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Abstract

I discuss the effect of networks on cooperation in the finitely repeated prisoner’s

dilemma using three approaches: the game-theoretical model approach, the belief-based

learning model approach, and the experimental approach. (1) The game-theoretical

model consists of two games: the simple repeated PD (prisoner’s dilemma) game for

finite rounds and the repeated PD game on a network after the simple repeated PD

game. In the repeated PD game on a network, players choose their game partners who

can be neighbors on a network based on mutual consent. I find the subgame perfect

pairwise-Nash equilibria in which all players defect and are completely connected or

isolated. (2) The belief-based learning model allows updating players’ strategies by

learning opponents’ strategies so that it explains the cooperative actions not explained

by the game-theoretical model but observed in the experiments. My learning model

shows that the strategies based on excluding defectors in network formation drive co-

operation. (3) I examine the effect of networks on cooperative actions in human groups

in the finitely repeated PD using three game experiments: the simple repeated game,

the cheap talk repeated game, and the networked repeated game. First, the aver-

age cooperation rate in the networked repeated game is the highest among the three

games. Second, the network formation in the networked repeated game is associated

with increased cooperation. Finally, cooperators (defectors) are connected with other

cooperators (defectors) in the network, and cooperation can be achieved by connections

among cooperators who exclude defectors from the network.
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game, excluding defectors in network formation, reputation building

∗Deparment of Economics, Iowa State University, 67 Heady Halll, 518 Farm House Lane, Ames, IA
50011-1054, Email: kyubin48@iastate.edu. I gratefully thank Elizabeth Hoffman, Jian Li, Peter F. Orazem,
Dermot J. Hayes, and Otávio Bartalotti for their valuable guidance and support. All errors are my own.



1 Introduction

Why do we make connections with others? One reason to make connections with oth-

ers is to find cooperators. We can get valuable information from cooperators and increase

our economic welfare or total utilities through cooperators who give mutual benefits. For

instance, in the labor market, unemployed persons can get valuable information to be hired

through their social networks. Financial institutions can reduce the risk in the financial

market through others connected to them. Thus, connections (or interactions) and cooper-

ation are closely tied, and understanding interactions in the economic system is important

to understand cooperation.

Several researchers have tried to improve economic thinking to understand cooperation.

Also, several new theories and methodologies have been suggested to explain the evolution

of cooperation. Behavioral and experimental economists have identified many examples of

cooperation, especially in repeated games (see Bó (2005); Dal Bó and Fréchette (2011, 2018)),

but we still need a unifying economic theory that explains interaction behaviors in economics

because cooperation is closely related to interaction. By developing network theory, we can

now understand the human interaction structure in the socio-economic system (see Goyal

(2009); Jackson (2014); Carvalho and Tahbaz-Salehi (2019)).

This paper asks the question: What is the impact of human interaction on cooperative

actions in human groups in the finitely repeated prisoner’s dilemma game? To answer this

question, I do three studies: the game-theoretical model study, the belief-based learning

model study, and the experimental study.

In the game-theoretical model study, I analyze the networked repeated prisoner’s dilemma

game using equilibrium concepts. The game consists of n players and T rounds (n, T ≫ 2).

From the 1st to round ts (1 < ts ≪ T), all players play the simple PD (prisoner’s dilemma)

with their partners randomly re-matched in each round. After round ts, all players play the

repeated PD game on a network based on a non-random partner selection rule using network

formation. All players can see all histories of others’ actions. Using that information, all
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players propose links to others they want to play with. If the player who receives a proposal

accepts the link, the proposer and the acceptor will be linked in the network. After link

formation, all players play the PD game simultaneously with their neighbors, who are con-

nected to them in the network. I use pairwise stability, in which all players only connect with

others who give a mutual benefit, and pairwise-Nash equilibrium, which combines pairwise

stability and Nash equilibrium, to analyze equilibrium states of networks. As a result of

the equilibrium analysis, pairwise-stable networks in which cooperators and defectors are

fully separated exist. However, all players defect in the pairwise-Nash equilibrium, and there

exist two pairwise-Nash equilibrium networks. Suppose the cost of network formation is less

than a player’s payoff when all players defect. In that case, the pairwise-Nash equilibrium

network is the complete network in which all players defect and are completely connected.

However, if the cost of network formation is greater than a player’s payoff when all players

defect, then the pairwise-Nash equilibrium network is an empty network in which all players

defect and are isolated. These pairwise-Nash equilibrium networks are also subgame perfect

equilibria. Thus, the game-theoretic model predicts that all players defect. However, some

level of stable cooperation that goes against the game-theoretical model results has been

observed in experiments.

In the belief-based learning model study, I outline a novel belief-based learning model,

which explains players’ cooperative actions in the finitely repeated PD game. The model

consists of two games: the simple repeated PD and the repeated PD on a network. Two

players are randomly re-matched each round from the 1st to the 5th round, playing the PD

game. From the 6th to the 20th round, all players play the PD game on a network. In the

PD game on a network, players invite and select their game partners using the histories of

all players’ actions and form networks to play. In the PD game on a network, all players

play the PD game simultaneously with their neighbors. There may be many strategies

playing in the game, but this study focuses on three strategies that help us understand

the relationship between cooperation and network formation: an m-threshold strategy, an
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excluding trigger strategy, and a network tit-for-tat (TFT) strategy. Anm-threshold strategy

player cooperates from the 1st round to the mth round and defects from the (m + 1)th

round. An m-threshold strategy player would like to select all others as game partners. An

excluding trigger strategy player always cooperates but never plays the game with defectors

in the networked game. An excluding trigger strategy player never selects players who

previously defected as partners in the networked game. A network TFT strategy player

always cooperates but does not play the game with the players who defected in the previous

round. A network TFT strategy player does not select players who defected in the previous

round as game partners in the network game. A player updates his or her beliefs by learning

from the game opponents based on imitating the best strategy of his or her partners. A

player in the game selects his or her best strategy to maximize the expected total payoff of

the game at each round.

Hundreds of computer simulations show robust results in various parameter sets. First,

the high cooperation rate at the first round and the decreasing pattern of cooperation as

rounds increase in the simple repeated PD game and repeated PD game on a network are

observed. Second, defectors are excluded by cooperators in the networked game. Third, in

the simple repeated PD game, which corresponds to the game from the 1st round to the

5th round, a short threshold strategy, the m-threshold strategy for 0 ≤ m ≤ 5, is the most

popular. On the other hand, in the repeated PD game on a network, from the 6th to the

20th round, the most popular strategy is a long threshold strategy, the m-threshold strategy

for 6 ≤ m ≤ 20. Finally, the excluding trigger strategy and network TFT strategies lead

to increases in cooperation for most parameter sets considered. The belief-based learning

model shows that, in general, excluding defectors in network formation can promote players’

cooperative actions in the finitely repeated PD game.

In the experimental study, I show the results of human behavioral experiments to measure

the impact of networks on cooperative actions in human groups in the finitely repeated PD

game using the students’ subjects recruited from Iowa State University. Three kinds of games
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in experiments were conducted: the simple repeated game, the cheap talk repeated game, and

the networked repeated game. In the simple repeated game, two players randomly selected

played the simple repeated PD game for 20 rounds. In the cheap talk repeated game, two

players randomly selected played a simple repeated PD game for 20 rounds, but from the 6th

to the 20th round, each player could communicate with the game partner before submitting

his or her action. The networked repeated game consisted of two types of repeated PD

games: the simple repeated PD game from the 1st to the 5th round and the repeated PD

game on a network from the 6th to the 20th round. All players played the simple PD game

with randomly re-matched partners each round from the 1st to the 5th round. From the 6th

to the 20th round, players could select their partners using all players’ reputation scores and

histories of their actions. If two players agreed to be partners for a round, they would be

linked and form links in the network for that round. After finishing the partner selection,

the network was formed, and players played with their partners or neighbors on the network.

I recruited 216 unique human subjects and conducted 29 experiments with 2 players

in the simple repeated games, 23 with 2 players in the cheap talk repeated games, and 8

with 14 players in the networked repeated games. First, the average cooperation rate in the

networked repeated games is the highest among the three games. I hypothesize this is due

to the reputation-building mechanism from Round 1 to 5 and the network formation from

Round 6 to 20. Second, the networked repeated games show a significant increase in the

fraction of cooperative actions in human groups after the 5th round. Moreover, the regression

analysis confirms the positive effect of network formation on cooperative actions in human

groups. In the cheap talk repeated games, the positive effect of cheap talk on cooperative

actions in human groups is observed but not statistically significant. The cooperation rate in

the simple repeated games shows a decreasing pattern as rounds advance. Third, cooperators

are linked to other cooperators, and defectors are linked to other defectors in the experiments.

This result is measured by a significant positive similarity index. Finally, I conclude that

cooperation can be achieved through network formation, which promotes the cooperative
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actions of players by excluding players who are more likely to defect. Thus, the experimental

results support the predictions of the belief-based learning model over the game-theoretic

model.

The remainder of the paper is organized as follows. Section 2 presents the literature

review on the evolution of cooperation and networked experiments. Section 3 considers

the game-theoretical model study. Section 4 shows the belief-based learning model study.

Section 5 presents the experimental study. Finally, I conclude and discuss future research in

Section 6.

2 Literature Review

Nowak (2006) suggests five rules for the evolution of cooperation: kin selection, direct

reciprocity, indirect reciprocity, network reciprocity, and group selection. The last two rules

are related to the network structure of human groups, and they are critical rules for improving

cooperative actions in human groups. My research is related to the last two rules.

My game-theoretical study is related to the previous research to understand the equilib-

rium state in the networked game and the effect of network formation on cooperative actions

in the equilibrium state. Ule (2008) finds that cooperation due to the threat of exclusion is

achieved in the subgame perfect Nash equilibrium of the finitely repeated PD game when

players endogenously form the network under the assumption that the number of rounds

is sufficiently large. Mengel (2009) studies the bilateral PD game under local interaction

with neighbors. She introduces the imitation process through their neighbors in the model.

She finds that full cooperation emerges when there is a sufficiently strong conformist bias

in the imitation process. Fosco and Mengel (2011) suggest the PD model that allows local

interaction with their neighbors in the network. They find “full separation” of defectors and

cooperators in the network. Also, they observe the “marginalization” of defectors. That

is, connected cooperators are in the core of the network, and defectors are in the network’s

5



periphery. The result of Wolitzky (2013) shows that network structure matters in sustaining

the level of cooperation in the public game. He finds that players with higher centrality1

are more cooperative than others with lower centrality. Cho (2014) finds that a sequen-

tial equilibrium, which supports cooperation, is constructed by local communication on a

network in the repeated PD game. Wolitzky (2015) shows that only private information

by cheap talk on a 2-connected network replicates public information in repeated games2.

Mihm and Toth (2020) investigate the relationship between cooperative network formation

and information asymmetries in a dynamic network game. They find the equilibrium regard-

less of players’ beliefs under private monitoring when the network structures satisfy a triadic

closure property. It implies that players could be strongly connected in the cooperative

networks under private monitoring. Sugaya and Wolitzky (2021) show that cooperation is

reinforced by communication within the community. The results of Mihm and Toth (2020)

and Sugaya and Wolitzky (2021) indicate that interaction or community structure could be

critical to promoting cooperation in the repeated game in terms of information gathering

and dissemination.

