Apresentação SAFT

1 - O grupo SAFTNossa história

Quem é Saft?

PERFIL DO GRUPO

100 anos de história

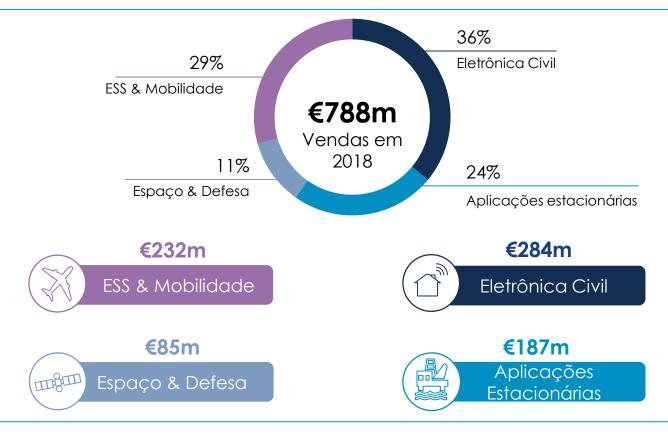
Posição de liderança com 75-80% em Ni-Cd

9.4% investido em **P&D** com **3** tecnologias principais; lítio primário, lítio íon e níquel cádmio secundário

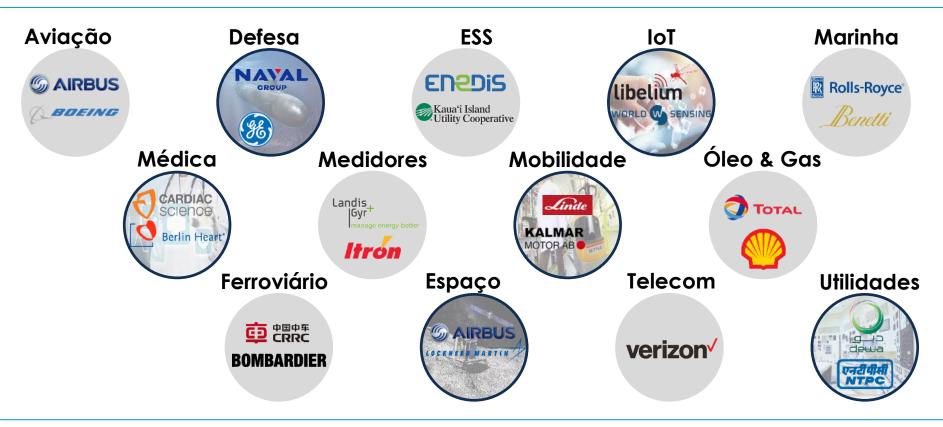
€788m em vendas 2018

PRESENÇA GLOBAL- VENDAS

Presença Global



Onde estamos presentes no grupo Total



Vendas em 2018 por divisão

Clientes ao redor do mundo em diversas aplicações

Corporate presentation

Alguns de nossos clientes no Brasil

Algumas de nossas aplicações estacionárias Para Aplicação com Retificador/Carregador e/ou UPS/No-Break

- Subestações e salas elétricas
- Eletrocentros
- Bombas de emergência
- Sistemas TELECOM
- Sistemas de monitoramento e controle
- Sistemas de proteção local e/ou remota
- Sistemas de sinalização

- Geradores de emergência
- Datacenter, CPD, COS, COI CallCenter
- Eletroímãs
- Locomotivas e trens
- Veículos híbridos
- Empilhadeiras
- Equipamentos móveis

Alguns dos segmentos de Mercado nos quais atuamos

2 - A importância do banco de baterias em processos industriais

- A baixíssima visibilidade de um banco de baterias, dentro de um processo crítico, não condiz com sua importância – baterias são componentes fundamentais para praticamente toda a cadeia socioeconômica e a explosão de seu consumo começa a chamar a atenção de usuários de mais diversos perfis.
- Baterias são responsáveis pela alimentação de sistemas de automação, proteção, comunicação, base de dados, bombas de emergência, alarmes ou até mesmo a parada segura de uma planta durante uma queda de energia.
- E a falta de uma bateria, ou sua falha, pode implicar perdas falha de processo, parada de produção, sinistro, acidente pessoal e outros.

