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Abstract

An non-equilibrium Black-Scholes model, where the usual constant interest rate ris
replaced by a stochastic time dependent rate 1(#) of the form r(t)=r+ f (t)W (t),
accounting for market imperfections and prices non-alignment, is developed. The
white noise amplitude f (t), called arbitrage bubble, generates a time dependent
potential U (t) which changes the usual equilibrium dynamics of the traditional
Black-Scholes model. The purpose of this article is to tackle the inverse problem, that
is, is it possible to extract the time dependent potential U (t) and its associated
bubble shape f(t) from the real empirical financial data? In order to give an
answer to this question, the interacting Black-Scholes equation must be interpreted
as a quantum Schrédinger equation with Hamiltonian operator H =H, +U (t),
where H, is the equilibrium Black-Scholes Hamiltonian and U (t) is the inter-
action term. By using semi-classical considerations and the knowledge about the
mispricing of the financial data, one can determinate an approximate functional
form of the potential term U (t) and its associated bubble f (t). In all the studied
cases, the non-equilibrium model performs a better estimation of the real data than
the usual equilibrium model. It is expected that this new and simple methodology
could help to improve option pricing estimations.

Keywords

Option Pricing, Non-Equilibrium Black-Scholes Model, Semi-Classical
Approximation, Quantum Mechanical Methods, Crank-Nicholson Method

1. Introduction

For almost 35 years, since the seminal articles by Black and Scholes [1] and Merton [2],
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the Black-Scholes (B-S) model has been widely used in financial engineering to model
the price of a derivative on equity. In analytic terms, if B(t) and S(t) are the risk-
free asset and underlying stock prices, the price dynamics of the bond and the stock in
this model are given by the following equations:

dB(t)=rB(t)dt

dS (t) = xS (t)dt+oS(t)dw (t) (1)

where r, 4 and o are constants and W (t) is a Wiener process. In order to price
the financial derivative, it is assumed that it can be traded, so one can form a portfolio
based on the derivative and the underlying stock (no bonds are included). Considering
only non-dividend paying assets and no consumption portfolios, the purchase of a new
portfolio must be financed only by selling from the current portfolio. Here, 7(S,t)
denotes the option price, h(t)=(hs,h,) is the portfolio and P(t)=(S,7z) is the
price vector of shares. Calling V (t) the value of the portfolio at time ¢ the dynamic of

a self-financing portfolio with no consumption is given by
dv (t)=h(t)-dP(t). )

In other words, in a model without exogenous incomes or withdrawals, any change
of value is due to changes in asset prices.

Another important assumption for deriving B-S equation is that the market is
efficient in the sense that is free from arbitrage possibilities. This is equivalent with the
fact that there exists a self-financed portfolio with value process V (t) satisfying the
dynamic:

dVv (t)=rv (t)dt (3)

which means that any locally riskless portfolio has the same rate of return than the
bond.

For the classical model presented above, there exists a well known solution for the
price process of the derivative 7 (t) (see, for example [3]). Given its simplicity, this
formulation can be described as one of the most popular standards in the profession.

Today however, it is possible to find models that have relaxed almost all of the initial
assumptions of the Black-Scholes model, such as models with transaction costs, different
probability distribution functions, stochastic volatility, imperfect information, etc.; all
of which have improved the prediction capabilities of the original B-S model (see [3]-[6]
for some complete reviews of these extensions).

Some attempts to improve the predictions of the Black-Scholes models, which take
into account deviations of the equilibrium in the form of arbitrage situations, have been
developed in [7]-[11]. In this case, some of these models assume that the return from
the B-S portfolio is not equal to the constant risk-free interest rate, but instead, the no

arbitrage principle (3) is modified according to the equation
dV (t)=(r+a(t))V (t)dt, 4)

where «(t) is a random arbitrage return. This formulation gives great flexibility to

the model, since «(t) can be seen as any deviations of the traditional assumed equi-
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librium, and not just as an arbitrage return. For instance, Ilinski [12] and Ilinski and
Stepanenko [13] assume that « (t) follows an Ornstein-Uhlenbeck process. Deviation
from the non-arbitrage assumption implies that investors can make profit in excess
from the risk-free interest rate. For example, if «(t) is greater than zero, then what
one can do is: borrow from the bank, paying interest rate r, invest in the risk-free rate
stock portfolio and make a profit. Alternatively, one could go short the option, delta
hedging it.

