https://fti-tn.net/iccais-2021-list-of-papers

© https://fti-tn.net/publications Future Technologies and Innovations (FTI) Proceedings: 4th international conference on computer applications and information security (iccais’2021) / March 19 / 2021/ Tunisia:

Artificial Intelligence Approach for Batch Completion Time Prediction

Ahmad Alnafessah
Computing Department
Imperial College London
London, United Kingdom
a.alnafessahl7 @imperial.ac.uk

Abstract—In the production environment, the data
center has obtained significant popularity as a cost-
efficient platform. Conventional data centers have an
enormous amount of over-provisioned computing re-
sources for production applications that accommodate
fluctuating workloads and peak demands. Most of the
time, conventional data centers in production suffer from
over-provisioning and have low utilization, which often
less than 50% utilization is used of computing resources.
We propose a model that is agnostic of the business
logic internal to each job. Instead, it learns from data
by applying artificial neural networks and compares
the proposed model with queueing-theoretic model on
historical measurements of job completion time and CPU
run-queue size. The proposed solution not only predicts
completion time for two jobs with high accuracy, but
also saves considerable time in training the model to
predict the time for more than two jobs and easily can be
generalized to cover unforeseen workload combinations.

Keywords-Artificial intelligence; Machine learning;
Big data; Neural networks; Performance engineering

I. INTRODUCTION

Bu et al., [1] present a task placement strategy to
alleviate and estimate the task slowdown affected by
the interference among virtual machines for MapRe-
duce applications task scheduling optimization at the
application level. The strategy is based on an ex-
ponential interference prediction model to schedule
tasks based on that model. Their model is initially
constructed through offline training data using differ-
ent benchmarks, which are TeraSort, RWrite, Grep,
WCount, TeraGen, Kmean, Bayes, and PiEst(1000).
The authors [1] use the Gauss-Newton algorithm,
which is an interactive process that regularly updates
the parameters to calculate the coefficients that min-
imize the sum of squared errors (SSE) to reach the
optimal solution. They evaluate the proposed solution
by running CPU and IO-intensive applications that run
on 72 nodes and virtual computing resources. Their
results shows that the proposed scheduling strategy
is capable of speeding up 6.5 times for individual
jobs and 1.9 times improvement of system throughput
compared to other scheduling strategies. The authors
claim that their model could be applied to other virtual
cluster schedulers.

For batch workload such as MapReduce, it is typ-
ically deployed on physical servers to avoid virtu-

alized environments’ performance overhead. Sharma
et al., [2] utilize the unused computing resources by
consolidating the batch jobs to improve application
performance and show the strengths and weaknesses
of both virtual and native environments. The authors
consider the data center with a native and virtual ma-
chine environment to propose a hierarchical scheduler
to manage resources of both interactive and batch
workloads effectively. The scheduler has two phases,
which are job classification and dynamic resource
management to improve system utilization. The first
phase has the profiling process of jobs to estimate
job completion time (JCT) and calculate virtualization
overheads to enhance the placement of jobs between
native environments and virtual machines. This hap-
pens on a separate small training cluster that has both
native and virtual environments to calculate the over-
head for both to choose the ideal environment. Sharma
et al., [2] show that the proposed model can enhance
job completion time by 40% and contributes 45%
improvement for computing resource utilization. The
issue with the proposed model is that the correction
only works after the interference or problems appear
within the system. So we need a previous estimation
model to detect possible risks and take action before
performance degradation arises.

Classification techniques are machine learning ap-
proaches that have the ability to assign samples to
target classes. In performance prediction, the clas-
sification approaches are essentially based on the
assumption that tasks can be grouped into classes with
similar performance behaviors.

Delimitrou et al [3] present Quasar, which uses
classification techniques for an incoming job based
on a short test run of the application to determine
the suitable computing resource to pack workloads on
available resources. The purpose is to extrapolate the
performance behavior for unseen configurations from
other applications with similar computer resource us-
age patterns, as exposed by the test phase. The authors
assume that the workload can be partitioned into jobs
that have similar behaviors. It is time-consuming for
complex workloads to test every job behavior that has
to be profiled under different resource configurations
to assign it in a particular class. In addition, the other

© https://fti-tn.net/publications Future Technologies and Innovations (FTI) Proceedings: 4th international conference on computer applications and information security (iccais’2021) / March 19 / 2021/ Tunisia:

https://fti-tn.net/iccais-2021-list-of-papers

Table I: The representation of Jobs names as a part of input features.

