

APP NAME: PUBLIC KEY
CRYPTOGRAPHY

Design Specification
SOFIA PETROVA, UC Santa Cruz, CSE 13S – Fall 2021
Nov. 11. 2021

Document Version: 2.0
Application Version: 2.0

Accepted by:

Darrell Long

NAME Date
TITLE

NAME Date
TITLE

NAME Date
TITLE

Printed: 11/11/21 6:51 PM Page i
© Sofia Petrova, Confidential & Proprietary

Table of Contents
1. Amendment History 3

2. References 5

3. Acknowledgments 6

4. Included files 7

5. Design Overview 8
5.1. Purpose of Document 8
5.2. System Architecture 8

6. Pseudocode Implementation 10

Printed: 10/25/218:41 PM Page 2
© Sofia Petrova, Confidential & Proprietary

1. Amendment History

Printed: 10/25/218:41 PM Page 3
© Sofia Petrova, Confidential & Proprietary

Date

Doc.
Version

Amendment Description

11/11/2021 1.0 Initial draft, Sofia Petrova

11/18/2021 2.0 Final draft, Sofia Petrova

Printed: 10/25/218:41 PM Page 4
© Sofia Petrova, Confidential & Proprietary

2. References
Information contained in this document was based on the following documents:

Assignment 6

Public Key Cryptography

Prof. Darrell Long

CSE 13S – Fall 2021

Printed: 10/25/218:41 PM Page 5
© Sofia Petrova, Confidential & Proprietary

3. Acknowledgments
The information presented in this document was drawn from various discussions with the
following individuals:

• Darrell Long

Printed: 10/25/218:41 PM Page 6
© Sofia Petrova, Confidential & Proprietary

4. Included files

• decrypt.c- This contains the implementation and main() function for the decrypt program.

• encrypt.c- This contains the implementation and main() function for the encrypt program.

• keygen.c- This contains the implementation and main() function for the keygen program.

• numtheory.c- This contains the implementation of the number theory functions.

• numtheory.h- This specifies the interface for the number theory functions.

• randstate.c- This contains the implementation of the random state interface for the RSA library
and number theory functions.

• randstate.h- This specifies the interface for initializing and clearing the random state

• rsa.c- This contains the implementation of the RSA library.

• rsa.h- This specifies the interface for the RSA library.

• README.md contains instructions for compiling and running the code

• DESIGN.pdf contains the design and design process for the program, describing it well enough
that the program should be replicable to someone who has not seen the code. This is the current
document

• Makefile compiles, formats, and runs the code, as well as cleaning output files

NOTE: Many file descriptions are taken directly from the Assignment 6 document written
by Darrel Long for CSE13S Fall as they best describe each file.

Printed: 10/25/218:41 PM Page 7
© Sofia Petrova, Confidential & Proprietary

5. Design Overview
5.1. Purpose of Document

This program contains key generator for RSA encryption, an encryptor, and a
decryptor. The key generator finds two large random primes (using the GMP
library to generate large enough numbers) and uses them to generate a public
key- represented by integers n and e- and a private key- represented by integer
d. The encryptor uses the public key to encrypt a file. The decryptor uses a
private key to decrypt the file using the reverse process.

5.2. System Architecture
5.2.1. Overall Structure
This program contains three mini libraries to perform key generation, encryption,
and decryption. These libraries are the RSA functions, the random state
interface, and the number theory functions. The random state interface merely
initializes and clears the random state used in the GMP library. The number
theory functions build the mathematical functions needed in key generation and
throughout the rest of the program. The RSA library contains the actual
implementation for key generation (both public and private), encryption, and
decryption.
The number theory library contains modular exponentiation and functions to
make and determine prime numbers using the Miller Rabin Test. It also contains
a function to calculate the greatest common denominator of two numbers and an
inverse modular operation.
The RSA library, meanwhile, contains functions (using the number theoretical
functions) to generate public and private keys as well as reading from and writing
them into files. Key generation consists of generating two large primes (p and q),
finding (p-1)*(q-1), and generating (e*d) such that (e*d) mod (p-1)*(q-1) =1. The
public key is (e,p*q) The private key is (d,p*q). This module also contains the
functions to encrypt and decrypt files..
The three main() functions in this program are the key generation, encryption,
and decryption functions. Each main function takes arguments from the
command line while running the executables, and depending on the arguments
given by the user, the program will generate keys, encrypt, or decrypt files or
messages.
keygen.c test harness arguments:

