlation matrix.

I define the distance measure between two stocks using the correlation between two

stocks as follows: dij(t) =
√

2(1− ρij(t)) (0 ≤ dij(t) ≤ 2), where dij(t) denotes the distance
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between stocks i and j at time t. If ρij(t) = 1, then dij(t) = 0. If ρij(t) = −1, then dij(t) = 2.

Thus, the higher the correlation between stocks i and j at time t is, the shorter dij(t) is.

Using the distance measure, I define the distance matrix of N stocks at time t (D(t)) as

follows:

D(t) =


d11(t) · · · d1N(t)

...
. . .

...

dN1(t) · · · dNN(t)

 . (2)

dij(t) satisfies three axioms of a metric space: (i) dii(t) = 0; (ii) dij(t) = dji(t); (iii)

dik(t) ≤ dij(t) + djk(t). dij(t) means the farness between stocks i and j in the stock market,

and we can define any measure based on D(t) in the stock market because dij(t) spans a

metric space. Also, we can construct a network that describes the interaction structure based

on a distance measure in a metric space. In this paper, I focus on the interaction structure

of the US stocks based on D(t). The interaction structures can be constructed using a

Minimum Spanning Tree (MST). I use the MST of the US stocks using Kruskal (1956) has

been widely used in building an MST. The MST of stocks is constructed by following four

steps:

(i) Sort all elements of the distance matrix in ascending order.

(ii) Choose the element that has the smallest value and add the link to the network.

dii(t) is not chosen in this step (∵ dii(t) = 0).

(iii) Choose the next smallest element and add the link to the network, which should be

a tree 5 after adding the link.

(iv) Repeat (iii) until all nodes are connected in the network.

The constructed MST includes the hidden structure of stock connections in the corre-

lation among stocks. By steps (ii) and (iii) in constructing the MST of stocks, strongly

5A tree is a network in which any two nodes are linked by one path without a loop. A loop is a path
that connects a node to itself. For example, the network in Figure 1 is not a tree because there exists a loop.
For example, node 1 is connected to itself:1 → 2 → 4 → 3 → 1.
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correlated stocks are linked with filtering out weak correlations. Thus, the MST of stocks

can have a more important correlation structure hidden in the correlation matrix of stocks.

Understanding the correlation structure among stocks is necessary to measure systemic risk

in the stock market since systemic risk propagates through strongly correlated stocks. It

implies that the MST in the stock market delivers valuable information to measure systemic

risk in the stock market.

After constructing the MST, I measure the influence of a node or a stock in the MST

using the following two centralities and classify communities in the MST.

4.3 Network centralities and community detection in the stock

network

A centrality quantifies the influence of a node in the network. To understand the inter-

action behaviors of agents in the network and network structure, we need to identify the

influence of nodes in the network. Thus, a network centrality is one of the most important

measures in network analysis and a useful proxy to measure the connectivity of networks (see

Chapter 2 in Jackson (2010)). In this paper, I use two network centralities to measure the

connectivity of the US stock networks: degree centrality and community’s influence strength.

The degree centrality quantifies the connectivity of a node based on a direct connection.

The degree centrality of node i at time t (DCi(t)) is defined as follows:

DCi(t) =
ki(t)

N(t)− 1
, (3)

where ki(t) denotes the number of node i’s links in the stock network at time t. N(t) denotes

the total number of nodes in the stock network at time t. In the stock network, the degree

centrality captures the simple connectivity of a stock or the unweighted connectivity of a

stock.

The community’s influence strength quantifies the strength of the community’s members’
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influence. The community’s influence strength of a node i at time t (CISi(t)) is defined as

follows:

CISi(t) =

∑
j∈ci(t),j ̸=i DCj(t)

|ci(t)| − 1
, (4)

where ci(t) is the community in the stock network at time t, to which stock i belongs. |ci(t)|

denotes the number of stocks in community ci(t). The community’s influence strength in

the stock network captures the average influence of other stocks based on connectivity in the

same community or the average indirect connection of a node.

I detect communities in the stock network to measure the community’s influence strength

of nodes using the maximizing modularity method widely used in detecting communities in

a network (see Porter et al. (2009); MacMahon and Garlaschelli (2015); Fortunato and Hric

(2016)). The modularity of the stock network Nt at time t (Q(Nt)) is defined as follows:

Q(Nt) =
1

2mt

∑
ij

[Aij(t)− Pij(t)]δ(ci(t), cj(t)), (5)

where mt =
1
2

∑
ij Aij(t): (1)Aij(t) = Aji(t) = 1 if stocks i and j are linked in the stock

network Nt; (2)Aij(t) = Aji(t) = 0 otherwise. Pij(t) denotes the expected weight of a link

between stocks i and j at time t: Pij(t) =
ki(t)kj(t)

2mt
, where ki(t) =

∑
j Aij(t), kj(t) =

∑
i Aji(t).