My game-theoretical model and belief-based learning model are also related to the pre-

vious research about social learning on a network because we need to understand social

learning on networks to understand the effect of network formation on cooperative actions

in human groups. Much previous research on social learning in networks has focused on the

relationship between opinion formation or information diffusion and network structure.

Bala and Goyal (1998) suggest a network model that explains the relationship between

neighborhoods’ structures and the social learning process. They show that in a connected

society, all agents get the same payoff in the long run due to learning from their neighbors.

1A network consists of nodes and links. Nodes represent agents in the network, and links represent the
relationship between nodes. For example, in a friendship network, nodes represent persons, and links depict
the friendship relationship between persons. Ch. 2 in Jackson et al. (2008) explains the representation of
networks. Centrality shows the degree of importance of a node in the network. For example, the node with
a high degree centrality – the number of the node’s links – will be important in the network.

2This means that there are two independent paths between any two nodes in a network. That is, the
removal of any single node in a 2-connected network does not prevent information flow in a network (see
Wolitzky (2015)).
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Acemoglu et al. (2011) study the equilibrium of sequential social learning on networks,

particularly a perfect Bayesian equilibrium. They show that agents’ actions converge to the

right action, which is the action to maximize the payoff, by learning from their neighbors as

the size of the social network increases.

Mueller-Frank (2013) studies the process of rational learning in social networks, which is

the process of making all possible inferences based on the history of neighbors they observed.

He shows that rational learning in social networks leads to a consensus of players’ opinions

when there is common knowledge of strategies. He shows that the duration to consensus,

which is the time taken to reach consensus, is a function of the network’s diameter3: the

larger the diameter is, the longer the duration to consensus is.

Lobel and Sadler (2015) study how information in networks diffuses through social learn-

ing using the Bayesian learning approach. They show that information can diffuse when

neighbors are independent if a minimal connection holds but can fail to diffuse when neigh-

bors are correlated in a well-connected network. It implies that weak connections based on

heterogeneous agents would be more efficient in diffusing information if a minimal connection

holds than strong connections based on homogeneous agents.

Dasaratha and He (2020) study the näıve sequential learning model on networks. In

the näıve sequential learning setting, an agent follows aggregating actions of predecessors

linked to him or her in the network. They show that the näıve sequential learning model in

networks can lead to incorrect actions or mislearning, which are not payoff-relevant actions.

They also characterize the networks that lead to correct actions or payoff-relevant actions.

They show that network structure does matter in leading to correct actions, which is the

action to maximize the payoff.

Board and Meyer-ter Vehn (2021) study the dynamics of learning in social networks based

on Bayesian learning on large random networks. They focus on the relationship between

network structure and agents’ decisions on whether they adopt an innovation. They show

3The diameter is measured by the largest distance between two nodes in the network (see Ch.2 in Jackson
et al. (2008)). Thus, a network that has a large diameter means a larger network.
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that in directed networks4, the characteristics of links in the network, including direction,

have a significant effect on agents’ learning, but in undirected networks (see the definition

of undirected networks in Footnote 4), learning and social welfare are lower than in directed

networks.

Chandrasekhar, Larreguy and Xandri (2020) test the social learning model on networks

using experiments. In experiments, all participants should guess the binary state of the world.

The world could have one of two states, zero or one, in the experiment. They test a model

that consists of sophisticated (Bayesian) and näıve learners (DeGroot). Bayesian agents are

facing incomplete information about other’s types. DeGroot agents follow the majority of

their neighbors’ previous guesses. They conducted two lab experiments at different locations:

665 subjects in an Indian village and ITAM in Mexico with 350 students. They estimate the

mixing parameter for two experiments, which show the ratio between sophisticated and näıve

learners in the experiment. The share of Bayesian agents in the Indian-villager is estimated

at 10%, and that in Mexican-student samples is estimated at 50%.

My belief-based learning is related to the previous research about individual learning

based on individual belief because my model is also based on belief-based learning. In par-

ticular, a player updates his or her beliefs about strategies from game opponents’ strategies.

Many previous works have focused on learning about rational decisions in games, where a

rational strategy is defined as a strategy that maximizes players’ utilities.

Fudenberg and Levine (1995) study the relationship between players’ decisions achieved

by learning and the best decisions that maximize their utilities. In particular, they focus on

a variation of a fictitious play. Fictitious play is based on belief-based learning that gives

more weight to the actions frequently chosen by opponents. Thus, fictitious play switches off

4 There are generally two types of networks: an undirected network and a directed network. In an
undirected network, links have no direction, but links have a direction in a directed network. Suppose that
persons A and B are linked on Twitter. A follows B, but B does not follow A. A and B are linked regardless
of link direction if the network is undirected. However, if the network is directed, we should consider the
direction of links. In this network, the direction is defined by the direction from a node following to a node
followed. For example, there is a link from A to B in the directed network because A follows B. However,
there is no link from B to A because B does not follow A.
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‘infrequent’ action in the game, which is rarely chosen by players, and can lead to a rational

decision of a player. They show that the utility achieved by an agent using the fictitious

play rule is nearly the best, meaning play that maximizes utility.

Roth and Erev (1995) suggest the reinforcement learning model, which allows reinforcing

actions experienced in the past to explain the behavior observed in experiments consisting of

three different two-state sequential games: a public goods provision game, a market game,

and an “ultimatum” bargaining game. Their model shows good predictions of players’ actions

for the periods between short-term and long-term predictions for those three games.

Fudenberg et al. (1998) show that learning models are useful for understanding the equi-

librium state which arises from less fully rational players in the long run and suggest ways to

use learning models to evaluate and modify traditional equilibrium concepts in economics.

Camerer and Hua Ho (1999) suggest the ‘experience-weighted attraction’ (EWA) learn-

ing model, which includes the characteristics of the belief-based learning model and the

reinforcement learning model. They calibrate three parameters of their model using exper-

imental data: the weight of the strength of reinforcement of not chosen strategies relative

to chosen strategies, the discount factor of previous attractions, and an experienced weight.

They show that reinforcement and belief-based learning, which are special cases in an EWA

learning model, are rejected in most results of calibrations, but belief-based learning is better

in some constant-sum games.

Camerer, Ho and Chong (2002) discuss the generalized EWA learning model that includes

adaptive and sophisticated learners, rationally best responding to all others’ predicted be-

haviors. They estimate the model using experimental data obtained from the p-beauty

contest and repeated games with incomplete information. Their generalized model performs

better than their EWA learning model in explaining and predicting human behaviors in

experiments.

Learning models are useful for describing the adaptive behaviors of players in games.

Thus, they have been used to explain experimental data. Feltovich (2000) explains the data
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obtained from asymmetric-information games using reinforcement-based and belief-based

learning models. The belief-based learning models have been used to explain the experi-

mental data from the infinitely and finitely repeated PD games (see Dal Bó and Fréchette

(2011); Embrey, Fréchette and Yuksel (2018)).

My experimental study is related to the previous experimental research about network

games. Cassar (2007) finds, using lab experiments, that players in the local network5 are

more likely to be coordinated than in the small-world network6 in the finitely repeated PD

games. Gracia-Lázaro et al. (2012) conducted lab experiments to investigate the relationship

between the heterogeneity of networks and cooperation in the finitely repeated PD game.

However, they do not find any evidence that network heterogeneity promotes cooperation.

Wang, Suri and Watts (2012) conducted online experiments on MTurk to analyze the effect of

dynamic network formation on cooperative actions in human groups in the finitely repeated

PD game. They find that when players can change their partners in the dynamic network

formation setting, the fraction of cooperative actions in human groups increases compared

to static network formation. Cuesta et al. (2015) conducted lab experiments to investigate

the effect of a player’s reputation on cooperative behaviors and network formation in human

groups under the finitely repeated PD game in the lab. They find that reputation drives

cooperative behavior and makes the links in human groups more robust. Gallo and Yan

(2015) also show that reputational and social knowledge promote cooperation in the dynamic

networked repeated PD game using online experiments on MTurk7. Recently, large-sized

networked experiments have used hundreds of human subjects to hundreds of millions of

people simultaneously, using developed online platforms such as Facebook app adoption,

5In the local network, the number of an agent’s interaction with others or the number of an agent’s
neighbors is fixed (see Cassar (2007)).

6In the small-world network, most agents are closely connected to their neighbors and can reach others
who are not their neighbors by a small number of steps in the network (see Ch. 10 in Newman (2018)).

7Many researchers have conducted the reputation effect on cooperation in the finitely simple repeated
prisoner’s dilemma game without network formation (see Andreoni and Miller (1993); Cooper et al. (1996);
Gong and Yang (2010); Cox et al. (2015); Kamei (2017); Kamei and Putterman (2017); Honhon and Hyndman
(2020)). Contrary to the literature, reputation is used as one of the pieces of information to form networks
in my experiments.
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instant messaging networks of Yahoo, and other online social network platforms (see Aral

(2016)).

In experimental economics, the relationship between information gathering and cooper-

ation has also been one of the most interesting topics (see the literature survey of Dal Bó

and Fréchette (2018)). According to Dal Bó and Fréchette (2018), many subjects cooperate

in the first round even with imperfect public information about their partner’s behavior in

repeated PD games. Additionally, they report that cooperation is possible despite imper-

fect private monitoring. In my experiments, all players can do perfect public monitoring

using network information. Thus, it implies that network information can induce players to

cooperate with others by the logic of Dal Bó and Fréchette (2018).

My paper contributes to the literature related to the study of the impact of dynamic

network formation on cooperation (Ule (2008); Wang, Suri and Watts (2012); Cuesta et al.

(2015); Gallo and Yan (2015)) and the evolution of networks in the finitely repeated PD game

(Mengel (2009); Fosco and Mengel (2011)). I consider the repeated game, which consists of

the simple repeated PD game and the repeated PD game on a network, to be more general

than the previous experiments (see Wang, Suri and Watts (2012); Cuesta et al. (2015);

Gallo and Yan (2015)). Thus, my game captures the transition from the simple PD game

to the PD game on a network when network information flows. This transition was not

captured in the previous experiments. In particular, my research discusses the process of

building reputations about human behavior before forming networks and is different from

the previous experiments (see Fosco and Mengel (2011); Wang, Suri and Watts (2012);

Cuesta et al. (2015); Cho (2014))8. More specifically, the game in this paper consists of the

simple repeated PD game from the 1st to the 5th round and the repeated PD game on a

network from the 6th to the final round. This study shows a high cooperation rate related to

8This reputation-building process is also related to the threat of exclusion in network formation, and
players in my experiments can set strategies based on the threat of exclusion. Thus, my study contributes
to the literature about the effects of threatening strategy or punishment strategy, such as the tit-for-tat
(TFT) strategy (see Axelrod (1984); Dal Bó and Fréchette (2011); Fréchette and Yuksel (2017); Embrey,
Fréchette and Yuksel (2018); Dal Bó and Fréchette (2019)). I discuss the relationship between TFT and
network formation in Section 5.4.
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building a reputation in the simple repeated PD game. Previous research only considered the

networked PD game without the simple repeated PD game (see Fosco and Mengel (2011);

Wang, Suri and Watts (2012); Cuesta et al. (2015); Cho (2014)). Thus, they did not see

human behavior related to forming networks in the future. The strength of my research is

showing the value of reputation formation in the simple repeated PD game before network

formation. Additionally, I conduct simple repeated PD and cheap talk repeated PD games

to determine how much network formation for promoting cooperation is more efficient than

cheap talk and simple repeated games.

