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Abstract 

This study solved a non-linear heat transfer model using finite difference method with Newton’s 

method and implicit time discretization. Both conceptual and empirical review were respectively 

performed to give knowledge on the needed concepts for the study, and to unravel the gaps in 

literature necessitating our study. A major gap in literature noticed was that which pertained to the 

solution of nonlinear heat transfer using methods such as: finite difference method (FDM), 

Newton’s method and Implicit Time Discretization (ITD), in isolation for achieving this aim, or 

adopting at best only a combination of two of such methods. Thereafter, we provided the solution 

of the partial differential equation with the specified boundary conditions and initial conditions by 

the method described in the research. The equation was solved for 𝜀 = −1.0, −0.5, 0, 0.5, 1.0, 1.5, 

the step size was chosen to be ℎ = 0.5 associated with the range of integration 0 ≤ 𝑡 ≤ 15. The 

interval in spatial form for 𝑥 = [1.5, 2.5] was discretized by 𝑁 = 41 mesh points. The results 

proved that the research can address the numerical solution of complex heat transfer phenomena 

by employing a combination of the FDM, Newton’s method, and the ITD results as shown in Table 

1 and Table 2 in the study. This innovative approach allowed for a more accurate and efficient 

solution of non-linear heat transfer problems, compared to traditional methods. 
 

Key words: Non-Linear Heat Transfer, Finite Difference Method, Newton’s Method, Implicit 

Time Discretization, Heat Conduction Equation 

 

1.0 Introduction 

1.1 Background of the study 

A major gap in literature pertaining to the 

modeling of nonlinear heat transfer is that the 

methods available (such as: finite difference 

method, Newton’s method, etc.) are often 

used in isolation for achieving this aim. At 

best only, a combination of two of such 

methods are used to achieve reasonable 

results. What a healthy and meticulous use of 

more methods could do remains open for 

investigation. This is the gap this research 

aims to fill. In this research, therefore, we 

consider the numerical approach to the one-

dimensional unsteady heat conduction model 

with accompanying restrictive assumptions. 
 

 

1.2 Conceptual framework 

1.2.1 Implicit Euler scheme 
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Implicit Euler scheme, also known as 

backward difference method, is a numerical 

integration method used to approximate the 

solution of ordinary differential equation. In 

the context of numerical methods, an 

ordinary differential equation is typically 

expressed as a first order equation of the 

form: 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑡, 𝑦)                                                  (1) 

where 𝑦 is the unknown function and 𝑓 is the 

given function that describes the relationship 

between the variables 𝑡, 𝑦 and 
𝑑𝑦

𝑑𝑥
. 

The implicit Euler scheme is an implicit 

method because it uses the value of 𝑦 at the 

next time step in its approximation, it is 

defined by the following formula: 

𝑦𝑛+1
= 𝑦𝑛
+ ℎ𝑓(𝑡𝑛+1, 𝑦𝑛+1)                                   (2) 

where 𝑦𝑛  represents the approximation of 𝑦 

at time 𝑡𝑛 , 𝑦𝑛+1  represents the 

approximation at the next time step 𝑡𝑛+1, ℎ is 

the step size (time interval) and 

𝑓(𝑡𝑛+1, 𝑦𝑛+1) is the value of the derivation 

function evaluated at 𝑦𝑛+1 and 𝑡𝑛+1. Implicit 

Euler scheme is known for its stability and 

robustness, particularly when dealing with 

stiff differential equation, where the step size 

needed is very small. 
 

1.2.2 Heat conduction equation 

Heat conduction equation, also known as the 

heat equation, is an equation which describes 

the conduction of heat in a solid material. The 

heat conduction equation relates the change 

of temperature within a material to its thermal 

conductivity, the rate of heat generation or 

absorption, and the geometry of the material. 

The equation is given by: 

𝜕𝑢

𝜕𝑡

= 𝛼 (
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2

+
𝜕2𝑢

𝜕𝑧2
)                                                          (3) 

where: 

𝜕𝑢

𝜕𝑡
 is the rate of change of temperature with 

respect to time, 𝑡; 𝛼 is the thermal diffusivity 

of the material, which is the ratio of its 

thermal conductivity (𝑘)  to its density (𝜌) 

and specific heat capacity (𝑐). 

𝛼

=
𝑘

𝜌𝑐
                                                                (4) 

𝜕2𝑢

𝜕𝑥2
, 
𝜕2𝑢

𝜕𝑦2
 and 

𝜕2𝑢

𝜕𝑧2
 represent the second-order 

partial derivatives of temperature with 

respect to the spatial coordinated 𝑥, 𝑦, and 𝑧 

respectively. 

The general equation for one-dimensional 

heat conduction is given as: 

1

𝐴

𝜕

𝜕𝑥
(𝐴𝐾

𝜕𝑇

𝜕𝑥
) + 𝑔

= 𝜌𝐶𝑝
𝜕𝑇

𝜕𝑥
(𝑥, 𝑡)                                              (5) 

Since the area does not vary with 𝑥, equation 

(5) thus becomes: 

𝜕

𝜕𝑥
(𝐾

𝜕𝑇

𝜕𝑥
) + 𝑔

= 𝜌𝐶𝑝
𝜕𝑇

𝜕𝑥
(𝑥, 𝑡)                                            (6) 

In its compact form, we have: 

1

𝑟𝑛
𝜕

𝜕𝑟
(𝑟𝑛𝐾

𝜕𝑇

𝜕𝑟
) + 𝑔

= 𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
                                                      (7) 

where: 
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𝑛

= {

0, 𝑓𝑜𝑟 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠
1,           𝑓𝑜𝑟 𝑐𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠
2,             𝑓𝑜𝑟 𝑠𝑝𝑒ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

 

 

1.2.3 Temperature-dependent thermal 

conductivity 

Temperature-dependent thermal conductivity 

refers to the property of a material where its 

ability to conduct heat varies with 

temperature. Thermal conductivity is a 

measure of how well a material can transfer 

heat through it.  

