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Abstract
In spite of avalanche preventive and treatment measures for the control of the dreaded COVID-
19 disease, scientists and the health sectors are yet to ascribe an outright medical prescription for
the aforementioned viral load. A situation that is further aggravated by the continuous emergence
of varying strings of the viral load. In this present study, tinkering on formulating coherent
control measure in Nigeria, with the incorporation of a triple-bilinear control functions, we
present a theoretical prediction model that accounts for the determinisms of globally feasible
COVID-19 mathematical model under a hypo-hyper infectious environs. The goal of the study is
to investigate the viability and well-posedness of the derived model. Under an expanded 10-
Dimensional deterministic sub-population, the study explored classical fundamental theory of
differential equations with the incorporation of Cauchy-Lipschitz conditions. The results of
numerical simulations, does not only affirmed the non-negativity model state-space but
remarkably, established the model of well-posedness.

Keywords: Triple-bilinear control, hypo-hyper-infection, super-spreader, Cauchy-Lipschitz-
condition, well-posedness

1. Introduction
In history of mankind in relation to
infectious diseases, the global world was and
is still been subjected to an unprecedented
death toll, loss of manpower and economy
degradation by the ravaging infectious
disease called Coronavirus 2019 or COVID-
19. Perturbingly, is the fact that the history
of COVID-19 in terms of its origin,

transmission mode and controls will for a
long period remain sacrosanct in the
scientific world, following it emergence in
late December, 2019, in the city of Wuhan,
China [1,2,3].

Zoonotic have confirmed that the
transmission capability of the virus is
exponential in nature following it
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asymptomatic incubation period of
2 14 days, which is often buttress by it less
clinical manifestation but highly infectious
[4,5,6,7]. The spread of the virus have been
adjudged to cut across all human-race, sexes
having the elderly age 65 years becoming
more vulnerable, [8,9,10]. The main
reservoir of COVID-19 among other notable
outlets is the environment (space), which
when in contact with human, lead to
environment-to-human (hypo-infectious)
transmit; and the human-to-human (hyper-
infectious) transmit [11,12,13].

Mathematical modeling among other
approaches, have been a method through
which scientific investigations are being
conducted in understanding both the
transmission and control mechanisms of the
virus. For instance, a number of models have
been formulated that study either of the
aforementioned transmission modes. The
study [11], using under environment-to-
human mode, investigated the
transmissibility of novel COVID-19 using
bats-Host-reservoir-people transmission
approach. Considering multiple preventive
and treatment measures, a dual-bilinear
controls was used to study the interactions
between host viral loads and varying
subpopulations under human-to-human
transmission mode [4]. In this study, the
model explores deterministic approach
leaving a very high significant results. For
more mathematical models on COVID-19,
see for examples [14,15,16,17,18,19].
Notably, further reviews have shown that
methodological combinations for triple-
bilinear control functions in presence of
hypo-hyper transmission modes have not
been the desired attention within the ambits
of the global world.

Therefore, accounting for the
aforementioned limitations, this present
proposed model in considering a triple-
bilinear controls on an expanded 10-
Dimensional deterministic model,
concurrently tinker towards accounting for
the methodological combinations of hypo-
hyper transmission modes. More so, the
study seeks not only to importantly, verify
the well-posedness of the anticipated
complex proposed model but also,
investigate the positivity of the ascribed
state-space of the model and the uniqueness
of solution using the Lipschitz condition. In
particular, Lipschitz condition is defined as:
a function : [ , ]f a b  is said to satisfy the
Lipschitz condition if there is a
constant M such
that ( ) ( )f x f x M x x     , [ , ]x x a b ,where

M is the Lipschitz constant.

Knowledgeably, while section 1 explicitly
highlighted the introductory part, section 2,
treats the materials and methods, defined by
the study problem statement and derivation
proposed model. Section 3 is devoted to the
determination of model mathematical
properties. The numerical illustrations and
results analysis are presented in section 4
and finally, the discussion as well as
conclusion of study forms the pivot of
section 5. Most remarkably, the verification
of the present formulation is particularly for
a complex model of its magnitude, a most
vital step worthy of investigation.