3 The game-theoretical model study

3.1 Model description

Let N = {1, ..., n} be the set of players (n ≫ 2). All players play the repeated prisoner’s

dilemma game for T rounds (T ≫ 2, T is an integer). In every round t ∈ {1, ..., T}, every

player i (i ∈ N) simultaneously chooses an action xt
i ∈ {C,D}, where C and D denote

cooperate and defect, respectively. If player i selects C (D) at round t, then player i is a

cooperator (defector) at round t. All players know all players’ history of actions. Thus, the

information set in the game at round t (I t) is as follows: I t = {x1
1, ..., x

t−1
1 , x1

2, ..., x
1
n, ..., x

t−1
n }.

Assumption 1 The finitely repeated game consists of two games: (1) the simple repeated

PD game; (2) the repeated PD game on a network.

All players are doing the simple repeated PD game from the 1st round to round ts (1 <

ts ≪ T ). T and ts are known by all players. At the 1st round, all players know how many

rounds they will play in the simple game and how many in the network game. All players

also know how many rounds they played. The game partner of a player is randomly selected
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at each round for the simple repeated PD game. Then, a player plays with his or her partner

under the payoff structure as follows:

Player i
C D

Player j
C (c, c) (e, f)
D (f, e) (d, d)

Table 1: The payoff table of the game.

where f > c > d > e, f + e < 2c, e < 0.If both players cooperate, they each get c. If both

players defect, they each get d. If player i (j) cooperates and player j (i) defects, player i

(j) gets e, and player j (i) gets f .

Assumption 2 The repeated PD game on a network consists of two stages in each round:

(1) the partner selection; (2) the choice of action. At the beginning of each round in the

repeated PD game on a network, all players must choose their partners. After finishing the

partner selection, all players play the PD game with only their partners under the same

payoffs as the simple repeated PD game. A player submits the same action to all partners of

a player. In general, the number of a player’s partners is between zero and n− 1 (inclusive).

Assumption 3 Players who are not selected by others as partners get nothing, regardless

of their actions. Thus, all players should be selected by others to get payoffs in the PD game

on a network.

The details of the partner selection process are as follows:
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1. At the beginning of the PD game on a network, players have to propose links to

others with whom they want to play the game simultaneously. Players can see other

players’ histories of actions. There is no constraint on the number of links to propose.

Thus, a player can propose n − 1 links in each round. However, there exists a network

formation cost per link cnet (cnet < f).

2. Players who receive proposals from others should decide whether they play the PD

game with proposers. If the player accepts the proposal, both players are linked to each

other in the network and play the PD game. However, if the player does not accept,

both players are not linked to each other in the network and do not play the PD game.

If they do not play the PD game, they get nothing. It means that a player not selected

as a partner by others gets zero payoffs.

3. The partner selection process is repeated at the beginning of the repeated PD game

on a network after round ts. All players can change their partners at every round after

round ts. Also, all players can unilaterally sever links with others in the partner selection

process.

The partner selection process captures the general making-a-friend process. In general,

we make friends based on mutual consent using our experiences. Also, we can unilaterally

sever friendship relations with others whom we do not like.

The partner selections of player i can be captured by a binary vector

bi = (bij)j∈N ∈ {0, 1}N , such that bii = 0 and
∑
j∈N

bij ≤ n− 1. (1)

(1) bij = 1 if player i proposes a link to player j; (2) bij = 0 otherwise.

Let g(b) denote the network of the established link given the profile of partner selections

b = (b1, ..., bn). In the partner selection process, a link between two players is formed

when two players agree to be linked to each other. By the mutual link formation process,
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Figure 1: An example of a network formed by three players.

gij = min {bij, bji}, where gij is a binary variable that denotes the link between players i and j:

(1) gij = 1 if players i and j are linked; (2) gij = 0 otherwise. Let Li(g) = {j|gij = 1} denote

the set of neighbors of player i and let li(g) = |Li(g)| be the number of neighbors of player i:

(1) li(g) = 1 in the simple repeated prisoner’s dilemma (t ≤ ts); (2) 0 ≤ li(g) ≤ n− 1 in the

repeated PD game on a network (ts < t ≤ T ). Let G = {g|0 ≤ li(g) ≤ n− 1, for all i ∈ N}

be the set of feasible networks. Thus, g(b) ∈ G.

After finishing partner selections, all players choose their actions. Then, the payoff of

player i in the PD game on a network given the network of established links and the profile

of actions at round t (πi(x
t, bt)) is as follows:

πi(x
t, bt) =

∑
j∈Li(gt)

ui(x
t
i, x

t
j)−

∑
j∈Li(gt)

cnet =
∑
j∈N

(ui(x
t
i, x

t
j)− cnet)gij(b

t). (2)

where ui(x
t
i, x

t
j) denotes the payoff of player i if players i and j choose xi and xj at round t,

respectively. bti denotes the partner selections of player i at round t. cnet is the cost of a link

formation. (xt, bt) = ((xt
1, b

t
1), ..., (x

t
n, b

t
n)).
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Example 1: The payoffs of three players in the PD game on a network.

Suppose three players (P1, P2, and P3) form a network at round t (see Figure 1).P1

is connected with P2, and P3 is isolated. Then, g12(b
t) = g21(b

t) = 1, g13(b
t) = g31(b

t) =

g23(b
t) = g32(b

t) = 0.

Assume that xt
1 = C, xt

2 = D, and xt
3 = D. xt

i denotes the action of Pi at round t. Then,

π1(x
t, bt) = e − cnet, π2(x

2, bt) = f − cnet, and π3(x
t, bt) = 0. πi(x

t, bt) denotes the payoff of

Pi at round t.

The action and partner selection of player i (x∗
i , b

∗
i ) ∈ Si is a best response of player i to

the profile of player i’s opponents’ (N \ {i}) actions and partner selections (x−i, b−i) if

πi(x
∗
i , b

∗
i , x−i, b−i) ≥ πi(x

′
i, b

′
i, x−i, b−i), (3)

for any (x′
i, b

′
i) ∈ Si, where Si = Xi ×Bi, Xi and Bi denote the set of actions of player i and

the set of partner selections of player i, respectively. A Nash equilibrium of the PD game on

a network Γ =< N,S, π, I > is a strategy profile (x∗, b∗) ∈ S (where S = X × B. X and B

denote the set of profiles of actions and partner selections) is as follows:

πi(x
∗, b∗) ≥ πi(xi, bi, x

∗
−i, b

∗
−i), (4)

for any (xi, bi) ∈ Si.π = (π1, ..., πn), I is the information set. A network g is an equilibrium

network if there exists a Nash equilibrium (x∗, b∗) such that g = g(b∗).

ΓT =< N,S, π, I, ts, T > presents the repeated PD game for T rounds. All players select

their actions and their sets of partner selections at each round to maximize their total payoffs

in the game. The total payoff of player i in the repeated PD game Πi(h
T ) under the given

sequence of actions and partner selections for T rounds hT (hT = ((x1,b1),...,(xT ,bT ))) is as

follows:
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Πi(h
T ) =

T∑
t=1

πi(x
t, bt). (5)

Calvó-Armengol and İlkılıç (2009) argue that the Nash equilibrium is weak to capture

the equilibrium of a network based on mutual link formation because there are multiple

Nash equilibrium networks, including the empty network in the network formation game. In

a network formation game, the empty network is always a Nash equilibrium network. Thus,

we need another equilibrium concept to understand the game on a network based on mutual

link formation and unilateral link severance.

Jackson and Wolinsky (1996) suggest pairwise stability that captures stability based on

mutual link formation and unilaterally removing a link. I use pairwise stability to analyze

the equilibrium network in the networked game.

Definition 1 (Pairwise stability [Jackson and Wolinsky (1996)]). A network g is

pairwise stable if the following two conditions are satisfied:

(i) For all i, j ∈ N where gij = 1, ui(g) ≥ ui(g ⊖ ij) and uj(g) ≥ uj(g ⊖ ij),

(ii) For all i, j ∈ N where gij = 0, if ui(g ⊕ ij) > ui(g), then uj(g ⊕ ij) < uj(g).

where ui(g) is the utility or the payoff to player i under the network g. g⊖ ij denotes remov-

ing a link between players i and j in the network g. g ⊕ ij denotes forming a link between

players i and j in the network g.

A pairwise network allows a link unless a link between two players makes their payoffs

worse off. However, a player does not create a link with the other, making his or her payoff

worse in a pairwise network.

Example 2: Pairwise stable networks in the PD game on a network with three players.

Suppose three players form a network. Assume that cnet = 0. Figure 2 shows the possible

pairwise stable networks. Cooperators whose action is cooperation do not want to connect
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Figure 2: Pairwise stable networks in the networked prisoner’s dilemma game with three
players if cnet = 0 (see Definition 1 and Example 2). C denotes a cooperator, whose
action is cooperation, and D denotes a defector, whose action is defection. (e) and (f) are
pairwise-Nash equilibrium networks (see Definition 2 and Example 3).

with defectors whose action is defection since cooperators’ payoffs are decreased by e per

link with a defector. If c ≥ 0, cooperators want to make links with other cooperators since

cooperators can increase their payoffs by c per link with a cooperator (see Figure 2 (a) and

(b)). However, if c < 0, cooperators do not want to connect with other cooperators since

cooperators’ payoffs are decreased by c per link with a cooperator (see Figure 2 (c)). Thus,

if c ≥ 0, cooperators are only connected with cooperators in pairwise stable networks, but

cooperators are isolated if c < 0. Similarly, if d ≥ 0, defectors are only connected with other

defectors in pairwise stable networks since cooperators do not want defectors (see Figure 2

(d) and (e)), but defectors are isolated if d < 0 (see Figure 2 (f)).

Then, pairwise stability and Nash equilibrium can be combined. I define a pairwise-Nash

equilibrium network that is robust to one-link creation based on mutual consent and unilat-

eral multi-link severance.

Definition 2 (Pairwise-Nash equilibrium). A network g is a pairwise-Nash equilibrium
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network if and only if there exists a pure strategy Nash equilibrium x∗ that satisfies g = g(x∗),

and for all i, j ∈ N , if gij = 0, then ui(g ⊕ ij) > ui(g) implies uj(g ⊕ ij) < uj(g).

Example 3: Pairwise-Nash equilibrium in the PD game on a network with three players.

Suppose three players form a network. Assume that cnet = 0. The best response of a

player is defection because u(D,C) = f > u(C,C) = c and u(D,D) = d > u(C,D) = e.

Thus, all players defect in Nash equilibrium. There are two pairwise stable networks when

all players defect (see Figures 2 (e) and (f)). Therefore, pairwise-Nash equilibrium networks

are as follows: the complete network in which all players are connected (see Figure 2 (e)) if

d ≥ 0 and the empty network in which all players are isolated if d < 0 (see Figure 2 (f)).

3.2 Equilibrium analysis

In Examples 2 and 3, I analyze the equilibrium state of the PD game on a network with

three players. This subsection extends the equilibrium analysis to the repeated PD game on

a network with n players.

Proposition 1 Consider the repeated PD game ΓT =< N,S, π, I, ts, T >. Then, there exist

pairwise stable networks in ΓT : (i) all cooperators are only completely connected to other

cooperators if c ≥ cnet or isolated if c < cnet; (ii) all defectors are only completely connected

to other defectors if d ≥ cnet or isolated if d < cnet.

Proof. Suppose all players are in the network g during the game at round t (ts < t ≤ T ).

