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Abstract
This study on generalized linear model (GLM) aimed to classify a group of unclassified
statistical distributions, namely, the: error, Gumbel, logistic, Pareto, and power function
distributions into what is regarded as the exponential family of distributions. Conscious
of how probability distributions (or density) functions are classified into this family, we
were able to show that, indeed, the listed distributions all belong to the exponential
family since, for a given parameter of interest  it was possible to write their probability
functions  xf in the form         xdcbxa  exp . More so, in this study, the
linear predictors of all distributions were derived, and observed not to be in canonical
form as the term   xxa  ; their corresponding link functions were also deduced. These
findings were postulated as theorems, with the results summarized in tables. However,
our results also showed that when put in exponential forms, the error, Pareto and power
function distributions all had   0xd ; whereas, the Gumbel and logistic distributions
had   0xd . Finally, based on the study so far, it was suggested that scholars should
explore the possibility of classifying other density or distribution functions not
considered in this study, as this may lead to deeper practical and theoretical results. It was
also suggested that the maximum likelihood estimates of the newly classified
distributions should be obtained as this could make a new research direction to an
interested scholar.
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1. Introduction
In statistics, and in experimental

designs in particular, the concept of
generalized linear models (GLMs) has
become indispensably relevant by virtue
of being a flexible generalization of the
ordinary linear regression (OLR) in the

sense that it accommodates response
variables which have error distribution
models other than a normal distribution
(otherwise regarded as non-normal
response variables). The GLM
generalizes OLR by allowing the linear
regression model to be related to the
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response variable via a link function, and
also by allowing the magnitude of the
variance of each measurement to be a
function of the expected value (Annette,
2002; Altham, 2011; Montgomery,
2013).

Before the formulation of the GLM,
various transformation techniques were
used to tackle the problem of non-
normal response variables. The most
common and efficient transformation
technique among such lot was the Box-
Cox technique – a technique which
showed how the parameter  of the
transformation could be obtained from
the “power family” of transformation

yy  (Cochran, 1992; Cox & Reid,
2000; Oehlert, 2010; Montgomery,
2013). In 1964, G. E. P. Box and G. M.
Cox explained how the transformation
parameter  may be estimated
simultaneously with the other parameters
of the model such as: the overall mean
and the treatment effects (Cox & Reid,
2000; Montgomery, 2013). The theory
underlying their technique used the
method of maximum likelihood, whereas
the main computational steps consists of
performing (for various values of  ) a
standard analysis of variance on
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geometric mean of the observations.
Although Box-Cox technique has

remained one of the easy and efficient
means for selecting the form of the
transformation, recent studies have
shown that the use of data
transformation techniques could pose
several difficulties. One difficulty is that
most experimenters may be
uncomfortable working with responses
in the transformed scale (Cochran, 1992;
Cox & Reid, 2000; Oehlert, 2010).
Whereas a more serious difficulty is that
a transformation can result in a
nonsensical value for the response
variable over some portion of the design
factor space that is of interest to the
experimenter (Cochran, 1992;
Montgomery, 2013). A third difficulty is
that there is no assurance that a
transformation will effectively attain all
of the objectives of transformation of a
non-normal response variable
simultaneously (Montgomery, 2013).

It was with a view to overcoming
difficulties encountered using
transformations, that GLM was
formulated in 1972 by John Nelder and
Robert Wedderburn as a technique
which essentially unifies linear and
nonlinear statistical models (including
linear, logistic, and Poisson regressions)
with both normal and non-normal
responses. To achieve this, they
proposed an iteratively reweighted least
squares (IRLS) technique for maximum
likelihood estimation (MLE) of the
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model parameters (McCullagh & Nelder,
1989; Lindsey, 1997; Heather, 2008;
Marlene, 2004; Farzana, Borhan, &
Ataharul, 2016).

The development of certain GLMs to
obtain link functions, linear predictors,
and maximum likelihood estimates of
parameters, with observations which
were distributed according to known
distributions in the exponential family,
had been established. So far, notable
distributions in the exponential family
are: Bernoulli, beta, binomial, chi-
squared, Dirichlet, exponential, gamma,
geometric, inverse Gaussian (Wald),
logarithmic series, lognormal,
multinomial, multi-normal, negative
binomial, Gaussian, Poisson, Rayleigh,
von Mises, Weibull, and Wishart
distributions (McCullagh & Nelder,
1989; Lindsey, 1997; Lindsey & Jones,
1998; Rodriguez, 2001; Heather, 2008;
Marlene, 2004; Mathew, Yuan, Yichong
& Silun, 2016; Farzana, et al., 2016).
This study gave a GLM-based approach
to obtaining the linear predictors and
link functions based on other
distributions not yet classified as
members of the exponential family.