The object of this paper, is to study the arbitrage effects on the option prices. This
study will have two principal components:

1) Calibration: hopes to obtain a measure of the arbitrage effects from the empirical
financial data, and

2) Simulation: the above measure can be used to obtain the “improved” option price
and compare it with the usual Black-Scholes model and the real option prices.

For this, it is assumed that arbitrage can be modelled using Equation (4), so it will
consider the B-S model in (1) and self-financing portfolio condition in (2) and in what

follows the following arbitrage condition is assumed:
dV (t)=rV (t)dt+ f (S,t)V (t)dW (t) 5)

where f =f (S,t) is a given deterministic function called “arbitrage bubble” [7] and
W is the same Wiener process in the dynamic of the underlying stock S. Equation (5)
will generate a non-equilibrium Black-Scholes model. Note that condition (5) can be

dV (t) = rV (t)dt+ f (S,0)V (t)dW (t) =(r+ (S, t)W (t))V (t)dt (6)

where W is a white noise. This can be interpreted as a stochastic perturbation in the
rate of return of the portfolio with amplitude £ a = a(S,t) = f (S,t)W (t).

As it is well known, in a perfectly competitive market, assumed by the original B-S
model, the action of buyers and sellers exploiting the arbitrage opportunity will cause
the elimination of the arbitrage in the very short run, so in our setting one will
considered implicitly the speed of market’s adjustment by modelling an “arbitrage
bubble”, which can be defined in duration and size, taking this way into account the
market clearance power. All this information is contained in the function f = f (S,t) .
In fact, in [7] it is shown that, for an infinite arbitrage bubble fthe non equilibrium
Black-Scholes model goes to the usual Black-Scholes model, so (5) accounts implicitly
for the market power clearance.

In [9]-[13] different generalizations of the Black-Scholes model are proposed. These
models include a stochastic rate model whose dynamic is generated by a second
Brownian motion independent of the asset Brownian motion. In a sense, these models
are inspired by “stochastic volatility ideas”.

What it is done here, is to incorporate arbitrage effects, but as close as possible to the
original Black-Scholes model, which has only one source of randomness (associated
with the asset price S) and where the B bonus dynamics is completely deterministic.

The central idea is that arbitrage effect can change the portfolio returns in a random
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fashion, and the source of randomness must be generated by the same asset Brownian
motion. It is in that sense that the term “endogenous stochastic arbitrage” appears in
the title of paper [7]. In that setting, the only remaining degree of freedom necessary is
the amplitude of such a Brownian motion that is expressed in Equation (5).

Although, Equation (5) can be rewritten as a stochastic rate model as in Equation (6),
it is not clear if such interpretation is well defined in mathematical terms, or if even it is
integrable. So, the point of view taken here is not to see the model as a stochastic rate
model, but instead as a “perturbed portfolio return model”, defined by Equation (5).

Thus, it is assumed a model-dependent arbitrage, where the arbitrage possibilities are
modelled with the same stochastic process that govern the underlying stock. This
assumption allows to link the arbitrage equation to the B-S original model' This
assumption is reasonable from a theoretical perspective for some kinds of arbitrages,
which are inherent to the underlying asset, and endogenous in nature to the asset in
analysis. The validity of this maintained hypothesis has been tested empirically, for
example in [14].

In [7] analytical solutions of the non equilibrium Black-Scholes model were found

for a time dependent “step function” arbitrage bubble ffor an option with maturity 7¢

0 0<t<T,
f(t)y=<f, T,<t<T,. (7)
0 T,<t<T

This particular shape of the bubble was motivated by an empirical study of futures
on the S&P 500 index between September 1997 and June 2009. There, through the
empirical analysis of the future mispricing, one can get the shape of the arbitrage
bubble, which in that case corresponds roughly to a step function shape, as is showed in
Figure 1.

So in the option pricing context, it can be naturally asked: can the shape of the

Mispricing
15

12 3

9

-3 1 1L 4

-6
Sept. June
1997 2009

Figure 1. Future’s mispricing.

'Otherwise, the arbitrage should be modelled exogenously to the B-S model.
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arbitrage bubble fbe obtained from an empirical analysis of the option mispricing,
using the same approach for futures on the S&P 500 index given in [7]?

