

Developing Decision support systems for Traffic Control

Wilco Tielman - ProRail

ProRail

Contents

- ProRail
- Multi-Agent Simulation
- Predicting train delays
- Generating contingency plans
- Future of Traffic Control

My aim for today is giving a brief overview of some decision support implementations, the challenges faced and our future plans.

ProRail

Multi-Agent Simulation Background

- **Simulation**: Microscopic simulation is used within ProRail to gain insight into the impact of infrastructure and timetable changes. Optionally done with Human in the loop simulation.
- Innovation goal: Improve the accuracy of this simulator. With a more accurate way to simulate the future, we can have better insights into the robustness & weak spots of the future timetable, which can be used as input for, amongst others, traffic control.

Multi-Agent Simulation Background

• How: Add realistic train driver behaviour to simulation software via Machine Learning and a Multi-Agent System.

• Idea: Each train driver is simulated by its own agent. Making autonomous decisions based on what it believes to be the reality around it.

Multi-Agent Simulation Background

• **Results**: A better fit for approaching driving time distributions.

Multi-Agent Simulation Challenges

- Goal is not to make them drive optimally, but realistically
 - Approach: Use Machine Learning methods such that they express a range of behaviours

Multi-Agent Simulation Challenges

- Machine Learning has difficulties dealing with edge cases, combined with no room for true errors.
 - Approach: Combine Machine Learning methods with statistical fitting and rule based reasoning.
 - Rule based: Which action to take
 - When & how: Machine learning + statistical fits and hard limits.

Multi-Agent Simulation Challenges

- Driver model needs to be updated every time there is a significant change to outside operations.
 - Solution approach: Verify & validate the model over time and only make changes when needed.

Predicting train delays Background

- Predicting delays, current approach:
 - Travel information:

$$Delay_{20minLater} = Delay_{Now} - StoppingBuffer - 1$$

• Traffic control:

$$Delay_{20minLater} = Delay_{Now}$$

• Innovation goal: Give decision makers a windows into the future of 20+ minutes, so that they can pre-emptively act to minimize the impact of delays, conflicts, etc.

Predicting train delays Background

informs. RAILWAY APPLICATIONS

- Approach:
 - Two internships:
 - Both resulting in a better accuracy
 - 2. RAS competition predicting:
 - Delay Jumps >4min
 - Delay direction changes
 - Precise delay

Haahr, Jørgen Thorlund, Erik Orm Hellsten, and Evelien van der Hurk. "Train delay prediction in the netherlands through neural networks." (2019).

3. Prototype

Predicting train delays Challenges

- Machine Learning challenges:
 - Heavily unbalanced dataset
 - 'Natural' delay decay predictions are good, but not the interesting part
 - Predicting delay jumps is difficult

Predicting train delays Challenges

- Even if the Machine Learning model performs 'better', it was not deemed an improvement.
- Error type matters a lot to decision makers
 - The current approaches never give a False Positive.
 - The higher the delay jump, the more important it is, but the higher the error rate is as well.
- Taking into account train-train interactions

Generating contingency plans Background

Contingency plans:

- >3500 pre-designed plans to deal with disruptions
- Manually designed

• Innovation goal:

 Implement a decision support system to speed up this design process

ProRail

Maatregel 11.090

Amsterdam CS - Utrecht CS Amsterdam Biilmer - Abcoude Ingangsdatum:

Definitiet 30 mei 2016

2 sporen (AB en AN) tussen Amsterdam Bijlmer Arena - Abcoude zijn versperd.

Reizigerstreinen			
Serie	Richting	Bijzonderheden	Werkverdeling
Blijft rijden	ı		
105	Amsterdam CS - Utrecht CS		
120	Amsterdam CS - Utrecht CS		
220	Amsterdam CS - Utrecht CS		
400	Amsterdam CS - Utrecht CS		
800	Amsterdam CS - Utrecht CS		
3500	Schiphol Airport - Utrecht CS		
Inleggen			
73000	Utrecht CS - Maarssen v.v.		Keuze LVL-DVL
Omleiden			
104	Litracht CS Ameterdam CS	via Hue	Kauza I VI DVI

Generating contingency plans Background

Approach:

- Model it as a search tree
- Search via a form of Branch and Bound
- Steps:
 - 1. Pick a disrupted train to adjust
 - 2. Determine 'all' relevant possible plan adjustments
 - 3. Check for new conflicts for each possible plan adjustment
 - 4. Pick 'best' option, and go back to step 1

Generating contingency plans Challenges

- Optimization challenges:
 - Problem size & business rules
 - Not spending too much time on nonrelevant / equivalent solutions
 - Getting the heuristic to always 'quickly' find a first solution

Node progress 67.41

Generating contingency plans Challenges

- Implementation Process challenges:
 - Domain size
 - IT department unfamiliar working with innovative techniques
 - Giving guarantees up-front is difficult

Surprisingly the users are not the challenge here

Future of Traffic Control General

- More flexible control area sizes adjustable as needed
- Adjusting roles into a safety controller and traffic controller
- IT that supports this change in communication and information needs
- More automation and decision support for routine tasks

Questions?