A importância do banco de baterias em processos industriais

Em processos industriais, baterias devem ser consideradas como uma ativo de alta criticidade. Elas estão normalmente associadas a Retificadores (Sistemas CC), No-Breaks (Sistemas CA) e Geradores.

- Um banco de baterias não confiável pode comprometer a operação bem como aumentar significativamente os gastos com manutenção.
- Baterias são especificadas, construídas e instaladas para atendimento a uma demanda específica. As normas em vigor devem ser utilizadas por Engenheiros e Técnicos como ferramentas de decisão quanto ao modelo ideal para cada aplicação, ressaltando, prioritariamente, alguns pontos:

A importância do banco de baterias em processos industriais

Você tem ideia do tamanho do prejuízo causado por coisas tais como:

- A perda de produção?
- A perda de suavidade de processo?
- A perda de um ativo, como, por exemplo, um transformador?
- O tempo de ajuste de um relé que deixou de ser alimentado?
- A reprovação, ao passar por uma perícia de Seguradora?
- O lucro cessante?

3 - Tipos de baterias estacionárias — Diferenciação

4 - Comparativo entre tecnologias

Por que baterias alcalinas e baterias chumbo-ácidas são tão diferentes?

Reações

■ Níquel-Cádmio:

$$2\text{NiOOH} + \text{Cd} + 2\text{H}_2\text{O} \rightleftharpoons 2\text{Ni(OH)}_2 + \text{Cd(OH)}_2$$

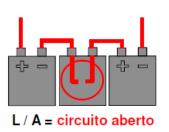
 A estrutura de uma bateria alcalina é predominantemente composta por aço inox, sendo que o eletrólito alcalino não participa da reação química, não necessita acompanhamento de densidade ou monitoramento da resistência interna.

■ Chumbo-Ácida:

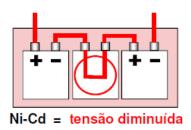
$$PbO_2 + Pb + 2H_2SO_4 \stackrel{\longrightarrow}{\leftarrow} 2PbSO_4 + 2H_2O$$

 A estrutura de uma bateria chumbo-ácida é predominantemente composta por chumbo, que para seu funcionamento precisa ser corroído pelo eletrólito ácido sulfúrico, assim pode ocorrer: Corrosão, Sulfatação e Morte Súbita.

Modo de falha de baterias chumbo: Morte súbita


■ Baterias de chumbo

Quando uma bateria apresenta esta condição a tensão entre os terminais vai a 0V, o que significa que nehum serviço poderá ser prestado pelo banco, pois todos os elementos estão em série.


Baterias alcalinas Ni-Cd

Não possui morte súbita, e em caso de defeito a célula de Ni-Cd entrará em curto-circuito, isto afetará somente a tensão do banco de baterias, todavia o serviço continuará assegurado. Exemplo sistema 125Vcc:

1 célula falha – V=0 Circuito Aberto

1 célula falha V = 123,8V

Modo de falha de baterias chumbo: Avalanche térmica / Dry-Out

Baterias VRLA:

- Eletrólito que se altera.
- Compressão dos bancos.
- Aplicadas em locais confinados.
- Aumento de impedância, associado à perda de água (dry-out).

Baterias Ni-Cd (Alcalinas)

O design das baterias alcalinas apresenta uma grande quantidade de eletrólito livre, o que implica altíssima inércia térmica.

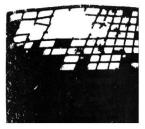
Modo de falha de baterias chumbo: Armazenamento

Baterias de chumbo:

- Não devem ser armazenadas por prazo superior a 6 meses. Se isto for necessário, merecerão cuidados especiais(custo), com pena de perda irreversível
- Sulfatação.
- Perda irreversível de vida útil.

