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INITIAL RELATIVE-ORBIT DETERMINATION OF SPACE OBJECTS
VIA RADIO FREQUENCY SIGNAL LOCALIZATION

Troy A. Henderson∗, Yasmeen Hack†, Sophia Sunkin‡, T. Alan Lovell§, Joshuah
Hess¶, and Jessica Wightman‖

This paper presents a solution method for the initial orbit determination of
a space-based transmitter using radio frequency measurements obtained
from space-based receivers. Initial orbit determination requires a mini-
mum of six independent measurements over time. Many radio frequency-
based measurement equations can be expressed in polynomial form. The
orbital motion of the transmitter is linearized relative to a reference or-
bit, which allows each radio frequency measurement to be expressed as
a polynomial equation for the relative position and velocity of the trans-
mitter at a chosen epoch time. The system of polynomials is then solved
using known applied mathematics techniques.

INTRODUCTION

This research focuses on localization of a space object transmitting a radio frequency
(RF) signal, as received by space-based platforms. RF localization of terrestrial objects has
been widely studied1,2,3,4,5 , and is often termed “geolocation.” By contrast, RF localization
of a space object, which is in effect an orbit determination problem, has received much
less focus. The latter process will here be termed “astrolocation.” In particular, this study
examines the scenario of two cooperative receivers performing initial orbit determination
(IOD) of a transmitter in close proximity. As such, an astrolocation technique can be based
on the relative motion among the objects involved. Thus, the technique developed here
will be termed initial relative orbit determination (IROD). This process is fundamentally
represented in Figure 1 below.

Unlike the Global Positioning System (GPS) which uses a highly structured and well
defined signal, the goal here is to be able to collect measurements that require no a priori
information about the signal. One approach is to use time-difference-of-arrival (TDOA).
Since the minimum number of platforms from which to extract TDOA is two, the scenarios
explored will involve two orbiting receivers from which TDOA measurements are obtained.
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Figure 1. Graphical depiction of astrolocation.

TIME DIFFERENCE OF ARRIVAL AS MEASUREMENTS

The TDOA measurement is formed by comparing the transmitted signal received by two
non-collocated receivers. By knowing the speed of the signal’s propagation (in this case,
the speed of light), the TDOA measurement can be related to the difference in the ranges
from the transmitter’s instantaneous location to that of the two receivers (i.e., the range
difference of arrival or RDOA)

∆ρk = c∆tk = ρ2,k − ρ1,k

=
[
(xT − xr2,k)2 + (yT − yr2,k)2 + (zT − zr2,k)2

] 1
2

−
[
(xT − xr1,k)2 + (yT − yr1,k)2 + (zT − zr1,k)2

] 1
2

(1)

where c is the speed of light, ∆tk is the instantaneous TDOA, ρ1,k is the range from the
transmitter to Receiver 1, ρ2,k is the range from the transmitter to Receiver 2, (xT , yT , zT )
are the transmitter’s instantaneous position coordinates, and (xr1, yr1, zr1) and (xr2, yr2, zr2)
are the first and second receiver’s instantaneous position coordinates.

Sinclair5 then algebraically manipulated Equation 1 (including two instances of squaring
both sides of the equation), resulting in a 2nd-order polynomial in terms of the transmitter’s
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instantaneous location, xT , yT , and zT ,

x2T
(
(xr1,k − xr2,k)2 − ∆ρ2k

)
+ 2xTyT (xr1,k − xr2,k) (yr1,k − yr2,k)

+ 2xT zT (xr1,k − xr2,k) (zr1,k − zr2,k)

+ y2T
(
(yr1,k − yr2,k)2 − ∆ρ2k

)
+ 2yT zT (yr1,k − yr2,k) (zr1,k − zr2,k)

+ z2T
(
(zr1,k − zr2,k)2 − ∆ρ2k

)
+ xT

(
(xr1,k − xr2,k)

(
K2,k −K1,k − ∆ρ2k

)
+ 2∆ρ2kxr1,k

)
+ yT

(
(yr1,k − yr2,k)

(
K2,k −K1,k − ∆ρ2k

)
+ 2∆ρ2kyr1,k

)
+ zT

(
(zr1,k − zr2,k)

(
K2,k −K1,k − ∆ρ2k

)
+ 2∆ρ2kzr1,k

)
+

1

4

(
K2,k −K1,k − ∆ρ2k

)
− ∆ρ2kK1,k = 0

(2)

where Ki,k = x2i,k + y2i,k + z2i,k is the square of the distance from the ith receiver to the
reference point at time tk.