To prove Proposition 1, I have to consider the following three cases of link formations

in pairwise stable networks: (1) between two cooperators; (2) between a defector and a

cooperator; (3) between two defectors.

Let us see the first case. Suppose two cooperators i and j are linked in g(gij = 1).

If cooperator i severs a link from cooperator j, then ui(g) − ui(g ⊖ ij) = (c − cnet) and

uj(g) − uj(g ⊖ ij) = (c − cnet). Thus, if c ≥ cnet, then ui(g) ≥ ui(g ⊖ ij) and uj(g) ≥
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uj(g ⊖ ij). The first case satisfies condition (i) for pairwise stability, and cooperators are

linked if c ≥ cnet in pairwise stable networks. However, if c < cnet, then ui(g) < ui(g ⊖ ij)

and uj(g) < uj(g⊖ ij). It implies that cooperators lose their payoffs by connecting if c < cnet

and cooperators are not connected if c < cnet. Thus, all cooperators are linked to each other

if c ≥ cnet but are isolated if c < cnet in pairwise networks.

Let us consider the second case. Suppose player i is a cooperator, and player j is a

defector in the network g. If they form a link between them, ui(g⊕ ij)−ui(g) = e− cnet < 0

and uj(g⊕ij)−uj(g) = f−cnet > 0. Thus, gij = 0 in pairwise stable networks. It means that

the payoff of cooperator i is reduced, but the payoff of defector j increases, and it satisfies

condition (ii) for pairwise stability. Thus, all cooperators do not add links with all defectors

in pairwise stable networks.

Let us move on to the third case. Suppose players i and j are defectors in the network

g. If they form a link between them, player i gets d− cnet, and player j gets d− cnet. Thus,

if d ≥ cnet, then ui(g ⊕ ij) − ui(g) = d − cnet ≥ 0 and uj(g ⊕ ij) − uj(g) = d − cnet ≥ 0.

Defectors i and j get mutual benefits by linking each other if d ≥ cnet. It implies that gij = 1

in pairwise stable networks if d ≥ cnet, and condition (i) for pairwise stability is satisfied.

However, if d < cnet, they lose their payoffs by connecting and are not connected. Thus, all

defectors are connected if d ≥ cnet but are isolated if d < cnet in pairwise stable networks.

Q.E.D.

Proposition 1 implies “full separation” of cooperators and defectors in the network is

consistent with the result in Fosco and Mengel (2011). Fosco and Mengel (2011) show that

cooperators and defectors are fully separated using exclusion and imitation strategies in the

repeated prisoner’s dilemma game. Proposition 1 shows that mutual link formation and

unilateral multi-link severance prohibit link formation between a cooperator and a defector

like the exclusion strategy in Fosco and Mengel (2011).

Proposition 1 characterizes the equilibrium states of networks. However, it does not con-
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sider the equilibrium states, including players’ actions. Thus, we need to find pairwise-Nash

equilibrium networks considering the equilibrium state of network formation and players’

actions.

Proposition 2 Consider the repeated PD game ΓT =< N,S, π, I, ts, T >. Then, there

exist two unique pairwise-Nash equilibrium networks in ΓT : (i) all players defect and are

completely connected if d ≥ cnet; (2) all players defect and are isolated if d < cnet. These

pairwise-Nash equilibrium networks are also subgame perfect equilibrium networks.

Proof. The best response of all players at each round in the game ΓT is defection because

u(D,C) = f > u(C,C) = c and u(D,D) = d > u(C,D) = e. Thus, by backward induction,

all players defect for all rounds, and this is the unique subgame perfect Nash equilibrium.

By Proposition 1, there exist pairwise stable networks: All defectors are only completely

connected to other defectors if d ≥ cnet or isolated if d < cnet. Therefore, there exist two

unique pairwise-Nash equilibrium networks in ΓT : (i) all players defect and are completely

connected if d ≥ cnet; (ii) all players defect and are isolated if d < cnet. These pairwise-Nash

equilibrium networks are also subgame perfect equilibrium networks since the equilibrium

state in which all players defect is the subgame perfect equilibrium. Q.E.D.

Proposition 2 characterizes the pairwise-Nash equilibrium networks in the finitely re-

peated PD game on a network. Wang, Suri and Watts (2012) find that it is more likely that

the networks in which all players defect and are completely connected in the finitely repeated

networked prisoner’s dilemma game are observed as rounds advance to the final round in

experiments. Proposition 2 is consistent with the result in Wang, Suri and Watts (2012).

3.3 Discussion: What do the equilibrium networks tell us?

As a result of the equilibrium analysis, all players defect and are completely connected or

isolated in pairwise-Nash equilibrium networks. The result cannot explain the cooperative
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actions promoted by network formation in the existing experimental research (see Wang, Suri

and Watts (2012); Cuesta et al. (2015); Gallo and Yan (2015)). However, my equilibrium

analysis provides an important understanding of forming networks in human decisions under

the repeated prisoner’s dilemma to create an advanced model that explains cooperative

actions.

Network formation can be the strategy to drive cooperation by excluding defectors if

players can learn and imitate others’ actions. By Propositions 1 and 2, cooperators and

defectors never be connected in pairwise stable networks, including pairwise-Nash equilibrium

networks. Also, if we assume that the model allows cooperative actions of players, the

pairwise stable network in which cooperators are completely connected exists if the cost of

a link formation is lower than the mutual benefit between two cooperators. It implies that

cooperators can benefit from playing games with other cooperators by excluding defectors in

network formation. The strategy of excluding defectors through network formation can drive

cooperation. This idea is incorporated into the belief-based learning model in the following

section.

4 The belief-based learning model study

In the game-theoretical model study, I characterize the equilibrium state of the networked

game. In the pairwise-Nash equilibrium, all players defect, and the complete or empty net-

work is formed. However, pairwise stable networks in which cooperators are connected with

other cooperators can be possible if some players cooperate in the game (see Proposition

1). In the previous experiments of networked PD games, the pairwise stable networks with

cooperators connecting with other cooperators were observed (see Wang, Suri and Watts

(2012); Cuesta et al. (2015)). As I discussed in Section 3.3, players can use the network

formation rule to exclude or isolate defectors in the network as a strategy in the game. To

add the characteristics of strategies based on network formation in the model, I need another
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approach with more flexible assumptions than the game-theoretical model.

To explain cooperative actions in the networked PD games not explained by the game-

theoretical model, I suggest a belief-based learning model. The belief-based learning model is

a structural form model based on learning from game opponents and easy to add strategies.

Also, we can do computer or agent-based simulations using the belief-based learning model,

and it provides a deep understanding of the relationship between the cooperation actions

of players and network formation in the game and the dynamics of cooperation rate in the

game.

4.1 Model description

4.1.1 The structure of the game

The belief-based learning model is based on the model in Embrey, Fréchette and Yuksel

(2018). I extend their model to a novel belief-based learning model, including network

formation strategies to understand the effects of networks in the finitely repeated prisoner’s

dilemma game.

Let N = {1, 2, ..., n}, n ≥ 3 be the set of players in the belief-based learning formation

model. Let Ait = {C,D} denote the set of actions of player i at round t. C denotes cooperate,

D denotes defect. Let ait denote the action of player i at round t. A player plays the finitely

repeated prisoner’s dilemma game for T rounds (T > 2). Let uit(ait, ajt) denote the payoff

of player i when player i plays with player j at round t. Table 1 shows the payoff of players

i and j for a one-shot game. If both players cooperate, then each gets c. If both players

defect, then each gets d. If one defects and the other cooperates, the cooperator (defector)

gets e(f).

The game consists of two types: the simple repeated PD game from the 1st round to

round ts and the repeated PD game on a network from round ts + 1 to round T . I assume

that there is no cost of link formation. The structures of the simple repeated game and the

repeated PD game on a network are identical to the game-theoretical model with zero cost
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of link formation. Please see Assumptions 1, 2 and 3 in the game-theoretical model.

Let me give an example of the PD game on a network. For example, players A, B, and C

are linked and play in the networked game at round t. Assume that aAt = C, aBt = D, and

aCt = C. Then, the payoffs of players A,B, and C are as follows: πAt = c+ e, πBt = 2f, and

πAt = c+ e. πit denotes the payoff of player i at round t. A strategy in this game includes a

network formation strategy. I explain strategies adopted by players in the game in Section

4.1.2 and describe network formation strategies.

The total payoff of player i from the round t to T denoted by U i
tT is as follows:

U i
tT =

ts∑
k=t

uik(aik, aj(k)k) +
T∑

k=ts+1

∑
j∈Nk(i),i∈Nk(j)

uik(aij, ajk), if 1 ≤ t ≤ ts (6)

=
T∑

k=t

∑
j∈Nk(i),i∈Nk(j)

uik(aij, ajk), if ts < t ≤ T

where j(k) denotes the partner of player i at round k in the simple repeated PD game. Nk(i)

is the set of player i’s neighbors at round k in the repeated PD game on a network. I assume

that player i at round t selects his or her action to maximize U i
tT .

4.1.2 Strategies of players

This game consists of the simple repeated PD game and the repeated PD game on a

network. Thus, a player considers not only his or her actions but also his or her network

formation to select and be selected by neighbors in the networked game.

In general, we can think of many strategies in the repeated game. Thus, I focus on

important strategies to describe players’ network formation and cooperative actions: m-

threshold strategies, excluding trigger strategy, and network tit-for-tat (TFT). I assume

that all players choose one among these strategies. Future research will introduce other and

more complicated strategies.
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An m-threshold strategy is based on threshold strategies suggested by Embrey, Fréchette

and Yuksel (2018). The action of player i following an m-threshold strategy at round t is as

follows: (1) ait = C if t ≤ m; (2) ait = D otherwise. The set of neighbors of an m-threshold

strategy player i in the network game at round t is as follows: Nt(i) = {1, ..., n} \ {i}, if

ts < t ≤ T . If m = 0, then player i defects for all rounds. If m = T , then player i cooperates

for all rounds. Thus, an m-threshold strategy includes short-term cooperators and long-

term cooperators. Threshold strategies used in Embrey, Fréchette and Yuksel (2018) do not

consider network formation because their model is based on the simple repeated PD game.

They could explain the high cooperation rate at the first round and a decreasing pattern

of cooperation rate as a round increases in the finitely repeated PD game. Wang, Suri and

Watts (2012) find a high cooperation rate and a decreasing pattern of cooperation as rounds

increase in the networked finitely repeated PD game experiments. It is a similar pattern of

cooperation rate as the simple repeated games. Their findings imply that it may be possible

to exist short-term cooperators and long-term cooperators in the networked finitely repeated

PD game. In addition, I assume that an m-threshold strategy player makes as many links as

possible because an m-threshold strategy player does not consider others’ past actions. In

this case, maintaining as many links as possible with others gives the highest payoff under

zero cost of link formation.

An excluding trigger strategy is a strategy that excludes defectors forever in the network

formation phase. The action and the set of neighbors of player i following an excluding trigger

strategy at round t are as follows: ait = C,Nt(i) = {j|Rjt = 1}. Rjt denotes the reputation

score of player j at round t. The definition of Rjt is as follows: Rjt =
∑t−1

k=1 1ajk=C/(t− 1).

1ajk=C denotes the indicator function: (1) 1ajk=C = 1 if ajk = C; (2) 1ajk=C = 0 otherwise.