Baterias Ni-Cd (Alcalinas)

As baterias alcalinas podem ser armazenadas entre 1 a 2 anos sem necessitarem de rotinas de recarga, dependendo da tecnologia utilizada.



Modo de falha de baterias chumbo: Sumário

5 - LCC - Life Cycle Cost. O melhor modelo para gestão de ativos

O LCC de um banco de baterias é composto por:

Custo Inicial

O investimento inicial, com a aquisição e instalação

Custo de Reposição

O custo de cada vez que a bateria é substituída – compra, desinstalação, instalação

Custo de Manutenção Preventiva

O custo da manutenção em andamento

Custo de Queda da Estação

Custo devido a quedas de energia planejadas ou inesperadas.

Life Cycle Cost

Custos da bateria nova

- Custo Administrativo/Compras;
- Custo da bateria;
- Custo das interligações e conectores;
- Custos de transporte;
- Custos de armazenamento;
- Custos de instalação;
- Testes de aceitação em campo.

Custos das substituição

- Custo de uma bateria nova em adição a:
- Desligamento da bateria do sistema;
- Desinstalação;
- Custo do armazenamento;
- Custos de descarte (transporte).
- Logística, burocracia, segurança, riscos, etc.

Custo de substituição ainda maior que o custo de primeira compra!

6 - Por que priorizar a bateria alcalina?

- Confiabilidade
- Longevidade
- Baixa Manutenção

Características das nossas soluções

- Altíssima confiabilidade
- Alta performance
- Longevidade
- Baixo custo de manutenção
- Baixo custo de ciclo de vida (LCC baixo)
- Possibilidade de operação em ambientes hostis
- Inexistência de morte súbita, que redunda em lucro cessante
- Possibilidade de redução da apólice de seguro
- Possibilidade de redução de custos da eletrônica associada

Garantia de altíssimo OEE

7 - Modelos de baterias SAFT Soluções SAFT para aplicações estacionárias e ferroviárias

- Baterias ventiladas linhas: SBH, SBM, SBLE
- Baterias com recombinação de gases (ultrabaixa manutenção): UP1M, UP1L
- Baterias para aplicações especiais: TLX
- Baterias para partidas e descargas curtas: SPH
- Flex´ Ion (Lítio)
- Baterias SRX e SRM para Locomotivas e Trens

Baterias ventiladas linhas: SBH, SBM e SBLE

- Baterias projetadas em acordo com a norma IEC 60623;
- Vida útil projetada > 20 anos a 25°C;
- Excelente performance/custo, pois possui três tipos diferentes de placas;
- Placas tipo bolsa (pocket plate);
- Armazenamento carregadas por até 12 meses;
- Construídas para funcionarem em uma larga faixa de temperatura sem risco de morte súbita ou avalanche térmica, operação normal entre -20°C até +50°C e por curtos períodos -50°C até +70°C.

Baterias com recombinação parcial de gases: UP1L e UP1M

- Baterias projetadas em acordo com a norma IEC 60623 e IEC 62259;
- Vida útil projetada > 20 anos a 25°C;
- Possui 34 capacidades diferentes com placa L (15 –
 1.700Ah) e 38 com placa tipo M (8 1.330Ah);
- Placas tipo bolsa (pocket plate);
- Armazenamento carregadas por até 24 meses;
- Não necessita reposição de água durante sua vida útil projetada, operando entre -20°C até +40°C com Tensão de flutuação de 1,39V/ele.