Thermal conductivity tends to increase with 

increasing temperature, generally, for most 

materials. And this is because, as temperature 

rises, thermal vibration of atoms or molecules 

in the material increases, leading to better 

energy transfer between them, and hence, 

higher thermal conductivity. However, this 

behaviour is not universal and some materials 

may exhibit different temperature 

dependencies. 
 

1.2.4 Boundary value problem 

A boundary value problem typically consists 

of a differential equation and a set of 

boundary conditions that define the 

behaviour of the solution at certain 

boundaries. The boundary conditions could 

be of different types, depending on the 

problem at hand. Some common boundary 

conditions include: Dirichlet boundary 

conditions, Neumann boundary conditions, 

and Robin boundary conditions, etc. 

Solving a boundary value problem involves 

finding a solution that satisfies both the 

differential equation and the boundary 

conditions. This activity can be a challenging 

task, especially for non-linear or higher-order 

differential equations. 
 

 

1.2.5 Finite difference method (FDM) 

Finite difference methods are numerical 

methods used to approximate solutions to 

differential equations. This method involves 

discretizing the domain of the problem into a 

grid and approximating derivatives by finite 

difference approximations. The basic idea 

behind finite difference method is to replace 

derivatives in the original differential 

equation with finite different approximations. 

This allows us to convert the differential 

equation into a system of algebraic equations 

that can be solved using numerical methods. 

The most common finite difference 

approximations use the Taylor series 

expansion. For example, the forward 

difference approximation for the first 

derivative of a function 𝑓(𝑥) is given by: 

𝑓′(𝑥)

≈
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
                              (8) 

where ℎ is a small step size. 

Similarly, the centered difference 

approximation for the second derivative is 

given by: 

𝑓′′(𝑥)

≈
[𝑓(𝑥 + ℎ) − 2𝑓(𝑥) + 𝑓(𝑥 − ℎ)]

ℎ2
                                                                               (9) 

The finite difference method can be applied 

to both ordinary differential equations and 

partial differential equations. For partial 

differential equations, it involves creating a 

grid in multiple dimensions. There are 

various approaches to discretize partial 

differential equations such as: the finite 

difference method, finite element method, 

and finite volume method.  
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1.2.6 Newton’s method 

The Newton’s method, also known as 

Newton-Raphson’s method, is an iteration 

numerical method used to find the roots of a 

differential function. The basic idea of the 

Newton’s method is to make an initial guess 

for the root of the function and then 

iteratively improve the guess by using 

function’s derivative. The method can be 

summarized in the following steps: 

Step 1: Choose and initial guess for the root 

(say, 𝑥0). 

Step 2: Evaluate the function 𝑓(𝑥)  and its 

derivative 𝑓′(𝑥) at the current guess 𝑥0. 

Step 3: Calculate the next guess 𝑥1, using the 

formula 

𝑋𝑛+1
= 𝑋𝑛

−
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
                                                       (10) 

Step 4: Repeat steps 2 and 3 until the desired 

level of accuracy is achieved or until 

a maximum number of iterations is 

reached. 

It is important to note that the Newton’s 

method may not always converge or may 

converge to a local minimum instead of a 

root, depending on the initial guess and the 

behaviour of the function. It is also note-

worthy that the method requires the 

calculation of both the function and its 

derivative; hence, it may not be suitable for 

functions where the derivatives are difficult 

to compute. 
 

1.3 Aim and objectives of the study 

This research aims to solve a nonlinear model 

of heat transfer using a combination of finite 

difference method, Newton’s method and 

implicit time discretization method. But the 

objectives are to: (i) consider an absolutely 

temperature-dependent heat transfer with 

thermal conductivity, (ii) solve a one-

dimensional unsteady heat conduction model 

via the numerical approach, (iii) apply 

implicit time-discretization and finite 

difference method for the solution of a non-

linear two-point boundary problem, (iv) 

provide information for the reliance of the 

thermal conductivity on temperature definite 

semiconductors, and then (v) produce results 

collected from numerical computer tests and 

experiments consistent with expected 

outcomes as criteria for checking stability. 
 

2. Literature review 

According to Cheraghi and Vakilipour 

(2023), Picard method is a standard 

linearization technique used to linearize the 

convective flux terms in computational fluid 

dynamics (CFD). In flow and heat transfer 

problems with high Reynolds or Richardson 

numbers, low convergence rate and 

instability of numerical solutions are the 

main issues arising from employing Picard 

method in CFD. On the other hand, Newton 

method has not been well developed and its 

capabilities have not been exploited and 

assessed in the numerical simulation of 

incompressible fluid flows and heat transfer. 

Newton linearization of convective fluxes of 

momentum and energy equations can either 

suppress the convergence rate of results in 

instability of the numerical solutions 

obtained by fully coupled incompressible 

flow and heat transfer solvers. 

