

APP NAME: HUFFMAN CODING

Design Specification
SOFIA PETROVA, UC Santa Cruz, CSE 13S – Fall 2021
Oct. 25. 2021

Document Version: 2.0
Application Version: 2.0

Accepted by:

Darrell Long

NAME Date
TITLE

NAME Date
TITLE

NAME Date
TITLE

Printed: 10/25/21 6:51 PM Page i
© Sofia Petrova, Confidential & Proprietary

Table of Contents
1. Amendment History 3

2. References 5

3. Acknowledgments 6

4. Included files 7

5. Design Overview 8
5.1. Purpose of Document 8
5.2. System Architecture 8

6. Graphical Representation of Tree 10

7. Pseudocode Implementation 11

Printed: 10/25/218:41 PM Page 2
© Sofia Petrova, Confidential & Proprietary

1. Amendment History
November 5, 2021- Edits to add pseudocode and modify system architecture description
November 7, 2021- Polishing descriptions and submitting

Printed: 10/25/218:41 PM Page 3
© Sofia Petrova, Confidential & Proprietary

Date

Doc.
Version

Amendment Description

10/25/2021 1.0 Initial draft, Sofia Petrova

11/5/2021 2.0 Final draft, Sofia Petrova

Printed: 10/25/218:41 PM Page 4
© Sofia Petrova, Confidential & Proprietary

2. References
Information contained in this document was based on the following documents:

Assignment 5

Huffman Coding

Prof. Darrell Long

CSE 13S – Fall 2021

Printed: 10/25/218:41 PM Page 5
© Sofia Petrova, Confidential & Proprietary

3. Acknowledgments
The information presented in this document was drawn from various discussions with the
following individuals:

• Darrell Long

Printed: 10/25/218:41 PM Page 6
© Sofia Petrova, Confidential & Proprietary

4. Included files

• encode.c- contain implementation of the Huffman encoder.

• encode.h- contains functions to help complete encoding functions

• decode.c- contain implementation of the Huffman decoder.

• defines.h- contains the macro definitions used throughout the assignment.

• header.h- contains the struct definition for a file header

• node.h- contains the node ADT interface

• node.c- contains implementation for the node ADT

• pq.h- contains the priority queue ADT interface

• pq.c- contains the priority queue ADT implementation

• code.h- contains the code ADT interface

• code.c- contains the code ADT implementation

• io.h- contains the I/O module interface

• io.c- contains the I/O module implementation

• stack.c- contains implementation for the stack ADT

• stack.h- contains the stack ADT interface

• huffman.c- contains implementation of Huffman coding module interface

• huffman.h- contains Huffman coding module interface

• README.md contains instructions for compiling and running the code

• DESIGN.pdf contains the design and design process for the program, describing it well enough
that the program should be replicable to someone who has not seen the code. This is the current
document

• Makefile compiles, formats, and runs the code, as well as cleaning output files

NOTE: Many file descriptions are taken directly from the Assignment 5 document written
by Darrel Long for CSE13S Fall as they best describe each file.

Printed: 10/25/218:41 PM Page 7
© Sofia Petrova, Confidential & Proprietary

5. Design Overview
5.1. Purpose of Document

This program contains a Huffman encoder and decoder. The encoder builds a
priority queue full of symbol frequencies and then, out of that, a Huffman tree. It
then creates a stack of bits based on the tree. Both the tree and bits are dumped
into the output file.
The decoder then rebuilds the Huffman tree by traversing the tree dump and
rebuilding the leaves and parents. It will use the bit stack to traverse the rebuilt
tree and output a leaf whenever reached.

5.2. System Architecture
5.2.1. Overall Structure
This program contains 3 Abstract Data Types: Codes (which implement a stack of
bits), a priority queue; nodes, and a stack. It also contains modules to implement
Huffman Tree functions and a module for input/output. A histogram array is
created in the beginning of the encoding process. Then, for each symbol in the
file, its corresponding frequency is incremented on the histogram. This histogram
is then used to create nodes, which are then added to a priority queue. The
priority queue is then used to create the Huffman tree, which is written into the
output file. A code is also created based off the histogram and outputted in the
file.
The test harness takes arguments from the command line while running the
executables, and depending on the arguments given by the user, the program
will encode or decode the given file to and from the appropriate files.
encode.c test harness arguments:

 -h display program help and usage.
 -i infile Specifies the input file to encode. The default input is stdin.
 -o outfile Specifies the output file write compressed output into. The default
output is stdout
 -v prints decompression statistics to stderr, including uncompressed
file size, compressed file size, and space saving.

To decode, the tree dump is read from the encoded file and reconstructed into a
proper Huffman tree. The codes written underneath the tree dump are then used
to traverse the tree and output the read bytes to a new file.
decode.c test harness arguments:

 -h display program help and usage.
 -i infile Specifies the input file to decode. The default input is stdin.
 -o outfile Specifies the output file write decompressed output into. The
default output is stdout
 -v prints decompression statistics to stderr, including compressed file
size, decompressed file size, and space saving.