Geometrically, Equation 1 represents one sheet of a two-sheeted hyperboloid with the
two receivers located at the foci. If four receivers were employed to obtain three simulta-
neous TDOA measurements, three coupled polynomials of the form of Equation 2 could
be solved, yielding multiple solutions for xT , yT , and zT . In an ideal (errorless) scenario,
one of these solutions would be the transmitter’s instantaneous location. Figure 2 depicts
a geometric representation of this process, whereby three single-sheeted hyperboloids are
intersected to locate the transmitter.

Figure 2. Geometric depiction of TDOA localization.
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RELATIVE MOTION DYNAMICS

Whereas TDOA is demonstrated above as a technique for instantaneous localization, as-
trolocation scenarios entail two primary differences from static (e.g. terrestrial) scenarios.
First, the fact that the transmitter is in orbit means there are six parameters governing its
state, thus six TDOA measurements are required. Second, because the six TDOAs do not
all have to be obtained simultaneously but rather over time, astrolocation can be achieved
with only two receivers. Shuster6 first extended the above development for astrolocation.
By incorporating a model of the transmitter’s orbital motion, each TDOA measurement can
be mapped back to an epoch time, in the fashion of classical orbit determination. For this
paper, the relative motion of the transmitter with respect to a defined reference orbit will be
incorporated via the well known Clohessy-Wiltshire (CW) solution.7

When considering spacecraft that are moving in the vicinity of each other, such that
ρ/R << 1, we can approximate the motion by linearizing the relative equations of motion.
Schaub and Junkins,8 among numerous others, derive the equations of unforced relative
motion for circular chief orbits, the Clohessy-Wiltshire equations,7 as

ẍ− 2nẏ = 0 (3a)

ÿ + 2nẋ− 3n2y = 0 (3b)

z̈ + n2z = 0 (3c)

where n =
√
µ/a3 is the mean motion of the reference orbit. The CW dynamics equations

have the following analytical solution:

x(t) = x0 (4 − 3 cosnt) +
ẋ0
n

sinnt+
2ẏ0
n

(1 − cosnt) (4a)

y(t) = 6x0 (sinnt− nt) + y0 +
2ẋ0
n

(cosnt− 1) +
ẏ0
n

(4 sinnt− 3nt) (4b)

z(t) = z0 cosnt+
ż0
n

sinnt (4c)

By re-writing the solution to the dynamics, we can obtain the state transition matrix and
identify appropriate sub-matrix blocks,[

φrr φrv

φvr φvv

]
=

4 − 3 cosnt 0 0 1
n

sinnt 2
n

(1 − cosnt) 0

6 (sinnt− nt) 1 0 2
n

(cosnt− 1) 1
n

(4 sinnt− 3nt) 0

0 0 cosnt 0 0 1
n

sinnt

3nt sinnt 0 0 cosnt 2 sinnt 0
6n (cosnt− 1) 0 0 −2 sinnt 4 cosnt− 3 0

0 0 −n sinnt 0 0 cosnt


(5)
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such that 
x(t)
y(t)
z(t)
ẋ(t)
ẏ(t)
ż(t)

 =

[
φrr φrv

φvr φvv

]


x(t0)
y(t0)
z(t0)
ẋ(t0)
ẏ(t0)
ż(t0)

 (6)

As the measurement polynomial in Eqn (2) only involves the transmitter’s instantaneous
position, we are only interested in the φrr and φrv portions of the state transition matrix.
Therefore, we can write

xi,k = (4 − 3 cosntk) · xi,0 +
1

n
sinntk · ẋi,0 +

2

n
(1 − cosntk) · ẏi,0 (7a)

yi,k = 6 (sinntk − ntk) ·xi,0+yi,0+
2

n
(cosntk − 1) · ẋi,0+

1

n
(4 sinntk − 3ntk) · ẏi,0 (7b)

zi,k = cosntk · zi,0 +
1

n
sinntk · żi,0 (7c)

Alternatively,

xi,k = φrr1~ri(t0) + φrv1~̇ri(t0) (8)

yi,k = φrr2~ri(t0) + φrv2~̇ri(t0) (9)

zi,k = φrr3~ri(t0) + φrv3~̇ri(t0) (10)

where φrri and φrvi indicate the ith row of φrr and φrr, respectively. Inserting these expres-
sions for xT , yT , and zT into Equation 2 yields a second-order polynomial of the form

a1x
2
T (t0) + a2xT (t0)yT (t0) + a3xT (t0)zT (t0) + a4xT (t0)ẋT (t0) + · · · + a28 = 0 (11)

where the unknowns are the transmitter’s initial relative conditions. If we obtain N RDOA
measurements at unique times, we can determine these initial conditions by solving the
system of coupled polynomials. For a square system, N should be the number of variables.