Filipov, et al. (2023) considered heat transfer 

in a solid body with temperature-dependent 

thermal conductivity that is in contact with a 

tank filled with liquid. The liquid in the tank 

is heated by hot liquid entering the tank 

through a pipe. Liquid at a lower temperature 

leaves the tank through another pipe. They 

proposed a one-dimensional mathematical 

model that consisted of a nonlinear PDE for 

the temperature along the solid body, coupled 

to a linear ODE for the temperature in the 
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tank, the boundary and the initial conditions. 

All equations were converted into a 

dimensionless form reducing in the input 

parameters to three dimensionless numbers 

and a dimensionless function. In order to 

solve the transient problem, a nontrivial 

numerical approach was proposed whereby 

the differential equations were first 

discretized in time. This reduced the problem 

to a sequence of nonlinear two-point 

boundary value problems (TPBVP) and a 

sequence of linear algebraic equations 

coupled to it. They showed that knowing the 

temperature in the system at time level 𝑛 − 1 

allowed them to decouple the TPBVP and the 

corresponding algebraic equation at time 

level 𝑛 . Thus, starting from the initial 

conditions, the said equations were 

decoupled and solved sequentially. The 

TPBVPs were solved by FDM with the 

Newtonian method. 

According to Mostafa, et al. (2022), all 

solution methods available in the literature 

are formulated for direct solution of 

stagnation point flow and its heat transfer 

impinging on the surfaces with known 

boundary conditions. In their study for the 

first time, a numerical code based on 

Levenberg-Marquardt method was presented 

for solving the inverse heat transfer problem 

of an annular jet on a cylinder and estimating 

the time-dependent heat flux using 

temperature distribution at a specific point. 

Also, the effect pf noisy data on the final 

results is studied. For this purpose, the 

numerical solution of the dimensionless 

temperature and the convective heat transfer 

in a radial incompressible flow on a cylinder 

rod was carried out as a direct problem. In the 

direct problem, the free stream was steady 

with an initial flow strain rate of 𝑘. The new 

equation systems were discretized using an 

implicit finite difference method and solved 

by applying the Tri-Diagonal Matrix 

Algorithm (TDMA). The heat flux is then 

estimated by applying the Levenberg-

Marquardt parameter estimation approach.  

A study by Zen, et al. (2022) compared 

Newton’s and Picard’s methods to 

numerically solve the one-dimensional 

nonlinear heat equation, where the thermal 

conductivity depended on the temperature of 

the medium. First, they discretize the 

equation in time using the implicit Euler 

method, obtaining a sequence of nonlinear 

boundary value problems with the sweep in 

time performed by standard time-stepping 

method. For the spatial derivative that is also 

dependent on the temperature gradient, they 

used the finite difference method.  

Aboud and Nachaoui (2021) used the finite 

difference method to calculate the heat 

distribution during cooling by the boundary 

part of a cylindrical material subjected to 

high temperature. They formulated a 

mathematical model of the process using 

cylindrical coordinates. The heat transfer 

coefficient occurring in the Robin condition 

at the cooled boundary was nonlinear. They 

used quasi-Newton techniques combined 

with the gradient-like methods to solve the 

discrete nonlinear problem. 

Bigler, et al. (2021), considered heat 

conduction models with phase change in 

heterogenous materials. They were motivated 

by vital applications including heat 

conduction in permafrost, phase change 

materials (PCM), and human tissue. They 

focused on the mathematical and 

computational challenges associated with the 

non-linear and discontinuous character of 

constitutive relationships related to the 

presence of free boundaries and materials 

interfaces. 
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Nawaz, et al. (2021) proposed a two-stage 

third-order numerical scheme for solving 

ordinary differential equations. The scheme 

was explicit and implicit type in two stages. 

This set of equations was obtained by 

applying transformations on the governing 

equations of the transfer of heat and mass of 

incompressible, laminar, steady, two-

dimensional, and non-Newtonian power-law 

fluid flows over a stretching sheet with 

effects of thermal radiations and chemical 

reaction.  

Tubini, et al. (2021) proposed an algorithm 

that was originally applied to solve water 

flow in soils, as a method to solve these 

integration issues with guaranteed 

convergence and conservation of energy for 

any time step size. Model performance was 

demonstrated against the Neumann and 

Lunardini analytical solutions and by 

comparing results from numerical 

experiments with integration time steps of 

1ℎ, 1𝑑, and 10𝑑. Using their formation and 

NCZ algorithm, the convergence of the 

solver was guaranteed for any time step size. 

Feng, et al. (2020) developed the computing 

efficiency of finite element analysis for 

welding thermal conduction – a novel 

Newton-Raphson method without the 

computation of inverse matrix and a hybrid 

method combining the NRM without the 

computation of inverse matrix and a hybrid 

method combining the NRM and 

conventional implicit method (IMP) were 

developed. Comparison of computing time 

between the hybrid method implemented in 

an in-house software JWRIAN and the IMP 

used in a commercial software ABAQUS 

indicated that the computing speed of the 

former was about 4.5 times faster than that of 

the latter. 

Filipov, et al. (2019) studied numerical 

solution of nonlinear two-point boundary 

value problems for second-order ordinary 

differential equations. They, firstly, 

established a link between the finite 

difference method and the quasi-linearization 

method. They proved that using finite 

differences to discretize the sequence of 

linear differential equations arising from 

quasi-linearization (Newton method on 

operator level) leads to the usual iteration 

formula of the Newton finite difference 

method. 

A study by Hamza, et al. (2019) attempted to 

characterize qualitatively the stability and 

dynamics of an inclined thin liquid film under 

the influence of instabilities due to thermo-

capillarity and evaporative effects as well as 

van der Waals intermolecular forces by 

employing the implicit finite difference 

method. The results were compared with 

solutions obtained by the Fourier spectral 

method. 