2. Material and methods
In this present proposal, which is conceived
as a prerequisite to a forthcoming research
on the application of triple-bilinear control
functions for COVID-19 treatment dynamics,
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we seek to present theoretical predictions
that account for the determinism and the
well-posedness of a hypo-hyper COVID-19
infection model. The material here shall be
constituted by the interactions of aerosol
viral load with 10-Dimenssional
deterministic dynamic population to be
investigated using designated triple-bilinear
control functions in the form: a bilinear non-
pharmaceutical (face-masking and social
distancing), bilinear pharmacotherapies
(hydroxylchloroquine - HCQ and
azithromycin – AZT) and bilinear immunity
controls (adaptive immune response and
BNT162b2 – vaccine). Theoretical analysis
shall explore classical fundamental theory of
differential equations with the incorporation
Cauchy-Lipschitz conditions. Remarkably,
we intend to explore the material and
methods for this present investigation as a
function of study problem statement arising
from study motivational model and the
derivation of study mathematical equations.

2.1 Problem statement of proposed study
For this investigation, we present a succinct
review of two compactible motivating
models. For instance, a COVID-19
transmission model, which studied case of
COVID-19 infection in Wuhan, China, early
2020, was conducted [1]. The model was
formulated and studied with the aim of
giving an insight to the transmission mode
and the consequential behavioral attitude
upon becoming aware of infection status. Of
note, the study was devoid of any control
functions. Following the significant results
thereof, the model was extended and
redefined with incorporation of screening
method and studied under dual-bilinear
control functions (bilinear non-
pharmaceutical – face-masking and social

distancing and bilinear pharmacotherapy –
hydroxylchloroquine, HCQ and
azithromycin, AZT), [4]. The results were
emphatically significant and served as a
leeway to future and related studies by the
scientific communities.

None-the-less, these two models were
not without its lapses, which include the fact
that both studies were devoid of the role of
available vaccines. More so, the dual role of
adaptive immune effectors as well as
immunity delay lag were not given the
desired attention. Therefore, in attempt to
incorporate the aforementioned lapses, the
present study seeks to present an expanded
10-Dimensional deterministic dynamic
mathematical model that incorporate the
aforementioned limitation and sought to give
an insight to both the transmission and
enhanced treatment dynamics of the deadly
disease.

2.2 Derived equations for proposed model
Following the aforementioned limitations,
the present model is propose is an improved
expanded 10-Dimensioanl deterministic
mathematical dynamic model, constituted by
a set of susceptible ( )pS t , the exposed
class ( )pX t , the unaware asymptomatic
infectious population ( )uA t , subpopulation of
COVID-19 aware infectives ( )aI t , isolated
infectious subpopulation ( )sI t , proportion of
super-spreaders ( )sS t , proportion of
hospitalized infectives ( )iH t , recovered
population ( )pR t , the immune effectors
( )iE t and ( )vC t representing the concentration

of infectious coronavirus. Thus, this
proposed model is bounded by the following
assumption in addition to those of its
motivating models:
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Assumption 1:

i. All state-space are all non-
negative i.e. 0iN  .

ii. All the state-space are bounded
i.e. 0 ( )iN t  

iii. Only severely infectious die due
to virus i.e. 1,..,5 0i   .

Moreso, if the control functions known as
triple bilinear include: bilinear non-

pharmaceuticals (face-masking and social
distancing), bilinear pharmacotherapies
(hydroxylchloroquine - HCQ and
azithromycin – AZT) and bilinear immunity
controls (adaptive immune response and
BNT162b2 – vaccine), then for the
population with volume measure in 3/cells ml ,
the differential epidemiological dynamic
equations for the present study is derived as:

1 1 2 1
ˆ( ) ( ) ,p

p i p p i p p

dS
b m E X R N S v S

dt
        

2 3 1 1 1
ˆ( ) (1 ) ( ) ,p

i p i u p i p

dX
N S m E A u X m E X

dt
         

1 1
1 2 1 2 1 2 2 3(1 ) [(1 ) (1 )(1 ) ] ( ) ,u

p u i u
dA

u X u k a a e A m E A
dt

               

1 1
2 1 2 2 1 1 1 1 2 2(1 ) [(1 )(1 ) (1 )] ,a

u a a
dI

u k e A a a a I I
dt

                

1 1 1 1 2 1 2 4 2 2[(1 )(1 ) ] ( ) ,s
a s s h s s

dI
a I a S a a I v I

dt
            

1 1 2 1
2 1 2 1 2 1 2 2 5 3(1 ) [(1 ) ] ( ) ,s

u a s s s s
dS

e A I a S e S S
dt

                      

1 1

2 1

1 2 1 1 2 2

1 2 1 2 3 1

(1 )(1 ) (1 )(1 )[ ]
,

[(1 )(1 )[ ]] ( )
u a h si

h i i

a a e A a a I IdH
dt a a e H H

 

 

  

    





       
      

(1)

2 1 2 1
1 2 2 1 2 1 21 (1 ) [(1 )(1 )[ ]] ,v v

v s h i v v
dC C

s C e S a a e H C
dt Q

           
           

 

1 2 2 3 1 2( )p
i s s p p

dR
H v I S v S R

dt
          ,

( ) ( )
( ) ( )

i E s i E s i
E i i E i

s i b s i d

dE b S H d S H
E E E

dt S H C S H C
 

 
   

   
,

with initial conditions
0( ) 0,pS t  0( ) 0,pX t  0( ) 0,uA t  0( ) 0,aI t 

0( ) 0,sI t  0( ) 0,sS t  0( ) 0,iH t  0( ) 0pR t  ,

0( ) 0vC t  , 0( ) 0iE t  for all 0t t and having
system mass action ˆ( )i iN defined by

5

1 2
1

ˆ ˆ( ) (1 ) ( )v

V

C
i i i iQ C

i
N u u c N 



  
     

  
 , 1,....,5i  , (2)
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where ˆ ( )i p u a s iN X A I S H     .Of note,
system (1) represent an expanded
environmental-to-human (hypo infectious)
and human-to-human (hyper-infectious)
untreated COVID-19 dynamic model,
provided control functions fc is such

that ( , , , ) 0f i i i ic u a m v  , 1,2i  for
all ˆ( ) 0, 1, ..., 5i N i   .

Therefore, accounting for assumption 1 and
system (1), we represent in fig. 1, below, the
graphical image of derive model

Fig. 1. Graphic image ofCOVID-19 infection dynamic under multi-therapies and vaccination
control functions

The detail description for system (1) and its
corresponding parameter variables as well as
their generated numerical data are presented
in tables 1 and 2 below:

Table 1: Description of state spac- with values – model (1)
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Variabl
es

Dependent variables Initia
l
value
s

Units
Description

pS Susceptible population to
COVID-19 virus

0.0

ce
lls
/m
l3

pX Exposed population 0.0
uA Unaware asymptotic infectious

population
0.0

aI Aware infective population 0.0
sI Isolated infectious population 0.0
sS Super-spreaders infectious

population
0.0

iH Hospitalized infectious
population

0.0

pR COVID-19 recovered population 0.0
vC

iE

Aerosol infectious virions

Immune effectors

0.025

0.1

/copies ml

Note: Tables 1is an inclusive modified data from models [4,17]

Table 2: Description of constants and parameter values for model (1)

Paramet
er
symbols

Parameters and constants Initial
values

Units
Description

pb Source rate of susceptible population 10.5pb  3 1ml d

 Natural death rate for all sub-population 0.1

da
y-
1

k Clearance rate of virus 0.25
( 1,..,5 )i i  Death rates due infection at varying stages 0.2;0.3;0.0;0.4;

0.5
1,2i  Rate at which aI progresses to sI and sS 0.3, 0.5
( 1 , .. , 5 )i ic  Rates of contact of susceptible with various

infectious stages
0.5;0.4;0.3;0.2;
0.1

1, 2 ,3i  Rates of recovery from iH , sI and sS 0.5; 0.27;0.13
(1,..,5 )i Probability of interactions of susceptible with

varying infectious classes
0.32;0.27;0.17
5;
0.125;0.05

3 1 1ml vir d 
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1,2i  Proportions of uA that progresses to iH and
sS

0.3;0.18

m
l3 d

-

 Proportion of pX becoming uA 0.58
 Proportion of uA becoming aI 0.32

1,2,3i  Proliferation of recovered population to
susceptible

0.14;0.6, 0.24

s Proportion of sS progressing to sI 0.22
h

1,2i 

Proportion of sI progressing to iH

Proportion of aI progressingto sI and iH

0.14
0.34; 0.48

1 2(1 )   Proportion of aI that progresses to sS 0.18

( 1, 2 ) ( )i iu t Rates at whichface-masking and social
distancing are used 1 2

[0,1] \ 0
:

( , ) 0.5
i

i

u
u

u u
  

   

( 1, 2 ) ( )i ia t Treatment control functions (HCQ and AZT) [0,1]ia 

1,2iv  Vaccination rates to pS and sI compartments 0.06; 0.04 day-1

1,2im  Immune-induced recovery and clearance
rates

51.0 10 3 3 1ml cell d 

1,2i  Average lifetime of immature viruses 0.01; 0.01
s Per-capita rate of aerosol viral load 0.73 day-1
Q Carry capacity of aerosol viral load 5.0 1cellsml

v Virions death rate 0.33 day-1
 Rate of mass action (incidence rate) 0.5
E Source rate for immune effectors 0.8 1 1cellsml d 

Eb Maximum birth rate for immune effectors 0.3 day-1

bC Saturation constant for immune effectors
birth

100 1cellsml

Ed Maximum death rate for immune effectors 0.25 day-1

dC Saturation constant for immune effectors
death

500 1cellsml

E Natural death rate for immune effectors 0.1 day-1

Note: Tables 1are generated and modified data, [4, 20, 21,22, 23]

3.0 Mathematical Analysis of derived
model

In this section, we investigate the
mathematical properties that constitute our
basic system (1). These include: the
boundedness of system solution in certain

invariant region denoted by  , verification
of non-negativity of system solutions and
existence and uniqueness of system
solutions

3.1 Boundedness of solution



ON DETERMINISM, WELL-POSEDNESS AND THE APPLICATION OF CAUCHY-LIPSCHITZ CONDITIONS FOR
A HYPO-HYPER COVID-19 EPIDEMIC MODEL Bassey and Ewona

Theorem 1: Let D denote the entire
region understudy, then all solution of model

(1) is bounded and: positively invariant in
the region

D N v    , (3)
where

 9( , , , , , , , , ) : 0 ( ) ( ) ...... ( ) p
N p p u a s s i p i p p i

b
S X A I I S H R E S t X t E t



 
        

 
(4)

and

: 0 ( ) p
v v v

v

b
C C t


 

 
     

 
, (5)

for all 2 1 2 1
1 2 2 1 2 1 21 (1 ) [(1 )(1 )[ ]]v

v s h i
C

s C e S a a e H
Q

           
          

 
.

Proof Invoking existing results for boundedness of solutions, [4, 20, 34], we begin by
diffusing basic model (1) into human ( )N t and virus populations ( )vC t . Then, taking the sum of the
derivative for ( )N t from the model (1), we have

ˆˆp E v i
dN b N N E
dt

       

If population is free of virus, then death rates due to infection at varying stages denoted by
( 1,,,5)ˆ 0i i   . That is, we have

p E v i
dN b N E
dt

     

or

p E v i
dN N b E
dt

      .

Integrating in the presence of initial conditions, we obtain
( ) ( )

( ) (0) tp E p Eb b
N t N e  

 
  

   
 

.

Thus, taking limit as t , we have
( )

( ) p E

t

b
N tLim





 . (6)

Similarly,

( ) pV
s i v v v v

bdC
S H C C

dt
   


     ,

or

( ) p

t v

b
N tLim


 

 . (7)

From Eqs (6) and (7), we see that the human and virus populations are biologically feasible
in the regions (4) and (5), which is defined by Eq. (3) i.e.
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9
D N v         .

This imply that solution of model (1) with initial conditions is bounded in the invariant
region (3) for all [0, )t  .therefore, the system is well posed.


3.2 Non-negativity of model solutions

We use the following theorem to show that the system solutions remain positive for all 0t  .

Theorem 2: Let   10(0), (0), (0), (0), (0), (0), (0), (0), (0), (0) 0p p u a s s i p v iS X A I I S H R C E   be the initial

conations of system (1). Then, the solution set
 ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )p p u a s s i p v iS t X t A t I t I t S t H t R t C t E t of system (1) is non-negative for all 0t  .

Proof:We invoke existing results of positivity, [21,25]. Then, taking on the equation of system
(1), we deduce that for all 0t  ,

1 1 2 1
ˆ( ) ( ) ,p

p i p p i p p

dS
b m E X R N S v S

dt
        

where fromEq. (2),

5

1 2
1

ˆ ˆ( ) (1 ) ( )v

V

C
i i i iQ C

i
N u u c N 



       
  
 , 1,....,5i  .

That is,
5

1 1 2 1 2 1
1

ˆ(1 ) ( ) ( )v

V

p C
p i p p i i i p pQ C

i

dS
b m E X R u u c N S v S

dt
   



  
         

  


Differentiating, we have
5

1 2 1
1

ˆ(1 ) ( ) ( )v

V

p C
p i i i pQ C

i

dS
b u u c N v S

dt
  



            
    
 . (8)

Then, at zero mortality rate, Eq. (8) becomes

1( )p
p p

dS
b v S

dt
   ,

or

1( )p
p p

dS
v S b

dt
   . (9)

This is a first order homogeneous differential inequality. Applying the integrating
factor 1 1( ) ( )v dt v tIF e e    , we have

1 1 1( ) ( ) ( )
1  ) . (v t v t v tp

p p

dS
v S b

dte e e       ,

or
1 1( ) ( )

1( ) v t v t
p p

d v S b
dt e e       .
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Integrating, we have
1 1( ) ( )

1

( )
( )

v t v tp
p

b
S t A

ve e 


  


,

where A , is the constant of integration. Now, simplifying, we have
1( )

1

( )
( )

v tp
p

b
S t A

v e 


  


.

Solving for A and taking initial condition for 0t  , and then by substituting the resulting value, we
have

1( )

1 1

( ) (0)
( ) ( )

v tp p
p p

b b
S t S

v v e 

 
  

     
,

or

 1 1( ) ( )

1

( ) (0)
( ) 1

v t v tp
p p

b
S t S

ve e 


    

  , (10)

where (0)pS represent the susceptible population for all 0t  . Also, we note that

for 0t  , ( ) (0)p pS t S , and for t ,
1

( ) p
p

b
S t

v



, which implies that

1

0 ( ) p
p

b
S t

v
 


for all

0 t   . Furthermore, taking on the entire system (1), then from Theorem 1, we have by
recursive argument

 ( )
( ) (0) 1t tp Eb

N t N e e 


 
   , (11)

 ( ) (0) 1t tp
v v

v

b
C t C e e 

 
 

   , (12)

since, ( )N N t  , ( )C vC t  and

2 1 2 1
1 2 2 1 2 1 21 (1 ) [(1 )(1 )[ ]]v

v s h i
C

s C e S a a e H
Q

          
           

 
.Therefore, taking queue from

[26],we observe that all solutions of system (1) is such that the set
   10(0), (0), (0), (0), (0), (0), (0), (0), (0), (0) 0p p u a s s i p v iS X A I I S H R C E   is autonomous for all 0t  .

Hence, the proof is completed.


Remark 1: We shall numerically illustrate the system positivity by simulating Eqs. (10), (11)
and (12) in our next section.

3.3 Existence and uniqueness of system solution

Suppose 10:   such that
( ), ( ), ( ), ( ), ( ),
( ), ( ), ( ), ( ), ( )
p p u a s

s i p v i

S t X t A t I t I t
t

S t H t R t C t E t
 
 
 



and
10:F  such that
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 
( ), ( ), ( ), ( ), ( ),

( ) ( )
( ), ( ), ( ), ( ), ( )

p p u a s

s i p v i

S t X t A t I t I t
t F t

S t H t R t C t E t

    
   
      

 .

Then, system (1) becomes

 ( ) ( )t F t  , 0(0)   .

Theorem 3: (Existence and Uniqueness of solutions)
System (1) is continuous and satisfies Cauchy-Lipschitz condition.

Proof: Here, invoking results from proofs of existence and uniqueness theorem, [20], we show
for one equation and the rest follows same procedure. Let

5

1 1 2 1 2 1
1

ˆ( , ) (1 ) ( ) ( )v

V

p C
p i p p i i i p pQ C

i

dS
G t s b m E X R u u c N S v S

dt
   



  
          

  
 . (13)

Then, the partial derive with respect to the susceptible population pS gives
5

1 2 1
1

( , ) ˆ(1 ) ( ) ( )v

V

C
i i iQ C

i

G t s u u c N v
S

  


   
          

 . (14)

We note that the function ( , )G t s and the corresponding partial derive ( , )G t s
S




is defined and

continuous at all point ( , )t s . Similarly, the right-hand functions of other equations and their
corresponding partial derivatives satisfy these conditions. Hence, from the existence and
uniqueness theorem, there exists unique solution for

( ), ( ), ( ), ( ), ( ),p p u a sS t X t A t I t I t ( ), ( ), ( ), ( )s i p vS t H t R t C t and ( )iE t in some open intervals centered at 0t . Next,
show that the solution satisfies the Lipschitz condition. That is, using Eq. (13), we observe that

5

1 1 2 1 2 (1) 1 (1)
1

(1) (2)
5

1 1 2 1 2 (2) 1 (2)
1

ˆ(1 ) ( ) ( )

( , ) ( , )
ˆ(1 ) ( ) ( )

v

V

v

V

C
p i p p i i i p pQ C

i

p p
C

p i p p i i i p pQ C
i

b m E X R u u c N S v S

G t S G t S

b m E X R u u c N S v S





   

   







   
              

   
              





 
5

1 2 1 (1) (2)
1

ˆ( ) (1 ) ( ) ( )v

V

C
i i i p pQ C

i
u u c N v S S  



   
             



5

1 2 1 (1) (2)
1

ˆ(1 ) ( ) ( )v

V

C
i i i p pQ C

i
u u c N v S S  



   
            

 .

This implies that
(1) (2) (1) (2)( , ) ( , )p p p pG t S G t S M S S   ,

where,
5

1 2 1
1

ˆ(1 ) ( ) ( )v

V

C
i i iQ C

i
M u u c N v  



   
           

 depicts Lipschitz constant with

 1 2: [0,1] \ 0 ( , ) 0.5i iu u u u    . In a similar procedure, we show for the remaining variables
satisfying the Cauchy- Lipschitz condition. Thus, there exists a unique
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solution ( ), ( ), ( ), ( ), ( ),p p u a sS t X t A t I t I t ( ), ( ), ( ), ( ), ( )s i p v iS t H t R t C t E t for all 0t  .

4.0 Numerical simulations and analysis
Having determined the system proposed
model and its corresponding theoretical
predictions, we shall
present here, the numerical illustrations for
system positivity deploying some key state-
space. Of note, the simulations shall explore
in-built rkfixed Runge-Kutta of order of
precision 4 in a Mathcad software. Tables
1and 2provides hypothetically generated
data in relation to verified data, [4, 20, 21,22,
23].

4.1 Simulations of system positivity
Here, we numerically illustrate system
positivity by simulating Eqs (10)– (12),
noting that control functions denoted
by  1,2i ic  is zero, where. ( , , , ) 0i i i i ic u a m   .

Thus, invoking program algorithm and its
result as depicted by Appendices A1 and A2,
we simulate as depicted by the graphical
images ofFigs 2–4 below:

Fig. 2: Graphical image for non-negative COVID-19 susceptible popn,, 0t 

From Fig. 2, we observe that under zero
mortality rate, the susceptible population
exhibit smooth incline linear curve with

value range of 30 ( ) 750.52 /pS t cells mm  for
all 30ft  days.
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Fig. 3: Graphical image for non-negative COVID-19of varying human popn., 0t 

Sustaining zero mortality rate, Fig. 3,
represent the simulation of the entire human
population ( )N t . We observe that the varying

human population exhibit smooth incline
linear curve with values varying the range

30 ( ) 878.636 /N t cells mm  for all 30ft  days.

Fig. 4: Graphical image for non-negative COVID-19of varying human popn., 0t 

In Fig. 4, we simulate the concentrated
aerosol viral load. Observe is asmooth
incline linear curve representing positive
COVID-19 state-space with value in the
range of 30.025 ( ) 44.925 /vC t copies ml  for all

30ft  days. Clearly, Figs 2-4 indicates that
the proposed model exhibit system
boundedness, non-negativity and existence
and uniqueness of system solutions exist as
predicted in theorems 1-3.

5.0 Conclusion
Triggered by the conceptual complex nature
of formulating an expanded 10-Dimensional
deterministic COVID-19 model that is
capable of accounting for the mathematical
and epidemiological application of triple-
bilinear control functions under combined
hypo-hyper transmission modes, the present
study had tinkered towards establishing the
anticipated model. More importantly, to

verified that the model exhibited non-
negative and the well-posedness of the
system solutions. Proposed model was
formulated and system well-posedness
investigated theoretically using fundamental
theory of differential equations with the
incorporation of Cauchy-Lipschitz condition.
Furthermore, numerical illustrations were
computed and results obtained. The results
indicated that proposed model does not only
exhibit non-negativity of system state-space
but is sufficiently bounded and well-posed.
Therefore, the present model exhibit
sufficiency for the investigation of system
mathematical and epidemiological well-
posed within the dynamical invariant
region 9

D N C        .

6.0 Data availability
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APPENDIX A – Figures 2-4

A1. Program Algorithm for positivity of COVID19 model

Sp 0.0
N0 0.0 C0 0.0 Ss 0.0 Hi 0.0

z 3

H 0.0 0.0 0.0( )T

F t H( ) D s 1
Cv
Q







 Cv 1 1 2( ) 2[ ] e 2 1
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A2. Result from simulations

J rkfixed H 0 T n F( )

1 2 3 4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

0 0 0 0
0.3 7.505 8.786 0.449
0.6 15.01 17.573 0.898
0.9 22.516 26.359 1.348
1.2 30.021 35.145 1.797
1.5 37.526 43.931 2.246
1.8 45.031 52.718 2.695
2.1 52.536 61.504 3.145
2.4 60.042 70.29 3.594
2.7 67.547 79.076 4.043
3 75.052 87.863 4.492

3.3 82.557 96.649 4.942
3.6 90.062 105.435 5.391
3.9 97.568 114.221 5.84
4.2 105.073 123.008 6.289
4.5 112.578 131.794 ...


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