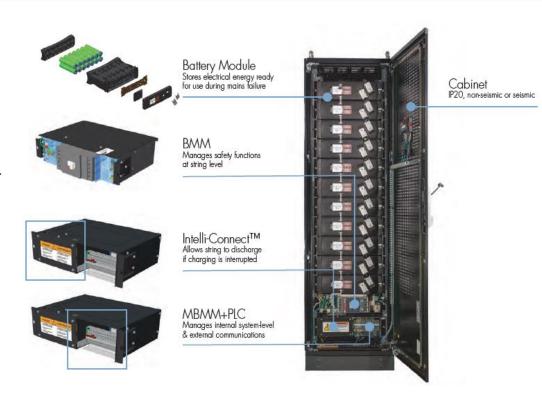
Baterias para aplicações especiais: TLX

- Baterias projetadas em acordo com a norma IEC 60623 e Certificação ANATEL;
- Vida útil projetada > 20 anos a 25°C;
- Possui 4 modelos diferentes de 80 180Ah;
- Não necessita reposição de água durante sua vida útil projetada, operando entre -20°C até +40°C com Tensão de flutuação de 1,43V/ele;
- Alta densidade de energia;

Baterias para partidas e descargas curtas SPH

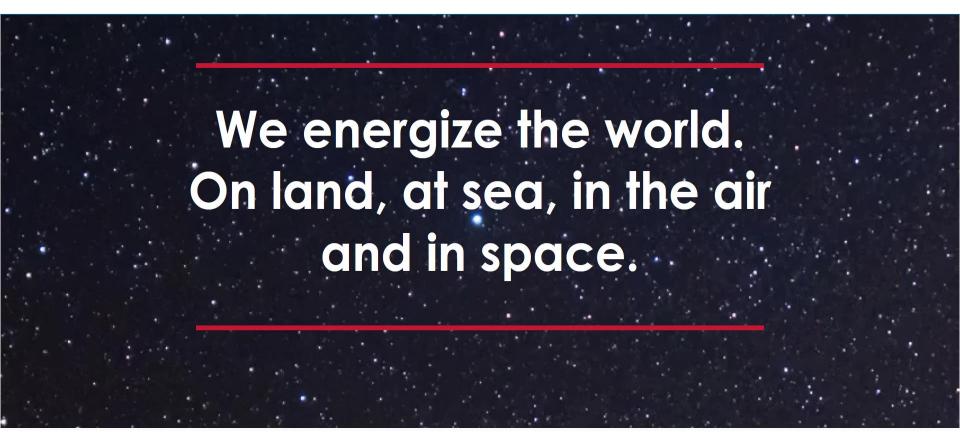
- Baterias projetadas em acordo com a norma IEC 60623;
- Vida útil projetada > 20 anos a 25°C;
- A capacidade calculada para baixas autonomias pode ser até 3x menor quando comparada a VRLA;
- Alta capacidade de ciclagem até 3.500 ciclos a 80%DOD;
- Operação em temperaturas extremas de -50°C a +70°C;
- Própria para: Geradores, No-Breaks e Pontes rolantes com eletroímãs.

Flex Ion - SLFPTM

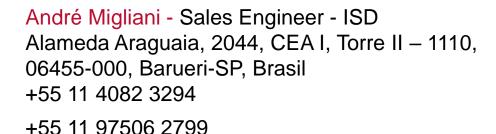

- Tensão nominal dos sistemas entre 110 e 750Vcc (CE);
- Vida útil projetada de até 20 anos (EOL) ;
- Redução do Footprint em até 3x;
- Redução do peso em até 6x;
- Suporta sistemas UPS de 2 e 3 fios ;
- Função Black-start, sistema autoalimentado;
- Operação normal em altas temperaturas até 40°C, não necessitando de sistema de ar-condicionado.

Flex Ion - SLFPTM

- Ideal para aplicações com autonomias entre 5 a 30min;
- IHM frontal que permite o acesso a todas as informações do sistema;
- Comunicação em qualquer protocolo de comunicação do mercado: Modbus, DNP3, IEC 61850 e etc;
- Ideal para aplicações que necessitam alta densidade: Data Centers, CPD, Industrias e etc;



Baterias para Locomotivas e Trens Linha de células ferroviárias - classificada por tipo de manutenção



Contatos

José IDÍLIO Martins Representante idilio@tinoconsultoria.com.br 31 99981 4360

www.saftbatteries.com