Consider a scenario involving the transmitter orbit and the two receiver orbits coplanar
with the reference orbit such that all spacecraft have z(t) = ż(t) = 0. In such cases,
the transmitter’s motion is planar (2D) and governed by only four variables: x, y, ẋ, and
ẏ. Here the polynomials remain second-order, but each with 15 total terms instead of 28.
Also, N = 4, therefore only four RDOA measurements are needed.

POLYNOMIAL SCALING

The TDOA IROD system of equations have been found to result in a system of poorly
conditioned polynomials.5 Each of the coefficients of these polynomial systems vary by
several orders of magnitude, resulting in an incredibly high amount of precision required to
solve the polynomial system with an acceptable level of accuracy. According to Morgan9
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, “The purpose of scaling is to reduce the possibility of catastrophic arithmetic problems
when a solution method is evoked on a computer.” Similar to Morgan’s SCLGEN algo-
rithm, we employ a two-step scaling process which applies scaling to both the individual
variables and the equation as a whole. Variable scaling makes use of a change of variable
of the form x̄ = 10c1x, and similar for the other variables. Equation scaling reduces the
order of the polynomial coefficients across the entire equation in the form f̄1 = 10c5f1 = 0,
where all ci are non-zero values. Therefore, in the planar scenarios, we have eight scaling
constants–four for the variables and four for the equations. In the 3D case, we have twelve
scaling constants–six for the variables and six for the equations (note the planar case scaling
is described above).

Referring to Equation 11, the system of polynomials can be rewritten as

10cN
[
102c1a1x̄

2
T + 10c110c2a2x̄T ȳt + ...a28

]
= 0 (12)

We seek to make the conditioning of the polynomials improved, meaning centering the
coefficients around unity while simultaneously minimizing the variance of the coefficients.
After collecting terms around the polynomial components and labeling them as E, we sum
square the exponents

r1,1 =
N∑
i=1

E2
1,i (13)

r1,2 =
N∑
i=1

N∑
j>i

(E1,i − E1,j)
2 (14)

r1 = r1,1 + r1,2 (15)

The the total cost function r is given by the sum of quadratics, r = r1 + r2 + · · · + rN ,
which sums over all equations and all variables. Since the cost function is a sum of squares
of the scaling variables and constant terms, the global minimum can be found analytically
by

dr

dci
= 0 (16)

which has the form [A]~c = ~b, where [A] is a constant matrix, ~c is the vector of scaling
coefficients, and~b is a vector which is a function of the original coefficients.

The result is a system of equations that is much easier solved using a numerical method
with a limited amount of machine precision.

SCENARIO DEFINITIONS

The current work focuses on three planar (2D) scenarios, as they demonstrate the algo-
rithms necessary for solution. The initial relative orbit conditions chosen for each space-
craft are given in Table 1. Note that the two receiver orbits maintain the same initial con-
ditions across both scenarios, and only the transmitter’s initial conditions differ. The initial
conditions are given that define the three scenarios.
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Table 1. Scenario definitions

Transmitter(1) Transmitter(2) Transmitter(3) Receiver 1 Receiver 2

x(t0), km 1 4.5 8.22 10 8
y(t0), km 11 7 9.16 -5 3

ẋ(t0), km/s 0.012 -0.022 0.038 0.001 0.01
ẏ(t0), km/s 0.03 0.05 -0.044 -0.02263 -0.008102

The relevant scenario data was generated by assuming a circular reference orbit about
Earth of radius 6778 km. Measurement times were taken at intervals of one-tenth of an
orbit period of the reference orbit, or

(t0, t1, t2, t3) = (0, 555.3, 1110.7, 1666.0) seconds

The translational states of each of the three spacecraft were then computed at each mea-
surement time using the CW equations of motion. Next, the RDOA in Equation 1 and
polynomial coefficients of Equation 2 were computed at each time step.

