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Abstract 
An non-equilibrium Black-Scholes model, where the usual constant interest rate r is 
replaced by a stochastic time dependent rate r(t) of the form ( ) ( ) ( )r t r f t W t= +  , 
accounting for market imperfections and prices non-alignment, is developed. The 
white noise amplitude ( )f t , called arbitrage bubble, generates a time dependent 
potential ( )U t  which changes the usual equilibrium dynamics of the traditional 
Black-Scholes model. The purpose of this article is to tackle the inverse problem, that 
is, is it possible to extract the time dependent potential ( )U t  and its associated 
bubble shape ( )f t  from the real empirical financial data? In order to give an 
answer to this question, the interacting Black-Scholes equation must be interpreted 
as a quantum Schrödinger equation with Hamiltonian operator ( )0=H H U t+ , 
where 0H  is the equilibrium Black-Scholes Hamiltonian and ( )U t  is the inter- 
action term. By using semi-classical considerations and the knowledge about the 
mispricing of the financial data, one can determinate an approximate functional 
form of the potential term ( )U t  and its associated bubble ( )f t . In all the studied 
cases, the non-equilibrium model performs a better estimation of the real data than 
the usual equilibrium model. It is expected that this new and simple methodology 
could help to improve option pricing estimations. 
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1. Introduction 
For almost 35 years, since the seminal articles by Black and Scholes [1] and Merton [2], 
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the Black-Scholes (B-S) model has been widely used in financial engineering to model 
the price of a derivative on equity. In analytic terms, if ( )B t  and ( )S t  are the risk- 
free asset and underlying stock prices, the price dynamics of the bond and the stock in 
this model are given by the following equations:  

( ) ( )
( ) ( ) ( ) ( )

d d

d d d

B t rB t t

S t S t t S t W tµ σ

=

= +
                       (1) 

where r , µ  and σ  are constants and ( )W t  is a Wiener process. In order to price 
the financial derivative, it is assumed that it can be traded, so one can form a portfolio 
based on the derivative and the underlying stock (no bonds are included). Considering 
only non-dividend paying assets and no consumption portfolios, the purchase of a new 
portfolio must be financed only by selling from the current portfolio. Here, ( ),S tπ  
denotes the option price, ( ) ( ),St h hπ=h  is the portfolio and ( ) ( ),t S π=P  is the 
price vector of shares. Calling ( )V t  the value of the portfolio at time t, the dynamic of 
a self-financing portfolio with no consumption is given by  

( ) ( ) ( )d dV t t t= ⋅h P .                            (2) 

In other words, in a model without exogenous incomes or withdrawals, any change 
of value is due to changes in asset prices. 

Another important assumption for deriving B-S equation is that the market is 
efficient in the sense that is free from arbitrage possibilities. This is equivalent with the 
fact that there exists a self-financed portfolio with value process ( )V t  satisfying the 
dynamic:  

( ) ( )d dV t rV t t=                              (3) 

which means that any locally riskless portfolio has the same rate of return than the 
bond. 

For the classical model presented above, there exists a well known solution for the 
price process of the derivative ( )tπ  (see, for example [3]). Given its simplicity, this 
formulation can be described as one of the most popular standards in the profession. 

Today however, it is possible to find models that have relaxed almost all of the initial 
assumptions of the Black-Scholes model, such as models with transaction costs, different 
probability distribution functions, stochastic volatility, imperfect information, etc.; all 
of which have improved the prediction capabilities of the original B-S model (see [3]-[6] 
for some complete reviews of these extensions). 

Some attempts to improve the predictions of the Black-Scholes models, which take 
into account deviations of the equilibrium in the form of arbitrage situations, have been 
developed in [7]-[11]. In this case, some of these models assume that the return from 
the B-S portfolio is not equal to the constant risk-free interest rate, but instead, the no 
arbitrage principle (3) is modified according to the equation  

( ) ( )( ) ( )d d ,V t r t V t tα= +                        (4) 

where ( )tα  is a random arbitrage return. This formulation gives great flexibility to 
the model, since ( )tα  can be seen as any deviations of the traditional assumed equi- 
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librium, and not just as an arbitrage return. For instance, Ilinski [12] and Ilinski and 
Stepanenko [13] assume that ( )tα  follows an Ornstein-Uhlenbeck process. Deviation 
from the non-arbitrage assumption implies that investors can make profit in excess 
from the risk-free interest rate. For example, if ( )tα  is greater than zero, then what 
one can do is: borrow from the bank, paying interest rate r, invest in the risk-free rate 
stock portfolio and make a profit. Alternatively, one could go short the option, delta 
hedging it. 

The object of this paper, is to study the arbitrage effects on the option prices. This 
study will have two principal components: 

1) Calibration: hopes to obtain a measure of the arbitrage effects from the empirical 
financial data, and  

2) Simulation: the above measure can be used to obtain the “improved” option price 
and compare it with the usual Black-Scholes model and the real option prices. 