δ(ci(t), cj(t)) denotes whether stocks i and j are in the same community in the stock network

Nt: (1) δ(ci(t), cj(t)) = 1 if stocks i and j are in the same community (i.e., ci(t) = cj(t));

(2) δ(ci(j), cj(t)) = 0 otherwise (i.e., ci(t) ̸= cj(t)). Q(Nt) is from -1 (all links are between

communities) to 1 (all links are within communities). Communities in Nt are detected by

maximizing Q(Nt). Communities in the stock networks are the clusters of stocks connected

through strong cross-correlation.
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4.4 Risk-adjusted volatilities

I construct risk-adjusted volatilities using a similar approach as Rossi et al. (2015). I

regress the excess daily log return of stock i at time t, rei (t), on the excess daily log returns

on the US stock market index return, reM(t), returns on a US size factor, SMB(t), a US

value-growth factor, HML(t), returns on a US profitability factor, RMW (t), returns on a

US investment factor, CMA(t), and a US momentum factor, MOM(t).6 The excess daily

log return of a stock is calculated by the difference between the daily log return of a stock

and the log of gross one daily treasury bill rate.

rei (t) = αi(t) + β1ir
e
M(t) + β2iSMB(t) + β3iHML(t) + β4iRMW (t) (6)

+ β5iCMA(t) + β6iMOM(t) + ϵi(t).

The risk-adjusted return of stock i at time t (r̂adji (t)) is defined by the sum of estimated

αi(t) and ϵi(t): r̂adji (t) = α̂i(t) + ϵ̂i(t). The risk-adjusted return captures the unexplained

return by the six factors in the excess stock return. The risk-adjusted volatility is defined

by the absolute value of the risk-adjusted turn: V̂ adj
i (t) = |r̂adji (t)| = |α̂i(t) + ϵ̂i(t)|. Each

βki(k = 1, 2, ..., 6) denotes the risk related to each factor. Thus, risk-adjusted volatility

captures the volatility unexplained by the six factors in excess stock volatility.7 I suggest

that the risk-adjusted volatility can be explained by the stock networks, and the relationship

between the risk-adjusted volatility and the stock networks can be a measure of systemic

risk to explain financial crisis.

6Wharton Research Data Services (WRDS) provides the daily and monthly Fama-French factors data,
which includes five factors and the momentum factor. I use the six-factor data provided in WRDS.

7In general, the daily volatility of a stock is estimated by the historical volatility of a daily stock using
the standard deviation of a daily stock return. The absolute value of a daily stock return can also be used
for a stock’s daily volatility and is more useful to detect extreme events and risks in the stock market than
the historical volatility of a stock using the standard deviation (see Zheng et al. (2014)).
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4.5 The regression and systemic risk measure

The research aims to measure systemic risk using the relationship between the risk-

adjusted volatility of the stock (V̂ adj
i (t)), which is the unexplained volatility by the six

factors, and the stock networks or the stock network effect on the risk-adjusted volatility of

the stock. To measure the network effect on the risk-adjusted volatility of the stock, I run

the regression for all stocks listed in S & P 500 at year yt as follows:

V̂ adj
i (t) = cyt + βNET,ytNETi(yt) + ηNET,i(t), (7)

where yt is the year, including the date t (t ∈ yt). NETi(yt) denotes the network measure

of stock i in the stock network constructed using the data in year yt. The degree centrality

or community’s influence strength of a stock i in the stock network constructed using the

data in year yt are used for NETi(yt). βNET,yt measures the risk associated with the network

measure NETi(yt) in the stock network at year yt, and NETi(yt) can be another factor

to explain the volatility, which is not explained by the six-factor model consisting of the

Fama-French five factors and the momentum factor.