For the purpose of solution disambiguation (discussed below), a fifth measurement time
was added, one-tenth of an orbit period after the final measurement, or t5 = 2276.7 seconds.

SOLUTION METHODS

For this work, two polynomial root-solving methods were used. Macaulay’s method10,11

is based on resultants. As Macaulay’s resultants are expressed in terms of determinants,
they can be used to translate root-finding problems into eigenvalue problems. Bertini12 is a
software package that numerically solves systems of polynomial equations using homotopy
continuation. For this work, Macaulay was implemented in MATLAB and Bertini was
downloaded from the website.13

Polynomial scaling was used with both polynomial root-solving methods, resulting in
four solution methods as described in Table 2.

Table 2. Solution methods definitions

Name Root-Solver Scaling

Method 1 Macaulay N
Method 2 Macaulay Y
Method 3 Bertini N
Method 4 Bertini Y

According to Bézout’s Theorem,14 the number of finite solutions to a square system is
ab where a is the highest degree of the polynomials and b is the number of variables. For
the planar case, this results in 24 = 16 finite solutions, and for the 3D case, 26 = 64 finite
solutions. As such, for this work we expect 16 finite solutions to be produced by each
method, and this will be used as a metric on the solution methods.
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RESULTS

This section presents a comparison of results for the scenarios. For each scenario, the
polynomials were solved utilizing the four solution methods as described in Table 2. Fi-
nally, a method is presented which clearly identifies the correct solution by disambiguation
of the solutions.

Scenario 1

Recall that Table 1 displays the true values used to simulate Scenario 1. The analysis of
Scenario 1 follows.

Figure 3 shows the root mean square (RMS) value of the polynomial residual yielded by
each (xT , yT , zT ) solution found by each method. This RMS metric is given by

xRMS =
√

(x21 + x22 + x23 + x24)/4 (17)

where x1 is the right hand side of the polynomial of the form of Equation 11 at the first
measurement time when the solution values of x0, y0, ẋ0, and ẏ0 are inserted; x2 is the right
hand side of the polynomial at the second measurement time; and so forth.

Ideally, the RMS residual value for each solution is zero, so Fig. 3 provides a metric
of how well each solution method was able to solve the polynomial system. It is obvious
that the Method 1 (Macaulay applied to the original polynomial system) did not perform
accurately. Additionally, Method 1 returned 18 solutions, instead of the expected 16 solu-
tions, to the original polynomial system. However, Methods 2-4 each yield 16 solutions,
with much lower residuals (on the order of 10−2 km4 or below), signifying these methods
solved the system well.

As a point of comparison, the order of magnitude ratio between the largest and smallest
(non-zero) coefficients in the original, unscaled system was 109 and the condition number
of the polynomial coefficients was 6.095 × 105. For the scaled system, the order of magni-
tude ratio between the largest and smallest coefficients was 104 and the condition number
was reduced to 5.2997 × 102.

Figure 4 shows the root mean square (RMS) value of the RDOA residual yielded by
each solution. At each measurement time, the RDOA residual is computed by inserting the
xT , yT , and zT solution into Equation 1 to obtain the calculated RDOA, then subtracting
from the actual RDOA. As this was a simulated scenario, the actual RDOA was computed
and known, but in a practical mission scenario, the RDOA would be measured via signal
processing (i.e. known with some uncertainty).

Because the algebraic manipulation from Equation 1 to Equation 2 involves two in-
stances of squaring both sides of an equation, it is expected that not all 16 solutions to
the polynomials will satisfy the original RDOA equations. The purpose of computing the
RDOA residual then is to disambiguate these extraneous solutions. The figure indicates
that the Method 1 solutions yield RDOA residuals ranging from order 10−3 to order 102.
Methods 2-4 each yield two solutions with RDOA residual values of order 10−7 or less,
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Figure 3. Polynomial residual for Scenario 1 (units are km4).

and 14 solutions with RDOA residual values of order 101 or 102. Table 3 shows the two
lowest RDOA residual solutions for Methods 2-4. (Note that Method 1 is ignored from the
table due to the high RDOA error.) From these results, we conclude that there exist two
solutions to the original RDOA equations for this scenario, one of which is of course the
actual transmitter relative orbit.

Figure 4. RDOA residual for Scenario 1 (units are km).

