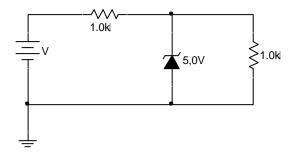

UNIVERSIDADE PAULISTA	ICET - INSTITUTO DE CIÊNCIAS E TECNOLOGIA				
Engenharia Elétrica	4° /5°	A			
Curso	Série ou Período	Turma			
Eletrônica Básica.		P1			
Disciplina		Prova			
GABARITO					
Nome do Aluno		Nº. do Aluno			
	06/04/22 19:15 Hs	Luís Caldas			
Assinatura	Data	Professor			
Instruções: PROIBIDA a consulta de livros ou anotações. PERMITIDO uso de calculadoras. Duração da prova: 70 min. ATENÇÃO: TODOS OS DISPOSITIVOS ELETRÔNICOS (CELULAR, IPAD E SIMILARES) DEVEM ESTAR DESLIGADOS E GUARDADOS, FORA DO ALCANCE DO ALUNO.					

1.a Questão: (Valor 0,7): Para o circuito a seguir foram introduzidos mais dois diodos e são colocados em paralelo na saída. Qual a variação da tensão ΔV na saída. Assumir $\eta = 1$ e $V_T = 25 \text{mV}$.

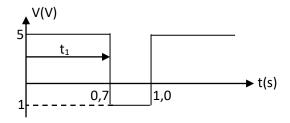


Alternativas:

- a. $\Delta V = 27,47 \text{mV}$.
- b. $\Delta V = 17,25 \text{mV}$.
- c. $\Delta V = 15,35 \text{mV}$.
- d. $\Delta V = 7,55$ mV.
- e. Nenhuma das anteriores.

Resposta: a

2.a Questão: (Valor 0,7) No circuito a seguir a corrente mínima para o diodo zener operar é 5mA. Calcular a tensão mínima de entrada para o zener entrar em condução e qual o valor da corrente da fonte de alimentação.



Resposta: c

Alternativas:

- **a.** A tensão V = 5V e I = 5mA.
- **b.** A tensão V = 10V e I = 5mA.
- **c.** A tensão V = 15V e I = 10mA.
- **d.** A tensão V = 10V e I = 10mA.
- **e.** A tensão V = 15V e I = 15mA.

3.a Questão: (Valor 0,7) Para a forma de onda periódica a seguir indicar os valores notáveis da forma de onda como a tensão V, o período T e o ciclo de operação D que é calculado em porcentagem e é a relação entre t_1 e o período da onda.

Alternativas:

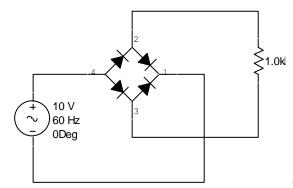
a.
$$V = 5.0V$$
, $T = 0.7s$ e $D = 30\%$

b.
$$V = 3.8V$$
, $T = 1.0s$ e $D = 30\%$

c.
$$V = 2.8V$$
, $T = 1.0s$ e $D = 70\%$

d.
$$V = 3.2V$$
, $T = 1.0s$ e $D = 70\%$

e.
$$V = 2.8V$$
, $T = 0.7s$ e $D = 70\%$

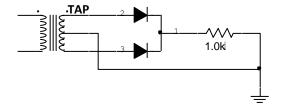

Resposta: d

4.a Questão: (Valor 1,0) Responder qual alternativa é correta sobre as afirmações a seguir: Alternativas:

- **a.** A frequência na saída do retificador de meia onda é igual ao dobro da frequência da fonte CA (corrente alternada) de entrada.
- **b.** O fator de ripple de uma onda retificada aumenta com o aumento do número de fases de entrada do retificador.
- c. Um retificador de onda completa a dois diodos têm o ângulo de condução dos diodos iguais a 90°.
- **d.** A vantagem do retificador em onda completa em ponte sobre o retificador em onda completa a dois diodos é que a corrente que passa pelo diodo é menor.
- e. Nenhuma das anteriores.

Resposta: e

5.a Questão: (Valor 0,7) Para o circuito da figura a seguir responda a alternativa correta. Considere diodos ideais. V_{0DC} = Tensão Média, V_{0RMS} = Tensão eficaz e f = frequência.