The object of this paper is to show that the answer is positive and to develop a
methodology for extracting the arbitrage bubble ffrom the empirical financial data
through the analysis of the option mispricing. In order to do that, it will be needed to
use some results of semi-classical approximations applied to option pricing as develop
in [8]. There, an approximate solution for the non equilibrium Black-Scholes equation
in the presence of an arbitrary arbitrage bubble was constructed. This semi-classical
solution with the option mispricing data, permit to obtain a non linear equation for
the arbitrage bubble. By solving this equation by means of numerical methods the
approximate shape of the arbitrage bubble fcan be obtained. Then, taking this arbitrage
bubble back to the non equilibrium Black-Scholes equation, it can be determined the
“exact” interacting option price solution by means of a Crank-Nicolson method and
compare it with the usual equilibrium Black-Scholes solution. In all studied cases, the
non equilibrium solution performs a better numerical estimation for the empirical data
than the usual Black-Scholes solution.

To proceed and to make the paper self contained, section 2 reviews the interacting
Black-Scholes model according to [7] and section 3 gives it interpretation as a quantum
model. The section 4, quickly reviews the main results of semi-classical quantum ideas
applied to the interacting Black-Scholes model as developed in [8]. In section 5, the
calibration problem is analyzed, that is, how to estimate the interaction potential in the
non-equilibrium Black-Scholes framework, and the deduction of an equation which
permits to found arbitrage bubble f (t) from the actual financial data.

In section 6, the simulation problem is developed to obtain the exact option price
solution of the non-equilibrium model, for several different data sets. In section 7, final

conclusion and future prospects are given.

2. The Non-Equilibrium Black-Scholes Model

Following [7], the price dynamics of the financial derivative under the endogenous
arbitrage condition (5) is found. The price dynamic as the solution 7z (t,S) of certain
boundary value problem is derived. In what follows, the price process is considered
depending on ¢ S, but this dependence is omitted for the sake of simplicity. Using It

calculus:
2
dr =g+ s+ 197 gs2 (8)
ot oS 20S

Given the dynamic for Sin (1):

2 2
dr = a_;;+ﬂsa_7z+0_823_72f dt+0'86—7[dW. 9)
ot oS 2 oS 0S

Self-financing portfolio condition in (2) can be understood as dV =h,dS+h dz .

Considering this and (5) together and replacing dynamics for Sand 7:
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2 2
he (St +oSaW )+ h || 2+ 48 74 T 5297 Mgy 55 9% guy
S 2 oS 0S (10)
=r(hsS+h z)dt+ f (hsS+h z)dw.
Collecting d# and d W-terms:
or or o’ L0
hS(u-r)+h | —+uS—+-—S°—Z=—rz |=0
5S(u—r) ”[8t H s 2 7 52 ”J a

or
h.S(oc—-f)+h S——fr|=0.
sS(o—f)+ ”(0' P 7[)

The condition for existence of non-trivial portfolios (hg,h,) satisfying (11) gives
that, given the B-S model for a financial market in (1), self-financing portfolio con-
dition (2) and stochastic arbitrage condition in (5), the price process 7 of the
derivative is the solution of the following boundary value problem in the domain
[0,T]xR,.

o, T g lx Toout (sa—”—ﬁjzo
ot 2 0S o—f 0S
7(T,8)=®(s)

(12)

for constant r, u, o ,any function fand a simple contingent claim © .

Thus, Equation (12) shows a particular type of arbitrage, that occurs when the underlying
asset and its arbitrage possibilities are generated by a common and endogenous stochastic
process. This formulation is fairly general, in the sense that fcould take any functional
form. This function fwill be called the arbitrage bubble. Note that when f =0, the
standard equilibrium B-S model is recovered.

It is important to stress here that the model generated by Equation (12) is an out-
of-equilibrium model, in the sense that, it does not satisfies the martingale hypothesis
for f=0.

3. The Interacting Black-Scholes Model as a Schrodinger
Quantum Equation

In this section, the Black-Scholes equation is interpreted as a Schrédinger wave equation
and its consequences are explored. Significant attempts to see the Black-Scholes
equation as quantum models can be found in [8] [14]-[17]. In this case, the Black-

Scholes equation in the presence of an arbitrage bubble (12) can be written as

. r—u)f(S,t
LBsmw(sa—”—nj:o (13)
o—-f(S.t) 0S
where
2 2
[Bsﬂ:a—” G—sza—’zﬂ(sa—”—n] (14)
ot 2 S 0S
is the usual arbitrage free Black-Scholes operator. The factor
r—u)f(S,t
U (S.t) _(r-u)f(s.t) (15)

o—-f(S,t)

