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Abstract— Sensorineural hearing loss can be treated using 

Cochlear implantation. After this surgery using the electrode 

array impedance measurements, we can check the stability of 

the impedance value and the dynamic range. Deterioration of 

speech recognition scores could happen because of increased 

impedance values. Medicines used to do these measures many 

times during a year after the surgery. Predicting the electrode 

impedance could help in taking decisions to help the patient get 

better hearing. In this research we used a dataset of 80 patients 

of children who did cochlear implantation using MED-EL 

FLEX28 electrode array of 12 channels. We predicted the 

electrode impedance on each channel after 1 month from the 

surgery date. We used different machine learning algorithms 

like neural networks and decision trees. Our results indicates 

that the electrode impedance can be predicted, and the best 

algorithm is different based on the electrode channel. Also, the 

accuracy level varies between 66% and 100% based on the 

electrode channel when accepting an error range between 0 

and 3 KO. Further research is required to predict the electrode 

impedance after three months, six months and one year. 

Keywords— Machine learning, Feature Selection, Algorithm 

Selection, Cochlear implantation, Electrode impedance 

I. INTRODUCTION 

Hearing loss is a known public health issue affecting 
older adults [1]. Also, children could suffer from it. Cochlear 
implantation is a surgical procedure which is performed for 
severely to profound hearing-impaired patients. Now in its 
fourth decade, Cochlear implants (CI) have successfully 
restored functional hearing to hundreds of thousands of 
individuals [2]. Cochlear implant system mainly includes 
audio processor, transmitter, receiver, and internal device 
which include the electrode array. Technically the external 
audio processor of CI collects the sounds through its 
microphone, then converts it into detailed digital signals. 
Therefore, and using speech and signal processing 
algorithms, this is signal is transmitted to the internal device 
via an inductive link. The internal device then converts this 

signal to electric impulses and pass them to the inner ear 
through the intracochlear electrode array [3]. CI companies 
offer different devices which vary in electrode size, shape, 
number of contacts, and configuration [4]. There is a positive 
correlation between the daily duration of the audio processor 
usage and speech performance. For pediatric patients, there 
is a special need to use implanted device for at least 8.3 
hours/day to achieve acceptable language development [5]. 
CI recipients could reach and acceptable levels of word 
recognition performance within 6-months post-CI activation 
[6].  

Evaluation of proper insertion and placement of the CI 
electrode array is done using radiological techniques, such as 
computer tomography, or x-ray. The measurements of CI 
electrode impedance could also play a role in that. [7] 
Electric impedance measurement is one of the most 
important tools for evaluating cochlear implantation 
functionality [8]. EI is a measure of the resistance to the 
current flow in the perilymph when a voltage is applied. It is 
calculated as the ratio of the voltage between the stimulating 
and reference electrodes divided by the passed current. [9-
10] the individual organic features of the inner ear may play 
an important role in the distribution of electrical impedance 
profile [11]. 

Impedance provides important clinical information about 
the device electrode function [12]. The impedances are 
influenced by the intracochlear position of the electrodes 
among other factors [13]. There is a correlation between the 
insertion depth with measured clinical impedances and tissue 
resistances. [14] Cochlear implantation using the round 
window (RW) route and cochleostomy achieves comparable 
electrode impedance and hearing results [15]. The 
impedance, in addition to other tests and examinations, 
provides the clinician with necessary information about the 
position of the electrode inside the cochlea. In [16], 
impedance measurements are used to confirm the 
functionality of the implanted electrodes and to give 
guidance for subsequent setting of the device [17]. The 
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Robotic-Assisted Cochlear Implant Surgery (RACIS) is used 
in the recent years and appears to be less traumatic to 
intracochlear structures [18]. Electrode arrays content ranges 
between 12 and 22 electrode contacts. It is important to 
determine when the electrodes in the array are deactivated 
[19]. The impedance measurements help in this decision too. 
Reducing electrode impedance is an important factor in 
improving the functional benefits of CI. [20] 

On average, the impedance increases between intra 
operative and initial session of speech processor being fitted 
due to protein absorption of electrode and tissue growth over 
electrode. then it starts deceasing gradually again with the 
follow up sessions until 6-12 month. Then, it stabilizes [21]. 
High electrode impedance values one year after implantation 
may imply insufficient language skill development [22]. 
Impedance is an indicator of overall electrode function, to 
detect short or open circuits, determine power consumption, 
guide fitting, and alert towards possible existing or 
impending dysfunction. [23] The impedance of a cochlear 
implant device can be affected by the diameter of the 
electrode, the position of the electrode, fibrosis surrounding 
the electrode and electrical stimulation [24]. 

Despite the importance of impedance along the CI 
journey and its influence on the device functionality and 
patients' performance. And although the advancement in the 
technology there is still a lack in the objective models that 
predict the variation of electrode impedance along the time. 
Therefore, the primary objective of this work is to develop a 
machine learning model to predict the electrode impedance 
after one month from the cochlear implantation surgery. The 
remainder of this paper is organized as follows. Section 2. 
Describes related works. Section 3 illustrates the Dataset. 
Section 4 demonstrates using Machine Learning to 
implement the different models. Section 5 presents 
experimental results and analysis. Finally, we present the 
future work, and conclusion in Section 6. 