Filipov and Farago (2018) considered one-

dimensional heat transfer in a media with 

temperature-dependent thermal conductivity. 

In order to model the transient behavior of the 

system, they solve numerically the one-

dimensional unsteady heat conduction 

equation, first discretized in space, and then 

in time. 

A study by Chew and Sulaiman (2016), the 

numerical method can be a good choice in 

solving nonlinear partial differential 

equations (PDEs) due to the difficulty in 

finding the analytical solution. Porous 

medium equation (PME) is one of the 

nonlinear PDEs which exists in many 

realistic problems. Chew and Sulaiman 

(2016) proposed a four-point Newton-

EGMSOR (4-Newton-EGMSOR) iterative 

method in solving 1D nonlinear PMEs. The 

reliability of 4-Newton EGMSOR iterative 

method in computing approximate solutions 

for several selected PME problems was 

shown with comparison to 4-Newon-

EGSOR, 4-Newton-EG and Newton-Gauss-
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Seidel methods. Numerical results showed 

that the proposed method was superior in 

terms of the number of iterations and 

computational time compared to the three 

tested iterative methods. 

3. Materials and Method 

In this research, our mathematical models 

which are structured in terms of ordinary 

differential equations will always be written 

in dimensionless forms – that is, forms of the 

models where the independent variables are 

the time taken (𝑡). Specifically, in the normal 

form: 

{
  
 

  
 
𝑑𝑢1
𝑑𝑡

=  𝑓1(𝑡, 𝑢1, . . . , 𝑢1)
.
.
.

𝑑𝑢𝑛
𝑑𝑡

=  𝑓𝑛(𝑡, 𝑢1, . . . , 𝑢𝑛)

                  (11) 

This can be written, with obvious meaning of 

notation, in the compact vector form as: 

𝑑𝑢⃗ 

𝑑𝑡

= 𝑓 (𝑡, 𝑢⃗  )                                                                                                                                 (12) 

𝑢1 = 𝑢, 𝑢2 =
𝑑𝑢

𝑑𝑡
, . . . , 𝑢𝑛

= 
𝑑𝑛−1𝑢𝑛−1
𝑑𝑡𝑛−1

                                             (13) 

We develop a novel model and control 

algorithm for the described system for PDE 

systems. As we work on time-dependent PDE 

problems, the partial derivatives of a function 

over spatial variables are obtained by 

approximating the functions value at nodes of 

interpolation and the corresponding 

neighbors as a finite summation of 

polynomial series. 

3.1 Heat conduction equation 

Here, we focus on the one-dimensional 

unsteady heat conduction equation: 

𝜌𝐶𝑝
𝑑𝑢

𝑑𝑡

=
𝑑

𝑑𝑥
(𝐾(𝑢)

𝑑𝑢

𝑑𝑥
)                                  (14) 

where 𝐶𝑝  denotes the heat capacity at 

constant pressure; 𝐾  denotes the thermal 

conductivity of the media; 𝑢(𝑥, 𝑡)  denotes 

the unknown function, which is the 

temperature at position 𝑥 and the time 𝑡 (in 

seconds). For a specific range of temperature, 

it is justifiable to assume the following. 

Differentiating in the RHS of equation (14), 

we obtain: 

𝜕𝑢𝐾(𝑢) (
𝜕𝑢

𝜕𝑥
)
2

+ 𝐾(𝑢)
𝜕2𝑢

𝜕𝑥2

= 𝜌𝐶𝑝
𝜕𝑢

𝜕𝑥
                                                   (15) 

And 𝐾 is dependent on the variable 𝑢(𝑥, 𝑡); 

so that 𝜕𝑢𝐾(𝑢) = 0 , we say that equation 

(14) is a linear parabolic PDE. When 𝜕𝑢𝐾(𝑢) 

is different from zero, then equation (15) 

becomes non-linear in nature. Equation (15) 

will be resolved on [𝛼, 𝛽]  (the spatial 

interval), subject to certain boundaries and 

initial value conditions. 

𝑢(𝛼, 𝑡) =  𝑎(𝑡);  𝑢(𝛽, 𝑡) = 𝑏(𝑡), 𝑡 > 0 

𝑢(𝑥, 0)

= 𝑢0(𝑥),   𝑥𝜖[𝛼, 𝛽]                                                                                                         (16) 

The temperature at the two end-points is 

given as the boundary conditions, being a 

function with respect to 𝑡. The conditions in 

equation (16) specifies the initial spatial 

temperature distribution. 

3.2 Time discretization by implicit Euler 
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For the problem of linear form (that is, 

𝜕𝑢𝐾(𝑢) = 0) (finite element method, finite 

difference method) usually are discretized. 

𝜌𝐶𝑝
𝜕𝑢

𝜕𝑥

= 𝜕𝑢𝐾(𝑢) (
𝜕𝑢

𝜕𝑥
)
2

+ 𝐾(𝑢)
𝜕2𝑢

𝜕𝑥2
                                        (17) 

In space, whereby an initial-value problem 

(Cauchy problem) with respect to first order 

ordinary differential equation system is 

obtained, using the explicit Euler method to 

solve the problem of Cauchy, and then 

for  0 <
𝐷𝜏

ℎ2
≤ 0.5, the method is stable. 

We define the thermal diffusivity as: 

𝐷 = (
𝐾

𝜌𝐶𝑝
)                                 (18) 

Where ℎ is discretization step in space, and 

the discretization step in time is 𝜏. 