Rjt is between 0 and 1 (0 ≤ Rjt ≤ 1). If player j did defect at least once from the 1st

round to a round t, Rjt is less than 1. An excluding trigger strategy excludes all js whose

Rjt is less than 1. Thus, an excluding trigger strategy player excludes all defectors in the

network formation phase and only plays the game with the players who have never defected.
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An excluding trigger strategy is so harsh because it never allows defection. However, it can

make players start to cooperate in the game in the initial rounds due to threats of exclusion

in the network formation phase.9

A network tit-for-tat (TFT) is a strategy that only excludes players who defected in the

previous round. A network TFT player i’s action and set of neighbors at round t are as

follows: ait = C,Nt(i) = {j|ajt−1 = C}. A network TFT is more generous than an excluding

trigger strategy because it allows connections with players with reputation scores that are

less than one if they cooperated at the previous round. Like an excluding trigger strategy,

a network TFT also drives players to cooperate due to threats of exclusion in the network

formation phase (see Footnote 9).

4.1.3 The rule for selecting the best strategy

The core of the belief-based learning model is that, at each round, a player chooses his

or her best strategy, which maximizes the expected total payoff at that round. Players can

alter their best strategies at every round according to the game situation. In particular, the

belief-based learning model allows altering strategies by learning opponents’ best strategies.

Each player updates his or her beliefs by learning the strategy adopted by his or her

opponent. Let
−→
βit be the belief vector of player i to strategies at round t. The dimension of

−→
βit is Ns × 1. Ns is the number of strategies. βk

it represents the weight that player i assigns

to a strategy k to be selected by his or her opponent at round t.
−→
βit is updated as follows:

−−→
βit+1 = θi

−→
βit +

−→
Lit, (7)

where θi denotes how player i discounts past beliefs ((1) θi = 0: Cournot dynamics; (2)

9Threats of exclusion in the network formation are similar to threats of ostracism, threats of social
exclusion, or social isolation, which have been studied in behavioral economics and social psychological
research (see Hirshleifer and Rasmusen (1989); Williams (1997, 2002, 2007); Nezlek et al. (2012)). Players
know that they should be selected by players who are more likely to cooperate to get higher payoffs through
connections with cooperators. Cooperators want to make their social groups with other cooperators and
exclude players who are more likely to defect. Players have incentives to increase their reputation score to
make connections with cooperators and be in groups of cooperators for a long round.
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θi = 1: fictitious play).
−→
Lit is the update vector dimensions of Nx × 1 given plays of player

i and i’s opponent at round t: (1) Lk
it = 1 if strategy k is selected as the best strategy by

player i’s opponent; (2) Lk
it = 0 otherwise. Thus, the belief in the opponent’s best strategy

is higher than other strategies by updating belief.

Let −→µit be the utility vector of player i at round t for all strategies dimension of Ns × 1.

−−→µit+1 =
−→uit + λi

−→ϵit, (8)

where −→uit = U(t)
−→
βit.

−→uit is the weighted expected payoff vector of player i for all strategies

at round t dimensions of Ns × 1. U(t) is the payoff matrix of the strategies dimension

of Ns × Ns. Thus, Uij(t) represents the expected total payoff of playing strategy i against

playing a strategy j at round t. Note that U(t) contains the expected total payoff of each

strategy against every other strategy from round t to round T . Thus, U(t) is a function of

T − t+1 and the stage-game payoffs. λi is a scaling parameter that measures how well each

player best responds to his or her beliefs. −→ϵit is an idiosyncratic error vector size of Ns × 1:

ϵkit ∼ N(0, σit), σit = σκi
i , 0 ≤ σit ≤ 0.5. σit is the probability that player i selects the action

inconsistent with his or her strategy at round t.

Let pkit denote the probability of choosing a strategy k of player i at round t, and it can

be written using the usual logistic form given the assumption of the normality of error terms

(ϵkit) as follows:

pkit =
exp (

uk
it

λi
)∑Ns

j=1 exp (
uj
it

λi
)
, (9)

where uk
it is uit for strategy k in −→uit. The higher uk

it is, the higher pkit is. Thus, a player in

the game chooses the strategy that gives him or her the highest expected total payoff with

the highest probability.
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Figure 3: The dynamics of the cooperation rate.

4.2 The simulation results

4.2.1 Simulations

The parameters used in the baseline model are as follows: n = 100, βk
i0 = 4.45, c = 4, d =

0, e = −1, f = 7, ts = 5, T = 20, λi = 0.83, σi = 0.16, θi = 0.83, κi = 1.0, 0 ≤ m ≤ 20

for every i and k. These parameter values are based on the parameters of the belief-based

learning model estimated from experiments based on the finitely repeated PD game (see

Embrey, Fréchette and Yuksel (2018)). I run a hundred Monte Carlo simulations given the

parameters to get statistically robust results.

4.2.2 The result of the baseline model

Figure 3 shows the dynamics of the cooperation rate for one simulation. A high cooper-

ation rate in the initial period is observed. The cooperation rate decreases fast after the 1st

round and is close to zero at the 5th round, the final round of the simple repeated PD game.

However, at the 6th round, the first round of the PD game on a network, the cooperation
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Figure 4: The dynamics of populations of strategies: Short (Long) threshold strategy corre-
sponds to the m-threshold strategies for 0 ≤ m ≤ 5 (6 ≤ m ≤ 20).

rate significantly increases and decreases with fluctuations after the 6th round. This pattern

of the cooperation rate is observed robustly for most simulations (see Figure 7). The high

cooperation rate in initial periods and the decreasing pattern of it have been observed in

the simple and networked finitely repeated PD game (see Wang, Suri and Watts (2012);

Cuesta et al. (2015); Embrey, Fréchette and Yuksel (2018)). In particular, the simple and

networked games are combined in my belief-based learning model, and my model explains

the experimental results of both games. The high cooperation rate in the initial round of

the finitely repeated PD game is relevant because all agents are incentivized to increase their

reputation scores to be selected as partners in the networked game. The expected total

payoff of a player considers a strategy based on a reputation score, such as an excluding

trigger strategy. Thus, cooperation in the first round is rational based on expected total

payoff maximization in the belief-based learning model. In addition, the effect of reputation

building on cooperation is close to zero as a round is close to the final round. Thus, the

cooperation rate decreases as a round increases.
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Figure 5: The dynamics of populations of strategies for n = 100: The figure shows the box
plot of the cooperation rate for each round. Green triangles are the means of cooperation
rates for a hundred Monte Carlo samples at each round.

Figure 4 depicts the dynamics of populations of strategies. In Figure 4, the short (long)

threshold strategy corresponds to the m-threshold strategies for 0 ≤ m ≤ 5 (6 ≤ m ≤ 20).

The short threshold strategy is the most dominant in the simple repeated PD game from the

1st to the 5th round, and the long threshold strategy is the most dominant in the repeated

PD game on a network from the 6th to the final round. It shows that short-term cooperators

can survive in the simple repeated PD game from the 1st to the 5th round but cannot survive

in the repeated PD game on a network from the 6th to the final round. On the other hand,

long-term cooperators cannot survive from the 1st round to the 5th round but can survive
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Figure 6: Networks formed in different rounds: Circles indicate cooperators, and squares
indicate defectors. The left (right) panel shows the network formed in the 6th (13th) round.

Figure 7: The dynamics of the cooperation rate for n = 20, 80, 100, 200: The figure shows the
box plot of the cooperation rate for each round. Green triangles are the means of cooperation
rates for a hundred Monte Carlo samples at each round.
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from the 6th round to the final round. These results show that long-term cooperation is more

advantageous than defection in the repeated PD game on a network. The populations of

excluding trigger strategy and network TFT players increase slightly in the 6th round, the

first round in the repeated PD game on a network, but they are small compared to short and

long threshold strategies (they are 4.3% of populations of 23 strategies for all rounds: 21 m-

threshold (m = 0, 1, .., 20), excluding trigger and network TFT strategies). Also, when the

cooperation rate increases, the populations of excluding trigger strategy and network TFT

players increase (see the 9th, 12th, 15th, 18th, and 20th rounds in Figure 4). Even though

their populations are small, they significantly contribute to an increase in the cooperation

rate. This is explained in Section 4.2.4.

Figure 5 shows the dynamics of populations of strategies in a hundred Monte Carlo data.

It shows the same characteristics as the dynamics of populations of strategies as in Figure 4:

Large fraction of short (long) threshold strategy players in the simple (networked) repeated

game and small fractions of excluding trigger and network TFT strategies players.

Figure 6 shows how networks form in different rounds. Circles and squares in Figure 4

denote cooperators and defectors, respectively. The left (right) panel in Figure 6 depicts

the network formed in the 6th (13th) round. In the 6th round, cooperators and defectors are

connected, but defectors are isolated in the 13th round. The isolation of defectors is due to

both the excluding trigger strategy and the network TFT strategy. This threat of exclusion

in the network can sustain a positive cooperation rate. This is explained in Section 4.2.4.

4.2.3 Robustness checks of the model

I test the robustness of the model using various parameter values for n, βk
i0, λi, and θi.

For each parameter set, I run a hundred Monte Carlo simulations and get a positive average

cooperation rate at a 1% significance level.

Figure 7 shows the dynamics of the cooperation rate for n = 20, 80, 100, 200 with other

parameters whose values are the same as the baseline model. High cooperation rates in
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Figure 8: The average cooperation rate of the game as a function of β(= βk
i0, 0 ≤ βi0 ≤ 10):

The error bar shows the standard deviation of a hundred Monte Carlo data.

Figure 9: The average cooperation rate of the game as a function of λ(= λi, 0.01 ≤ λi ≤ 1):
The error bar shows the standard deviation of a hundred Monte Carlo data.
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Figure 10: The average cooperation rate of the game as a function of θ(= θi, 0 ≤ θi ≤ 1):
The error bar shows the standard deviation of a hundred Monte Carlo data.

the 1st round, which is the initial period in the simple repeated PD game, and in the 6th

round, which is the initial period in the repeated PD game on a network, are observed for

the different numbers of players. Also, the decreasing patterns of cooperation rate in the

simple repeated PD game and the repeated PD game on a network are observed robustly.

Figure 8 shows the average cooperation rates of the game for different values for β:

0 ≤ βk
i0 ≤ 10 for every i and k. As β(= βk

i0) increases, the cooperation rate decreases and

converges to some value, about 0.2. Also, a decrease in the fluctuation of the cooperation

rate is observed. If β = 0, the best strategy of a player is chosen randomly. However, when β

increases, the difference between the probability of selecting the strategy that gives a player

the highest utility and the probabilities of other strategies will be larger. Thus, a player can

distinguish his or her best strategy among all strategies more easily as β becomes higher.

This leads to a decrease in the fluctuation of the cooperation rate as β increases. Also, in
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Figure 11: The comparison between the average cooperation rate of the game with an
excluding trigger strategy and a network TFT and without them for n = 20, 60, 100, 200:
Blue squares (Red circles) show the average cooperation rate in each round of the game with
(without) an excluding trigger strategy and a network TFT for a hundred Monte Carlo data.

the final round of the game, the cooperation rate is almost zero. By updating
−→
βit, the βiT for

defection in the final round will be the greatest. Thus, the larger β is, the lower the average

cooperation rate of the game is due to a higher belief of selecting defection. This is why the

pattern of the average cooperation rate of the game decreases as β increases.

Figure 9 shows the average cooperation rate of the game as a function of λ(= λi0, 0.01 ≤

λi0 ≤ 1). As λ increases, the cooperation rate decreases slightly. When λ increases, the

effects of error terms on players’ beliefs increase, and players are less likely to respond well

to their beliefs. The average cooperation rate for all λs is about 0.21, and the fluctuations
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are not significant. Thus, the effects of error terms on players’ beliefs are not significantly

large in the belief-based learning model.

Figure 10 shows the average cooperation rate of the game as a function of θ(= θi, 0 ≤

θi ≤ 1). As θ increases, the average cooperation rate of the game decreases. The fluctuation

of the cooperation rate also decreases as θ increases. The effect of an increase in θ is almost

the same as that of an increase in β since βk
it increases as θi increases by the updating rule

of βk
it. This is why the pattern of the cooperation rate as a function of θ shows a similar

pattern as that of the cooperation rate as a function of β.

4.2.4 The effects of an excluding trigger strategy and a network TFT strategy

To measure the effects of an excluding trigger strategy and a network TFT strategy, I

run simulations of the learning model without an excluding trigger strategy and a network

TFT strategy.

Figure 11 shows the comparison between the average cooperation rate of the game with

an excluding trigger strategy and a network TFT strategy and that of the game without

them. The average cooperation rate of the game with an excluding trigger strategy and a

network TFT strategy is higher than the game without them.

In particular, the effect of these two strategies on the cooperation rate is more significant

when the number of players is smaller. In Figure 11, the difference between the game’s

average cooperation rate with and without these two strategies is higher with 20 players

than with 60. It implies that the smaller the number of players is, the greater the effect of

threats of exclusion in the network on the cooperation rate is. Also, the cooperation rate in

the simple repeated PD game with an excluding trigger strategy and network TFT strategy

is higher than without them. This positive effect of excluding trigger and network TFT

strategies on the cooperation rate in the simple game becomes clearer when the number of

players is smaller.

The higher cooperation in the simple repeated PD game is, the higher the reputation

36



Figure 12: The comparison between the average cooperation rate of the game with an
excluding trigger strategy and a network TFT and without them for 0 ≤ β ≤ 10: Blue
squares (Red circles) show the average cooperation rate of the game with (without) an
excluding trigger strategy and a network TFT for a hundred Monte Carlo data.

Figure 13: The comparison between the average cooperation rate of the game with an
excluding trigger strategy and a network TFT and without them for 0.01 ≤ λ ≤ 1: Blue
squares (Red circles) show the average cooperation rate of the game with (without) an
excluding trigger strategy and a network TFT for a hundred Monte Carlo data.
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Figure 14: The comparison between the average cooperation rate of the game with an
excluding trigger strategy and a network TFT and without them for 0 ≤ θ ≤ 1: Blue squares
(Red circles) show the average cooperation rate of the game with (without) an excluding
trigger strategy and a network TFT for a hundred Monte Carlo data.

score is. Thus, it implies that the threat of exclusion in the network formation leads to an

increase in reputation score, resulting in an increase in the cooperation rate in the simple

repeated PD game.

Figure 12 shows the comparison between the average cooperation rate of the game with

an excluding trigger strategy and a network TFT and without them for 0 ≤ β ≤ 10. The

average cooperation rate of the game with these two strategies is significantly higher than

the game without them for all βs.

The average cooperation rate of the game with an excluding trigger strategy and a net-

work TFT strategy is significantly higher than the game without these two strategies for

different values of other parameters such as λ and θ (see Figures 13 and 14).
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4.3 Discussion: How can we observe excluding trigger and Net-

work TFT strategies in the experiments?

The belief-based learning model explains that cooperation can be driven by excluding

trigger and network TFT strategies based on excluding defectors in network formation. The

excluding and network TFT strategies can be used by players in the experiments. Now I

discuss how the evidence of these strategies can be measured in the experiments.

First, reputation building in the initial rounds and an increased cooperation rate during

network formation will be measured in the experiments. Reputation building by network

formation will be stronger than the simple repeated PD game. Many researchers have ob-

served the reputation effect in the finitely simple repeated PD game (see Andreoni and Miller

(1993); Cooper et al. (1996); Gong and Yang (2010); Cox et al. (2015); Kamei (2017); Kamei

and Putterman (2017); Honhon and Hyndman (2020)). Most research about the reputa-

tion effect in the finitely repeated PD is related to avoiding punishment in the next rounds.

Similarly, to be selected as game partners in the network games, players can increase their

reputation scores by selecting more cooperative actions in the initial rounds before starting

network games. Avoiding exclusion in network formation will be stronger than avoiding

punishment by defection since excluded players cannot play the game and make any profit.

Also, all players can unilaterally exclude others with low reputation scores during network

games. Thus, all players are incentivized to submit more cooperative actions during the

network games.

In addition, connections among players who have the same actions will be measured in

the experiments. By excluding defectors who prefer defection to cooperation in network

formation among cooperators, cooperators who prefer cooperation to defection will be con-

nected with other cooperators. Defectors will also be connected to other defectors to play

the games due to exclusion by cooperators.

The following section represents the experimental study, and the pieces of evidence dis-

cussed above are investigated in the experimental study.
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5 The experimental study

5.1 Experimental Design

The experiments were conducted with 216 unique student subjects recruited from Iowa

State University. I performed 29 experiments with 2 players in the simple repeated games,

23 with 2 players in the cheap talk repeated games, and 8 with 14 players in the network

repeated games from Oct. 2022 to Mar. 2023.

The simple repeated games. In each round, two players randomly selected play the

prisoner’s dilemma game under the given payoff structure, and they repeat the game for 20

rounds. The payoff of both players in the game is as follows:

Player i
A B

Player j
A (4, 4) (−1, 7)
B (7,−1) (0, 0)

Table 2: The payoff table of the game.

where A and B denote cooperate and defect, respectively. If both players choose A, then

both players get 4 points. If a player i (j) chooses B and a player j (i) chooses A, then a

player i (j) gets 7 points, and a player j (i) loses 1 point. If both choose B, both get nothing.

This payoff structure is the same as the simple repeated game in the game-theoretical model

and the belief-based learning model (c = 4, d = 0, e = −1, f = 7 in Table 1). To avoid

framing, C and D in Table 1 are replaced with A and B since players can guess cooperation

and defection using C and D. In addition, the name ’Prisoner’s Dilemma Game’ is never

mentioned in all my experiments for the same reason. You can see the details of the simple

repeated game experiment in the online Appendix.
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The cheap talk repeated games. All players play the repeated PD game for 20 rounds

under the given payoff structure (see Table 2). Two players are randomly selected, and they

play the PD game in each round. From the 6th to the 20th round, all players can communi-

cate with their partners using free-form texting before submitting their decisions. You can

see the detail of the cheap talk repeated game experiment in the online Appendix.

The networked repeated games. All players play the simple repeated PD game from

the 1st to the 5th round under the given payoff structure (see Table 2). From the 6th to the

20th round, all players play the repeated PD game on a network based on partner selection.

In the repeated PD game on a network, all players can select partners using the players’

reputation scores and histories of players’ actions for the past five rounds. The reputation

score is measured by the average number of cooperative actions by a player during the past

rounds (see Rjt in Section 4.1.2 on Page 25). All players must send proposals to others with

whom they want to play the game from the 6th round. If the player who receives a proposal

accepts (rejects) it, the proposer and acceptor do (do not) play the game. Players also see

the network formed by players after network formation from the 6th round. The network

shows the interaction structure of players. All players can see who is connected with them

and who is the most connected in the network. After seeing the network formed, a player

submits the same action to all neighbors of a player. You can see the details of the network

repeated game experiment in the online Appendix.

5.2 Data Set

I collect data by conducting experiments using students’ subjects at Iowa State University

from Oct. 2022 to Mar. 2023. 216 unique students (111 male students, 102 female students,

and 3 non-binary students) participate in the experiments: (1) the simple repeated games

with 58 students – 29 experiments with 2 players; (2) the cheap talk repeated games with

46 students – 23 experiments with 2 players; (3) the networked repeated games with 112
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students – 8 with 14 players 10. All students are paid 10 dollars as a participation reward

and an additional bonus based on payoffs earned in the game (1 payoff point is rescaled to

3 cents). You can see the details of the demographics and compensations of participants in

the online Appendix.

5.3 Data Analysis

The overall aim of this study is to understand the relationship between human cooperative

behavior and human interaction behavior in the repeated PD game. In particular, I focus

on measuring the effect of networks on cooperative actions in human groups in the repeated

PD. Additionally, I analyze the characteristics of network structure to promote cooperative

actions in human groups in the networked repeated game.

The first hypothesis (H1) that I want to test is as follows:

H1. The cooperation rate in the networked repeated game is higher than in the cheap

talk repeated game and the simple repeated game.

Crawford and Sobel (1982) show that cheap talk should play no role in strategic interac-

tion in theory. However, in experimental economic studies, cheap talk increases cooperation

in repeated PD games (see Kagel and McGee (2016); Arechar et al. (2017); Kagel (2018);

Cason and Mui (2019)). Network formation can exclude players more likely to defect in

the future using reputation score and histories of actions of players, but cheap talk cannot.

Thus, the networks would provide more useful information to promote cooperation than

cheap talk. The fraction of cooperative actions in human groups in the networked repeated

game should be higher than in the cheap talk repeated game and the simple repeated game.

To test H1, I compare the fraction of cooperative actions in human groups in the net-

10According to power analysis using the belief-based learning model, the effect of excluding trigger and
network TFT strategies on cooperative actions in human groups in the repeated PD is maximized when the
number of players is 14. Thus, I conduct the networked repeated games with 14 players.
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Panel A: Average cooperation rates in the games

Types of repeated games Rounds 1 - 20 Rounds 1 - 5 Rounds 6 - 20
The simple repeated games 0.466∗∗∗ 0.525∗∗∗ 0.447∗∗∗

The cheap talk repeated games 0.538∗∗∗ 0.522∗∗∗ 0.543∗∗∗

The networked repeated games 0.644∗∗∗ 0.614∗∗∗ 0.654∗∗∗

Panel B: Differences in average cooperation rates
Types of repeated games Value t-Statistic p-Value
Network games - Simple games 0.178 6.571 0.000
Network games - Cheap talk games 0.106 3.737 0.000
Cheap talk games - Simple games 0.072 2.959 0.005

Table 3: The average cooperation rate in the games (Panel A) and differences in average
cooperation rates between the games (Panel B) ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

worked repeated games with the cheap talk repeated games and the simple repeated games.

Table 3 shows the average cooperation rate in the games: the simple repeated games, the

cheap talk repeated games, and the networked repeated games (see Panel A) and the dif-

ferences in average cooperation rates between the games (see Panel B). All average values

are greater than zero with a significance at the 1 percent level (see Panel A). The average

cooperation rates in the networked repeated games for all rounds (Rounds 1 – 20), from the

1st to the 5th round (Rounds 1 – 5) and from the 6th to the 20th round (Rounds 6 – 20), are

the highest among the three games. The highest cooperation rate in the networked repeated

games for Rounds 1 – 5 can be due to reputation-building since players should have a high

reputation score to be selected as game partners for Rounds 6 – 20. The difference in average

cooperation rates between the networked and the cheap talk repeated games is 0.106, and

the value is statistically significant (the p-value ≈ 0, see Panel B). Thus, H1 is strongly

supported.

Additionally, contrary to the network repeated games, the cooperation rate in the cheap

talk games for Rounds 1 – 5 is 0.522, lower than the simple repeated games. It implies that

the communication from the 6th to the 20th round does not affect cooperative actions in

human groups before the 6th round, unlike network formation.

The second hypothesis (H2) that I want to test is as follows:
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Figure 15: The figure shows the box plot of the fraction of cooperative actions in human
groups in the networked repeated games at each round. Green triangles are the means of
cooperation rates at each round. The black dotted vertical line indicates the 5th round. The
red dashed lines show the average values in the average fraction of cooperative actions in
human groups from the 1st to the 5th round and from the 6th to the 20th round, respectively.

H2. Network formation promotes cooperative actions in human groups in the finitely

repeated PD game.

Before testingH2 formally, I compare the fraction of cooperative actions in human groups

from the 1st to the 5th round with that from the 6th to the 20th round in the networked

repeated games. Figure 15 shows the dynamics of the fraction of cooperative actions in

human groups in the networked repeated games. In the networked repeated games, an

increase in the cooperation rate by network formation from the 6th to the 20th round is

observed. Thus, the result shows the evidence that might support H2. An increase in

average cooperation rates is 0.036, but this is not statistically significant (the p-value is

0.443). The result is also consistent with the result of the belief-based learning model: (1)

the high cooperation rate in the first round; (2) the decreasing pattern of the cooperation

44



Figure 16: The figure shows the box plot of the fraction of cooperative actions in human
groups in the cheap talk repeated games at each round. Green triangles are the means of
cooperation rates at each round. The black dotted vertical line indicates the 5th round. The
red dashed lines show the average values in the average fraction of cooperative actions in
human groups from the 1st to the 5th round and from the 6th to the 20th round, respectively.

Figure 17: The figure shows the box plot of the fraction of cooperative actions in human
groups in the simple repeated games at each round. Green triangles are the means of
cooperation rates at each round. The black dotted vertical line indicates the 5th round. The
red dashed lines show the average values in the average fraction of cooperative actions in
human groups from the 1st to the 5th round and from the 6th to the 20th round, respectively.
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Dependent variable: Cooperative action of a player (yit)

Panel A: LPM
Independent variable Average Partial Effect Standard Error t-Statistic
Reputation score: Repit 0.818∗∗∗ 0.027 30.062
Quiz: Quizi 0.028 0.018 1.561
Network effect: NEt 0.178∗∗∗ 0.025 7.118
Total payoff: TotPayoffit−1 -0.001∗∗∗ 0.000 -4.999

Panel B: Logit
Independent variable Average Partial Effect Standard Error z-Statistic
Reputation score: Repit 0.693∗∗∗ 0.017 39.988
Quiz: Quizi 0.031∗ 0.018 1.758
Network effect: NEt 0.188∗∗∗ 0.026 7.156
Total payoff: TotPayoffit−1 -0.001∗∗∗ 0.000 -5.364

Number of observations: 2,128

Table 4: The regression results using LPM and Logit in the network repeated games.
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

rate in the dynamics of cooperation rate (see the dynamics of cooperation rate allowing

excluding trigger and network TFT strategies in Figure 11). In the cheap talk repeated

games, an increase in the cooperation rate by communication from the 6th to the 20th round

is also observed (see Figure 16). However, the cooperation rate in the simple repeated games

shows a decreasing pattern as a function of a round (see Figure 17).

To test H2 formally, I run two regressions in the networked repeated games using a linear

probability model (LPM) and logistic regression (Logit) as follows:

LPM :P (yit = 1|Xit) = β0 + β1Repit + β2Quizi + β3NEt + β4TotPayoffit−1, (10)

Logit :P (yit = 1|Xit) =
exp (βTXit)

1 + exp (βTXit)
, (11)

where yit is a binary variable that denotes a cooperative action of a player: (i) yit = 1, if

player i’s decision at round t is A; (ii) yit = 0, otherwise. Repit denotes the reputation score

of player i at round t (see the definition of the reputation score (Rjt) in Section 4.1.2 on

Page 25). Quizi is a binary variable that denotes whether player i passed the quiz before

starting the game: (i) Quizi = 1, if player i passed the quiz; (ii) Quizi = 0, otherwise.
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Dependent variable: Cooperative action of a player (yit)

Panel A: LPM
Independent variable Average Partial Effect Standard Error t-Statistic
Reputation score: Repit 0.659∗∗∗ 0.045 14.525
Quiz: Quizi 0.007 0.046 0.144
Cheap talk effect: NEt 0.048 0.042 1.145
Total payoff: TotPayoffit−1 0.000 0.001 0.467

Panel B: Logit
Independent variable Average Partial Effect Standard Error z-Statistic
Reputation score: Repit 0.602∗∗∗ 0.031 19.252
Quiz: Quizi 0.001 0.046 0.026
Cheap talk effect: NEt 0.054 0.043 1.253
Total payoff: TotPayoffit−1 0.000 0.001 0.336

Number of observations: 874

Table 5: The regression results using LPM and Logit in the cheap talk repeated games.
In these regressions, NEt quantifies the effect of cheap talk on cooperation.

∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

All players should take the quiz, which includes four questions about calculating a player’s

payoff in the game, to check their understanding of how to play the game before starting it

(see the online Appendix). NEt denotes a binary variable that denotes the network effect on

cooperation at round t: (i) NEt = 1, if t > 5; (ii) NEt = 0, otherwise. From the 6th round,

players can form their networks. Thus, NEt quantifies the network effect on cooperation in

the experiments. TotPayoffit−1 denotes the total payoff of player i at round t− 1. ϵit is a

residual term. P (yit = 1|Xit) denotes the probability that yit is equal to 1 given Xit. Xit

denotes a vector of independent variables: Xit = (1, Repit, Quizi, NEt, T otPayoffit−1). βT

denotes a vector of the logistic regression coefficients (β = (β0, β1, β2, β3, β4)).

Table 4 depicts the regression result using LPM (Panel A) and Logit (Panel B) in the

networked repeated games. The average partial effects of Repit for LPM and Logit are

positive (β1 > 0), and the values are statistically significant at the 1 percent level. It shows

that a higher reputation drives more cooperative action. This is consistent with the previous

results (see Cuesta et al. (2015); Gallo and Yan (2015)). The average partial effect of Quizi

is positive for LPM (β2 > 0). It implies that players who passed the quiz are more likely
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Dependent variable: Cooperative action of a player (yit)

Panel A: LPM
Independent variable Average Partial Effect Standard Error t-Statistic
Reputation score: Repit 0.803∗∗∗ 0.036 22.202
Quiz: Quizi 0.040 0.028 1.441
# of rounds effect (> 5 rounds): NEt 0.035 0.033 1.069
Total payoff: TotPayoffit−1 0.000 0.001 0.782

Panel B: Logit
Independent variable Average Partial Effect Standard Error z-Statistic
Reputation score: Repit 0.696∗∗∗ 0.019 35.773
Quiz: Quizi 0.029 0.027 1.067
# of rounds effect (> 5 rounds): NEt 0.049 0.034 1.456
Total payoff: TotPayoffit−1 0.000 0.001 0.578

Number of observations: 1,102

Table 6: The regression results using LPM and Logit in the simple repeated games. In
these regressions, NEt quantifies the effect of the number of rounds bigger than 5 on

cooperation. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

to cooperate than others who did not. However, this result is not statistically significant.

The average partial effects of NEt for LPM and Logit are positive (β3 > 0), and the values

are statistically significant at the 1 percent level. It implies that players are more likely to

cooperate due to network formation. The average partial effect of NEt is 0.178 in LPM.

It implies that the probability of a player’s cooperative action increases by 17.8% due to

network formation. Thus, H2 is supported again using LPM and Logit. This result is also

consistent with previous results (see Cuesta et al. (2015); Wang, Suri and Watts (2012)).

The average partial effects of TotPayoffit−1 for LPM and Logit are negative but very close

to zero (β4 < 0). It implies that a high payoff drives defection. However, this effect is nearly

zero.

Additionally, I run the regressions in the cheap talk games to identify the effect of com-

munication on cooperation in the cheap talk repeated games using LPM and Logit. From

the 6th round, players can communicate with their game opponents using cheap talk. Thus,

NEt quantifies the effect of communication on cooperation in the cheap talk repeated games.

Table 5 shows the results of LPM (Panel A) and Logit (Panel B) in the cheap talk
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repeated games. The average partial effects of NEt are positive for LPM and Logit (β3 > 0)

but not statistically significant. The average partial effect of NEt in LPM is 0.048. It

implies that the probability of a player’s cooperative action increases by 4.8% due to the

communication, but this change is not statistically significant.

Lastly, I run the regressions in the simple games to identify the effect of the number

of rounds on cooperation in the simple repeated games using LPM and Logit. In the

regressions, NEt quantifies the effect of the number of rounds bigger than five on cooperation.

Table 6 shows the results of LPM (Panel A) and Logit (Panel B) in the simple repeated

games. The average partial effects of NEt are positive (β3 > 0) but not statistically signifi-

cant. The average partial effect of NEt in LPM is 0.035. It implies that the probability of

a player’s cooperative action increases by 3.5% after the 5th round, but this change is not

statistically significant.

In summing up, the effect of network formation on cooperative actions is positive in the

networked repeated games (β3 > 0 in LPM and Logit). It indicates that H2 is strongly

supported by the regression analysis. The effect in the networked repeated games is the

greatest among the three games. That is, H1 is also strongly supported again.

The third hypothesis (H3) that I want to test is as follows:

H3. Cooperators are more likely to be connected to other cooperators, and defectors are

more likely to be connected to other defectors.

To test H3, I need a network measure to provide the similarity of nodes or players tied

in the same link. I suggest the similarity index SI(Gt), which measures the similarity of

nodes linked in the same link as follows:

SI(Gt) =

∑
i

∑
j∈Nit

δ(ait, ajt)

2 · S(Gt)
, (12)

where Gt denotes the network at round t. Nit denotes the set of neighbors of node or player
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Figure 18: The similarity index as a function of a round in the networked repeated games.
Green triangles represent the means of the similarity indices of each round. Error bars rep-
resent the 95% confidence interval of the similarity indices of each round. The red horizontal
dashed line shows the mean of similarity indices of all rounds in the networked repeated
games. The value indicated by the red line is 0.737.

i at round t. ait is the action of a node i at round t. δ(ait, ajt) = 1 if ait = ajt, and

δ(ait, ajt) = 0 otherwise. S(Gt) is the size of network Gt, and is measured by the number of

links in Gt. SI(Gt) is betweeen 0 and 1 (0 ≤ SI(Gt) ≤ 1). If there is no link between two

nodes whose actions are the same, SI(Gt) is zero. If nodes tie all links with the same action,

SI(Gt) is one. Thus, if a positive SI(Gt) is measured with a high statistical significance,

there exist nodes linked with the same action in network Gt.

Figure 18 depicts the dynamics of the similarity indices of each round in the networked

repeated game. The mean of the similarity indices of all rounds is 0.737 (see the red horizontal

dashed line in Figure 18). It implies that the probability that players tied with the same

link have the same action is about 0.737. The mean for each round (see the green triangles

in Figure 18) is greater than 0, with significance at the 1 percent level. It means that

cooperators are more likely to be linked to other cooperators, and defectors are more likely

to be linked to other defectors.
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(a) SI(Gt) = 0.91

(b) SI(Gt) = 0.93

(c) SI(Gt) = 1.00

Figure 19: The networks formed in the networked repeated games for different similarity
indices (SI(Gt)s). Circles and squares indicate cooperators and defectors, respectively.
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Figure 19 shows the networks formed in the networked repeated games for different

similarity indices. We can see the higher clustering of cooperators (defectors) with a higher

similarity index in Figure 19. Thus, H3 is strongly supported.

The final hypothesis (H4) that I want to test is as follows:

H4. The connections among cooperators with excluding defectors in the networked

repeated games promote cooperative actions of players.

H4 is about the effect of network structure in which cooperators are connected to other

cooperators and separated from defectors on the cooperative actions of players. To test

H4, I run two regressions using a linear probability model (LPM*) and logistic regression

(Logit*) by adding network structure variable using SI(Gt−1) to LPM and Logit as follows:

LPM* :P (yit = 1|Xit) = β0 + β1Repit + β2Quizi + β3NEt + β4TotPayoffit−1 + β5NSt

(13)

Logit* :P (yit = 1|Xit) =
exp (βTXit)

1 + exp (βTXit)
, (14)

where NSt denotes the network structure variable at round t. NSt = 0 if t < 7, and

NSt = SI(Gt−1) otherwise. SI(Gt−1) denotes the similarity index at round t − 1. Using

NSt, we can quantify the effect of network structure by the separation of cooperators and

defectors constructed at the previous round t − 1. In LPM* and Logit*, NEt quantifies

the effect of network formation at round t.

Table 7 shows the regression results of LPM* and Logit*. The average partial effects

of NSt are positive for LPM* and Logit* (β5 > 0) and statistically significant at the 1

percent level. The average partial effect of NSt is 0.166 in LPM*. It implies that an

increase in the probability of cooperative action of a player by network structure (separation
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Dependent variable: Cooperative action of a player (yit)

Panel A: LPM*
Independent variable Average Partial Effect Standard Error t-Statistic
Reputation score: Repit 0.819∗∗∗ 0.027 30.188
Quiz: Quizi 0.030∗ 0.018 1.664
Network formation effect: NEt 0.077∗∗ 0.036 2.118
Total payoff: TotPayoffit−1 -0.001∗∗∗ 0.000 -5.892
Network structural effect: NSt 0.166∗∗∗ 0.044 3.791

Panel B: Logit*
Independent variable Average Partial Effect Standard Error z-Statistic
Reputation score: Repit 0.693∗∗∗ 0.017 40.650
Quiz: Quizi 0.033∗ 0.018 1.854
Network formation effect: NEt 0.0868∗∗ 0.037 2.336
Total payoff: TotPayoffit−1 -0.001∗∗∗ 0.000 -6.201
Network structural effect: NSt 0.165∗∗∗ 0.043 3.800

Number of observations: 2,128

Table 7: The regression results using LPM* and Logit* in the network repeated games.
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

of cooperators and defectors) is 16.6%. Thus, H4 is strongly supported. After adding NSt

in LPM and Logit, the average partial effects of NEt are smaller than those in LPM and

Logit. However, the average partial effects of NEt are positive and statistically significant

at the 5 percent level. Thus, after adding NSt in the regressions, H2 is strongly supported.

5.4 Discussion: The use of the excluding trigger and network TFT

strategies in human society

My experimental study shows that excluding defectors by network formation, which can

be evidence of the excluding trigger and network TFT strategies, drives cooperative actions

in human groups in the finitely repeated prisoner’s dilemma game. I discuss the usefulness

of excluding trigger and network TFT strategies to drive cooperation in human society.

First, the excluding trigger and network TFT strategies can be very efficient in solving

conflicts in social dilemma situations and increasing social capital. There are diverse groups

in society, and they might be in a social dilemma. In most cases, cooperation among groups
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based on common sense is required to solve a social dilemma and to increase diversity with-

out too much conflict in society, but only a few extreme groups might be antisocial and

disagree with cooperation. They might not be good for making society resilient and increas-

ing diversity. Communication with these groups can be useful for consensus or cooperation,

but it might be challenging since communication cannot punish them when they do not

cooperate. They are more likely to cooperate if they are threatened by social exclusion. My

experimental study supports this by showing that the cooperation rate by the threat of ex-

clusion through network formation is higher than by communication (see H1 in Section 5.3).

Also, social connections among cooperators can increase social capital. The increased social

capital decreases inequality in society. Thus, excluding trigger and network TFT strategies

might be helpful in increasing social capital and decreasing societal inequality.

In addition, the network TFT strategy is more realistic than TFT in human society.

TFT has been one of the best strategies that give the highest profits in the finitely repeated

prisoner’s dilemma and observed in the experiments as a strategy to drive cooperation (see

Axelrod (1984); Dal Bó and Fréchette (2011); Fréchette and Yuksel (2017); Embrey, Fréchette

and Yuksel (2018); Dal Bó and Fréchette (2019)). However, TFT is based on a simple PD

game that differs from reality since reality is more similar to the PD game on a network

with more than one game partner. Also, TFT players cannot avoid playing with defectors.

However, network TFT players can avoid playing with defectors by excluding defectors in

network formation. Thus, the network TFT strategy can be more widely used in human

society than TFT and can drive cooperation in human society.

6 Conclusion and discussion

In this paper, I analyze the effect of networks on cooperative actions in human groups in

the finitely repeated PD game using three approaches: the game-theoretical model approach,

the belief-based model approach, and the experimental approach.
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In the game-theoretical model approach, I suggest the game-theoretical model, which

explains the equilibrium state by network formation in the finitely repeated PD game. The

model consists of two repeated PD games: the simple repeated PD game and the repeated

PD game on a network. From the 1st to the round ts, players play the simple repeated PD

game. From the round ts+1 to the final round T , players play the repeated PD game on a

network. In the simple repeated PD game, players play the PD game with their partners

randomly re-matched in each round. In the repeated game on a network, players can select

their partners using histories of others’ actions for the past rounds before playing the game

in each round. There exist pairwise stable networks in which cooperators (defectors) are

linked to other cooperators (defectors) and pairwise-Nash equilibrium networks: all players

defect and are completely connected or isolated.

In the belief-based learning model study, I suggest the belief-based learning model, which

explains the cooperative actions of players and connections among cooperators observed in

the experiment not explained in the game-theoretical model. The belief-based learning model

also consists of the simple repeated PD and the repeated PD game on a network. The partner

selection in the network game is the same as in the game-theoretical model.

Additionally, I assume that players select the best strategy that maximizes the expected

total payoff for each round in the game. Three strategies are considered in the model: m-

threshold strategy, excluding trigger strategy, and network TFT. An m-threshold strategy

player cooperates from the 1st round to the mth round and defects from the (m+1)th round

to the final round. An m-threshold strategy player wants to make connections with all

others in the networked game. An excluding strategy player cooperates at any round and

does not allow connections with the players who defected in past rounds. A network TFT

strategy player cooperates at every round and does not allow connections with the players

who defected in each previous round.

I generate one hundred Monte Carlo data sets using simulations of the model with dif-

ferent random seeds and analyze the data. First, I find high cooperation rates in the initial
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rounds of the simple repeated PD game and repeated PD game on a network and decreasing

patterns of the cooperation rate as a round increases in the simple repeated PD game and

repeated PD game on a network. Second, I find the behavior of excluding defectors in the

repeated PD game on a network. Third, I find the short threshold strategy (0 ≤ m ≤ 5) is

the most popular strategy among all strategies in the simple game, and the long threshold

strategy (6 ≤ m ≤ 20) is the most popular in the repeated PD game on a network. Finally,

both an excluding trigger strategy and a network TFT have significant positive effects on

the cooperation rate. In particular, the smaller the number of players, the higher the posi-

tive effect of both strategies on the cooperation rate. Furthermore, the cooperation rate in

the simple repeated PD game with excluding trigger and network TFT strategies is higher

than without them. It implies that the threat of exclusion in networks results in a high

cooperation rate before forming networks, called ”reputation-building.”

Finally, I experimentally examine the effect of networks on cooperative actions in hu-

man groups in the finitely repeated PD game. I conduct 60 experiments with 216 unique

student subjects recruited from Iowa State University: (1) the simple repeated games with

58 students – 29 experiments with 2 players in the simple repeated games; (2) the cheap

talk repeated games with 46 students – 23 experiments with 2 players in the cheap talk

repeated games; (3) the networked repeated games with 112 students – 8 with 14 players in

the network repeated games from Oct. 2022 to Mar. 2023. In the simple repeated games,

two players randomly matched play the simple PD game for 20 rounds. In the cheap talk

repeated games, two players randomly matched play the simple PD games from the 1st to

the 5th round and can communicate with their game opponents before submitting their de-

cisions from the 6th to the 20th round. In the networked repeated game, players play the

simple repeated PD game from the 1st to the 5th round. From the 6th to the 20th round,

players play the repeated PD game on a network. From the 6th to the 20th round, all players

can form their networks using the partner selection based on the reputation score, which

is measured by the average number of cooperative actions by a player, and the histories of
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players’ actions for the past five rounds before submitting their decisions.

First, the average cooperation rate in networked repeated games is higher than in simple

and cheap talk games. This finding implies that the reputation-building mechanism from the

1st to the 5th round and network formation from the 6th to the 20th round encourage coop-

erative actions in human groups. Second, a significant increase in the cooperation rate after

the 5th round is observed. As a result of the regression analysis, the positive effect of network

formation on cooperative actions in human groups is confirmed. In the cheap talk repeated

games, the positive effect of cheap talk on cooperative actions in human groups is observed

but not statistically significant. The cooperation rate in the simple repeated games decreases

as a round increases. Third, cooperators are linked to other cooperators, and defectors are

linked to other defectors in the experiments. This result is measured by a significant positive

similarity index. Finally, I conclude that cooperation can be achieved by connections among

cooperators with excluding defectors in the network. Thus, the experimental results support

the predictions of the belief-based learning model over the game-theoretic model.

My study also has room for improvement. In the game-theoretical model approach, I

need to study the effect of network structure on cooperation in the repeated PD game. The

network structure is endogenously determined by partner selection. After network formation,

players’ actions are impacted by the network structure. Several models have been suggested

to explain the relationship between cooperation and network structure in the repeated PD

game.11 I can extend my game-theoretical model to a new model that considers network

structure based on previous models.

The belief-based learning model can be applied to the analysis of the experiments, and

the parameters can be estimated using the experimental data. Embrey, Fréchette and Yuksel

(2018) estimate the parameters in their belief-based learning model using the experimental

data of the finitely repeated PD game. Thus, in the future study, I will estimate the param-

11There are several theoretical studies on the relationship between cooperation and network structures
in the repeated PD (see Lieberman, Hauert and Nowak (2005); Ohtsuki et al. (2006); Allen, Lippner and
Nowak (2019); Fotouhi et al. (2019); Alvarez-Rodriguez et al. (2021)). I cite these literatures without detailed
explanations. My next model will add similar approaches used in these literatures.
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eters in my belief-based learning model and the fractions of the strategies used in my model

using a similar approach of Embrey, Fréchette and Yuksel (2018). On top of that, other

new strategies can be added to my belief-based learning model. There are many kinds of

strategies studied in the repeated PD game12, and we can make new strategies by combing

preexisting strategies and network formation.

In my experimental study, I can measure the fraction of players who uses strategies based

on excluding defectors in networked repeated games. The observation of cooperation by

excluding defectors is confirmed by testing hypotheses (H1 – H4). However, to understand

the relationship between cooperation and network formation by excluding defectors more

deeply, I need to measure the fractions of excluding trigger strategy players and network

TFT players using my belief-based learning model and the network repeated games data.
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