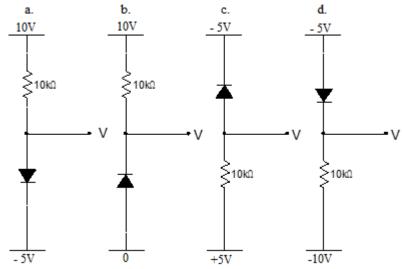


Alternativas:

- **a.** $V_{0DC} \cong 10V$, $V_{0RMS} = 10V$ e f = 120Hz
- **b.** $V_{0DC} \cong 9V$, $V_{0RMS} = 10V$ e f = 120Hz
- **c.** $V_{0DC} \cong 10V$, $V_{0RMS} = 9V$ e f = 60Hz
- **d.** $V_{0DC} \cong 9V$, $V_{0RMS} = 10V$ e f = 60Hz
- e. Nenhuma das anteriores

Resposta: b

6.a Questão: (Valor 0,7) Para o retificador a seguir calcular a tensão reversa máxima, sabendo-se que a tensão eficaz produzida no secundário do transformador nos pontos 2 e 3 da figura é de 20V, sendo 15V entre o ponto 2 e o TAP e 5V entre o ponto 3 e o TAP. Considere diodos ideais.



Alternativas:

- a. $V_R \cong 28.3V$
- b. $V_R \cong 14,4V$
- c. $V_R \cong 21,2V$
- d. $V_R \cong 25.3V$
- e. Nenhuma das anteriores

Resposta: a

7.a Questão: (Valor 0,7) A tensão V e a corrente que circula no circuito item a) e b) serão respectivamente. Considere diodos ideais.

Alternativas:

- a. item a) V = 10V e I = 1mA e item b) V = 10V e I = 1mA
- b. item a) V = 5V e I = 1.5mA e item b) V = 0V e I = 0
- c. item a) V = -10V e I = 1mA e item b) V = 10V e I = 1mA
- d. item a) V = -5V e I = 1,5mA e item b) V = 10V e I = 0
- e. Nenhuma das anteriores

Resposta: d

8.a Questão: (Valor 0,7) A tensão V e a corrente I que circulam nos circuitos itens c) e d) serão respectivamente:

Alternativas:

- a. item c) V = 10V e I = 1mA e item d) V = 5V e I = 1mA
- b. item c) V = 5V e I = 1.5mA e item d) V = 10V e I = 1.5mA
- c. item c) V = -5V e I = 1mA e item d) V = -5V e I = 0.5mA
- d. item c) V = -5V e I = 1,0mA e item d) V = 10V e I = 1mA
- e. Nenhuma das anteriores

Resposta: c

9.a Questão: (Valor 0,7) Responda a alternativa correta.

Alternativas:

- a. O diodo é um elemento linear e segue a equação de Schocley para a corrente.
- b. A corrente no diodo I_D é inversamente proporcional à tensão aplicada no diodo.
- c. O Silício e Germânio são substâncias tetravalentes e quando puros são excelentes condutores.
- d. A finalidade da dopagem do semicondutor é tornar um ótimo condutor.
- e. Nenhuma das anteriores.

Resposta: d

10.a Questão: (Valor 0,7) Responda a alternativa correta.

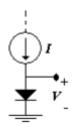
Alternativas:

- a. Um material puro é chamado de extrínseco e quando dopado por impurezas de intrínseco.
- b. Os portadores majoritários no material tipo N e P são respectivamente elétrons e lacunas.
- c. A zona de depleção de um diodo é expandida quando o diodo está em condução.
- d. A corrente inversa no diodo é da ordem de alguns miliamperes e varia com o aumento da tensão aplicada.
- e. Nenhuma das anteriores.

Resposta: b

Formulários

Parâmetros	Contínua	Senoide	½ Onda	Onda completa a dois diodos	Onda completa a ponte
V_{ODC}	Е	0	E_{MAX}/π	$2E_{MAX}/\pi$	$2E_{MAX}/\pi$
V_{0RMS}	Е	$E_{MAX}/\sqrt{2}$	E _{MAX} /2	$E_{MAX}/\sqrt{2}$	$E_{MAX}/\sqrt{2}$
FF	1	-	2,22	1,11	1,11
FR	-	_	121%	48%	48%
V_R	-	_	E_{MAX}	$2E_{MAX}$	E_{MAX}