%%
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can be interpreted as an effective potential induced by the arbitrage bubble f (S,t).
In this way, the presence of arbitrage generates an external time dependent force,
which have an associated potential U (S,t). Then the interacting Black-Scholes model
developed in [7] corresponds, from a physics point of view, to an interacting particle
with an external field force. Obviously, when arbitrage disappear, the external potential
is zero and the usual Black-Scholes dynamics is recovered. One can also see that the
option price dynamics 7 (S,t) depends explicitly on the arbitrage bubble form f (S,t).
From a financial optics, the arbitrage bubbles should be time-finite lapse and they
should have a characteristic amplitude. So, in general, arbitrage bubbles can be defined
by three parameters: the born-time, dead-time and the maximum amplitude between
these two times. In [8] an approximate analytical solution for the non-equilibrium

Black-Scholes equation, for an arbitrary arbitrage bubble form was found.

3.1. The Quantum Hamiltonian

Following [8], where a Black-Scholes-Schrédinger model based on the endogenous
arbitrage option pricing formulation introduced by [7] was developed, consider again

the interacting Black-Scholes Equation (12) and take the variable change £=1InS, to

obtain
2 52 2 r—u)f
5_”+0'_5_7ZT+ cotjox (r-mftfor 3 . (16)
ot 2 o 2 Joc o-f o&
o2
making a second (time dependent) change of variables X =¢ — {r —7} holds
2 A2 —u)f
a_”+0_a_7:_m+w(a—”—ﬁjzo (17)
ot 2 ox o—-f (oX
where
_ +[r—%]t
f(xt)="fle 1. (18)

Now it is stated: Given the non equilibrium Black-Scholes model in (12) for the price

of an option with arbitrage, and defining

z(xt)=e" "y (x1) (19)
the y dynamics is given by
v (x,t) o2 0%y (xt oy (Xt
) V00 o Xy (] 0 @)

where

u(x,t):(ro___ﬂ%ﬂ (21)

f
(x)

is the interaction potential in the (x,t) space.
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The last two equations can be interpreted as a Schrédinger equation in imaginary
time for a particle of mass 1/(72 with wave function y (x,t) in an external time

dependent field force generated by u(x,t). Writing Schrédinger equation as

%: Hy (xt) (22)

and following the arguments developed by Baaquie in [18] the hamiltonian operator

can be read as

2 A2
5 c° 0 0
H=———-u(xt)] —-1]/. 23
2 ox ( )(BX j (23)
Since momentum operator in imaginary time is
) —, 0
P=——, P’=— 24
ox ox’ 29

finally the quantum hamiltonian for the interactive Black-Scholes model is derived as a

function of the momentum operator.
2

I:I:—%Isz+u(x,t)(§+l). (25)

3.2. The Underlying Classical Mechanics

In order to obtain a semi-classical approximation for the solution of the non-equili-
brium Black-Scholes model, the classical equation of motion is developed, that is, the
Newton equations associated to the quantum model. So, taking the classical limit

ii— 0 the quantum hamiltonian becomes the classical hamiltonian function

2

H(x,P)=~"-P* +u(xt)(P+1). (26)

The classical hamiltonian equations

G OH 5 O

A 27
oP OX @7)
reduces in this case to
X=-0’P+u(xt) (28)
of
P=—(r—u)(P+1)—2& . (29)
(o)
The corresponding lagrangian
L =Px—H(xP) (30)
becomes
£=—Ti2(>k—u(x,t))2—u(x,t). (31)

The Euler-Lagrange equation
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dfoc) oL _g
dt\ ox ) ox
gives for this system, the following Newton equation

X—%—[u(x,tﬁazjg—i:o.

Some special cases are considered here in detail.

3.3. The Time-Independent Arbitrage Model

First, if the bubble depends only on S, thatis f = f (S), this imply that

F(xt)=f ;%)

and in this case

so the Newton equation reads
2 2
o\ afu) (ot
OX 2 OX 2 )ox

X—%[udm (x.t)]=0

or

where

Ugass (X, 1) = w(xY) +(°;+ r]u(x,t).