In recent years, since its formulation
in 1972, there have been many scholarly
publications on the GLM, ranging from
publications that describe general
aspects of the GLM (e.g. Rodriguez,
2001; John, Patricia, Aaron & Jeffrey,
2007; Khuri, 2010; Murtala, Udokang,
Raji & Bello, 2015, David, 2018, etc.),
to real-life applications of the GLM (e.g.
Lindsey, 1997; Jun, 2011; Mark, Anand
& Dan, 2016; Moffat & Emmanuel,

2018, etc.), and then theoretical
developments based on the GLM (e.g.
Michael, 2003; Sourish, 2008; Sourish &
Dipak, 2014, etc.). Such works were
restricted to theories and applications
based on different types of data from the
binomial, Poisson and exponential
distributions. Sadly, theoretical
extensions and applications of the GLM
based on data types from the beta, chi-
squared, negative binomial, Dirichlet,
gamma, geometric, logarithmic series,
lognormal, multinomial, multi-normal,
Gaussian, Rayleigh, von Mises, Weibull,
and Wishart distributions appear to be
noticeably scanty, if there are. Most
popular among very recent publications
is the work of Farzana, et al. (2016)
which attempted a derivation of the
GLM for the geometric distribution by
showing its detailed estimation and test
procedure with a view to discussing the
possible challenges faced when applied
to real life data. A major gap noticed
from all these studies taken into
consideration is that none of such studies
have attempted to derive the GLM for
other distributions not yet classified as
being exponential; and even when the
form of the link functions and the
deviances can be stated for some of such
distributions, no application had been
shown yet. This study was an attempt to
overcome a part of this gap. In this
regard, the objectives were: (i) to show
whether or not, each unclassified
distribution were members of the
exponential family of distributions, (ii)
to obtain the linear predictors for the
unclassified distributions via stated
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theorems, and (iii) to deduce the link
functions for the unclassified
distributions.

2. Empirical review of literature
Moffat and Emmanuel (2018)

identified the problem associated with
Ordinary Least Squares (OLS) in
relation to the violation of assumptions
of normality and constant variance.
Mainly, the possible problem
encountered when these assumptions are
violated is the introduction of biases in
the parameters of the fitted model
thereby threatening the model’s
efficiency. The authors applied GLM to
overcome such problems and to ensure
the efficiency of the model parameters.
The major reason they used GLM was
that the GLM does not require
transformation and assumptions of
classical regression; instead, it employs a
probabilistic approach in transforming
the expected value of the dependent
variable. The data used were obtained
from the Central Bank of Nigeria
Statistical Bulletin from 1981 to 2016,
with each series consisting of 36
observations. The Gross Domestic
Product (N’ Billion) was considered as
the dependent variable ( tY ) while

Money Supply ( tX1 ), and Credit to

Private Sector ( tX 2 ) were considered as
the independent variables (N’ Billion).
From the analysis, the result of the fitted
regression model showed no significant
relationship between the variables. The
diagnosis on the residual series (using
skewness, kurtosis, Jacque-Bera test and
Breusch-Pagan-Godfrey test) provided

sufficient evidence that both validity and
efficiency of the model parameters are
threatened. However, the results of the
GLM procedure provided the much
needed significance, validity, and
efficiency of the model parameters.
Further findings from GLM procedure
revealed that the standard errors of the
parameters of OLS were biased having
been far larger in values than those of
the GLM. Hence, for studies involving
the regression of a discrete-time
stochastic series such as GDP on Money
Supply and Credit to Private Sector, the
GLM was adjudged analytically
tractable than the OLS.

Farzana, Borhan and Ataharul (2016)
derived the GLM for the geometric
distribution, estimation of parameters,
and test procedures. An application was
made to Bangladesh Demographic and
Health Survey data to find the significant
factors associated with the first
occurrence of infant death in terms of
birth order. Two different generalized
linear models were fitted; one using the
natural link function and the other one
using the log link function. At the end,
the results of both models were
compared. It was found that the model
fitted using the log link function had
lower Akiake’s information criteria (AIC)
and deviance than the model fitted using
the natural link function. This meant that
the GLM for the geometric distribution
using the log link function provided
better result.