For this, it is assumed that arbitrage can be modelled using Equation (4), so it will 
consider the B-S model in (1) and self-financing portfolio condition in (2) and in what 
follows the following arbitrage condition is assumed:  

( ) ( ) ( ) ( ) ( )d d , dV t rV t t f S t V t W t= +                   (5) 

where ( ),f f S t=  is a given deterministic function called “arbitrage bubble” [7] and 
W is the same Wiener process in the dynamic of the underlying stock S. Equation (5) 
will generate a non-equilibrium Black-Scholes model. Note that condition (5) can be 
rewritten as  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )d d , d , dV t rV t t f S t V t W t r f S t W t V t t= + = +        (6) 

where W  is a white noise. This can be interpreted as a stochastic perturbation in the 
rate of return of the portfolio with amplitude f: ( ) ( ) ( ), ,S t f S t W tα α= =  . 

As it is well known, in a perfectly competitive market, assumed by the original B-S 
model, the action of buyers and sellers exploiting the arbitrage opportunity will cause 
the elimination of the arbitrage in the very short run, so in our setting one will 
considered implicitly the speed of market’s adjustment by modelling an “arbitrage 
bubble”, which can be defined in duration and size, taking this way into account the 
market clearance power. All this information is contained in the function ( ),f f S t= . 
In fact, in [7] it is shown that, for an infinite arbitrage bubble f the non equilibrium 
Black-Scholes model goes to the usual Black-Scholes model, so (5) accounts implicitly 
for the market power clearance. 

In [9]-[13] different generalizations of the Black-Scholes model are proposed. These 
models include a stochastic rate model whose dynamic is generated by a second 
Brownian motion independent of the asset Brownian motion. In a sense, these models 
are inspired by “stochastic volatility ideas”. 

What it is done here, is to incorporate arbitrage effects, but as close as possible to the 
original Black-Scholes model, which has only one source of randomness (associated 
with the asset price S) and where the B bonus dynamics is completely deterministic. 

The central idea is that arbitrage effect can change the portfolio returns in a random 
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fashion, and the source of randomness must be generated by the same asset Brownian 
motion. It is in that sense that the term “endogenous stochastic arbitrage” appears in 
the title of paper [7]. In that setting, the only remaining degree of freedom necessary is 
the amplitude of such a Brownian motion that is expressed in Equation (5). 

Although, Equation (5) can be rewritten as a stochastic rate model as in Equation (6), 
it is not clear if such interpretation is well defined in mathematical terms, or if even it is 
integrable. So, the point of view taken here is not to see the model as a stochastic rate 
model, but instead as a “perturbed portfolio return model”, defined by Equation (5). 

Thus, it is assumed a model-dependent arbitrage, where the arbitrage possibilities are 
modelled with the same stochastic process that govern the underlying stock. This 
assumption allows to link the arbitrage equation to the B-S original model1 This 
assumption is reasonable from a theoretical perspective for some kinds of arbitrages, 
which are inherent to the underlying asset, and endogenous in nature to the asset in 
analysis. The validity of this maintained hypothesis has been tested empirically, for 
example in [14]. 

In [7] analytical solutions of the non equilibrium Black-Scholes model were found 
for a time dependent “step function” arbitrage bubble f for an option with maturity T:  

( )
1

0 1 2

2

0 0 <

0 <

t T
f t f T t T

T t T

≤
= ≤ ≤
 ≤

.                         (7) 

This particular shape of the bubble was motivated by an empirical study of futures 
on the S&P 500 index between September 1997 and June 2009. There, through the 
empirical analysis of the future mispricing, one can get the shape of the arbitrage 
bubble, which in that case corresponds roughly to a step function shape, as is showed in 
Figure 1.  

So in the option pricing context, it can be naturally asked: can the shape of the  
 

 
Figure 1. Future’s mispricing. 

 

 

1Otherwise, the arbitrage should be modelled exogenously to the B-S model. 
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arbitrage bubble f be obtained from an empirical analysis of the option mispricing, 
using the same approach for futures on the S&P 500 index given in [7]? 

The object of this paper is to show that the answer is positive and to develop a 
methodology for extracting the arbitrage bubble f from the empirical financial data 
through the analysis of the option mispricing. In order to do that, it will be needed to 
use some results of semi-classical approximations applied to option pricing as develop 
in [8]. There, an approximate solution for the non equilibrium Black-Scholes equation 
in the presence of an arbitrary arbitrage bubble was constructed. This semi-classical 
solution with the option mispricing data, permit to obtain a non linear equation for 
the arbitrage bubble. By solving this equation by means of numerical methods the 
approximate shape of the arbitrage bubble f can be obtained. Then, taking this arbitrage 
bubble back to the non equilibrium Black-Scholes equation, it can be determined the 
“exact” interacting option price solution by means of a Crank-Nicolson method and 
compare it with the usual equilibrium Black-Scholes solution. In all studied cases, the 
non equilibrium solution performs a better numerical estimation for the empirical data 
than the usual Black-Scholes solution. 