Exp batik | jython | luindex | lusearch | sunflow | xalan
Experiment 1 1 0 0 0 1 0
Experiment 2 0 0 2 0 0 0
Experiment 3 0 0 1 0 1 0
Experiment 4 1 0 0 1 0 0

co-located jobs may affect each other during the run
time, which makes it hard to cover all the possible
combinations of workload behaviors.

The core contributions in this paper are as follows:

o The proposed model is agnostic of the business
logic internal to each job. Instead, it learns from
data by applying artificial neural networks and
compare it with queueing-theoretic model on
historical measurements of job completion time
and CPU run-queue size (i.e., the number of
active threads in the system).

o The model captures multi-threading, operating
system scheduling, job priorities

o A validation on 2500 experiments based on the
DaCapo benchmarking suite has been carried
out, confirming the predictive capabilities of the
model

II. METHODOLOGY

Our goal is to establish the completion time pre-
diction error. We assume to have profiling data for
individual jobs, and attempt to predict the completion
times when four jobs run at the same time within
the system. The prediction method works without any
need for measurement from executions with four jobs,
everything is predicted using only the profiling data
and the neural networks model. The neural networks
model with backpropagation and conjugate gradient
are used to train the neural networks. In this work,
the feature selection process covers hyperthreading,
CPU nice, RunQ, throughput, and type of job as input
features to the neural networks for training purposes.

In order to instantiate the model, the following
profiling data was collected for all jobs by running
them on the servers:

« Types of jobs which are represented in Table [l

« noth: hyperthreading

o nice: CPU nice. The larger nice values mean
lower priority. The default priority has a nice
value of 0.

¢ RunQ: The number of active threads in the sys-
tem

o Tput: Throughput

Using the input features above, the model will
predict the completion times Cj for all running jobs,
taking into account the CPU contention from all the
other running batch jobs.

III. EVALUATION

The proposed model is validated against batch
workloads available in the DaCapo suite [4]. Dacapo
is chosen because it is one of the most popular Java
benchmark and it is ideal for scientific purposes and
evaluation. This is a suite of Java benchmarks cited in
over 1100 scientific papers and coauthored by Intel,
IBM Research, and leading academic institutions.

The DaCapo benchmarks issuing HTTP or SOAP
calls are excluded, as we expected these to be more
typical of transactional workloads. The remaining
benchmarks are as follows:

e Luindex: Document indexing with Apache
Lucene. Mostly single threaded
o lusearch: Document search with Apache Lucene.

Multithreaded.

o Xalan: Java XML/XSLT processing. Multi-
threaded.

o jython: Java-based scripting (Python-like).

Mostly single threaded.

« batik: image generation based on Apache Batik.
Single threaded.

o sunflow: ray tracing. Multithreaded

Over 2500 experiments are carried out using five
different multi-core servers running Ubuntu Linux.
When running 2 of the above benchmarks together,
CPU utilization in our tests is typically around 70%
to 90% on machines with 8-16 logical cores. With
four benchmarks, the machines were always saturated
near 100% utilization. We also varied the benchmark
mix, the hyper-threading setup, job priorities and
randomize the sleep time in-between successive runs
of a benchmark within the same experiment. The
default setup was to run experiments without hyper-
threading and no sleep time. Each experiment was
stopped after 5 minutes, since performance behavior
stabilized fairly quickly.

IV. RESULTS

The proposed methodology is evaluated on an iso-
lated Linux system. We avoid using a virtual environ-
ment to make sure that all the performance metrics
are accurately measured. The testing results of the
proposed model against two jobs are shown in Figure
[l

The boxplot diagram in Figure indicates the
mean (blue) and median (red) of the prediction error

© https://fti-tn.net/publications Future Technologies and Innovations (FTI) Proceedings: 4th international conference on computer applications and information security (iccais’2021) / March 19 / 2021/ Tunisia:

https://fti-tn.net/iccais-2021-list-of-papers

100

Time - Per

Error (p07+0+0-noht)

90 -

80

701

60 [

50

401

30

20

+ mean
* median |4

No model

(a) MAPE

Test: R=0.98451

o

Y=T

Data
Fit

theory, operational analysis and no model. Figure [2]
shows a comparison against other three well-known
methods: Queueing theory, operational analysis [5],
and no model. The boxplot diagram in Figure
indicates the mean and median of the prediction error
for data collected across all possible of four job
combinations of the DaCapo benchmarks (e.g., xalan-
xalan-xalan-batik, jython-luindex-xalan-batik, ...).