Alexander and Wolfgang (2015)
questioned whether methods of the GLM,
that is repeated measures of ANOVA
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and regression, could be used to estimate
individual-specific parameters.
Scenarios and corresponding design
matrices were presented in which the
shape of temporal trajectories of
individuals is parameterized. Real world
data examples and simulation results
suggested that, for series of sufficient
length, trajectories could be well
described for individuals. In addition,
scenarios were presented for the
comparison of two individuals. Here
again, trajectories could be well
described and the statistical comparison
of individuals were possible. However,
in contrast to the power for the
description of individual series, which
was satisfactory, the power for the
comparison of individuals was low
(except when effect sizes were large). In
all simulated scenarios, the power of
tests increased only up to a certain
number of observation points, and
reached a ceiling at this number. The
fact that all parameters could not always
be estimated was also discussed, and
options were presented that go beyond
what standard general purpose software
packages offer.

Muritala, et al. (2015) carried out an
empirical study of GLM for count data.
The authors noted, in particular, that the
Poisson regression model which is
known to be a generalized linear model
for the Poisson error structure had been
widely used in recent years; it was also
used in modeling of count and frequency
data. Quasi Poisson model was used for
handling over-dispersion since the data
was found to be over-dispersed, while

the negative binomial regression model
was used for handling over-dispersion.
In this study, the two regression models
were compared using the AIC, the model
with minimum AIC showed the best
which implied the Poisson regression
model.

Sourish and Dipak (2014) obtained
an estimator of the regression parameters
for generalized linear models, using the
Jacobian technique. They restricted
themselves to the natural exponential
family for the response variable and
chose the conjugate prior for the natural
parameter. Using the Jacobian of
transformation, they obtained the
posterior distribution for the canonical
link function, and thereby obtained the
posterior mode for the link. Under the
full rank assumption for the covariate
matrix, they then found an estimator for
the regression parameters for the natural
exponential family. The proposed
estimator was specially derived for the
Poisson model with logit link function.
More so, the authors discussed
extensions to the binomial response
model when covariates were all positive.
Finally, an illustrative real-life example
was given for the Poisson model with
log link. In order to estimate the standard
error of their estimates, they used the
Bemstein-von Mises theorem, and
finally compared the results using their
Jacobian technique with a maximum
likelihood estimate for the regression
parameters.

Jun (2011) studied the limited
fluctuations credibility of the GLM
estimators as well as in the extended
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case of GLMMs. The study showed how
credibility depended on the sample size,
the distribution of covariates and the link
function. The study gave criteria for full
credibility of the GLM estimators. This
provided a mechanism to obtain
confidence intervals for the GLM and
GLMM estimators. If the full credibility
criteria could not be satisfied, it was
interesting to calculate the partial
credibility matrix and the GLM
estimators. Here, for a general link
function the credibility matrix is not
known explicitly. Under certain
assumptions, numerical methods were
developed to compute the GLM
estimators and the credibility matrix. For
some specific link functions, further
properties were developed. For instance,
Hachemeister’s credibility regression
model was one of such cases of his
model, where the link function was
linear. Loss reserving was a major
challenge for casualty actuaries due to
the frequently changing business
environments. The author remarked that
some aggregate loss reserving models
had been extended to or developed by
research actuaries within the framework
of GLMs in recent times. The study
therefore established a structural loss
reserving model which combines the
exposure and loss emergence patterns
and the loss development pattern, again
within the framework of a GLM.
Discounted loss reserves could also be
obtained from this model.

Heather (2008) presented an
overview of generalized linear models
(GLMs) which showed that the models

extended the linear modeling framework
to variables that were not normally
distributed. Heather (2008) focused this
overview on GLMs based on binary or
count data because they were the most
commonly used types.

Sourish (2008) developed an
innovative approach to analyze the
scientific studies using the GLM and
beyond. In particular, the study
developed the regression estimator, a
new algorithm for fitting GLM and
different model diagnostic technique for
GLM. In the context of the longitudinal
study, the study presented the Bayesian
analysis of the generalized multivariate
gamma distribution for the generalized
multivariate analysis of variance
(GMANOVA) model. The study
demonstrated the method for modeling
longitudinal studies as state space
dynamic model, and this was
accomplished using an introduction the
power filter for dynamic generalized
linear models (DGLMs). An
information-processing optimality
property of the power filter was
presented, and with it the author
established the relationship between the
Kalman filter and the power filter as
well. Sourish (2008) developed the
Pareto regression model for analyzing
the extreme drinking behavior of the
alcohol dependence disorder patients.

John, Patricia, Aaron and Jeffrey
(2007) compared GLMs and OLS in
predicting individual patient costs in
adults’ intensive care units (ICUs) and
sought to define the utility of the inverse
Gaussian distribution family within
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GLMs. A prospective “ground-up”
utilization costing study was performed
in three adult university associated ICUs,
enrolling consecutive ICU admissions
over a 6-month period in 1991. ICU
utilization, patient demographic and ICU
admission day data were recorded by
dedicated data collectors. Model
performance was assessed by prediction
error (mean absolute error – MAE), root
mean squared error – RMSE, and
residual analysis. The cohort, 1098
patients surviving ICU, was of mean
(SD) age 56 (19.5) years and 41 percent
female. Patient costs per ICU episode
(1991 AS) were A56311 with A595602.
Prediction error for mean costs was
minimal (MAE 4780; RMSE 8965) with
OLS using heteroscedastic
retransformation of log costs and GLM
with Gaussian family and log link (MAE
4798; RMSE 8907). Residual analysis
suggested optimal overall performance
for the above two models and a GLM
with inverse Gaussian family and log
link. The authors concluded that
traditional cost models of OLS with (log)
transformation may be supplemented by
approximately specified GLM which
more closely model the error structure.

According to Lindsey and Jones
(1998), when testing effect or a
difference among groups, the
distributional assumptions made about
the response variable may have critical
impact on the conclusions drawn since
controversy could arise over
transformations of the response. Hence,
an alternative approach was to use some
member of the family of generalized

linear models. However, this raised the
issue of selecting the appropriate
member, a problem of testing non-nested
hypotheses. Standard model selection
criteria (e.g. AIC) were proposed by the
authors to be used to resolve problems.
These procedures for comparing
generalized linear models were applied
to checking for difference in T4 cell
counts between two disease groups. The
authors concluded that appropriate
model selection criteria should be
specified in the protocol for any study,
including clinical trials, in order for
optimal inferences to be drawn about
treatment differences.

3. Materials and method
3.1. The exponential family of
distributions

Most of the commonly used
statistical distributions are members of
what is called “the exponential family”.
This family is a very rich and flexible
collection of distributions applied in
many experimental situations. At present,
the family includes: Bernoulli, beta,
binomial, chi-squared, Dirichlet,
exponential, gamma, geometric,
logarithmic series, lognormal,
multinomial, multi-normal, negative
binomial, Gaussian, Poisson, Rayleigh,
von Mises, Weibull, and Wishart
distributions (Christian, 2007; Penzer,
2011; Catherine, Mervan, Nicholas &
Brian, 2011).

Let X be single random variable
whose probability distribution function
depends on a single parameter  . The
probability distribution function of X is
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said to belong to the exponential family
if it can be written in the form

           2;  bxaetxsxf 

where a , b , s and t are known
functions. Equation (2) may be rewritten
as:

            3exp; xdcbxaxf  

Where
   xdxs exp , and
    ct exp .

If   xxa  , the distribution is said to
be in “canonical (that is, standard) form”
and  b is sometimes called the
“natural parameter” of the distribution.
However, if there are other parameters,
in addition to the parameter of interest,
 , they are regarded as “nuisance
parameters” forming parts of the
functions a , b , c and d , and they are
treated as though they are known. Many
of the well-known distributions belong
to the exponential family, and can all be
written in the canonical form.

3.2. Generalized linear model (GLM)
The unity of many statistical

methods was demonstrated in 1972 by
Nelder and Wedderburn using the idea
of a GLM. The GLM is defined in terms
of a set on independent random variables

NXX ,,1  each with a distribution from
the exponential family and the following
properties:

i. The distribution of each iX has
the canonical form and depends

on a single parameter i (the

si ' do not all have to be same),
thus:

          4exp; iiiiiiiii xdcbxxf  

ii. The distributions of all the sX i '
are of the same form (e.g., all
Normal or all binomial) so that
the subscripts on b , c and d are
not needed. Thus, the joint
probability density function of

NXX ,,1  is:
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The parameters i are typically not
of direct interest (since there may be one
for each observation). For model
specification we are usually interested in
a smaller set of parameters p ,,1 

(where Np  ).
Suppose that  ii YE where i

is some function of i . For a generalized
linear model there is a transformation of

i such that:

   6βxTiig 

In equation (6), g is a monotone
differentiable function called the “link
function”; ix is a 1p vector of
explanatory variables (covariates and
dummy variables for levels of factors),
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which are assumed to share the
same distribution from the
exponential family;

2. A set of parameters β and
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3. A monotone link function g
such that (where  ii YE )

  βxTiig 

3.3. Statistical distributions for
classification

A total of five (5) distributions were
considered for classification. They are:
error, extreme value (Gumbel), logistic,
Pareto, and power function distributions.
Each of these distributions may be
characterized by features such as: variate,
range, location parameter, scale
parameter, distribution function,

probability density function,
characteristic function, inverse
distribution function, moments,
cumulants, mode, median, etc. However,
out of the features that characterize these
distributions, the primary focus of this
study was on the probability density
function.

3.3.1. Error distribution
The error distribution is also known

as the exponential power distribution or
the general error distribution.

Range  x
Location parameter  
Scale parameter 0
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3.3.2. Extreme value (Gumbel)
distribution

The extreme value distribution was
developed as the distribution of the
largest of a number of values and was
originally applied to the estimation of
flood levels. It has since been applied to
the estimation of the magnitude of
earthquakes. The distribution may also
be applied to the study of athletic and
other records.

This study considers the distribution
of the largest extreme; although a
reversal of the sign of x gives the
distribution of the smallest extreme. This
is the Type I, the most common of the
three extreme value distributions, known
as the Gumbel distribution.
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  57722.01  is the first derivative

of the  n with respect to n at 1n

Variance
6

22

Coefficient of skewness 1.139547
Coefficient of kurtosis 5.4
Mode 
Median  2loglog 

3.3.3. Logistic distribution
The distribution function of the

logistic is used as a model for growth.
For example, with a new product we
often find that growth is initially slow,
then gains momentum, and finally slows
down when the market is saturated or
some form of equilibrium is reached.

Applications include the following:
 Market penetration of a new

product
 Population growth
 The expansion of agricultural

production
 Weight gain in animals

Range:  x
Location parameter:  , the mean
Scale parameter: 0

Alternative parameter
2
1

3


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the standard deviation
Distribution function

11

exp1exp11
























 















 






 xx



JOURNAL OF CONTEMPORARY RESEARCH (JOCRES) RESEARCH ARTICLE VOL. 1 (2)























 



x

2
1tanh1

2
1

Probability density function

22

exp1

exp

exp1

exp















 

















 

























 

















 















x

x

x

x





4
2

sec 2 





 



xh

Inverse distribution function















1

log

Survival function
1

exp1
















 



x

Inverse survival function








 



 1log

Hazard function
1

exp1




































 



 x

Cumulative hazard function















 



xexp1log

Moment generating function

       
 t

ttttt



sin

exp11exp 

Characteristic function
 
 it

itti



sin
exp

Mean 
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3.3.4. Pareto distribution
The Pareto distribution is often

described as the basis of 80/20 rule. For
example, 80 percent of customer
complaints regarding a make of vehicle
typically arise from 20 percent of
components. Other applications include
the distribution of income and the
classification of stock in a warehouse on
the basis of frequency of movement.

Range  x
Location parameter 0
Shape parameter 0
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Variance
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3.3.5. Power function distribution
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Shape parameter 
Scale parameter 0
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3.4. Methodology
The procedure for performing the

proposed classification via GLM would
need a step-by-step procedure with
which attempts will be made to: show,
whether or not, each unclassified
distribution belongs to the exponential
family of distributions; and to obtain the
link functions and linear predictors for
each of the five (5) described
distributions.

3.4.1. Linear predictor
The linear predictor is the quantity

which incorporates the information
about the independent variables into the
model. The symbol  denotes the linear
predictor. It is related to the expected
value of the data through the link
function.  is expressed as linear
combinations of unknown parameters β .
The coefficients of the linear
combination are represented as the
matrix of independent variables ix . 
can thus be expressed as

 7βx i
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Where ix and β are as defined in
equation (6).

3.4.2. Link functions
The link function   βxTiig 

specifies the link between random
systematic components. It says how the
expected value of the response relates to
the linear predictor of explanatory
variables. For instance,

    ii YEYEg  for linear regression,

or will be   logit for logistic
regression. Where i , g , ix , and β are
as defined in equation (6).

3.4.3. Maximum likelihood estimates of
parameters for the GLM

Consider independent random
variables NYY ,,1  satisfying the
properties of GLM. We wish to estimate
parameters β which are related to the
sYi ' through   iiYE  and

  βxTiig  .

For each iY , the log-likelihood
function is:

       8iiiii ydcbyl  

where the functions b , c and d are as
defined in equation (3). Also,

   
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i
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
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
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          
  

 10var 3
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bccb
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







   11βxTiig 

where ix is a vector with elements ijx ,

pj ,,1 .
The log-likelihood function for all

the sYi ' is

      


iiii

N

i
i xdcbxll 
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To obtain the maximum likelihood
estimator for the parameter j we need
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using the chain rule for differentiation.
We will consider each term on the right
hand side of equation (11). First,

      iiiiii
i

i xbcbx
l








by differentiating equation (8) and
substituting (9). Next
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Differentiation of equation (9)
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from equation (10). Finally, from
equation (11)

ij
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.

Hence the score, given in equation (12),
is
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The variance-covariance matrix of the
sU j ' has terns

 kjjk UUE

which form the “informative matrix  ”.
From equation (13)
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Because     0 llii YYE  for

li  since all the sYi ' are independent.

Using     iii YYE var2   , equation
(14) can be simplified to
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Now, we recall that one estimating
equation for the method of scoring may
be given by

   
 

   161

1
1







 m

m
mm U

This estimating equation as given by
equation (16) for the method of scoring
generalizes to

          171111   mmmm Ubb

where  mb is the vector of estimates of
the parameters p ,,1  at the thm

iteration. In equation (17),    11  m is

the inverse of the information matrix
with elements jk given by equation

(15) and  1mU is the vector of elements
given by (13), all evaluated at  1mb . If
both sides of equation (17) are
multiplied by  1 m we obtain

           181111   mmmmm Ubb

From (15)  can be written as

WXXT

where W is the NN  diagonal matrix
with elements
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The expression on the right-hand side of
equation (18) is the vector with elements

 
   

 




 




















 N

i i

i

i

ijiim
k

p

k i

i
N

i i

ikij

Y
xy

b
Y
xx

1

1

1

2

1 varvar 





evaluated at  1mb ; this follows from
equations (15) and (13). Thus the right-
hand side of equation (18) can be written
as

WzXT

where z has elements
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with i and
i
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
 evaluated at  1mb .

Hence the iterative equation (18),
can be written as
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   21WzXbWXX TmT 

This is the same form as the normal
equations for a linear model obtained by
weighted least squares, except that it has
to be solved iteratively because, in
general, z and W depend on b . Thus
for GLMs, MLEs are obtained by the
IWLS procedure.

Most statistical packages that include
procedures for fitting GLMs have
efficient algorithm based on equation
(21). They begin by using some initial
approximation  0b to evaluate z and
W , then equation (21) is solved to give
 1b which in turn is used to obtain better

approximations for z and between
successive approximations  1mb and

 mb is sufficiently small,  mb is taken
as the maximum likelihood estimate.

4. Implementation
4.1. Classifying the statistical
distributions

To classify the error, Gumbel,
logistic, Pareto and power function
distributions the we must be able to
express their respective probability
distribution (density) functions in the
form of equation 3, with an appropriate
choice of the parameter  . The same
process is required for obtaining the
linear predictors/deducing the link
functions. In this study we have shown
that the five (5) distributions all belong
to the exponential family because they
can all be expressed in the form:

          xdcbxaxf  exp

4.2. Obtaining the linear predictors
The linear predictors are obtained as

follows.
1. State the probability distribution

(or density) function.
2. Obtain the logarithm of the

probability distribution (or
density) function.

3. Take the exponent of the
logarithm of the probability
distribution (or density) function,
noting that the coefficients of the
 xa term, in the exponential

form, are the linear predictors of
the distribution.

4.2.1. Linear predictor for the error
distribution
Theorem 1:

The linear predictor for the error
distribution with probability density
function  xf , range  x ,
location parameter   (the
mean), scale parameter 0 and shape

parameter 0 is




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





2

.

Proof 1:
Given the probability density

function of the error distribution

 






 
































 





2
12
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We take the logarithm of the probability
density function to get:
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Now, restricting the domain of definition
for the random variable from

 x to 0x ; and also
restricting the domain of definition of
the location parameter (that is, the mean)
from   to 0 , we have
that:
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Now, writing the last result here in the
form of equation (3) gives:
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4.2.2. Linear predictor for the Gumbel
distribution
Theorem 2:

The linear predictor for and Gumbel
distribution with probability density
function  xf , range  x ,
location parameter (mode)  , and scale

parameter 0 , is given as

1 .

Proof 2:
Given the probability density

function of the Gumbel distribution
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We take the logarithm of the probability
density function to get:
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Now, writing the last result here in the
form of equation (3) gives
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Here,
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4.2.3. Linear predictor for the logistic
distribution
Theorem 3:

The linear predictor for the logistic
distribution with probability density
function  xf , range  x ,
location parameter  (the mean), and

scale parameter 0 is given as

1 .

Proof 3:
Given the probability density function of
the logistic distribution:
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We take the logarithm of the probability
density function to get:
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Now, writing the last result here in the
form of equation (3) gives
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4.2.4. Linear predictor for the Pareto
distribution
Theorem 4:

The linear predictor for the Pareto
distribution with probability density
function  xf , range  x ,
location parameter 0 , and shape
parameter 0 is given as 1

Proof 4:
Given the probability density

function of the Pareto distribution:
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We take the logarithm of the probability
density function to get:

 









1lnln 


x

xf

     1lnlnln   xxf

     lnlnln1ln  xxf

      lnln1ln  xxf

Now, writing the last result here in the
form of equation (3) gives
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Here,
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4.2.5. Linear predictor for the power
function distribution
Theorem 5:

The linear predictor for the power
function distribution with probability
density function  xf , range  x0 ,
scale parameter 0 , and shape
parameter  is given as 1 .

Proof 5:

Given the probability density
function of the power function
distribution:
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We take the logarithm of the probability
density function to get:
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Now, writing the last result here in the
form of equation (3) gives
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Here,
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4.3. Deducing the link functions
Recall that if   βxTb  defines the

linear predictor of a distribution  xf
then the link function of the distribution
will be defined by specific instances
  βxTiib  such that  βxTb 1 ,
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where  is the parameter of interest.
Table 1 illustrates this.

4.4. Discussion of findings
The results in this study have shown

that the error, Gumbel, logistic, Pareto,
and power function distributions all
belong to the exponential family since,
for a given parameter of interest  it
was possible to write their probability
functions  xf in the form

        xdcbxa  exp . The linear
predictors of all distributions have been
obtained in this study, and are observed
not to be in canonical form especially
because the term   xxa  ; the
corresponding link functions of the
newly classified distributions have been
also deduced from the linear predictors.
Based on the linear predictors we have
observed that the error, Pareto and
power function distributions all have
  0xd ; whereas, the Gumbel and

logistic distributions have   0xd .
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TABLE 1
Newly classified members of the exponential family

Distribution  xa Link function  c  xd Linear predictor or
Natural parameter  b
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5. Conclusion
In conclusion, this study showed that

the error, Gumbel, logistic, Pareto, and
power function distributions are
members of the exponential family,
although not in canonical form; hence,
they should be treated as such. This
study has also established the link
functions and linear predictors for the
newly established probability
distributions (or density) functions with
certain properties as shown in Table 1
above. It was therefore the submission of
this study that software meant for
theoretical and practical computations on
the generalized linear model (GLM)

should adopt and upgrade to
accommodating the findings of this
study as tendencies abound that this
could widen the scope of its application.

For further studies in this research
direction, we have suggested that
prospective scholars should attempt the
classification of more unclassified
statistical distributions in order to
unravel the nature of their linear
predictors and link functions. Further
suggestions are that attempts should be
made at obtaining the maximum
likelihood estimates (via GLM) of the
newly classified distributions in this
research.
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