Our research method is unusual and 

uncommon, we will first discretize equation 

(15) with respect to time 𝑡, applying the time 

step 𝜏 , the time line 0 ≤ 𝑡  partitioned by 

equally separating the mesh points: 

𝑡𝑖 = 𝑖𝜏;    𝑖

= 0, 1, 2, ….                                 (19) 

That is, 𝑡0 = 0, 𝑡1 = 𝜏, 𝑡2 = 2𝜏, etc. 

We then apply the Euler scheme to discretize 

on the Mesh in equation (19) to get: 

𝜌𝐶𝑝
𝑢𝑖 − 𝑢𝑖−1

𝜏

= 𝜕𝑢𝐾(𝑢𝑖) (
𝜕𝑢𝑖
𝜕𝑥
)
2

+ 𝐾(𝑢𝑖)
𝜕2𝑢𝑖
𝜕𝑥2

                                    (20) 

with 𝑢𝑖 = 𝑢𝑖(𝑥)  and 𝑢𝑖−1 = 𝑢𝑖−1(𝑥) 

approximate the value of 𝑢(𝑥, 𝑡𝑖)  and 

𝑢(𝑥, 𝑡𝑖−1) , respectively. Equation (20) 

approximates the PDE in equation (15). The 

error is 𝑂(𝜏) ; thus, the scheme for 

discretization is first-order accurate in time. 

The stability of the method is obviously 

different from the explicit method; that is, 

evaluating the right-hand side of equation 

(15) at the 𝑓𝑛𝑢𝑖−1, which is constantly stable. 

Equation (20) becomes: 

𝜌𝐶𝑝
𝑢𝑖−𝑢𝑖−1

𝜏
− 𝜕𝑢𝐾(𝑢𝑖) (

𝜕𝑢𝑖

𝜕𝑥
)
2

𝐾(𝑢𝑖)

=
𝜕2𝑢𝑖
𝜕𝑥2

                                              (21) 

Let 

𝜌𝐶𝑝
𝑢𝑖 − 𝑢𝑖−1
𝜏𝐾(𝑢𝑖)

−
𝜕𝑢𝐾(𝑢𝑖)

𝐾(𝑢𝑖)
(
𝜕𝑢𝑖
𝜕𝑥
)
2

=
𝜕2𝑢𝑖
𝜕𝑥2

                                                    (22) 

Put 

𝜌𝐶𝑝
𝑢𝑖 − 𝑢𝑖−1
𝜏𝐾(𝑢𝑖)

−
𝜕𝑢𝐾(𝑢𝑖)

𝐾(𝑢𝑖)
(
𝜕𝑢𝑖
𝜕𝑥
)
2

= 𝑆(𝑢𝑖 , 𝑢𝑖: 𝑢𝑖−1)                                  (23) 

where: 

𝑉𝑖 =
𝜕𝑢𝑖
𝜕𝑥

                                                 (24) 

Then: 

𝜕2𝑢𝑖
𝜕𝑥2

= 𝑆(𝑢𝑖 , 𝑣𝑖: 𝑢𝑖−1)                               (25) 

Equation (24) is the temperature gradient and 

𝑆 is the corresponding function that is non-

linear. 

𝑅(𝑢𝑖, 𝑣𝑖: 𝑢𝑖−1)

𝐾(𝑢𝑖)

= 𝑆(𝑢𝑖 , 𝑣𝑖: 𝑢𝑖−1)                             (26) 

So that: 
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𝑅(𝑢𝑖, 𝑣𝑖: 𝑢𝑖−1) = 𝜌𝐶𝑝
𝑢𝑖 − 𝑢𝑖−1

𝜏
= 𝜕𝑢𝐾(𝑢𝑖)𝑣𝑖

2                                (27) 

The boundary conditions: 𝑢𝑖(𝛼) = 𝑎(𝑡𝑖), 

𝑢𝑖(𝛽) = 𝑏(𝑡𝑖),  alongside equation (25) 

constitutes a non-linear two-point boundary 

value problem (TPBVP) for 𝑢𝑖 which is the 

unknown function. Suppose 𝑢𝑖−1 is given the 

solution that can be obtained using some 

techniques of numerical analysis for 

problems that are strictly non-linear. Thus, 

beginning from the initial value and 

condition 𝑢 = 𝑢0 we solve successively: 

𝜕2𝑢𝑖
𝜕𝑥2

= 𝑆(𝑢𝑖, 𝑣𝑖: 𝑢𝑖−1) 

That is, 

𝜕2𝑢1
𝜕𝑥2

= 𝑆(𝑢1, 𝑣1: 𝑢0) 

𝜕2𝑢2
𝜕𝑥2

= 𝑆(𝑢2, 𝑣2: 𝑢1), … ; 𝑖 = 1, 2, 3, … 

Having gotten the above functions, we move 

ahead to obtain the derivatives from 

Newton’s method. 
 