Comparing the values in Table 3 with the actual transmitter initial conditions in Table 1,
we see that Methods 2-4 each yield the actual transmitter initial conditions to at least four
decimal place accuracy. The other solution in the table can be disambiguated by simulating
an extra (fifth) RDOA measurement, which only the true solution can be shown to satisfy.
Figure 5 shows the RDOA error for Methods 1 and 2. Notice that for the scaled polynomial
solution (Method 2), index 2 has a similar RDOA error, whereas solution index 7 has a
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Table 3. Scenario 1 Results

Value Method 3 Method 4 Method 2

x(t0)1, km 0.9999+2.2039e-15i 1.0000+1.8415e-16i 1.0000
y(t0)1, km 11.0000-3.1296e-15i 11.0000+2.9633e-16i 11.0000

ẋ(t0)1, km/s 0.0120-1.4352e-18i 0.0120+3.1000e-19i 0.0120
ẏ(t0)1, km/s 0.0300-1.2766e-17i 0.0300+3.0262e-19i 0.0300

x(t0)2, km 4.4420+4.1027e-19i 4.4420-5.7957e-14i 4.4420
y(t0)2, km 6.2422-1.0081e-18i 6.2422+7.7120e-14i 6.2422

ẋ(t0)2, km/s 0.0247-2.3899e-21i 0.0247+2.4027e-16i 0.0247
ẏ(t0)2, km/s -0.0009-1.1907e-21i -0.0009+1.5554e-16i -0.0009

large change in RDOA error with the addition of the 5th measurement. Bertini results
(from Methods 3 and 4) demonstrate similar disambiguation properties. Therefore, we are
confident that the true solution to the transmitter initial relative state was found.

Figure 5. RDOA residual with 5th measurement for Scenario 1 (units are km).

Scenario 2

Recall that Table 1 displays the true values used to simulate Scenario 2. The analysis
follows.

Figure 6 shows the root mean square (RMS) values of the polynomial residual. Again,
Method 1 did not perform accurately, returning only 13 solutions, all of them yielding
high polynomial residuals. Method 2 returned 22 solutions with wide variation in residual
values: 6 of them were above 1011, two were of order 103, and the remaining 14 were order
10−2 or below. Method 3 returned 16 solutions with all residual values of order 10−6 or
below, and Method 4 also returned 16 solutions with all residual values of order 10−2 or
below.

As a point of comparison, the order of magnitude ratio between the largest and smallest
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(non-zero) coefficients in the original, unscaled system was 109 and the condition number
of the polynomial coefficients was 1.6772 × 106. For the scaled system, the order of mag-
nitude ratio between the largest and smallest coefficients was 104 and the condition number
was reduced to 1.0163 × 103.

Figure 6. Polynomial residual for Scenario 2 (units are km4).

Figure 7 shows the root mean square (RMS) value of the RDOA residuals. The Method
1 solutions yield RDOA residuals ranging from order 10−2 to order 102. Methods 2-4 each
yield two solutions with RDOA residual values of order 10−9 or less, with the remaining
residual values of order 102. Table 4 shows the two lowest RDOA residual solutions for
Methods 2-4. Again we conclude that there exist two solutions to the original RDOA equa-
tions for this scenario, and again we see that Methods 2-4 each yield the actual transmitter
initial conditions to several decimal place accuracy.

Table 4. Scenario 2 Results

Value Method 3 Method 4 Method 2

x(t0)1, km 4.5000-1.3446e-15i 4.5000+2.3592e-15i 4.5000
y(t0)1, km 7.0000+3.8100e-15i 7.0000-3.0616e-15i 7.0000

ẋ(t0)1, km/s -0.02200-1.7369e-18i -0.0220+2.2918e-18i -0.0220
ẏ(t0)1, km/s 0.0500+1.0680e-17i 0.0500-7.4323e-18i 0.0500

x(t0)2, km -7.3008-6.3417e-17i -7.3008-2.0800-14i -7.3008
y(t0)2, km 26.2213+1.0809e-16i 26.2213+3.5745e-14i 26.2213

ẋ(t0)2, km/s 0.08202+3.0028e-19i 0.08211+9.4893e-17i 0.0820
ẏ(t0)2, km/s 0.003815+7.0990e-20i 0.003815+2.4885e-17i 0.0038

The other solution in the table can be disambiguated by simulating an extra (fifth) RDOA
measurement, which only the true solution can be shown to satisfy. Figure 8 shows the
RDOA error for Methods 1 and 2. Notice that for the scaled polynomial solution (Method
2), index 9 has a similar RDOA error, whereas solution index 17 has a large change in
RDOA error with the addition of the 5th measurement. Bertini results (from Methods 3 and
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Figure 7. RDOA residual for Scenario 2 (units are km).