Printed: 10/25/218:41 PM Page 8
© Sofia Petrova, Confidential & Proprietary

5.2.2. ERROR HANDLING

● For inputting an invalid argument (including arguments -i or -o without a
specified file)
 ○ Output the help screen normally outputted by -h
● For inputting an invalid file (failure to open an input or output file)
 ○ Print error message and exit with error code 1
● For memory allocation failures
 ○ Print error message and exit with error code 1
● For writing or reading text or files that are too small
 ○ Print error message and exit with error code 1

Printed: 10/25/218:41 PM Page 9
© Sofia Petrova, Confidential & Proprietary

6. Graphical Representation of Tree

Figure 1: Representation of nodes in priority queue being enqueued onto Huffman tree with a
completed tree by the end.

Printed: 10/25/218:41 PM Page 10
© Sofia Petrova, Confidential & Proprietary

7. Pseudocode Implementation

6.1 Encode function

Create Histogram array

Set first and last array elements to be incremented

For each element in the array

 If element isn’t 0

 Create node

 Enqueue node onto priority queue

Create Huffman tree

 While there’s more than one node in the queue

 Pop last two nodes on queue

 Join nodes

 Put joined node and leaves on Huffman tree

 Put joined node on queue

Create code

For each element in the alphabet

 Build code by

 Checking node to see if it has left or right

 Writing 0 if left and 1 if right, then calling recursively

with the left and right nodes

Open outfile

Dump tree into outfile

For each symbol in the input file

 Write code into output file

6.2 Decode function

Printed: 10/25/218:41 PM Page 11
© Sofia Petrova, Confidential & Proprietary

Allocate memory for file input names

Read magic number

Get input file permissions and set them to output file

Rebuild tree:

 For every node in the tree dump

 Traverse until hitting a leaf

 Push leaf onto stack

 If hitting an I

 Pop stack twice

 Rejoin nodes popped

 Put back on Huffman tree

 Pushed joined node onto stack

For every character in the emitted binary

 Traverse the Huffman tree

 If reaching a leaf

 Output the symbol to file

Delete tree

Free memory

6.3 Node ADT

Node Creation

 Allocate memory for node

 Set left of node to null

 Set right of node to null

 Set symbol to given symbol

 Set frequency to given frequency

Node Delete

 Free memory for node

 Set pointer to null

Printed: 10/25/218:41 PM Page 12
© Sofia Petrova, Confidential & Proprietary

Node Join

 Allocate memory for parent node

 Set left node of parent node to given left node address

 Set right node of parent node to given right node address

6.4 Code ADT- Functions very similarly to stack ADT with extra set bit

functions

Initialize Code

 Create new code

 Set top to 0

 For all bits in the code

 Zero out the code

 Return the new code

Code Empty

 If code is empty

 Return true

 Else return false

Code Full

 If code is full

 Return true

 Else return false

Set Bit

 If code is full return false

 Bitmask to i-th bit of a byte, set to 1

Clear Bit

 If code is full return false

 Bitmask to i-th bit of a byte, set to 0

Printed: 10/25/218:41 PM Page 13
© Sofia Petrova, Confidential & Proprietary

Get bit

 Bitmask to i-th bit of a byte and return true if it’s there

Push bit

 If code full

 Return false

 Else

 Push 0 or 1 onto stack depending on what’s specified

 Increment top of stack

Pop bit

 If code full

 Return false

 Else

 Decrement top of stack

 Pop 0 or 1 onto stack depending on what’s specified

6.5 Priority Queue ADT

Priority Queue struct

 int capacity

 Node array address the side of the max tree size

 Count/number in queue

Create Priority Queue

 Allocate memory

 Set count to 0

 Set capacity to given capacity

Enqueue

 Add given node onto the last index of the priority queue

Printed: 10/25/218:41 PM Page 14
© Sofia Petrova, Confidential & Proprietary

 Fix heap

 Increment count

Dequeue

 Store first element of the queue

 Set first element to last element

 Decrement count

 Fix heap

Delete Queue

 Free memory

 Set pointer to null

6.6 Input/Output Module

Read bytes

 Initialize characters read

 While the number of characters being read is less than bytes to

read

 Read from infile

Flush codes

 Write extra bytes to output file

Dump tree

 If root node has a left node

 Dump tree to outfile with left node as argument

 If root node has a right node

 Dump tree to outfile with right node as argument

 If neither

 Write L for leaf

 Else write I for interior

Printed: 10/25/218:41 PM Page 15
© Sofia Petrova, Confidential & Proprietary

Write code

 For code size

 Write code bytes to output file

Write bytes

 Write given bytes to outfile using Linux write()

Printed: 10/25/218:41 PM Page 16
© Sofia Petrova, Confidential & Proprietary

	Amendment History
	References
	Acknowledgments
	Included files
	Design Overview
	Purpose of Document
	System Architecture

	Graphical Representation of Tree
	Pseudocode Implementation