 -h Display program help and usage.
 -v Display verbose program output.
 -b bits Minimum bits needed for public key n.
 -c confidence Miller-Rabin iterations for testing primes (default: 50).
 -n pbfile Public key file (default: rsa.pub).
 -d pvfile Private key file (default: rsa.priv).
 -s seed Random seed for testing.

encrypt.c test harness arguments:

Printed: 10/25/218:41 PM Page 8
© Sofia Petrova, Confidential & Proprietary

 -h Display program help and usage.
 -v Display verbose program output.
 -i infile Input file of data to encrypt (default: stdin).
 -o outfile Output file for encrypted data (default: stdout).
 -n pbfile Public key file (default: rsa.pub).

 decrypt.c test harness arguments:

 -h Display program help and usage.
 -v Display verbose program output.
 -i infile Input file of data to decrypt (default: stdin).
 -o outfile Output file for decrypted data (default: stdout).
 -d pvfile Private key file (default: rsa.priv).

5.2.2. ERROR HANDLING

● For inputting an invalid argument on the command line
 ○ Output the help screen normally outputted by -h
● For inputting an invalid file (failure to open an input or output file)
 ○ Default to stdin or stdout
● For memory allocation failures
 ○ Print error message and exit with error code 1
● For writing or reading text or files that are too small
 ○ Print error message and exit with error code 1

Printed: 10/25/218:41 PM Page 9
© Sofia Petrova, Confidential & Proprietary

6. Pseudocode Implementation

6.1 Number Theoretic Functions

Miller-Rabin Prime Test(n, n-1, x, r)

The Miller–Rabin primality test is used to test if a number is prime

or not. Given an integer n, choose some positive integer a < n. a will

be the base. With s and d as positive integers and d being odd, n can

be written as 2^s * d + 1; or 2^s * d = n-1. n is considered a

possible prime to base a if a^d = 1 mod n OR a^(2^r)*d = -1 (mod n)

for some value of r less than s.

 Set mpz variables y and big N

 Set y to user given x

 Perform power mod with y,r,n and store into y

 If y is 1 or n-1

 Clear variables

 Return true

 For range of n-1

 Set big N to 2

 Compete power mod of big N and n

 If y = n-1

 Clear variables

 Return true

 Else

 Clear variables

Printed: 10/25/218:41 PM Page 10
© Sofia Petrova, Confidential & Proprietary

 Return false

 Clear variables

 Return false

Greatest common denominator function(a, b)

The GCD function is used to find the greatest common denominator of

two numbers, a and b.

 While b isn’t 0

 Assign temp variable as b

 Assign b as a mod b

 Assign temp as a

 return a

Mod inverse function (result, number, modulo)

This function computes the inverse result of number % modulo and

stores it into the result, with result, number, and modulo being mpz

variables.

 Initialize mod_n mpz variable

 Set mod_n to modulo

 Initialize number mpz variable

 Set number to argument number

 Initialize t as mpz and set to 0

 Initialize q as mpz and set to 0

 Initialize r as mpz and set to 1

 Initialize s1 as mpz and set to 1

 Initialize s2 as mpz and set to 0

Printed: 10/25/218:41 PM Page 11
© Sofia Petrova, Confidential & Proprietary

 Initialize s3 as mpz and set to 1

 Initialize t1 as mpz and set to 0

 Initialize t2 as mpz and set to 1

 Initialize t3 as mpz and set to 0

 Initialize temporary variable

 While r is greater than 0

 Set q to the floor of mod_n divided by number

 Multiply q and number and move into temporary variable

 Subtract temporary variable from mod_n

 Multiply q and s2 and store in temporary variable

 Subtract temporary variable from s1 and store into s3

 Multiply q and t2 and store into temporary variable

 Subtract t1 from temporary variable and store into t3

 If r is greater than 1

 Set mod_n to number

 Set number to mod_n

 Set s1 to s2

 Set s2 to s3

 Set t1 to t2

 Set t2 to t3

 Set t to t2

 Store the absolute of number to temporary variable

 If temporary variable equals 1

Printed: 10/25/218:41 PM Page 12
© Sofia Petrova, Confidential & Proprietary

 Add t and modulo and store into result

 Perform result mod modulo and store into result

 Clear all temporary variables

 Return

Generate prime number(p, bits, iterations)

This function generates a large prime number using the Miller Rabbins

test with the number of iterations given and the size of the bits

given. A large amount of numbers are tested for primality, and when

found is returned in the output, p.