3.3 Application of the Newton method 

Firstly, we obtained the partial derivatives of 

𝑆(𝑢𝑖, 𝑣𝑖: 𝑢𝑖−1)  to implement the Newton’s 

method successfully; and this is done with 

respect to 𝑢𝑖 and 𝑣𝑖 respectively. For ease of 

analysis, we used the notation: 

𝑆(𝑢𝑖, 𝑣𝑖: 𝑢𝑖−1) , 𝑅(𝑢𝑖, 𝑣𝑖: 𝑢𝑖−1) , and thus 

representing their derivatives by: 𝑇𝑖 =

𝑇(𝑢𝑖, 𝑣𝑖: 𝑢𝑖−1) in which case: 

𝑃𝑖
= 𝑃(𝑢𝑖, 𝑣𝑖)                                                                                                                                (28) 

𝑇𝑖 =
𝜕𝑆𝑖
𝜕𝑢𝑖

=
1

𝐾(𝑢𝑖)
(−𝑆𝑖, 𝜕𝑢𝐾(𝑢𝑖)

+
𝜕𝑅𝑖
𝜕𝑢𝑖

)                                                  (29) 

𝑃𝑖 =
𝜕𝑆𝑖
𝜕𝑣𝑖

=
1

𝐾(𝑢𝑖)
(
𝜕𝑅𝑖
𝜕𝑢𝑖

)                                      (30) 

where: 

𝜕𝑅𝑖
𝜕𝑢𝑖

=
𝜌𝐶𝑝

𝜏
− 𝜕𝑢𝑢𝐾(𝑢𝑖)𝑣𝑖

2                                            (31) 

𝜕𝑅𝑖
𝜕𝑣𝑖
= −2𝜕𝑢𝐾(𝑢𝑖)𝑣𝑖                                     (32) 

The equations (31) and (32) are the 

derivatives of the Newton’s method and they 

will be used alongside the method of finite 

difference to solve the non-linear system. 
 

3.4 Application of the finite difference 

method 

We observe that: 

lim
𝜏⇢0

𝜌𝐶𝑝

𝜏
= ∞                                                  (33) 

and we see that equation (33) has a negative 

outcome on the initial value problem, hence 

FDM is a better decision for usage for the 

solution of the obtained two-point boundary 

value problem than regular shooting method. 

Therefore, the FDM is adopted, then interval 

[𝛼, 𝛽]  has its mesh-point separated equally 

into 𝑁 partitions. 
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𝑥𝑖 = 𝛼 + (𝑛 − 1)ℎ,     𝑛 = 1, 2, … ,𝑁 

ℎ =
𝛽 − 𝛼

𝑁 − 1
                                     (34) 

In the uniform mesh described by equation 

(34), the equation 
𝜕2𝑢𝑖

𝜕𝑥2
= 𝑆(𝑢𝑖 , 𝑣𝑖: 𝑢𝑖−1)  is 

discretized using the finite difference method 

with the central difference approximation 

given as: 

𝑢𝑖,𝑛+1 − 2𝑢𝑖,𝑛 + 𝑢𝑖,𝑛−1
ℎ2

= 𝑆(𝑢𝑖,𝑛, 𝑣𝑖,𝑛: 𝑢𝑖−1,𝑛)                      (35) 

𝑛

= 2, 3, … , 𝑁

− 1                                                                                                                        (36) 

If we look critically at the equations (26) to 

(31), sequentially we will set 𝑥 = 𝑥𝑛  and 

then substitute 𝑢𝑖,𝑛 , 𝑣𝑖,𝑛  and 𝑢𝑖−1,𝑛 , for 

𝑢𝑖(𝑥𝑛), 𝑣𝑖(𝑥𝑛) and 𝑢𝑖−1(𝑥𝑛) 

Thereafter: 

𝑣𝑖,𝑛 =
𝑢𝑖,𝑛+1 − 𝑢𝑖,𝑛−1

2ℎ
                      (37) 

Equation (35) summarizes and gives 

approximate values for (25) with maximum 

tolerable error 𝑂(ℎ2), that is, it is second-

order accurate in space. 

For the inner mesh points, equation (31) 

holds. At the boundaries we make use of the 

boundary conditions, so that we get: 

𝑢𝑖,1 = 𝑎(𝑡𝑖),

𝑢𝑖,𝑁 = 𝑏(𝑡𝑖)                                              (38) 

This will be used in solution of the non-linear 

system by the Newton’s method. 

3.5 The solution of the non-linear system 

using Newton’s method 

Applying our knowledge of vector and linear 

algebra, we bring in the column vector 

𝐻𝑖 = (

𝐻𝑖,1
⋮
𝐻𝑖,𝑁

)                                       (39) 

with the component as: 

𝐻𝑖,1 = 𝑢𝑖,1 − 𝑢𝛼(𝑡𝑖),     𝐻𝑖,𝑁
= 𝑢𝑖,1 − 𝑢𝛽(𝑡𝑖)                                      (40) 

𝐻𝑖,𝑛
= 𝑢𝑖,𝑛+1 − 2𝑢𝑖,𝑛−1
− ℎ2𝑆𝑖,𝑛                                                   (41) 

𝑆𝑖,𝑛 = 𝑆(𝑢𝑖,𝑛, 𝑣𝑖,𝑛; 𝑢𝑛−1,𝑖)                     (42) 

The system of non-linear models in (35) and 

the boundary conditions (38) is now given as 

a single equation model. 

𝐻⃗⃗ 𝑖(𝑢⃗ 𝑖)

= 0                                                                                                                                     (43) 

with 𝑢⃗ 𝑖 = [𝑢𝑖,1, 𝑣𝑖,2, … , 𝑢𝑖,𝑁]
𝜏
. 

In this work, we begin with an initial guess 

𝑢⃗ 𝑖
(0)

, the non-linear system in equation (43). 