I suggest a systemic risk measure in the stock market at year yt using βNET,yt as follows:

SRNET (yt) = |βDC,yt | · |βCIS,yt |, (8)

where |βDC,yt| denotes the amplitude of risk-adjusted volatility change due to an increase of

average direct connections among stocks in the stock network at year yt. Thus, it measures

the risk due to the direct connections among stocks. |βCIS,yt| denotes the amplitude of

risk-adjusted volatility change due to an increase of average network connections of others

in the same community in the stock network at year yt and measures the risk due to the

indirect connections by other stocks. Thus, SRNET (yt) measures the amplitude of risk-

adjusted volatility change due to increased average connections, including direct connections

and indirect connections among stocks, in the stock network at year yt. The amplitude
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of volatility change per one connection will be larger during a financial crisis than during

a normal period since the stock market will fluctuate more during a crisis via connections

among stocks. Previous studies have shown that the information flow related to the change

of stock volatility via connections in the stock network increases as the stock market is riskier

(see Song et al. (2011); Billio et al. (2012); Gong et al. (2019)). It implies that the volatility

change per connection increases as the stock market is riskier. A systemic risk measure

should explain the financial market fluctuation due to the propagation of negative shock

by the failure of financial institutions via connections among financial institutions (see the

definition of systemic risk in Schwarcz (2008)). SRNET (yt) measures volatility per connection

without a particular assumption of return distribution and is more intuitive than previous

systemic risk measures using PCA and VaR (see Billio et al. (2012); Gong et al. (2019)).

Thus, SRNET (yt) will be the systemic risk measure in the stock market based on connections

among stocks at year yt, which can explain the risk unexplained by the Fama-French five

factors and the momentum factor.

5 Testable Hypotheses

The first hypothesis (H1) that I want to test is as follows:

H1. The effect of the degree centrality of stock on the risk-adjusted volatility is negative

due to the low volatility of high-capitalized stocks with high degree centrality (βDC,yt < 0).

According to Li et al. (2019), the portfolio constructed by stocks in the network’s pe-

riphery performs better than others in the network’s core. In general, nodes located in the

core have a higher degree centrality than the periphery in the network. Thus, the degree

centrality of the stock would be negatively correlated with the risk-adjusted return. The

low risk-adjusted return implies low risk-adjusted volatility. It indicates that the degree

centrality of the stock is negatively correlated with the risk-adjusted volatility.
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The second hypothesis (H2) that I want to test is as follows:

H2. The effect of the community’s influence strength on the risk-adjusted volatility is

positive due to the positive correlation among stocks in the same community (βCIS,yt > 0).

As I have already explained in the literature review, previous research has shown that

the stocks in the same industry group are strongly connected and in the same community

detected in the stock network (see Mantegna (1999); MacMahon and Garlaschelli (2015)).

In addition, Song et al. (2011) show a correlation among stocks becomes higher as the stock

market is more unstable. In particular, they observe a significant increase in correlation

among stocks in the financial crisis. It implies that the number of stocks positively correlated

in the stock market increases as the stock market is unstable. In general, the stock market

volatility increases as the stock market is unstable. Thus, the effect of the community’s

influence strength on the risk-adjusted volatility is positive.

The third hypothesis (H3) that I want to test is as follows:

H3. SRNET (yt) is higher as the stock market is more unstable.

As I have already explained in the literature review, it has been observed that the in-

formation flow among stocks via stock networks, measured by connectedness in the stock

market, increases as the stock market is more unstable (see Song et al. (2011); Billio et al.

(2012); Gong et al. (2019)). It implies that the relationship between the volatility and con-

nections among stocks is stronger as the stock market is riskier. Thus, SRNET (yt), which

measures the amplitude of the relationship between the risk-adjusted volatility and aver-

age stock connections in the stock market, including direct and indirect connections among

stocks, is higher as the stock market is more unstable.
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Descriptive statistics

Panel A: Degree centrality
Cross-correlation

matrix type
Average

Standard
deviation

Minimum Maximum

Pearson 0.004 0.004 0.002 0.100
Spearman 0.004 0.004 0.002 0.065

Panel B: Community’s influence strength
Cross-correlation

matrix type
Average

Standard
deviation

Minimum Maximum

Pearson 0.004 0.001 0.002 0.005
Spearman 0.004 0.004 0.002 0.005

Table 3: The descriptive statistics of degree centralities and community’s influence
strengths of nodes in the US stock networks.

6 Results

Figures 2 and 3 show the stock networks constructed using MSTs based on the Pear-

son correlation matrix among stocks and Spearman rank correlation matrix among stocks,

respectively. We can see the interaction structures among stocks using the stock networks.

The connections among stocks are heterogeneous, and clusters are observed in the stock

networks.

I apply community detection to the US stock networks to identify the clusters in the US

stock networks. Figures 4 and 5 show the communities detected in the US stock networks

constructed using MSTs based on the Pearson correlation matrix among stocks and Spear-

man rank correlation matrix among stocks, respectively. Stocks with the same color are in

the same community. 22 communities are detected in the US stock network based on the

Pearson correlation matrix, and 23 communities are detected in the US stock network based

on the Spearman rank correlation matrix.

