

CONSTRUCTION OF MINIMAL INSTRUMENTATION MICRO-ELECTROCHEMICAL METHODS FOR KARL FISCHER WATER TITRATION

Francisco Javier Olvera-García, Arturo García-Mendoza, Adrián de Santiago-Zárate, Alejandro Baeza. Departamento de Química Analítica, Facultad de Química, UNAM, México 04510, CDMX, México javigarcia95@live.com, arturogm@unam.mx, desantiago@hotmail.fr, baeza@unam.mx, microelectrochemalexbaeza.com

Abstract

Low-cost and local acquisition micro-scale equipment has been built in order to obtain Karl Fischer Reagent titre, therefore, to quantify in many samples such as low-moisture content foods, organic solvents, and pharmaceutical drugs.

Visual, Photometric, biamperometric and coulometric methods has been used for monitoring water titration and construct calibration plots.

Biamperometry with non-linear adjustment and photometric typical plots are presented to show the dependence on water during the titration.

Micro-Biamperometry

constant potential was imposed to measure the current resultant by the predominant species during the titration. Figure 1. Electric for biamperometry circuit equipment is presented. A titre of (5.12 \pm 0.64) mg of Water per mL of titrant has been obtained.

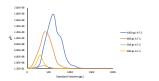


Figure 2. Typical plots of non-linear adjustment biamperometry **Mico-Photometry**

An incised blue light on the reaction cell was used to indirectly measure absorbance produced by an excess of iodine during the titration. The Figure 4. shows a photometry microequipment diagram.

A titre of (7.52 \pm 4.26) mg of Water per mL of titrant has been obtained.

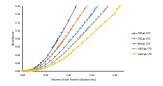
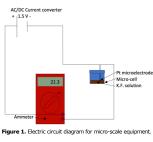



Figure 5. Typical plots of photometry with different aliquots of

Visual Micro-Titration

A solution who equivalency point was prepared to compare with cell titration and measure end point volume of titration and then a calibration plot was gained.

A titre of (4.51 ± 0.35) mg of Water per mL of titrant has been obtained.

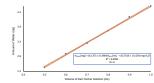
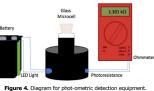
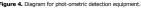




Figure 3. Calibration Plot for biamp

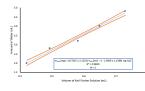


Figure 6. Calibration Plot for photometric de

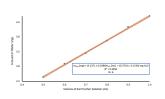
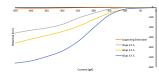



Figure 7. Calibration Plot for Visual detection

Micro-Voltammetry

Voltammograms was realized with a Minimal Instrumentation Micro-Polarograph, а supporting electrolyte of NH₄NO₃ 0.5 molL⁻¹ in MetOH was used to analyze Karl Fischer Solution.

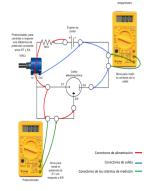


Figure 8. Cathodic Voltammograms of Karl Fischer Solution (K,F,S.) with different alignets Figure 9. Minimal Instrumentation Micro-Polarograph (MIMP) electric circuit diagram.

Methods Comparison

Table 1. Statistical comparison						
Methods	Titre of K.F.S. (mg H₂O/ mL)	F _{Experimental}	$F_{Theorical}$	¿Different?		
Biamperometry	5.12	1.88	2.87	NO		
Photometry	7.52			NO		
Visual	4.51			NO		
Theoretical	5.00			NO		

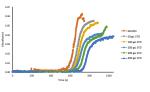

The Table 1. shows the comparison of micro-scale methods. According to the value of an F obtained by Analysis of Variance with α = 0.05, the proposed methods are statistically equivalent to the theoretical value; therefore, micro-scale methods has been demonstrated that are viable for doing analysis.

Table 2. Volumes comparison						
Methods	Volume of K.F.S. (mL)	Water Standard (mg/g)	Total Volume (mL)			
Conventional	80 - 150	10	180-250			
Biamperometry	0.4 - 0.9		1.5-3.0			
Visual	0.5 - 1.0	4	1.1-2.2			
Photometry	1.6 - 2.5		2.1-3.4			

Table 2. Shows the reduction of volumes of reagent and total volume spent during each titration into a conventional method with micro-scale ones.

Membraneless Micro **Coulometric** Photodetection of Water

Preliminary experiments of Micro-scale Karl Fischer coulometric titration with photodetection are presented. Conclusion

It is the possibility to realize Karl Fischer water titration through micro-scale methods and depending on the sample, will be the use of a certain method.