4) demonstrate similar disambiguation properties. Therefore, we are confident that the true
solution to the transmitter initial relative state was found.

Figure 8. RDOA residual with 5th measurement for Scenario 2 (units are km).

Scenario 3

Recall that Table 1 displays the true values used to simulate Scenario 3. The analysis
follows.

Figure 9 shows the root mean square (RMS) values of the polynomial residual. Again,
Method 1 did not perform accurately, returning only 14 solutions, all of them yielding
relatively high polynomial residuals. Methods 2 through 4 returned 16 solutions each, all
with RMS polynomial residuals under 10−1. Note that Method 2, Macaulay applied to the
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scaled polynomial system, solved the equations most accurately. Methods 3-4, both using
Bertini did not show significant improvement in solution accuracy when using the scaled
equations.

As a point of comparison, the order of magnitude ratio between the largest and smallest
(non-zero) coefficients in the original, unscaled system was 1010 and the condition number
of the polynomial coefficients was 3.7057 × 106. For the scaled system, the order of mag-
nitude ratio between the largest and smallest coefficients was 104 and the condition number
was reduced to 5.7144 × 102.

Figure 9. Polynomial residual for Scenario 3 (units are km4).

Figure 10 shows the RMS value of the RDOA residuals. The Method 1 solutions yielded
RDOA residuals ranging from order 1 to order 102. Methods 2-4 each yield two solutions
with RDOA residual values of order 10−7 or less, with the remaining residual values of
order 101. Table 5 shows the two lowest RDOA residual solutions for Methods 2-4. Again
we conclude that there exist two solutions to the original RDOA equations for this scenario,
and again we see that Methods 2-4 each yield the actual transmitter initial conditions to
several decimal place accuracy.

Table 5. Scenario 3 Results

Value Method 3 Method 4 Method 2

x(t0)1, km 8.2200-1.1973e-14i 8.2200-2.5852e-15i 8.2200
y(t0)1, km 9.1600+1.5048e-14i 9.1600+3.2551e-14i 9.1600

ẋ(t0)1, km/s 0.0380 + 6.5515e-17i 0.0380+1.0621e-16i 0.0380
ẏ(t0)1, km/s -0.0440-2.6219e-17i -0.0440-8.3680e-17i -0.0440

x(t0)2, km -0.2625 - 1.3536e-14i -0.2625 + 4.7576e-13i -0.2625
y(t0)2, km 19.4337 + 2.9460e-14i 19.4337- 1.0286e-12i 19.4337

ẋ(t0)2, km/s 0.0766 + 1.2367e-16i 0.0767 - 3.4358e-15i 0.0766
ẏ(t0)2, km/s -0.0548 - 7.7332e-17i -0.0548 + 1.7873e-15i -0.0548

The other solution in the table can be disambiguated by simulating an extra (fifth) RDOA
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Figure 10. RDOA residual for Scenario 3 (units are km).

measurement, which only the true solution can be shown to satisfy. Figure 11 shows the
RDOA error for Methods 2-4. Notice that for the scaled polynomial Macaulay solution
(Method 2), index 4 has a similar RDOA error, whereas solution index 2 has a large change
in RDOA error with the addition of the 5th measurement. Bertini results (from Methods 3
and 4) demonstrate similar disambiguation properties. Therefore, we are confident that the
true solution to the transmitter initial relative state was found.

Figure 11. RDOA residual with 5th measurement for Scenario 3 (units are km).

CONCLUSION

In conclusion, the problem of astrolocation via RF transmission has been defined, mea-
surements converted to a polynomial system, and solutions provided using multiple meth-
ods. Bertini was shown to solve the system of polynomials well, while Macaulay struggled
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to find a reasonable solution without the aid of polynomial scaling. When scaling was
applied, Macaulay generally found answers that were correct to several decimal places.
Bertini applied to the scaled problem also found accurate solutions. Bertini, in both un-
scaled and scaled cases, found the correct solution with extremely small imaginary compo-
nents, likely due to machine precision.

Future work will investigate full 3D scenarios, computation time, statistical uncertainty
models, and implementation on flight-like hardware.
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