 Initialize random number

 For i in 10,000 (large number but reasonable)

 Generate random number with bits specified

 If prime is found

 Move found prime into p

 Break loop and return

Check if number is prime(n, iterations)

This functions checks whether or not a given number is prime using the

Miller Rabbins test with the amount of iterations given.

 If number is negative, 0, or 1

 Return false

 If number is one of first 100 primes

 Return true

 If number is even

 Return false

Printed: 10/25/218:41 PM Page 13
© Sofia Petrova, Confidential & Proprietary

 For i in iterations given

 Calculate x

 Perform MR test

 If prime isn’t found with MR test

 break

Compute powder mod(o output, a base, d power, n modulo)

Computes A to the power of D modulo N and puts the output into O.

 Set output to 1 initially

 While d is greater than 0

 If d isn’t even (Even makes a number automatically

composite)

 v = v times p mod n

 Set p to p^2 mod n

 Set d to floor division of d/2

 Set output to v

6.2 RSA Functions

Make public key

Creates public key to be used in RSA encryption. The public key is the

pair(e, p*q).

 Get seed

 Generate random number in the range of nbits/4,(3×nbits)/4

 Make prime to generate 2 prime numbers

Printed: 10/25/218:41 PM Page 14
© Sofia Petrova, Confidential & Proprietary

 Compute public mod n by multiplying p and q

 Compute (p-1)*(q-1)

 Generate (e*d) such that (e*d) mod (p-1)(q-1) = 1

 Public key is (e,p*q)

Make private key

Creates private key to be used in RSA decryption. The private key is

the mod inverse of public exponent and (p-1)(q-1).

 Calculate (p-1)(q-1)

 Mod inverse public exponent and (p-1)(q-1), store into private

key

Sign(signature, plaintext, private key, public mod n)

 Power mod function with plaintext, private key, public mod n.

Store into signature

Write public key to file

This function writes the public key line by line to the input file

specified by the user.

 Output key parts as hex strings into file

 Output new line into file

 Output username into file

 Output new line into file

Read public key

This function reads the private key and puts them into mpz variables.

 Read public mod n and put into mpz variable

 Read public exponent and put into mpz variable

 Read signature and put into mpz variable

 Read username and put into mpz variable

Write private key to file

This function writes the private key into the specified input file.

Printed: 10/25/218:41 PM Page 15
© Sofia Petrova, Confidential & Proprietary

 Output public mod n as hex string into file

 Output private key as hex string into file

 Output new line into file

Read private key

This function reads the private key and puts them into mpz variables.

 Read public mod n and put into mpz variable

 Read private key and put into mpz variable

RSA sign

This function encrypts the username with the private key to verify the

identity of the sender.

 Raise the username to the power of private key and modulo by n

(power mod function)

RSA verify

This function decrypts the username with the public key to verify the

identity of the sender and the message being received

 Raise the username to the power of private key and modulo by n

(power mod function)

RSA encrypt

This functions performs encryption on plaintext converted to an mpz.

 Raise the message to the power of e and modulo by n (power mod

function)

RSA decrypt

This functions performs decryption on plaintext converted to an mpz.

Printed: 10/25/218:41 PM Page 16
© Sofia Petrova, Confidential & Proprietary

 Raise message to the power of private key mod n (power mod

function)

RSA encrypt file

This function encrypts InFile, writing the encrypted contents to the

OutFile. The data in InFile is encrypted in blocks which are

calculated based on the number of bits in the public key. The last

block is taken care of separately as the number of bits of the last

block may be shorter. GMP library functions are used.

 Create big number variable plaintext;

 Create big number variable cyphertext;

 Assign N as public mod N

 Calculate blocksize as blocksize = Floor[(LOG_2_N−1)/8];

 Create block array of block size for cipher text

 Set first index of cipher block array to 1

 Create file size integer

 Create byte buffer for plain text

 While not end of file

 Increment file size

 Read lines from plain file

 Reallocate memory for plaintext buffer

 Decrement filesize by 1 for indexing purposes (to not overwrite

first index of cipher block array)

 Calculate number of blocks in file

 For number of blocks

 Pad plaintext

 Convert read bytes to mpz_t using mpz_import function

Printed: 10/25/218:41 PM Page 17
© Sofia Petrova, Confidential & Proprietary

 Call RSA encrypt function using everything read and output into

cipher text buffer

 Print cipher text buffer into output file

 Clear memory

RSA decrypt file

This function decrypts InFile, writing the decrypted contents to the

OutFile. The data in InFile is decrypted in blocks which are

calculated based on the number of bits in the private key. The last

block is taken care of separately as the number of bits of the last

block may be shorter. GMP library functions are used.