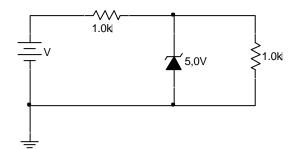

 $I_D = I_S \; (exp(V_D/nV_T - 1)) \label{eq:ID}$

 $V_D = 0.7V$

Rascunho:

ICET - INSTITUTO DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE PAULISTA 4°/5° ENGENHARIA ELÉTRICA Curso Série ou Período Turma P1 Eletrônica Básica. Disciplina Nº. do Aluno Nome do Aluno 06/04/22 19:15 Hs Luís Caldas Data Professor Assinatura Instruções: PROIBIDA a consulta de livros ou anotações. PERMITIDO uso de calculadoras. Duração da prova: 70 min. ATENÇÃO: TODOS OS DISPOSITIVOS ELETRÔNICOS (CELULAR, IPAD E SIMILARES) DEVEM ESTAR DESLIGADOS E GUARDADOS, FORA DO ALCANCE DO ALUNO.

1.a Questão: (Valor 0,7): Para o circuito a seguir foram introduzidos mais dois diodos e são colocados em paralelo na saída. Qual a variação da tensão ΔV na saída. Assumir $\eta = 1$ e $V_T = 25 \text{mV}$.

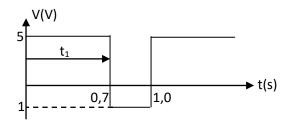


Alternativas:

- a. $\Delta V = 15,35 \text{mV}$.
- b. $\Delta V = 17,25 \text{mV}$.
- c. $\Delta V = 27,47 \text{mV}$.
- d. $\Delta V = 7,55$ mV.
- e. Nenhuma das anteriores.

Resposta: c

2.a Questão: (Valor 0,7) No circuito a seguir a corrente mínima para o diodo zener operar é 5mA. Calcular a tensão mínima de entrada para o zener entrar em condução e qual o valor da corrente da fonte de alimentação.



Alternativas:

- **a.** A tensão V = 15V e I = 10mA.
- **b.** A tensão V = 5V e I = 5mA.
- c. A tensão V = 10V e I = 5mA.
- **d.** A tensão V = 10V e I = 10mA.
- **e.** A tensão V = 15V e I = 15mA.

Resposta: a

3.a Questão: (Valor 0,7) Para a forma de onda periódica a seguir indicar os valores notáveis da forma de onda como a tensão V, o período T e o ciclo de operação D que é calculado em porcentagem e é a relação entre t_1 e o período da onda.

Alternativas:

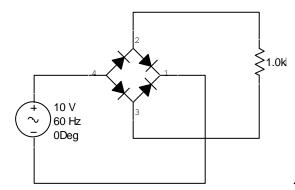
a.
$$V = 5.0V$$
, $T = 0.7s$ e $D = 30\%$

b.
$$V = 3.8V$$
, $T = 1.0s$ e $D = 30\%$

c.
$$V = 2.8V$$
, $T = 1.0s$ e $D = 70\%$

d.
$$V = 2.8V$$
, $T = 0.7s$ e $D = 70\%$

e.
$$V = 3.2V$$
, $T = 1.0s$ e $D = 70\%$

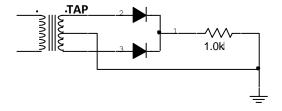

Resposta: e

4.a Questão: (Valor 0,7) Responder qual alternativa é correta sobre as afirmações a seguir: Alternativas:

- **a.** A frequência na saída do retificador de meia onda é igual ao dobro da frequência da fonte CA (corrente alternada) de entrada.
- **b.** O fator de ripple de uma onda retificada aumenta com o aumento do número de fases de entrada do retificador.
- c. Um retificador de onda completa a dois diodos têm o ângulo de condução dos diodos iguais a 90°.
- **d.** A vantagem do retificador em onda completa em ponte sobre o retificador em onda completa a dois diodos é que a corrente que passa pelo diodo é menor.
- e. Nenhuma das anteriores.

Resposta: e

5.a Questão: (Valor 0,7) Para o circuito da figura a seguir responda a alternativa correta. Considere diodos ideais. V_{0DC} = Tensão Média, V_{0RMS} = Tensão eficaz e f = frequência.