2

3.4. The Time-Dependent Arbitrage Model

(32)

(33)

(34)

(35)

(36)

(37)

(38)

In the second case, the arbitrage bubble depends only on time coordinate f (S,t)= f (t)

2
+%%, Scientific Research Publishing

S0
)
X—{ r—— |t
f(xt)=fle ' ) t|=1f(t) (39)
and
(r=—p) £ (1)
t)=u(t)= 40
(c=u(=LA (0
S0
ou
—=0. 41
o (41)
The Euler-Lagrange equation reads now
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—(Xx-u(t))=0 42
¢ (x-u) @
that is

x=C+u(t) (43)

which can be easily integrated as

(r=n) £ (1)

t)=Ct+|————=dt+D 44
x(t)=Ct+| p—Y + (44)

where Cand D are arbitrary constants.
In that follows, arbitrage bubbles that are time dependent are only considered, that
is,
f(S.,t)="f(t). (45)

The reasons to do that are:

1) the model is more “simple” in mathematical terms and

2) the financial data available is time dependent but no Sdependent.

In a further study the behaviour of the interacting Black-Scholes model is analyzed
for arbitrage bubbles that depends explicitly on the underlying asset price S.

Note that for the time dependent arbitrage bubble f = f (t), the U (t) potential in
(15) and the u(t) potential in (21) are completely equivalent: U (t)=u(t).

4. Path Integrals and the Semi-Classical Approximation

Path integrals and semi-classical methods have been used to find approximate solutions
of the Schrédinger equation in different areas of theoretical physics, such as nuclear
physics [19], quantum gravity [20], chemical reactions [21], quantum field theory [22]
and stochastic processes [23]. Path integrals also have been used to price the value of an
option, for example see [8] [18] [24]-[30]. In this section, the semi-classical approxi-
mation is applied to found an approximate solution for the option price.

It is well known that when a system has interactions, the semi-classical approach
gives an approximate solution for the wave function of the system, while for free
interaction case, semi-classical approximation can give exact results [31]. In this section,
following [8] a financial application is developed, based on the quantum arbitrage
model of the previous section.

In a general setting, the solution of the Schrédinger Equation (22) can be written as
y(xt)=]"G(xt|xT)d(x)dx (46)
where ®(x) is a specific contract (Call, Put, Binary Call...) in the x space, and
G(xt|x'T) is the propagator which admits the path integral representation
G (xt|xT) = [Dx(r)e ) (47)
where A[X(r)] = J.:E(X(z'), )'((r))dz' is the classical action evaluated over the path

x(z) (t<7<T) and the integral is done over all paths that connect the points x(t)= X
and x(T)=x".If one writes X(7) as X(7)= Xy, (7)+7(7) and expands the action
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around the classical path, one has

A[Xc'ass (7)+n (T)] = A[Xclass (T)] + %[77]77 + 1—52A[77] n’+

48
- 2 o’ (48)

(where all functional derivatives are evaluated on the classical path X, (7)) and
integrate over all trajectories 7(7), the propagator becomes

2
15°An] 2,

G(xt|x’T)=eA[X“‘*“(T)]J'Dn(t)ez o T (49)

Considering contributions up to second order terms (see for example [23]), the semi-

classical approximation for the propagator Gis given by

eA[XcIass(T):l

G(xt|xT)=——-—. (50)
On the other hand, the solution for the option price 7 inthe X space isthen
7(xt)=e Ty (x,t) = jie("(T't))G (xt|XT)®(x')dx’ (51)
so the propagator for the option price is, in the semi-classical approximation
Gy (xt[xT)=el ") et (52)

1/21r02 (T - ) '

In order to found the semi-classical approximation for the option price, in presence
of a time dependent arbitrage bubble f = f (t), the classical solution (44) for a time
variable 7 (t<7<T ) must be obtained first, with the initial condition x(z=t)=x
and final condition x(7 =T )= x'. This implies that the constant Cin (44) is given by

X' =x 1 T
TT-t T-th

u(4)d2 (53)

so the Lagrangian (31) evaluated over the classical path is
1

E(X(r),)’((z’))=—FC2—u(1) (54)

and the action A:LTL(X(T),)'((T))dr evaluated over the classical path becomes

finally
Altuw]= 5z [T - p(0T) (55)

where
p(t.T)=["u(2)d2= f%dz (56)

is the accumulative potential between fand 7.
The semi-classical propagator in the x space is then according to (52)
efr(Tft) [(XLX)*p(t,T )szp(t,T)

1
Gy (X[ XT)= o (T ) (57)
* ( ) 2no’ (T - t)
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By using the transformation
x=|n(S)—(r—%o-2jt (58)

and the fact that dx=dS/S , one can now writes the semi-classical propagator in the
(S,t) spaceas