II. RELATED WORK 

A common usage for machine learning in cochlear 
implantation (CI) is signal processing. In [25] the authors did 
a study that includes 298 articles which are filtered to 39 
articles. These articles indicate the usage of machine learning 
to assist CI in signal processing optimization (43.6%), 
automated evoked potential measurement (15.4%), 
postoperative performance prediction (12.8%) and surgical 
anatomy location prediction (7.7%) and (5.1%) in each of 
robotics, electrode placement performance and biomaterials 
performance. The most common machine learning 
algorithms are neural networks (47.5%), support vector 
machines (17.5%) and random forest/decision tree (12.5%). 

It’s very important to have proper emplacement of the 
electrode array during the Cochlear Implant (CI) surgery. 
The trauma-induced during the surgery could lead to residual 
hearing loss. In [26] The authors used machine learning to 
classify the insertion lengths of the electrode array into the 

Scala tympani. They used different machine learning 
algorithms like Shallow Neural Networks (SNN) and 
Support Vector Machines (SVM). SNN accuracy is 86.1% 
for partial insertion data, while SVM accuracy is 97.1% for 
full insertion. More than one electrode could stimulate the 
same area in the neural region. This interaction could have a 
negative impact on the hearing outcome. In [27] authors used 
machine learning techniques to automate Image Guided 
Cochlear Implant Programming (IGCIP). The IGCIP is used 
to help the audiologists and recommend specific CI 
configuration for each patient.  

To predict the postoperative cochlear implant 
performance after one year from the surgery, authors in [28] 
used different machine learning algorithms like neural 
networks and tree-based ensemble algorithms. The accuracy 
of the neural network model was 95.4%. The model uses 282 
preoperative variables like age at the surgery, gender, 
preoperative use of hearing aid, hearing loss cause, etc. The 
dataset includes 1604 patients who received CI from 1989 to 
2019. This set is split into training dataset (85%) and test 
dataset (15%).  

In [29] the authors used semi-supervised SVM model to 
predict language outcomes following CI based on pre-
implant brain functional magnetic resonance (fMRI) 
imaging. The developed model gives 2-year prediction for 
developing effective language skill. The study demonstrated 
that semi-supervised model provides better results than the 
supervised model when unlabeled data are available. In [30] 
authors used various algorithms like SVM and random forest 
to predict wither healthy people will accept speech of 
children with cochlear implants. The evaluation is done by 
80 college students who didn’t know that the children did CI. 
The results show that random forest algorithm produce best 
results with RMSE = 0.108. The SVM comes after it with 
RMSE=0.109 while the multiple regression algorithm 
provides RMSE=0.113. The dataset includes 91 hearing-
impaired children. The age of the children between 4 and 8 
years old. 

In [31] authors used machine learning model to predict 
cochlear implantation outcome in adults using Cross-modal 
cortical activity in the brain.  

Features 
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III. DATASET 

We have prepared a dataset of 80 patients. The studied 
electrode array comprises of 12 electrodes numbered from 1 
to 12. It's manufactured by MED-EL (MED-EL, Innsbruck, 
Austria). The Dataset attributes include age at implantation 
and electrode impedance measured during the surgery at 
different channels from 1 to 12. The patients were all of the 
same age group, have normal cochlea, use the device for 
similar number of hours daily, implanted with same device, 
and have similar follow up duration. 

Dataset preparation required many processes that have 
been automated using Ring programming language and using 
the Programming Without Coding Technology (PWCT) 
software which is considered as a general-purpose visual 
programming language [32-33]. Table 1 demonstrates the 
dataset features while Table 2 demonstrates the minimum 
and maximum values in the dataset for each feature. 

TABLE I.  DATASET FEATURES 

TABLE II.   MINIMUM AND MAXIMUM VALUE FOR EACH LABEL IN THE 

DATASET 

Label Minimum 

Value (KO) 

Maximum 

Value (KO) 

Range (KO) 

EI_1M_1 4.48 16.86 12.38 

EI_1M_2 5.37 17.64 12.27 

EI_1M_3 4.19 14.57 10.38 

EI_1M_4 3.38 17.47 14.09 

EI_1M_5 2.71 16.5 13.79 

EI_1M_6 2.1 10.55 8.45 

EI_1M_7 1.97 8.94 6.97 

EI_1M_8 2.34 8.59 6.25 

EI_1M_9 2.34 8.3 5.96 

EI_1M_10 2.12 8 5.88 

EI_1M_11 2.12 9.62 7.5 

EI_1M_12 2.12 9.31 7.19 

IV. MACHINE LERNING MODELS 

This study uses machine learning algorithms for 
regression. We have applied several ML algorithms 
including Linear Regression, Boosted Decision Tree 
regression, Decision Forest regression, Neural Network 
regression, and Bayesian linear regression. We used 
Microsoft Azure Machine Learning to create the models [34-
36].  

Table 3. demonstrates the results and the best algorithm 
to predict the impedance for each electrode channel. 