We can obtain a solution by using the 

Newton’s iterative method: 

𝑢⃗ 𝑖
(𝑘+1) = 𝑢⃗ 𝑖

(𝑘) − (∟⃗⃗ 𝑖
(𝑘))

−1

𝐻⃗⃗ 𝑖(𝑢⃗ 𝑖
(𝑘));      𝑘

= 0, 1, 2, …                                                   (44) 

where, 

∟⃗⃗ 𝑖
(𝑘)

 is the Jacobian transformation of 𝐻⃗⃗ 𝑖 

with respect to 𝑢⃗ 𝑖  evaluated at the points 

𝑢⃗ 𝑖
(𝑘)

: 

∟⃗⃗ 𝑖
(𝑘) =

𝜕𝐻⃗⃗ 𝑖
𝜕𝑢⃗ 𝑖

(𝑢⃗ 𝑖
(𝑘))                                   (45) 

We calculate the entries of the Jacobian 

transformation to obtain: 

∟⃗⃗ 𝑖,(1,1)
(𝑘) = 1,      ∟⃗⃗ 𝑖,(𝑁,𝑁)

(𝑘) = 1                  (46) 

∟𝑖,(𝑁,𝑁)
(𝑘)

= −2 − ℎ2𝑞𝑖,𝑛
(𝑘)
                        (47) 
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∟𝑖,(𝑛,𝑛−𝑛)
(𝑘) = 1 +

1

2
ℎ𝑝𝑖,1

(𝑘)                       (48) 

∟𝑖,(𝑛,𝑛+𝑛)
(𝑘) = 1 −

1

2
ℎ𝑝𝑖,𝑛

(𝑘)                     (49) 

So that, 

𝑞𝑖,𝑛
(𝑘) = 𝑞(𝑢, 𝑣𝑖,𝑛

(𝑘); 𝑢𝑛−1,𝑛) 

𝑝𝑖,𝑛
(𝑘) = 𝑝(𝑢𝑛,𝑖

(𝑘), 𝑣𝑖,𝑛
(𝑘)) 

A one-step (two-level) iteration is initiated in 

equation (44). We begin from the start guess 

value 𝑢⃗ 𝑖
(𝑘)

. We then obtain each successive 

approximation 𝑢⃗ 𝑖
(𝑘+1)

, 𝑘 = 0, 1, 2, …  using 

equation (44). The limiting value, that is: 

lim 𝑢⃗ 𝑖
(𝑘+1) = lim

𝑘→∞
(𝑢⃗ 𝑖

(𝑘+1)) = 𝐶; 𝐶 ∈ ℝ, and 

then we infer that  𝑢⃗ 𝑖 is a solution to the non-

linear system 𝐻⃗⃗ 𝑖(𝑢𝑖) = 0. 

In practice, we stop the iteration process 

when we note that: 

‖𝑢⃗ 𝑖
(𝑘+1) − 𝑢⃗ 𝑖

(𝑘)‖ < 𝜀, 𝜀 > 0, where 𝜀 > 0 

is the maximum tolerable error. 

The above norm inequality is also referred to 

as a stopping criterion showing the solution 

exists and converges to the space in 

consideration. The approximation solution to 

𝐻⃗⃗ 𝑖(𝑢𝑖) = 0  is the vector 𝑢⃗ 𝑖
(𝑘+1)

, and the 

initial guess vector is 𝑢⃗ 𝑖
(0)

. Thereafter, we 

used the solution 𝐻⃗⃗ 𝑖−1  found at the 

successive steps. 

The steps to the solution are very long, 

ambiguous and tedious if we are to solve or 

undertake the steps manually; hence, in this 

study we will adopt the computer as a tool for 

approximations to the solution. 

3.6 Hypothetical problem for simulation 

Now, we apply the above discussed theory in 

this study. Our focus is on a thin rod along 

the 𝑥 -axis between the points 𝑥 = 1.5  and 

𝑥 = 2.5  excluding heat sources without 

consideration of the radiation. The density 𝜌 

and the heat capacity 𝐶𝑝  are real constants, 

but the thermal conductivity 𝑘  depends on 

the temperature as: 

𝑘0𝑒
𝑥𝑢 = 𝑘                                            (50) 

In physical and real-world system such 

temperature dependence rarely happens, e.g., 

for Silicon. We make a choice of the 

following values of the parameters: 

𝜌 = 1.5,    𝐶𝑝 = 0.5,     𝑘0 = 0.01 

The temperature at the end points is kept 

constant: 

𝑢(1.5, 𝑡) = 1.75 

𝑢(2.5, 𝑡) = 1.25 

The profile for the initial temperature is: 

𝑢(𝑥, 0)

= (𝑥 − 1.5)(𝑥 − 2.5) + 2

−
𝑥 − 1

2
              𝑥𝜖[1.5, 2.5]           (51) 

The time evolution of equation (51) was 

obtained by solving equation (13) PDE with 

boundary conditions using the method 

followed in this study. 

4. Results and discussion 

Here, we evaluate the time transformation 

and evolution of equation (51). Thereafter, 

we provide the solution of the partial 

differential equation in equation (14) with the 

specified boundary conditions and initial 

conditions by the method described in the 

research. The equation is solved for 𝜀 =

−1.0, −0.5, 0, 0.5, 1.0, 1.5 , the step size is 
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chosen to be ℎ = 0.5  associated with the 

range of integration 0 ≤ 𝑡 ≤ 15. The interval 

in spatial form is 𝑥 = [1.5, 2.5] is discretized 

by 𝑁 = 41  mesh points. For instance, the 

step size is ℎ = 0.5. The results are shown 

below. 

4.1 Results 

Table 1 and Table 2 are generated with the 

use of the MATLAB software, and with the 

use of the algorithm for Euler Implicit 

scheme for providing the solution to the non-

linear heat equation.  