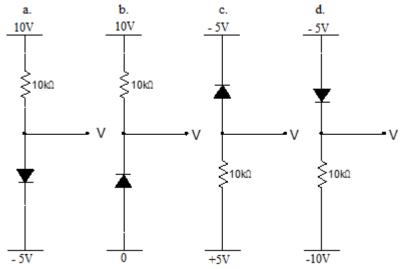


Alternativas:

- **a.** $V_{0DC} \cong 10V$, $V_{0RMS} = 10V$ e f = 120Hz
- **b.** $V_{0DC} \cong 9V$, $V_{0RMS} = 10V$ e f = 60Hz
- **c.** $V_{0DC} \cong 10V$, $V_{0RMS} = 9V$ e f = 60Hz
- **d.** $V_{0DC} \cong 9V$, $V_{0RMS} = 10V$ e f = 120Hz
- e. Nenhuma das anteriores

Resposta: d

6.a Questão: (Valor 0,7) Para o retificador a seguir calcular a tensão reversa máxima, sabendo-se que a tensão eficaz produzida no secundário do transformador nos pontos 2 e 3 da figura é de 20V, sendo 15V entre o ponto 2 e o TAP e 5V entre o ponto 3 e o TAP. Considere diodos ideais.



Alternativas:

- a. $V_R \cong 14,4V$
- b. $V_R \cong 28,3V$
- c. $V_R \cong 21,2V$
- d. $V_R \cong 25.3V$
- e. Nenhuma das anteriores

Resposta: b

7.a Questão: (Valor 0,7) A tensão V e a corrente que circula no circuito item a) e b) serão respectivamente. Considere diodos ideais.

Alternativas:

- a. item a) V = 10V e I = 1mA e item b) V = 10V e I = 1mA
- b. item a) V = 5V e I = 1,5mA e item b) V = 0V e I = 0
- c. item a) V = -5V e I = 1,5mA e item b) V = 10V e I = 0
- d. item a V = -10V e I = 1mA e item b) V = 10V e I = 1mA
- e. Nenhuma das anteriores

Resposta: c

8.a Questão: (Valor 0,7) A tensão V e a corrente I que circulam nos circuitos itens c) e d) serão respectivamente:

Alternativas:

- a. item c) V = 10V e I = 1mA e item d) V = 5V e I = 1mA
- b. item c) V = 5V e I = 1,5mA e item d) V = 10V e I = 1,5mA
- c. item c) V = -5V e I = 1mA e item d) V = -5V e I = 0.5mA
- d. item c) V = -5V e I = 1,0mA e item d) V = 10V e I = 1mA
- e. Nenhuma das anteriores

Resposta: c

9.a Questão: (Valor **0,7**) Responda a alternativa correta.

Alternativas:

- a. O diodo é um elemento linear e segue a equação de Schocley para a corrente.
- b. A corrente no diodo I_D é inversamente proporcional à tensão aplicada no diodo.
- c. O Silício e Germânio são substâncias tetravalentes e quando puros são excelentes condutores.
- d. A finalidade da dopagem do semicondutor é tornar um ótimo condutor.
- e. Nenhuma das anteriores.

Resposta: d

10.a Questão: (Valor 0,7) Responda a alternativa correta.

Alternativas:

- a. Um material puro é chamado de extrínseco e quando dopado por impurezas de intrínseco.
- b. Os portadores majoritários no material tipo N e P são respectivamente elétrons e lacunas.
- c. A zona de depleção de um diodo é expandida quando o diodo está em condução.
- d. A corrente inversa no diodo é da ordem de alguns miliamperes e varia com o aumento da tensão aplicada.
- e. Nenhuma das anteriores.

Resposta: b

Formulários

Parâmetros	Contínua	Senoide	½ Onda	Onda completa a dois diodos	Onda completa a ponte
V_{ODC}	E_{MAX}	0	E_{MAX}/π	$2E_{MAX}/\pi$	$2E_{MAX}/\pi$
V_{0RMS}	E_{MAX}	$E_{MAX}/\sqrt{2}$	$E_{MAX}/2$	$E_{MAX}/\sqrt{2}$	$E_{MAX}/\sqrt{2}$
FF	1	-	2,22	1,11	1,11
FR	-	-	121%	48%	48%
V_R	-	-	E_{MAX}	$2E_{MAX}$	E_{MAX}

 $I_D = I_S \; (exp(V_D/nV_T - 1)) \label{eq:ID}$

 $V_D = 0.7V$

Rascunho: