

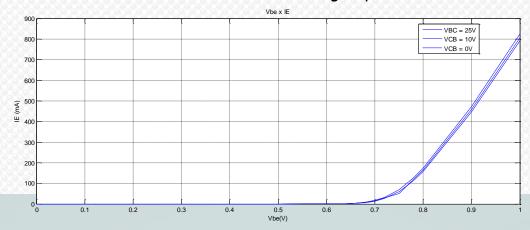
AULA: 09 - MONTAGENS COM O TRANSISTOR

Um transistor pode operar em 3 montagens possíveis, ou base comum, emissor comum ou coletor comum para diferentes tipos de aplicações. Os amplificadores de sinais para áudio são normalmente com montagem em emissor comum, as fontes de tensões ou reguladores de tensões em coletor comum e os amplificadores de alta freqüências em base comum com entrada de sinal feita pelo emissor.

10.1 MONTAGEM EM BASE COMUM.

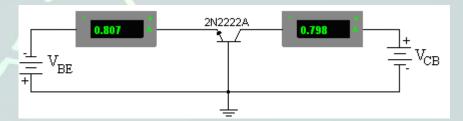
A montagem em base comum é apresentada pelo modelo equivalente que se aproxime do comportamento físico do dispositivo. Para análise do modelo submetido em corrente contínua para um transistor NPN.

a) Características de entrada-saída do transistor em base comum.


A seguir são mostradas as características de entrada como se relacionam a corrente de entrada e a tensão de entrada para diferentes valores das tensões de saída e as características de saída como se relacionam a corrente de saída e a tensão de saída para diferentes valores da corrente de entrada.

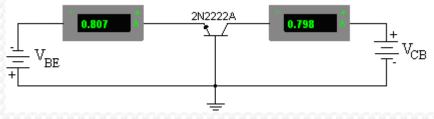
b) Entrada e Saída

A entrada de tensão no circuito em base comum é a tensão base-emissor V_{BE} e a corrente de entrada I_{E} , podem fazer um gráfico de $I_{E} \times V_{BE}$. Como a curva depende da tensão V_{CB} reversa (quanto maior a tensão maior a corrente). A figura a seguir mostra um conjunto de características de entrada.



A curva característica de $V_{BE} \times I_E$ é mostrada a seguir para as tensões de V_{CB} .

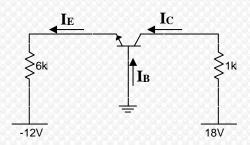
O ensaio a seguir mostra a corrente de entrada e saída e foi realizado conforme a configuração.


V _{BE} (V)	$V_{CB} = 0V$ $I_{E}(mA)$ $\alpha = 0,994$	$V_{CB} = 10V$ $I_{E}(mA)$ $\alpha = 0,996$	$V_{CB} = 25V$ $I_{E}(mA)$ $\alpha = 0.966$
0	0	0	0
0.1	0	0	0
0.2	0	0	0
0.3	0	0	0
0.4	0	0	0
0.5	0	0	0
0,55	0,051	0,052	0,064
0,60	0,346	0,387	0,430
0,62	0,746	0,831	0,927
0.64	1,59	1,783	1,984
0.66	3,394	3,781	4,197
0,68	7,066	7,846	8,680
0,70	14,0	16,00	17,0
0,,72	27,00	29,00	32,0
0,75	61,00	51,00	70,0
0,78	113,0	120,0	127,0
0,80	157,0	165,0	174,0

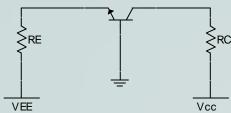
ER ELETRONICA

Exemplos: O transistor 2N2222 representado pela figura a seguir têm as curvas $V_{BE} \times I_E$. Quando a tensão V_{CC} é ajustada para 25V, 10V e 0V e a tensão V_{BE} = 0,7. A corrente I_C , será:

Resposta: 16,422mA; 15,936mA; 13,916mA


Prof. Luís Caldas – 2022

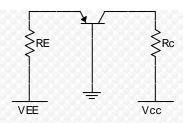
Página 62



Exercícios:

1. Determinar α , I_E , I_B , I_C , V_{CB} e V_{CE} para o circuito da figura a seguir. Dados V_{BE} = 0,6V, β = 79.

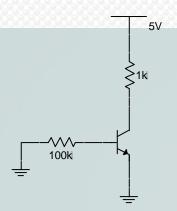
Resposta: α = 0,988; I_E = 1,9mA; I_B = 23,75 μ A; I_C = 1,87mA; V_{CE} = 15,53V; V_{CB} = 16,13V. 2. Determinar R_C, R_E, sabendo-se que I_C = 1,5mA, V_{CE} = 6V, α = 0,98, V_{EE} = -18V e V_{CC} = 12V


Resposta: $R_E = 11.4K$; $R_C = 8.4K$.

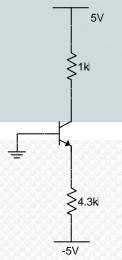
3. Desprezando-se V_{EB} , calcular I_C e V_{EC} , para V_{EE} = 6V, V_{CC} = -24V, R_E = 6K e R_C = 12K. Para α = 1.

Resposta: $I_C = 1mA$; $V_{EC} = -12V$.

4. Para V_{EB} = 0,6V, V_{EE} = +12,6V, R_{C} = 2K, R_{E} = 3K, β = 100. Calcular I_{B} , I_{C} , V_{EC} .


Resposta: $I_E = 4mA$; $I_C = 3.96mA$; $V_{EC} = -7.32V$.

5. Sabendo-se que no transistor circula I_E = 1,08mA. Numa configuração base comum, calcular a corrente de coletor para α = 0,988 e a tensão V_{CE} , sabendo-se que as tensões V_{BE} = 0,6V e V_{BC} = -4V.


Resposta: $I_C = 1,06$ mA; $V_{CE} = 4,6$ V.

- 6. Para o circuito a seguir, pede-se:
- a) Corrente de base, coletor e emissor que circulam no transistor.
- b) A tensão V_{CE} .

Resposta: $I_B = 0$; $I_C = 0$; $I_E = 0$; $V_{CE} = 5V$.

- 7. Para o circuito a seguir, sabendo-se que α = 0,98, pede-se:
- a) A corrente I_E.
- b) A corrente I_B e I_E.
- c) A tensão V_{CE} .

Resposta: $I_E = 1mA$; $I_B = 20\mu A$; $I_C = 0.98mA$; $V_{CE} = 4.02V$.

- 8. Para o circuito anterior, sabendo-se que V_{BE} = 0,7V, β = 20. Pede-se:
- a) A corrente $I_{\mathcal{C}}$ e $I_{\mathcal{E}}$.

b) A tensão VcE.

Resposta: $I_E = 1mA$; $I_C = 0.95mA$; $V_{CE} = 4.05V$.

- 9. Para V_{CB} = 10V e V_{BE} = 0,7V, do ensaio realizado, pede-se:
- a) A corrente I_E , I_C .
- b) A tensão VCE.
- 10. Para o circuito a seguir, sabendo-se V_{BE} = 0,6V, V_{CC} = 12V, V_{EE} = -12V, V_{CE} = 4V, I_{E} = 1mA e α = 0,98 calcular:
- a) O valor de RE, Rc.

Resposta: $R_E = 11,4K$; $R_C = 8,77K$.