To proceed and to make the paper self contained, section 2 reviews the interacting 
Black-Scholes model according to [7] and section 3 gives it interpretation as a quantum 
model. The section 4, quickly reviews the main results of semi-classical quantum ideas 
applied to the interacting Black-Scholes model as developed in [8]. In section 5, the 
calibration problem is analyzed, that is, how to estimate the interaction potential in the 
non-equilibrium Black-Scholes framework, and the deduction of an equation which 
permits to found arbitrage bubble ( )f t  from the actual financial data. 

In section 6, the simulation problem is developed to obtain the exact option price 
solution of the non-equilibrium model, for several different data sets. In section 7, final 
conclusion and future prospects are given.  

2. The Non-Equilibrium Black-Scholes Model  

Following [7], the price dynamics of the financial derivative under the endogenous 
arbitrage condition (5) is found. The price dynamic as the solution ( ),t Sπ  of certain 
boundary value problem is derived. In what follows, the price process is considered 
depending on t, S, but this dependence is omitted for the sake of simplicity. Using Itö 
calculus:  

2
2

2
1d d d d
2

t S S
t S S
π π ππ ∂ ∂ ∂

= + +
∂ ∂ ∂

.                      (8) 

Given the dynamic for S in (1):  

2 2
2

2d d d
2

S S t S W
t S SS
π π σ π ππ µ σ

 ∂ ∂ ∂ ∂
= + + + ∂ ∂ ∂∂ 

.                (9) 

Self-financing portfolio condition in (2) can be understood as d d dSV h S hπ π= + . 
Considering this and (5) together and replacing dynamics for S and π :  
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( )

( ) ( )

2 2
2

2d d d d
2

d d .

S

S S

h S t S W h S S t S W
t S SS

r h S h t f h S h W

π

π π

π π σ π πµ σ µ σ

π π

  ∂ ∂ ∂ ∂
+ + + + +  ∂ ∂ ∂∂   

= + + +

      (10) 

Collecting dt- and dW-terms:  

( )

( )

2 2
2

2 0
2

0.

S

S

h S r h S S r
t S S

h S f h S f
S

π

π

π π σ πµ µ π

πσ σ π

 ∂ ∂ ∂
− + + + − = ∂ ∂ ∂ 

∂ − + − = ∂ 

            (11) 

The condition for existence of non-trivial portfolios ( ),Sh hπ  satisfying (11) gives 
that, given the B-S model for a financial market in (1), self-financing portfolio con- 
dition (2) and stochastic arbitrage condition in (5), the price process π  of the 
derivative is the solution of the following boundary value problem in the domain 
[ ]0,T +× .  

( ) ( )

2 2
2

2 0
2

,

r fS S
t f SS
T s s

π σ π σ µ π π
σ

π

∂ ∂ − ∂ + + − = ∂ − ∂∂  
= Φ

                (12) 

for constant r , µ , σ , any function f and a simple contingent claim Φ .  
Thus, Equation (12) shows a particular type of arbitrage, that occurs when the underlying 

asset and its arbitrage possibilities are generated by a common and endogenous stochastic 
process. This formulation is fairly general, in the sense that f could take any functional 
form. This function f will be called the arbitrage bubble. Note that when 0f = , the 
standard equilibrium B-S model is recovered.  

It is important to stress here that the model generated by Equation (12) is an out- 
of-equilibrium model, in the sense that, it does not satisfies the martingale hypothesis 
for 0f ≠ . 

3. The Interacting Black-Scholes Model as a Schrödinger  
Quantum Equation 

In this section, the Black-Scholes equation is interpreted as a Schrödinger wave equation 
and its consequences are explored. Significant attempts to see the Black-Scholes 
equation as quantum models can be found in [8] [14]-[17]. In this case, the Black- 
Scholes equation in the presence of an arbitrage bubble (12) can be written as 

( ) ( )
( )

,
0

,BS
r f S t

L S
f S t S

µ ππ π
σ
− ∂ + − = − ∂ 



                 (13) 

where 
2 2

2
22BSL S r S

t SS
π σ π ππ π∂ ∂ ∂ = + + − ∂ ∂∂  



                (14) 

is the usual arbitrage free Black-Scholes operator. The factor  

( ) ( ) ( )
( )

,
,

,
r f S t

U S t
f S t

µ
σ
−

≡
−

                       (15) 
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can be interpreted as an effective potential induced by the arbitrage bubble ( ),f S t . 
In this way, the presence of arbitrage generates an external time dependent force, 
which have an associated potential ( ),U S t . Then the interacting Black-Scholes model 
developed in [7] corresponds, from a physics point of view, to an interacting particle 
with an external field force. Obviously, when arbitrage disappear, the external potential 
is zero and the usual Black-Scholes dynamics is recovered. One can also see that the 
option price dynamics ( ),S tπ  depends explicitly on the arbitrage bubble form ( ),f S t . 
From a financial optics, the arbitrage bubbles should be time-finite lapse and they 
should have a characteristic amplitude. So, in general, arbitrage bubbles can be defined 
by three parameters: the born-time, dead-time and the maximum amplitude between 
these two times. In [8] an approximate analytical solution for the non-equilibrium 
Black-Scholes equation, for an arbitrary arbitrage bubble form was found.  

3.1. The Quantum Hamiltonian 

Following [8], where a Black-Scholes-Schrödinger model based on the endogenous 
arbitrage option pricing formulation introduced by [7] was developed, consider again 
the interacting Black-Scholes Equation (12) and take the variable change ln Sξ = , to 
obtain  

( )2 2 2

2 0.
2 2

r f
r

t f
µπ σ π σ π π π

ξ σ ξξ
−   ∂ ∂ ∂ ∂

+ + − + − =   ∂ ∂ − ∂∂   
            (16) 

making a second (time dependent) change of variables 
2

2
x r tσξ

 
= − − 

 
 holds  

( )2 2

2 0
2

r f
r

t xx f
µπ σ π ππ π

σ
−∂ ∂ ∂ + − + − = ∂ ∂∂ −  



                  (17) 

where  

( )
2

2, e ,
x r t

f x t f t
σ 

 + − 
 

 
 =   
 



.                        (18) 

Now it is stated: Given the non equilibrium Black-Scholes model in (12) for the price 
of an option with arbitrage, and defining  

( ) ( ) ( ), e ,r T tx t x tπ ψ− −=                          (19) 

the ψ  dynamics is given by  

( ) ( ) ( ) ( ) ( )
22

2

, , ,
, , 0

2
x t x t x t

u x t x t
t xx

ψ ψ ψσ ψ
∂ ∂ ∂ 

+ + − = ∂ ∂∂  
         (20) 

where  

( ) ( ) ( )
( )

,
,

,
r f x t

u x t
f x t

µ
σ
−

=
−



                          (21) 

is the interaction potential in the ( ),x t  space.  
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The last two equations can be interpreted as a Schrödinger equation in imaginary 
time for a particle of mass 21 σ  with wave function ( ),x tψ  in an external time 
dependent field force generated by ( ),u x t . Writing Schrödinger equation as  

( ) ( ),
,

x t
H x t

t
ψ

ψ
∂

=
∂



                          (22) 

and following the arguments developed by Baaquie in [18] the hamiltonian operator 
can be read as  

( )
2 2

2 ,
2

H u x t I
xx

σ ∂ ∂ = − − − ∂∂  



.                     (23) 

Since momentum operator in imaginary time is  
2

2
2,P P

x x
∂ ∂

= − =
∂ ∂

 

                          (24) 

finally the quantum hamiltonian for the interactive Black-Scholes model is derived as a 
function of the momentum operator.  

( ) ( )
2

2 ,
2

H P u x t P Iσ
= − + +

  

.                       (25) 

3.2. The Underlying Classical Mechanics 

In order to obtain a semi-classical approximation for the solution of the non-equili- 
brium Black-Scholes model, the classical equation of motion is developed, that is, the 
Newton equations associated to the quantum model. So, taking the classical limit 

0→  the quantum hamiltonian becomes the classical hamiltonian function 

( ) ( ) ( )
2

2, , 1
2

x P P u x t Pσ
= − + + .                   (26) 

The classical hamiltonian equations  

,x P
P x

∂ ∂
= = −
∂ ∂





 
                         (27) 

reduces in this case to  

( )2 ,x P u x tσ= − +                           (28) 

( ) ( )
( )21

f
xP r P
f

σ
µ

σ

∂
∂= − − +
−







.                     (29) 

The corresponding lagrangian 

( ),Px x P= −                            (30) 

becomes  

( )( ) ( )2

2
1 , ,

2
x u x t u x t

σ
= − − − .                   (31) 

The Euler-Lagrange equation  
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d 0
dt x x

∂ ∂  − = ∂ ∂ 
                             (32) 

gives for this system, the following Newton equation  

( ) 2, 0u ux u x t
t x

σ∂ ∂ − − + = ∂ ∂
 .                     (33) 

Some special cases are considered here in detail. 

3.3. The Time-Independent Arbitrage Model  

First, if the bubble depends only on S, that is ( )f f S= , this imply that  

( )
2

2, e
x r t

f x t f
σ 

 + − 
 

 
 =   
 



                         (34) 

and in this case  
2

2
u ur
t x

σ ∂ ∂
= − ∂ ∂ 

                           (35) 

so the Newton equation reads  

( )2 2
2,

2 2
u x t u ux r

x x x
σσ

   ∂ ∂ ∂ − − = −    ∂ ∂ ∂    
                  (36) 

or  

( ), 0classx u x t
x
∂

− =  ∂
                          (37) 

where  

( ) ( ) ( )
2 2,

, ,
2 2class

u x t
u x t r u x tσ 

= + + 
 

.                  (38) 

3.4. The Time-Dependent Arbitrage Model  

In the second case, the arbitrage bubble depends only on time coordinate ( ) ( ),f S t f t=  
so  

( ) ( )
2

2, e ,
x r t

f x t f t f t
σ 

 − − 
 

 
 = =  
 



                     (39) 

and  

( ) ( ) ( ) ( )
( )

,
r f t

u x t u t
f t

µ
σ
−

= =
−

                      (40) 

so  

0u
x
∂

=
∂

.                                (41) 

The Euler-Lagrange equation reads now  
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( )( )d 0
d

x u t
t

− =                             (42) 

that is  

( )x C u t= +                               (43) 

which can be easily integrated as  

( ) ( ) ( )
( )

d
r f t

x t Ct t D
f t

µ
σ
−

= + +
−∫                      (44) 

where C and D are arbitrary constants.  
In that follows, arbitrage bubbles that are time dependent are only considered, that 

is,  

( ) ( ),f S t f t= .                             (45) 

The reasons to do that are: 
1) the model is more “simple” in mathematical terms and  
2) the financial data available is time dependent but no S dependent.  
In a further study the behaviour of the interacting Black-Scholes model is analyzed 

for arbitrage bubbles that depends explicitly on the underlying asset price S.  
Note that for the time dependent arbitrage bubble ( )f f t= , the ( )U t  potential in 

(15) and the ( )u t  potential in (21) are completely equivalent: ( ) ( )U t u t= . 

4. Path Integrals and the Semi-Classical Approximation  

Path integrals and semi-classical methods have been used to find approximate solutions 
of the Schrödinger equation in different areas of theoretical physics, such as nuclear 
physics [19], quantum gravity [20], chemical reactions [21], quantum field theory [22] 
and stochastic processes [23]. Path integrals also have been used to price the value of an 
option, for example see [8] [18] [24]-[30]. In this section, the semi-classical approxi- 
mation is applied to found an approximate solution for the option price.  

It is well known that when a system has interactions, the semi-classical approach 
gives an approximate solution for the wave function of the system, while for free 
interaction case, semi-classical approximation can give exact results [31]. In this section, 
following [8] a financial application is developed, based on the quantum arbitrage 
model of the previous section.  

In a general setting, the solution of the Schrödinger Equation (22) can be written as  

( ) ( ) ( ), | dx t G xt x T x xψ
∞

−∞
′ ′ ′= Φ∫                    (46) 

where ( )xΦ  is a specific contract (Call, Put, Binary Call…) in the x space, and 
( )|G xt x T′  is the propagator which admits the path integral representation  

( ) ( ) ( )| eA xG xt x T Dx ττ   ′ = ∫                      (47) 

where ( ) ( ) ( )( ), d
T

t
A x x xτ τ τ τ=   ∫   is the classical action evaluated over the path  

( )x τ  ( t Tτ≤ ≤ ) and the integral is done over all paths that connect the points ( )x t x=  
and ( )x T x′= . If one writes ( )x τ  as ( ) ( ) ( )classx xτ τ η τ= +  and expands the action 
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around the classical path, one has  

( ) ( ) ( ) [ ] [ ]2
2

2
1
2class class

A A
A x A x

δ η δ η
τ η τ τ η η

δη δη
+ = + + +                (48) 

(where all functional derivatives are evaluated on the classical path ( )classx τ ) and 
integrate over all trajectories ( )η τ , the propagator becomes  

( ) ( ) ( )
[ ]2

2
2

1
2| e eclass

A
A xG xt x T D t

δ η
η

τ δηη
+

  ′ = ∫


.                  (49) 

Considering contributions up to second order terms (see for example [23]), the semi- 
classical approximation for the propagator G is given by  

( )
( )

( )2

e|
2π

classA x

G xt x T
T t

τ

σ

  
′ =

−
.                        (50) 

On the other hand, the solution for the option price π  in the x  space is then  

( ) ( )( ) ( ) ( )( ) ( ) ( ), e , e | dr T t r T tx t x t G xt x T x xπ ψ
∞− − − −

−∞
′ ′ ′= = Φ∫            (51) 

so the propagator for the option price is, in the semi-classical approximation  

( ) ( )( )
( )

( )2

e|
2π

classA x
r T t

SCG xt x T e
T t

τ

σ

  
− −′ =

−
.                    (52) 

In order to found the semi-classical approximation for the option price, in presence 
of a time dependent arbitrage bubble ( )f f t= , the classical solution (44) for a time 
variable τ  ( t Tτ≤ ≤ ) must be obtained first, with the initial condition ( )x t xτ = =  
and final condition ( )x T xτ ′= = . This implies that the constant C in (44) is given by  

( )1 d
T

t

x xC u
T t T t

λ λ
′ −

= −
− − ∫                         (53) 

so the Lagrangian (31) evaluated over the classical path is  

( ) ( )( ) ( )2
2

1,
2

x x C uτ τ τ
σ

= − −                      (54) 

and the action ( ) ( )( ), d
T

t
A x xτ τ τ= ∫   evaluated over the classical path becomes  

finally  

[ ] ( ) ( ) ( ) ( )2

2
1 , ,

2classA x x x t T t T
T t

ρ ρ
σ

′= − − − −  −
            (55) 

where  

( ) ( ) ( ) ( )
( )

, d d
T T

t t

r f
t T u

f
µ λ

ρ λ λ λ
σ λ
−

= =
−∫ ∫                   (56) 

is the accumulative potential between t and T.  
The semi-classical propagator in the x space is then according to (52)  

( )
( )

( )
( )

( ) ( ) ( )2
2

1 , ,
2

2

e| e
2π

r T t x x t T t T
T t

SCG xt x T
T t

ρ ρ
σ

σ

− − ′− − − −  
−′ =

−
.             (57) 
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By using the transformation  

( ) 21ln
2

x S r tσ = − − 
 

                          (58) 

and the fact that d dx S S= , one can now writes the semi-classical propagator in the 
( ),S t  space as  

( )
( )

( )
( ) ( ) ( )

2
2

2
1 1ln e

22

2

1 e 1| e
e2π

r T t S S r T t
T t

SCG St S T
S T t

ρ σ
σ

ρ
σ

  − − ′− + − −  
 −  ′ =

′ −
       (59) 

so the semi-classical solution for the option price is then given by  

( ) ( ) ( ), | dSC SCS t G St S T S Sπ
∞

−∞
′ ′ ′= Φ∫ .                   (60) 

Now, note that the Black-Scholes propagator is just the semi-classical propagator (59) 
evaluated at 0ρ =   

( )
( )

( )
( )

( ) ( )
2

2
2

1 1ln
22

2

1 e| e
2π

r T t S S r T t
T t

BSG St S T
S T t

σ
σ

σ

  − − ′− + − −  
 −  ′ =

′ −
         (61) 

so the pure Black-Scholes solution is  

( ) ( ) ( ), | dBS BSS t G St S T S Sπ
∞

−∞
′ ′ ′= Φ∫ .                   (62) 

From (59) and (61) one can see that both propagators are related by  

( ) ( )1| e |
eSC BSG St S T G St S Tρ
ρ

′ ′=                     (63) 

and from (60)  

( ) ( ) ( )1, e | d
eSC BSS t G St S T S Sρ
ρπ

∞

−∞
′ ′ ′= Φ∫                 (64) 

which due to (62), is equivalent to say  

( ) ( )
( )( ),

,

1, e ,
e

t T
SC BSt TS t S tρ

ρπ π= .                     (65) 

The last equation therefore, is the semi-classical approximation for the non equilibrium 
Black-Scholes solution for the option price, in presence of an arbitrary time dependent 
arbitrage bubble ( )f f t= . Here ( ),BS S tπ  is the arbitrage-free Black-Scholes solution 
for the specific option with contract ( )SΦ  and ( ),t Tρ  is the accumulative potential 
given by (56).  

In this way, the function ( ),t Tρ  renormalizes the bare arbitrage-free Black-Scholes 
solution. One important fact of this last equation is that it permits to obtain an appro- 
ximation of our Black-Scholes-Schrödinger interacting model from the classical Black- 
Scholes model, by means of a rescaling of the price variable, so usual computational 
codes can be easily modified to obtain an approximation for the interacting model. 

5. Interaction Potential and Arbitrage Bubble Calibration  

Now finally, after a long trip on the interacting model and its semi-classical approxi- 



M. Contreras et al. 
 

553 

mation, the main two point of this paper can be tackled, that is, the calibration and 
simulation problem for the arbitrage bubble and for the option price solution of the 
non equilibrium Black-Scholes model respectively.  

In order to solve the calibration problem, consider the empirical time-series of the 
underlying asset ( )empS t  and the real price of the option ( )emp tπ  in the interval 

[ ]0,t T∈ . One can ask for the interaction potential function  

( ) ( ) ( ) ( )
( )

r f t
U t u t

f t
µ

σ
−

= =
−

                       (66) 

associated to a time dependent arbitrage bubble ( )f f t=  that allows the solution 
( ),S tπ  of Equation (13) when evaluated over ( )empS t  to fit all the time-serie of 

( )emp tπ .  
One way to proceed is to take a definite functional form for the U function with 

parameters ( )0 1 2, , , , na a a a=a  . In this case the solution of (6) becomes a function of 
the vector ( ), ,S tπ π= a  and then, the set of coefficients { }ka  can be determined 
minimizing the quantity  

( ) ( )( ) ( )( )22

1
, ,

N

emp k k emp k
k

S t t tχ π π
=

= −∑a a                 (67) 

over all sets of coefficients { }ka . But it is not clear if such a minimum exists or there 
exist several local minima and the problem reduces to find the true one. Numerically 
this problem can turn to be impossible to achieve. Moreover, initial guess for U is a 
matter of taste, and it is not clear what the correct initial functional form is and from 
which the 2χ  minimization can start.  

In order to determine a guess function for the U potential a different path has to be 
follow, based on the semi-classical approximation and the notion of mispricing. The 
mispricing, denoted by ( )m t , is defined in [32] as the difference between the empirical 
option price ( )emp tπ  and the value of Black-Scholes solution ( ),BS S tπ  evaluated over 
the empirical underlying asset price ( )empS t   

( ) ( ) ( )( ),emp BS empm t t S t tπ π= − .                   (68) 

Naturally, the function ( )m t  above is known only over a discrete time set of points. 
Let ( )*U t  be the exact potential originated by the exact arbitrage bubble ( )*f t  which 
gives the correct empirical option price when the solution of the interacting Black- 
Scholes model (13) ( )* ,S tπ  is evaluated over the empirical underlying asset price 

( )empS t   

( ) ( )( )* ,emp empt S t tπ π=                       (69) 

the solution *π  makes the value of the Equation (67) be exactly zero. Now suppose 
that ( )*U t  potential is weak ( * 1U   ), in such a way that the semi-classical approxi- 
mation for the option price is valid, so the option price ( )* ,S tπ  can be replaced by its 
semi-classical approximation (65)  

( ) ( )( ) ( )( ) ( )
( ) ( )( )*

*
,* *

,

1, , e ,
e

t T
emp emp SC emp BS empt T

t S t t S t t S t tρ

ρ
π π π π= =     (70) 
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where  

( ) ( ) ( ) ( ) ( )
( )

*
* * *

*, d d d
T T T

t t t

r f
t T u U

f
µ λ

ρ λ λ λ λ λ
σ λ
−

= = =
−∫ ∫ ∫           (71) 

so the mispricing Equation (68) becomes an equation for the arbitrage bubble ( )*f t   

( )( ) ( ) ( ) ( ) ( ) ( )( )* * *, , ,, e e e , 0t T t T t T
BS emp BS empS t t m t S t tρ ρ ρπ π+ − = .        (72) 

Equation (72) is the most important equation of this paper, because it allows, from 
the knowledge about the empirical mispricing ( )m t , to obtain an estimation of the 
interaction potential ( )U t  and the arbitrage bubble ( )f t  by doing the following 
steps:  

1) Given the empirical mispricing ( )m t  in (68), the Equation (72) can be solved for 
the function ( )* ,t Tρ  by the Newton-Raphson method for each time instant. In this 
way, ( )* ,t Tρ  is determinated in a discrete set of points.  

2) Then, by a nonlinear regression a continuous curve ( )* ,t Tρ  that fits approxi- 
mately this discrete set of points can be estimated.  

3) From the definition of *ρ  in Equation (71) results  

( ) ( )*
* d ,

d
t T

U t
t

ρ
= −                          (73) 

and hence a time-dependent potential ( )*U t  can be determined in the weak limit 
from the time variation of the nonlinear regression for ( )* ,t Tρ .  

4) From (71) the arbitrage bubble *f  can be obtained according to  

( ) ( )
( )

*
*

*

U t
f t

r U t
σ
µ

=
− +

.                       (74) 

This procedure solves the calibration problem mentioned above at least in the weak 
limit. For the strong regime ( 1U  ) the semi-classical approximation could not longer 
be valid, but the functional form of the *U  potential given by (73) can still be a good 
starting point for obtaining an approximate value for the potential. 

6. Numerical Results and Option Price Simulations  

In order to test this method and to solve the simulation problem for the option price 
solution of the non equilibrium Black-Scholes model, the behaviour of an European call 
option is simulated, using the 90-days futures of the e-mini S&P 500 from September 
1998 to June 2007. The contract is set having the same underlying asset, opening and 
expiring dates than the S&P 500 futures. The option strike price is stablished as the 
underlying price at the opening date of the contract, assuming the market is going to be 
flat, in such a way that the option price is  

( )max ,0i iF Kπ = −                         (75) 

where iπ  will be the empirical simulated option market price at i-day, iF  is the 
e-mini S&P 500 future price and K is the option strike price. As it is well known E-mini 
S&P 500 options are priced in index points up to two decimals. One E-mini S&P 500 
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option can be exercised into one E-mini S&P 500 futures contract and since each 
contract has a multiplier of $50, the option price must also be multiplied by $50 to get a 
corresponding dollar value and every one point of change in the price of the option or 
the underlying futures for that matter is worth $50 per contract. 

The e-mini S&P 500 futures contracts used to simulate the option are specified in 
Table 1. 

The results are shown in the case of the first contract (e-mini S&P 500 from 12/ 
03/1998 to 10/06/1998). Figure 2 shows the mispricing ( )m t  in (68) between the 
simulated option price and the Black-Scholes price. For this calculation, the standard 
deviation σ  of the underlying returns from the previous 90 days is estimated and the 
three-months USA Treasury rate r at the initial day of the contract is taken as the risk- 
free rate. The estimated numerical values in fact are 0.0046σ =  and 0.00019r = . 