 Assign private key to big number N;

 Assign public exponent to big number PubExp;

 Using mpz_get_d_2exp and N as operand:

 Convert N to a double DI, truncating if necessary;

 Return the exponent EXP separately as a signed integer;

 Calculate LOG_2 of N, where LOG_2_N = LOG_2(N) = LOG_2(DI) +

LOG_2(2) * EXP;

 Calculate blocksize as blocksize = Floor[(LOG_2_N−1)/8];

 Create array variable blockarray of blocksize size;

 Create big number variable plaintext;

 Create big number variable cyphertext;

 Using gmp_fscanf, read InFile row by row until no more rows:

 Scan InFile row and put result in cyphertext;

 Use RSA Decrypt and N and PubExp to decrypt cyphertext and

put result in plaintext;

Printed: 10/25/218:41 PM Page 18
© Sofia Petrova, Confidential & Proprietary

 Use mpz_export to convert plaintext into blockarray;

 Use mpz_export to get blocksize of blockarray;

 Skip first element of blockarray;

 Write remaining blockarray up to blocksize -1 into

OutFile;

 Clear temporary structures;

6.3 Key Generation

This program generates a public key and a private key to be used in

RSA encryption and decryption. The keys are outputted into files

specified by the user on the command line. The user can also specify

the seed, number of bits to generate the key, number of iterations for

Miller-Rabins test, and whether or not to output verbose statistics.

Initialize booleans for command line options (help, verbose, public

key, private key, n bits, seed, iterations)

Set default values for command line

Initialize file path name strings

While there are still arguments on the command line

 Case h: bool help is true

 Case v: bool verbose is true

 Case n: bool private key is true, take command line option

 Case d: bool public key is true, take command line option

 Case b: bool bits is true, take command line option

 Case s: bool seed is true, take command line option

 Case i: bool iterations is true, take command line option

Printed: 10/25/218:41 PM Page 19
© Sofia Petrova, Confidential & Proprietary

If bool help is true

 Print help screen

 Free memory

 Exit program

Depending on if the user types out full file path, prepend file path

onto user argument

Initialize input, output, prime p, prime q, public exponent e, public

mod n, private key d

For 1000 iterations

 Make public and private keys

 If it’s the right number of bits

 Break from for loop

Open public and private key files

Write public and private keys into files

If boolean verbose

 Print statistics

Close files

Free memory

6.4 Encryption

Printed: 10/25/218:41 PM Page 20
© Sofia Petrova, Confidential & Proprietary

This program utilizes the function written to encrypt an input file

and output the decrypted crypttext into an output file given by the

user on the command line. The user can also use the command line to

trigger verbose statistics.

Initialize booleans for command line options (help, verbose, public

key, input file, output file)

Set default values for command line

Initialize file path name strings

While there are still arguments on the command line

 Case h: bool help is true

 Case v: bool verbose is true

 Case n: bool public key is true, take command line option

 Case i: bool input is true, take command line option

 Case o: bool output is true, take command line option

If bool help is true

 Print help screen

 Free memory

 Exit program

Depending on if the user types out full file path, prepend file path

onto user argument

Open public key file

Printed: 10/25/218:41 PM Page 21
© Sofia Petrova, Confidential & Proprietary

Open input and output files

Read and store public key

Verify signature

Encrypt file (using RSA encrypt function)

If boolean verbose is true

 Print statistics

Close files and free memory

6.5 Decryption

This program utilizes the function written to decrypt an input file

and output the decrypted plaintext into an output file given by the

user on the command line. The user can also use the command line to

trigger verbose statistics.

Initialize booleans for command line options (help, verbose, private

key, input file, output file)

Set default values for command line

Initialize file path name strings

While there are still arguments on the command line

 Case h: bool help is true

 Case v: bool verbose is true

 Case n: bool private key is true, take command line option

Printed: 10/25/218:41 PM Page 22
© Sofia Petrova, Confidential & Proprietary

 Case i: bool input is true, take command line option

 Case o: bool output is true, take command line option

If bool help is true

 Print help screen

 Free memory

 Exit program

Depending on if the user types out full file path, prepend file path

onto user argument

Open private key file

Open input and output files

Read private key

Decrypt file (with RSA decrypt function)

If boolean verbose is true

 Print statistics

Close files and free memory

Printed: 10/25/218:41 PM Page 23
© Sofia Petrova, Confidential & Proprietary

	Amendment History
	References
	Acknowledgments
	Included files
	Design Overview
	Purpose of Document
	System Architecture

	Pseudocode Implementation