1 e (1) 1 —ﬁ[ln(eps/s’){r—%a—zj(T—t)T
e

G (St|ST) = —F——rvxo-— (59)
s ) S \/m or
so the semi-classical solution for the option price is then given by
7o (Sit) = Gge (St|ST)@(S')dS". (60)

Now, note that the Black-Scholes propagator is just the semi-classical propagator (59)
evaluated at p=0

Gys (St]ST) = i,—efr(m) efz"z(l”im(s/sr){r%gz](H)T (61)
S" [2no? (T - t)
so the pure Black-Scholes solution is
7o (S,t) = [ Gyg (St ST) D (S)dS". (62)
From (59) and (61) one can see that both propagators are related by
Gsc(sus*r):eipeBS (e7st|sT) (63)
and from (60)
nsc(s,t)zeipjiGBs (e7st|ST)a(s")ds’ (64)
which due to (62), is equivalent to say
7zsc(s,t)=ep(imfr5S (e"“”s,t). (65)

The last equation therefore, is the semi-classical approximation for the non equilibrium
Black-Scholes solution for the option price, in presence of an arbitrary time dependent
arbitrage bubble f = f (t). Here 745 (S,t) is the arbitrage-free Black-Scholes solution
for the specific option with contract ®(S) and p(t,T) is the accumulative potential
given by (56).

In this way, the function p(t,T) renormalizes the bare arbitrage-free Black-Scholes
solution. One important fact of this last equation is that it permits to obtain an appro-
ximation of our Black-Scholes-Schrédinger interacting model from the classical Black-
Scholes model, by means of a rescaling of the price variable, so usual computational

codes can be easily modified to obtain an approximation for the interacting model.

5. Interaction Potential and Arbitrage Bubble Calibration

Now finally, after a long trip on the interacting model and its semi-classical approxi-
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mation, the main two point of this paper can be tackled, that is, the calibration and
simulation problem for the arbitrage bubble and for the option price solution of the
non equilibrium Black-Scholes model respectively.

In order to solve the calibration problem, consider the empirical time-series of the
underlying asset S, (t) and the real price of the option 7, (t) in the interval
t €[0,T]. One can ask for the interaction potential function

(r-u) t(t)

U(t)=u(t) o tq) (66)
associated to a time dependent arbitrage bubble f = f (t) that allows the solution
7(S,t) of Equation (13) when evaluated over S, (t) to fit all the time-serie of
Tomp (1) -

One way to proceed is to take a definite functional form for the U function with
parameters a=(a,,8,,8,, -, ). In this case the solution of (6) becomes a function of
the vector 7 = ﬁ(S,t,a) and then, the set of coefficients {ak} can be determined
minimizing the quantity
2 L 2
7°(8) = 257 (Sunp (6) 1c18) = 7oy (1) (67)

over all sets of coefficients {a,}. But it is not clear if such a minimum exists or there

iR

exist several local minima and the problem reduces to find the true one. Numerically
this problem can turn to be impossible to achieve. Moreover, initial guess for Uis a
matter of taste, and it is not clear what the correct initial functional form is and from
which the »? minimization can start.

In order to determine a guess function for the U potential a different path has to be
follow, based on the semi-classical approximation and the notion of mispricing. The
mispricing, denoted by m(t), is defined in [32] as the difference between the empirical
option price 7, (t) and the value of Black-Scholes solution 7y (S,t) evaluated over

the empirical underlying asset price S, (t)
m(t)zﬁemp (t)_ﬁBS (Semp (t)’t) (68)

Naturally, the function m(t) above is known only over a discrete time set of points.
Let U’ (t) be the exact potential originated by the exact arbitrage bubble f”(t) which
gives the correct empirical option price when the solution of the interacting Black-

Scholes model (13) 7z (S,t) is evaluated over the empirical underlying asset price

S (1)
Ty (1) = 7" (S (1)1) (69)

the solution 7~ makes the value of the Equation (67) be exactly zero. Now suppose
that U” (t) potential is weak (U <1 ), in such a way that the semi-classical approxi-
mation for the option price is valid, so the option price 7~ (S,t) can be replaced by its
semi-classical approximation (65)

”emp (t) = ﬂ-* (Semp (t)’t) = ”;C (Semp (t)’t) = %EBS (ep*(tYT)SemP (t) 't) (70)

eIJ
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where

P (tT)=[u"(A)da=[U"(2)da :J':%di (71)

so the mispricing Equation (68) becomes an equation for the arbitrage bubble f” (t)

o (Semp (t)’t)ep*(t,T) + m(t)ep*("T) g (ep’(r,T)Semp (t),t) -0. (72)

Equation (72) is the most important equation of this paper, because it allows, from
the knowledge about the empirical mispricing m(t), to obtain an estimation of the
interaction potential U (t) and the arbitrage bubble f(t) by doing the following
steps:

1) Given the empirical mispricing m(t) in (68), the Equation (72) can be solved for
the function p (t,T) by the Newton-Raphson method for each time instant. In this
way, p (t,T) isdeterminated in a discrete set of points.