Now Equation (72) can be solved via Newton-Raphson to obtain the empirical ( ),e t Tρ  
function daily for this contract as it can be seen in Figure 3. Then a continuous potential 
model for this function is proposed of the form ( ), ct T a btρ = +  and a non-linear 
Levenberg-Marquardt regression is performed in order to fit parameters a, b and c. 
The estimated parameter values are 0.1242a = , 0.2159b = −  and 0.1162c = −  and 
Figure 3 shows the results.  

At this point, the time-dependent potential ( )U t  can be obtained by using Equation 
(73)  

 
Table 1. E-mini S&P 500 contracts.                                                        

1) e-mini S&P 500 12/03/1998-10/06/1998 

2) e-mini S&P 500 10/09/1998-09/12/1998 

3) e-mini S&P 500 10/12/1998-09/03/1999 

4) e-mini S&P 500 09/06/2005-07/09/2005 

5) e-mini S&P 500 07/09/2006-06/12/2006 

6) e-mini S&P 500 07/12/2006-07/03/2007 

7) e-mini S&P 500 08/03/2007-06/06/2007 

 

 
Figure 2. Mispricing ( )m t . 
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Figure 3. Empirical ( ),e t Tρ  (continuous line) and estimated ( ), ct T a btρ = +  (dashed line).

  

( ) ( ) ( ) 1d ,
d

ct T
U t u t cbt

t
ρ −= = − = −                   (76) 

as shown in Figure 4.  
Now by replacing the continuous potential ( ) 1cU t cbt −= −  in the interacting Black- 

Scholes Equation (13) and integrating it by means of the Crank-Nicholson method, the 
interacting solution for the option price π  of a call option can be derived, as shown in 
Figure 5.  

Clearly, the calibration of the potential ( )U t  allows to fit a more exact price than 
that of the traditional Black-Scholes model without considering arbitrage. The behavior 
of the interacting versus the usual Black-Scholes models can be tested for option pricing 
in terms of the 2χ  performance measure discussed before. The computed values of 
the 2χ  are: 14,980.76 for the Black-Scholes model and 1705.44 for the interacting 
Black-Scholes model, which difference is clearly visible in Figure 5.  

When the calibrated model is used with its respective ( )U t  potential for simulating 
the rest of the contracts considered in series of Table 1, similar results are found, that 
in all the cases defeat Black-Scholes predictions as showed in Figure 6.  

7. Conclusions and Further Research  

In this work, the arbitrage effects for a non-equilibrium quantum Black-Scholes model 
of option pricing are calibrated. This calibration procedure rests heavily on the semi- 
classical approximation of the interacting Black-Scholes model, which permits to con- 
struct an equation for the interaction potential, from which the arbitrage bubble and 
the interaction potential can be estimated. By using this estimated potential, the price 
trajectory of a real call option can be simulated for several contracts of the S&P index, 
which allow to take into account any market imperfection and price desaligments. Even 
though a semi-classical approximation for the solution of the interacting Schrödinger 
equation is used, the results are extremely good in predicting the real option price and 
its trajectory for every contract simulated. 

Since in real life, market imperfections always happen, almost on a regular basis,  
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Figure 4. Interacting potential ( )U t . 

 

 
Figure 5. Simulated option price P (continuous line), Black-Scholes model price B-S 
(dashed line) and interacting Black-Scholes model price CPV (dotted line) for the e-mini 
S&P 500 contract from 12/03/1998 to 10/06/1998. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6. (a) (b) (c) (d) (e) (f): Simulated option price P (continuous line), Black-Scholes 
model price B-S (dashed line) and interacting Black-Scholes model price CPV (dotted 
line) for e-mini S&P 500 contracts in Table 1. 
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hence arbitrage processes form part of the normal operation of the stock exchange, and 
logically mispricing is always going to exist. If this mispricing could be calibrated using 
the potential of the interacting Black-Scholes, even in a small part, it is expected that 
those results are always going to outperform the traditional Black-Scholes formulation. 
In this context, this model and its calibration procedure could be used very easily to 
simulate in a more exact fashion option pricing of any underlying asset. 

Future research could be directed to capture different potential patterns for different 
underlying assets and different market situations. Even in this case, the potential is 
short-lived and circumstantial, for example in the case of bubbles, rebounds, crises or 
critical information (for example, when Bernanke talked!), it is possible to use this 
methodology to capture the potential of the contract in a similar situation and to simulate 
the new contract. Alternatively, if the situation is normal and no special conditions are 
foreseen, a good practice would be to use the immediately preceding contract in order 
to calibrate the potential and therefore the quantum model; considering the reasons 
given above, in almost all the cases, it is expected that this model will defeat the 
traditional Black-Scholes model.  
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