Table 3 shows the descriptive statistics of network centralities of nodes in the US stock

networks using the Pearson correlation matrix among stocks and Spearman rank correlation

matrix among stocks. The descriptive statistics for the Pearson and Spearman correlation

matrices are almost identical. It implies that the characteristics of the US stock networks
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Figure 6: The dynamics of the average degree centralities in the US stock networks using
the Pearson and Spearman rank correlation matrices. Red-filled circles (Blue-filled squares)
indicate the average degree centrality in the US stock networks using the Pearson correlation
(Spearman rank correlation). Light gray (Dark gray) bars indicate 95 percent confidence
intervals of the average degree centrality in the US stock network using the Pearson correla-
tion (Spearman rank correlation).

Figure 7: The dynamics of the average community’s influence strengths in the US stock
networks using the Pearson and Spearman rank correlation matrices. Red-filled circles (Blue-
filled squares) indicate the average community’s influence strength in the US stock networks
using the Pearson correlation (Spearman rank correlation). Light gray (Dark gray) bars
indicate 95 percent confidence intervals of the average community’s influence strength in the
US stock network using the Pearson correlation (Spearman rank correlation).
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Figure 8: The dynamics of βDC,yt in the US stock networks using the Pearson and Spearman
rank correlation matrices. Red-filled (Blue-filled) circles indicate the βDC,yt in the US stock
networks using the Pearson correlation (Spearman rank correlation). Light gray bars indicate
95 percent confidence intervals of the βDC,yt in the US stock network using the Pearson
correlation or Spearman rank correlation. (1) indicates the period of recession after the
dot-com bubble in the US. (2) indicates the period of the subprime mortgage crisis in the
US.

constructed using the Pearson correlation matrix among stocks and Spearman correlation

matrix among stocks are similar.

Figure 6 shows the dynamics of average degree centralities in the US stock networks

using the Pearson and Spearman rank correlation matrices. The dynamical properties of

degree centralities in the US stock networks for the Pearson and Spearman rank correlation

matrices are almost the same. The dynamic properties of the average community’s influence

strengths in the US stock networks for the Pearson and Spearman rank correlation matrices

are almost identical (see Figure 7). Those results also support the similarity of structural

properties of the US stock networks for the Pearson and Spearman rank correlation matrices.

25



Figure 9: The dynamics of βCIS,yt in the US stock networks using the Pearson and Spearman
rank correlation matrices. Red-filled (Blue-filled) circles indicate the βCIS,yt in the US stock
networks using the Pearson correlation (Spearman rank correlation). Light gray bars indicate
95 percent confidence intervals of the βCIS,yt in the US stock network using the Pearson
correlation or Spearman rank correlation. (1) indicates the period of recession after the
dot-com bubble in the US. (2) indicates the period of the subprime mortgage crisis in the
US.

6.1 The regression and systemic risk measure results

Figure 8 shows the dynamics of βDC,yt in the US stock networks using the Pearson and

Spearman rank correlation matrices. All βDC,yts are estimated with a significance level at 1

percent level. All estimated coefficients βDC,yts are negative for the Pearson and Spearman

rank correlation matrices. The result strongly supports H1. In addition, |βDC,yt | increases

during the US financial recessions: (1) the recession after the dot-com bubble; (2) the sub-

prime mortgage crisis. It implies that the risk due to direct connections among stocks in the

US stock market increases during the US financial recessions.

Figure 9 depicts the dynamics of βCIS,yt in the US stock networks using the Pearson

and Spearman rank correlation matrices. All βCIS,yts are estimated with a significance
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Figure 10: The dynamics of SRNET (yt) in the US stock networks using the Pearson and
Spearman rank correlation matrices. Red-filled (Blue-filled) circles indicate the SRNET (yt)
in the US stock networks using the Pearson correlation (Spearman rank correlation). Light
gray bars indicate 95 percent confidence intervals of the SRNET (yt) in the US stock network
using the Pearson correlation or Spearman rank correlation. (1) indicates the period of
recession after the dot-com bubble in the US. (2) indicates the period of the subprime
mortgage crisis in the US.

level at 1 percent level. All estimated coefficients βCIS,yts are positive for the Pearson and

Spearman rank correlation matrices. The result strongly supports H2. In addition, |βCIS,yt |

increases during the US financial recessions: (1) the recession after the dot-com bubble; (2)

the subprime mortgage crisis. It implies that the risk due to indirect connections among

stocks in the US stock market increases during the US financial recessions.