TABLE III.  BEST ALGORITHM AND THE RMSE 

Label Best Algorithm Features 

Group 

RMSE 

El_1M_1 

Bayesian Linear 

Regression (BLR) 2 0.936972 

El_1M_2 
Decision Forest 

Regression (DFR) 2 0.934948 

El_1M_3 Linear Regression (LR) 2 0.802687 

El_1M_4 

Bayesian Linear 

Regression (BLR) 2 1.122467 

El_1M_5 

Bayesian Linear 

Regression (BLR) 2 1.175844 

El_1M_6 

Bayesian Linear 

Regression (BLR) 2 1.172564 

El_1M_7 

Bayesian Linear 

Regression (BLR) 2 1.026447 

El_1M_8 
Bayesian Linear 

Regression (BLR) 2 1.050416 

El_1M_9 

Bayesian Linear 

Regression (BLR) 2 1.087652 

El_1M_10 
Neural Network 

Regression (NNR) 2 0.872403 

El_1M_11 

Neural Network 

Regression (NNR) 1 0.90388 

El_1M_12 
Boosted Decision Tree 

Regression (BDTR) 2 0.889965 

V. RESULTS AND DISCUSSION 

Table 4 summarizes prediction results using each of the 
ML algorithms. In this table we list each algorithm and the 
count of labels where this algorithm provides the best result 
compared to the other algorithms. In table 5 we list the error 
range at each channel and the percentage of predicting the 
electrode impedance in this range of errors. 

These results show the best algorithm to use for 
predicting the electrode impedance at a specific channel. 
Expected error range is extracted as well. For example, to 
predict the electrode impedance at channel 10, we know 
from table 3 that the best algorithm is NNR while using 
group 2 of the features that includes the age at implantation 
and the electrode impedance at all channels from 1 to 12 
which are measured during the cochlear implant surgery. The 
RMSE is 0.872403 KO (The range is 5.88 KO from Table 
2.). Using Table 5. We know that in 58.33% of the prediction 
results of the electrode impedance at channel 10, the error 
range is between 0 and 1 KO. In 33.33% of the predicted 
cases the error range is between 1 and 2 KO which means 
that in 91.67% of the predicted cases the error range is 
between 0 and 2 KO. Since In 8.33% of the cases the error 
range is between 2 and 3 KO, this means in 100% of the 
cases, the error range exist between 0 and 3 KO. These 
results are achieved while testing the model using data that 
have never been seen before by the model, i.e., test dataset.  

TABLE IV.  BEST ALGORITHMS FOR PREDICTING THE IMPEDANCE IN 

THE ELECTRODE ARRAY 

Algorithm Count of Labels 

Bayesian Linear Regression (BLR) 7 

Neural Network Regression (NNR) 2 

Decision Forest Regression (DFR) 1 

Boosted Decision Tree Regression 

(BDTR) 1 

Linear Regression 1 

TABLE V.  PREDICTING THE ELECTRODE IMPEDANCE AND THE ERROR 

PERCENTAGE IN DIFFERENT RANGES 

Label 0-1 KO 1-2 KO 2-3 KO 0-2 KO 0-3 KO 

EI_1M_1  20.83% 33.33% 20.83% 54.16% 75% 

EI_1M_2  29.16% 33.33% 4.16% 62.50% 66.66% 

EI_1M_3  41.66% 20.83% 20.83% 62.50% 83.33% 

EI_1M_4  37.50% 29.17% 16.67% 66.67% 83.33% 

EI_1M_5  54.17% 20.83% 8.33% 75% 83.33% 

EI_1M_6  41.67% 29.17% 20.83% 70.83% 91.67% 

EI_1M_7  37.50% 29.17% 25% 66.67% 91.67% 

EI_1M_8  41.67% 29.17% 12.50% 70.83% 83.33% 

EI_1M_9  58.33% 20.83% 12.50% 79.17% 91.67% 

EI_1M_10  58.33% 33.33% 8.33% 91.67% 100% 

EI_1M_11  58.33% 33.33% 8.33% 91.67% 100% 
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EI_1M_12  45.83% 8.33% 29.17% 54.17% 83.33% 

  

VI. CONCLUSION AND FUTURE WORK 

The findings of this study concluded that machine 
learning could be an effective and efficient tool in the 
cochlear implant filed. The use of machine learning models 
in predicting the CI impedance can help the professionals to 
take early decisions, objectively rather than subjectively, to 
improve hearing quality of CI patients. 

In this paper, we presented a Machine Learning model to 
predict the cochlear impedance at different 12 channels using 
different algorithms like boosted decision tree, neural 
networks, and decision forest. We did many experiments to 
evaluate the performance of each model to determine which 
one provides the best results. Our results demonstrate that 
using a specific algorithm for prediction at each channel 
could provide better results. Also, the accuracy level varies 
between 66% and 100% based on the electrode channel 
when accepting an error range between 0 and 3 KO. We 
developed the model using the Microsoft Azure Machine 
Learning tool. 

This study can be extended in the future to provide 
prediction for the electrode impedance at different time 
frames like three months, six months and one year. Also, an 
application can be developed to help medicines use these 
models directly with new patient data. 
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