 

TABLE 1 

Solution by Newton’s Method 

𝑥, 0 𝑢1.5,2.5 𝑢(𝑥, 𝑡) 𝑢(𝑥, 0) 

-1 8.75 10.75 11.75 

-0.95 8.4525 10.4525 11.4275 

-0.9 8.16 10.16 11.11 

-0.85 7.8725 9.8725 10.7975 

-0.8 7.59 9.59 10.49 

-0.75 7.3125 9.3125 10.1875 

-0.7 7.04 9.04 9.89 

-0.65 6.7725 8.7725 9.5975 

-0.6 6.51 8.51 9.31 

-0.55 6.2525 8.2525 9.0275 

-0.5 6 8 8.75 

-0.45 5.7525 7.7525 8.4775 

-0.4 5.51 7.51 8.21 

-0.35 5.2725 7.2725 7.9475 

-0.3 5.04 7.04 7.69 

-0.25 4.8125 6.8125 7.4375 

-0.2 4.59 6.59 7.19 

-0.15 4.3725 6.3725 6.9475 

-0.1 4.16 6.16 6.71 

-0.05 3.9525 5.9525 6.4775 

0 3.75 5.75 6.25 

0.05 3.5525 5.5525 6.0275 

0.1 3.36 5.36 5.81 

0.15 3.1725 5.1725 5.5975 

0.2 2.99 4.99 5.39 

0.25 2.8125 4.8125 5.1875 

0.3 2.64 4.64 4.99 

0.35 2.4725 4.4725 4.7975 

0.4 2.31 4.31 4.61 

0.45 2.1525 4.1525 4.4275 

0.5 2 4 4.25 

0.55 1.8525 3.8525 4.0775 

0.6 1.71 3.71 3.91 
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0.65 1.5725 3.5725 3.7475 

0.7 1.44 3.44 3.59 

 

 

 

TABLE 2 

Solution by ITD 

𝑥, 0 𝑢1.5,2.5 𝑢(𝑥, 𝑡) 𝑢(𝑥, 0) 

0.75 1.3125 3.3125 3.4375 

0.8 1.19 3.19 3.29 

0.85 1.0725 3.0725 3.1475 

0.9 0.96 2.96 3.01 

0.95 0.8525 2.8525 2.8775 

1 0.75 2.75 2.75 

1.05 0.6525 2.6525 2.6275 

1.1 0.56 2.56 2.51 

1.15 0.4725 2.4725 2.3975 

1.2 0.39 2.39 2.29 

1.25 0.3125 2.3125 2.1875 

1.3 0.24 2.24 2.09 

1.35 0.1725 2.1725 1.9975 

1.4 0.11 2.11 1.91 

1.45 0.0525 2.0525 1.8275 

1.5 0 2 1.75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Discussion of results 

Non-linear heat transfer plays a crucial role 

in various fields, from engineering and 
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material science to environmental science. 

This research addresses the numerical model 

of such complex heat transfer phenomena by 

employing a combination of the FDM (which 

is applied by the use of the code in Appendix 

A, Newton’s method, and the ITD results as 

shown in Table 1 and Table 2. This 

innovative approach allows for a more 

accurate and efficient solution of non-linear 

heat transfer problems as shown in Table 1 

and Table 2. 

The FDM is a robust numerical technique 

widely used in heat transfer simulations, and 

it forms the foundation of our approach. By 

incorporating Newton’s method using the 

MATLAB code in Appendix A, the inherent 

non-linearity in many heat transfer systems is 

effectively handled, ultimately improving 

convergence and stability. More so, implicit 

time discretization techniques are employed 

to enhance the numerical stability, and also 

facilitate the modelling of time-dependent 

heat transfer phenomena in Table 1 and Table 

2. This research presents a comprehensive 

methodology for solving non-linear heat 

transfer problems, including the derivation of 

discretization schemes, the integration of 

Newton’s method to handle non-linearity, 

and the implementation of implicit time-

stepping to capture transient behavior 

accurately. 

Through numerical experiments and case 

studies, the effectiveness and efficiency of 

the proposed method are demonstrated, 

showcasing its ability to handle complex heat 

transfer scenarios with improved accuracy 

and reduced computational costs.  

 

 
 

5. Conclusion and recommendations 

5.1 Conclusion 

A combination of the finite difference 

method with Newton's method and implicit 

time discretization has been adopted to offer 

a robust and versatile approach for modeling 

non-linear heat transfer. Tendencies abound 

that this method could find its applications in 

aerospace, electronics, and environmental 

engineering. It can, thus, allow engineers and 

scientists to simulate complex heat transfer 

phenomena with high accuracy, giving 

valuable insights into system behavior, and 

aiding in the design and optimization of heat-

related processes. 

5.2 Recommendations 

The following recommendations have been 

made based on the findings of this study: 

i. We recommend an investigation of the 

development of more advanced 

numerical methods for solving non-

linear heat transfer problems. In this 

regard, one could consider the 

exploration of higher-order finite 

difference schemes or alternative 

numerical techniques like: finite 

element methods or spectral methods to 

improve accuracy and convergence. 

ii. We recommend the implementation of 

an adaptive mesh refinement technique 

to dynamically adjust the grid 

resolution in regions of interest, as this 

could enhance computational 

efficiency and accuracy. 

iii. We recommend an extension of this 

research to include multi-dimensional 

heat transfer problems and incorporate 

other physical phenomena such as: 

fluid flow, radiation, and phase change. 

The extensions will make the models 

more realistic and applicable to a wider 

range of realistic scenarios. 
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