Error (Dataset: p07+15+10+5+0-noht)

© mean
100 - % __median |-

o0 26"

Output ~= 1.1*Target + 0.049

1 2 3 4 5 6 7 8
Target

(b) R value

100 Completion Time - Per Error (p07+0+0-noht)

- mean
90 [% median |{

80

70+
60
50
40t

==

20 1

No n;cdel OA QN NN
(c) MAPE

Figure 1: Test of the proposed model against two jobs

for data collected across all possible of job combi-
nations of the DaCapo benchmarks (e.g., xalan-xalan,
xalan-batik, jython-luindex, xalan-batik, ..., etc). The
blue box is the inter-quantile range (25th-75th per-
centile). The R-value (Figure and MAPE (Figure
for predicting the completion time of two jobs
are 98% and 5%, respectively. The goal is to gener-
alize the solution to cover more than two jobs.

The proposed model is tested using four jobs
against three well-known other methods: Queueing

80
80
o !
-
60 ——
-
50
40
-
30
® T
i
10 1 ’ % -
" 1
No model OA QN NN

Figure 2: Predicting four jobs

The proposed solution significantly outperforms
other methods by achieving 9% for mean percent-
age error compared with queueing theory, operational
analysis, and no model, which achieve 21%, 15%, and
68%, respectively. The proposed tool not only predicts
completion time for two jobs with high accuracy, but
also saves considerable time in training the model
to predict the time for more than two jobs and can
easily be generalized to cover unforeseen workload
combinations.

V. CONCLUSION

A completion time prediction method is developed,
featuring increasing accuracy in return for more pro-
filing data. The neural networks model seems more
effective when the system uses or does not use job
priorities or sleep time. The proposed solution not
only predicts completion time for two jobs with high
accuracy, but also saves considerable time in training
the model to predict throughput for more than two
jobs and easily can be generalized to cover unforeseen
workload combinations.

ACKNOWLEDGMENT

This work was supported in part by the National
Center for Artificial Intelligence and Big Data Tech-
nologies, King Abdulaziz City for Science and Tech-
nology (KACST), Saudi Arabia, and in part by the
European Union’s Horizon 2020 Research and Inno-
vation Program, RADON, under Grant 825040.

© https://fti-tn.net/publications Future Technologies and Innovations (FTI) Proceedings: 4th international conference on computer applications and information security (iccais’2021) / March 19 / 2021/ Tunisia:

https:/fti-tn.net/iccais-2021-list-of-papers

REFERENCES

[1] X. Bu, J. Rao, and C.-z. Xu, “Interference and locality-
aware task scheduling for mapreduce applications in
virtual clusters,” in Proceedings of the 22nd interna-
tional symposium on High-performance parallel and
distributed computing, 2013, pp. 227-238.

[2] B. Sharma, T. Wood, and C. R. Das, “Hybridmr: A
hierarchical mapreduce scheduler for hybrid data cen-
ters,” in 2013 IEEE 33rd International Conference on
Distributed Computing Systems. 1EEE, 2013, pp. 102—
111.

[3] C. Delimitrou and C. Kozyrakis, “Quasar: resource-
efficient and qos-aware cluster management,” ACM SIG-
PLAN Notices, vol. 49, no. 4, pp. 127-144, 2014.

[4] S. M. Blackburn, R. Garner, C. Hoffmann, A. M.
Khang, K. S. McKinley, R. Bentzur, A. Diwan, D. Fein-
berg, D. Frampton, S. Z. Guyer et al., “The dacapo
benchmarks: Java benchmarking development and anal-
ysis,” in Proceedings of the 21st annual ACM SIGPLAN
conference on Object-oriented programming systems,
languages, and applications, 2006, pp. 169-190.

[5] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C.
Sevcik, Quantitative system performance: computer sys-
tem analysis using queueing network models. Prentice-
Hall, Inc., 1984.

	Introduction
	Methodology
	Evaluation
	Results
	Conclusion
	References