2) Then, by a nonlinear regression a continuous curve p (t,T) that fits approxi-
mately this discrete set of points can be estimated.

3) From the definition of p° in Equation (71) results

“ iy dp” (t,T)

U (t)_——Olt (73)
and hence a time-dependent potential U*(t) can be determined in the weak limit
from the time variation of the nonlinear regression for p° (t.T).

4) From (71) the arbitrage bubble f~ can be obtained according to

f*(t):—dU (t,? :

r—-u+U (t)

This procedure solves the calibration problem mentioned above at least in the weak

(74)

limit. For the strong regime (U >>1) the semi-classical approximation could not longer
be valid, but the functional form of the U™ potential given by (73) can still be a good
starting point for obtaining an approximate value for the potential.

6. Numerical Results and Option Price Simulations

In order to test this method and to solve the simulation problem for the option price
solution of the non equilibrium Black-Scholes model, the behaviour of an European call
option is simulated, using the 90-days futures of the e-mini S&P 500 from September
1998 to June 2007. The contract is set having the same underlying asset, opening and
expiring dates than the S&P 500 futures. The option strike price is stablished as the
underlying price at the opening date of the contract, assuming the market is going to be

flat, in such a way that the option price is

7 =max (F, - K,0) (75)

where 7; will be the empirical simulated option market price at /~day, F, is the

e-mini S&P 500 future price and K'is the option strike price. As it is well known E-mini

S&P 500 options are priced in index points up to two decimals. One E-mini S&P 500
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option can be exercised into one E-mini S&P 500 futures contract and since each
contract has a multiplier of $50, the option price must also be multiplied by $50 to get a
corresponding dollar value and every one point of change in the price of the option or
the underlying futures for that matter is worth $50 per contract.

The e-mini S&P 500 futures contracts used to simulate the option are specified in
Table 1.

The results are shown in the case of the first contract (e-mini S&P 500 from 12/
03/1998 to 10/06/1998). Figure 2 shows the mispricing m(t) in (68) between the
simulated option price and the Black-Scholes price. For this calculation, the standard
deviation o of the underlying returns from the previous 90 days is estimated and the
three-months USA Treasury rate rat the initial day of the contract is taken as the risk-
free rate. The estimated numerical values in fact are ¢ =0.0046 and r =0.00019.

Now Equation (72) can be solved via Newton-Raphson to obtain the empirical p, (t,T)
function daily for this contract as it can be seen in Figure 3. Then a continuous potential
model for this function is proposed of the form p(t,T) =a+bt® and a non-linear
Levenberg-Marquardt regression is performed in order to fit parameters a, b and c.
The estimated parameter values are a=0.1242, b=-0.2159 and ¢=-0.1162 and
Figure 3 shows the results.

At this point, the time-dependent potential U (t) can be obtained by using Equation
(73)

Table 1. E-mini S&P 500 contracts.

1) e-mini S&P 500 12/03/1998-10/06/1998
2) e-mini S&P 500 10/09/1998-09/12/1998
3) e-mini S&P 500 10/12/1998-09/03/1999
4) e-mini S&P 500 09/06/2005-07/09/2005
5) e-mini S&P 500 07/09/2006-06/12/2006
6) e-mini S&P 500 07/12/2006-07/03/2007
7) e-mini S&P 500 08/03/2007-06/06/2007

Mispricing
5 Days

1 65 7 11131519 2125 27323436 404246 48 50 54 56 60,62 64

March 03 June 10
1998 2009

Figure 2. Mispricing m(t).
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Rho
0.02

0

15 711131519 2125 2732343

-0.02

-0.04

-0.06

-0.08

-0.1
March 03 June 10
1998 1998

Figure 3. Empirical p,(t,T) (continuous line) and estimated p(t,T)=a+bt® (dashed line).

U(t)=u(t)= —w =—cht** (76)

as shown in Figure 4.