Figure 10 shows the dynamics of SRNET (yt) in the US stock networks using the Pear-

son and Spearman rank correlation matrices. SRNET (yt) increases during the US financial

recessions: (1) the recession after the dot-com bubble; (2) the subprime mortgage crisis. It

implies that systemic risk in the US stock market due to direct and indirect connections

among stocks increases during the US financial recessions. The result strongly supports H3.

All results using the Pearson and Spearman correlation matrices among stocks are almost
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identical. It shows that the results using the MST based on the cross-correlation matrix

among stocks are robust regardless of the type of cross-correlation matrix. My results are

consistent with previous studies about measuring systemic risk in the stock market based on

network connectivity (see Billio et al. (2012); Gong et al. (2019)). Thus, my systemic risk

measure (SRNET (yt)) can be a novel systemic risk measure.

7 Conclusion and discussion

In this paper, I suggest a novel systemic risk measure based on connections among stocks

in the US stock market. I construct the US stock networks using a Minimum Spanning

Tree (MST) based on a cross-correlation matrix among daily stock returns listed in S & P

500 from 1996 to 2021. To confirm the robustness of the stock networks, I use two types

of correlation matrices: the Pearson and Spearman rank correlation matrices. The stock

networks describe the interaction structure among stocks connected by a strong positive

correlation in the US stock market. To identify the characteristics of the stock networks, I

use two network centralities: the degree centrality and the community’s influence strength.

The degree centrality quantifies the direct connections of stocks in the US stock network. The

community’s influence strength quantifies the indirect connections of stocks by other stocks

in the same community. The communities are detected using the maximum modularity

method. The stocks in similar industry sectors are observed in the same community, and

the statistical and dynamic properties of network centralities in the US stock networks using

the Pearson and Spearman rank correlation matrices are almost identical.

To quantify systemic risk in the US stock market, I use the network centrality as an-

other factor to explain the risk-adjusted volatilities of stocks, unexplained by the risks due

to the Fama-French five factors and the momentum factor, and regress the risk-adjusted

volatility on the network centrality of stocks. The effect of degree centrality on the risk-

adjusted volatility is negative, and the effect of the community’s influence of strength on
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the risk-adjusted volatility is positive. The systemic risk measure, defined by the multipli-

cation between the absolute values of the regression coefficients of degree centrality and the

community’s influence strength on the risk-adjusted volatility, explains the effect of stock

connections, including direct and indirect connections in the stock market. An increase in

systemic risk is observed during the US financial recession: the recession after the dot-com

bubble and the subprime mortgage crisis.

My study contributes to the studies on measuring systemic risk. First, my research pro-

vides risk factors related to network structures constructed by a cross-correlation among

stocks to measure systemic risk, such as the degree centrality and community’s influence

strength, unexplained by the Fama-French five factors and the momentum factor. In addi-

tion, my systemic risk measure does not assume a particular assumption of return distribution

and is easy to understand.

Future research using my research could be as follows. My study cannot identify the

source to make a positive correlation among stocks since I use network centrality as an

independent variable using the stock network based on the cross-correlation matrix of stock

returns. However, in the banking sectors, the credit relationship among banks can make a

positive correlation among banks in the stock market and can be the channel of systemic

risk. In other sectors, the customer-supplier relationship among stocks can be the source

of positive correlation among stocks. Cohen and Frazzini (2008) analyze the relationship

between the network constructed by the customer-supplier relationship of firms and stock

returns. They find that customer-supplier networks predict stock returns. Thus, if the

network analyses of banking sectors using the credit relationship and other sectors using

the customer-supplier relationship among stocks are added to my analysis, we can further

understand systemic risk in the stock market.

In addition, if we analyze the connections among the global stock markets, we can measure

systemic risk more precisely. All stock markets are globally connected, and the stocks in the

US stock markets can be affected by the stocks in the stock markets in other countries, such
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as UK, China, and Japan stock markets. Song et al. (2011) find that the information flow

among the global stock markets increased during the subprime mortgage crisis in the US.

Wang, Xie and Stanley (2018) show that the correlation among the global stock markets

becomes enhanced, and transmission of information among the global stock market is done

more quickly during the subprime mortgage crisis in the US than in other normal periods. It

implies that systemic risk in the stock market will propagate globally via connections with

the stock markets in other countries. Thus, if the analysis of the global stock networks is

added to my analysis, we can measure systemic risk in the stock market more precisely.
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