Now by replacing the continuous potential U (t)=—cbt"" in the interacting Black-
Scholes Equation (13) and integrating it by means of the Crank-Nicholson method, the
interacting solution for the option price 7 of a call option can be derived, as shown in
Figure 5.

Clearly, the calibration of the potential U (t) allows to fit a more exact price than
that of the traditional Black-Scholes model without considering arbitrage. The behavior
of the interacting versus the usual Black-Scholes models can be tested for option pricing
in terms of the y° performance measure discussed before. The computed values of
the y? are: 14,980.76 for the Black-Scholes model and 1705.44 for the interacting
Black-Scholes model, which difference is clearly visible in Figure 5.

When the calibrated model is used with its respective U (t) potential for simulating
the rest of the contracts considered in series of Table 1, similar results are found, that

in all the cases defeat Black-Scholes predictions as showed in Figure 6.

7. Conclusions and Further Research

In this work, the arbitrage effects for a non-equilibrium quantum Black-Scholes model
of option pricing are calibrated. This calibration procedure rests heavily on the semi-
classical approximation of the interacting Black-Scholes model, which permits to con-
struct an equation for the interaction potential, from which the arbitrage bubble and
the interaction potential can be estimated. By using this estimated potential, the price
trajectory of a real call option can be simulated for several contracts of the S&P index,
which allow to take into account any market imperfection and price desaligments. Even
though a semi-classical approximation for the solution of the interacting Schrédinger
equation is used, the results are extremely good in predicting the real option price and
its trajectory for every contract simulated.

Since in real life, market imperfections always happen, almost on a regular basis,
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u)
Days
0.005 1 4 31619222528 313437 40434649 525558 61646770 737679 828588
-0.01 |
-0.015 |
-0.02 |
-0.025 4
_0.03 /March 03 June 10
1998 1998

Figure 4. Interacting potential U (t).

Price Contrast

Days

1 5 7 11 1315 19 212527 32 34 364042 4648 5054 56 60 6264 68 7075 77 8183 8589

March 03 June 10
1998 —P---BSCPV 1998

Figure 5. Simulated option price P (continuous line), Black-Scholes model price B-S
(dashed line) and interacting Black-Scholes model price CPV (dotted line) for the e-mini
S&P 500 contract from 12/03/1998 to 10/06/1998.

Price Contrast 2
250

200
150
100

50

Days
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Price

Contrast 4

Days
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5 7 11 13 33 35 39 41 43 47 49 53 55 57 61 63 67 69 71 75 77 81 83 85 90
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— P == =B-See CPV S00E

(©)

140
120
100
80
60
40
20

Price
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1
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2006

5 7 1113 1519 212527 293335 394143 474953 55576163 67 69717578 828488 90
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—P - - -B-§-CPV 2006

(d)

60
50
40
30
20
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Price

Contrast 6

1

Dec
2006

5 7 11 1315 20 22 2832 34 36 41 4347 49 53 5557 61 63 67 6971 76 7882 84 88 90

Mar
2007

160
140
120
100
80
60
40
20

Price

Days

1

Mar
2007 —FP ---B-§-CPV 2007

11 13 1519 21 25 27 3234 36 40 42 4648 50 54 56 6062 64 68 7074 76 78 83 85 89
Jun

®

Figure 6. (a) (b) (c) (d) (e) (f): Simulated option price P (continuous line), Black-Scholes
model price B-S (dashed line) and interacting Black-Scholes model price CPV (dotted
line) for e-mini S&P 500 contracts in Table 1.
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hence arbitrage processes form part of the normal operation of the stock exchange, and
logically mispricing is always going to exist. If this mispricing could be calibrated using
the potential of the interacting Black-Scholes, even in a small part, it is expected that
those results are always going to outperform the traditional Black-Scholes formulation.
In this context, this model and its calibration procedure could be used very easily to
simulate in a more exact fashion option pricing of any underlying asset.

Future research could be directed to capture different potential patterns for different
underlying assets and different market situations. Even in this case, the potential is
short-lived and circumstantial, for example in the case of bubbles, rebounds, crises or
critical information (for example, when Bernanke talked!), it is possible to use this
methodology to capture the potential of the contract in a similar situation and to simulate
the new contract. Alternatively, if the situation is normal and no special conditions are
foreseen, a good practice would be to use the immediately preceding contract in order
to calibrate the potential and therefore the quantum model; considering the reasons
given above, in almost all the cases, it is expected that this model will defeat the
traditional Black-Scholes model.
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