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SUMMARY & CONCLUSIONS 

The DC 6, DC 8, DC 10, Concorde, Boeing 787, and 
Boeing 737 MAX fatal crashes and near misses were analyzed 
with event interval probabilistic analysis methods.  Fleet 
grounding decisions are the epitome of risk-based decisions and 
the most important decision is the first opportunity to ground.  
The first opportunity to ground decision is retrospectively 
judged to be wrong if in the immediate future another accident 
or cause and effect findings leads to the original decision being 
reversed.  Using only data that was available at the time of the 
significant events, the analysis examines these risk-based 
decisions as if it they were made at the event instant in time.   
The event interval method identified five out of six first 
opportunity to ground decisions correctly, including the 
Concorde.  The FAA and its predecessor organizations made 
one correct decision out of five.  Use of the method based on 
statistics and probability would have avoided 503 actual 
fatalities plus 9.45 expected value fatalities from additional risk 
exposure due to flying statistically proven unreliable aircraft.  
In addition to the reversed decision standard for judging 
whether decisions are wrong, a grounding of the DC 8 and a 
second grounding of the DC 6 are shown to be have been 
statistically appropriate, but these groundings did not occur.   

A specific objective of this paper is to lead the FAA and 
aircraft manufacturers into using event interval probabilistic 
analysis in grounding decisions and air worthiness certification.  
Cause and effect data that are necessary to identify issues and 
make corrections are sparse or nonexistent at the time of the 
event.  Cause and effect data can take days or months to acquire 
and analyze, but event interval timing data are simple, system 
performance data and are available at the instant the event 
occurs.    

The method is appropriate to all engineered repairable 
systems and has been applied to some non-engineered systems.  
The various applications are left to the creativity of the reader.  
Here we focus principally on commercial aircraft. An aircraft 
type is considered a system composed of, for example, design, 
manufacturing, documentation, training, and field support.  
Anything that touches on reliability is within the system 
boundary.   

Statistics and probability analysis demand much data; 
however, for serious critical events failure and accident data 
must be few.  This conflict is resolved by a null hypothesis that 

the data are generated by a homogeneous Poisson process 
(HPP).  The analysis uses the infinite quantity of data inherent 
in this null hypothesis.   Event data are compared with the null 
hypothesis and the null is rejected or not with Poisson and/or 
computer simulation probability values (p-values).  The 
Poisson interval is not limited to time.  For aircraft accidents, 
the number of departures between events (DBE) are used.  
Departure counts are for the aircraft type and/or individual 
aircraft.  Untimely events that denote statistically significant 
deviation from expectation are distinguished from random 
variation in an expected system.  In this paper, expectation is 
the worldwide fleet fatal accident rate for commercial jet 
service, except where noted.  This paper demonstrates the 
analysis method and value by analysis of the Concorde crash, 
selected to demonstrate the analysis power with only one event.  
This example also demonstrates that the high-level system raw 
data required for analysis are always available for any system 
important enough to be of interest. 

Decisions made with p-values involves the risk of false 
positives.  The sum of all p-values that suggest grounding is 
appropriate for all the fleets examined over the 75-year period 
sum to only 4.67% chance of a single unnecessary grounding.  
This is small in comparison to, say, not grounding the 737 MAX 
after the first crash.  The risk of British Airways continuing to 
fly for an additional 21 days before grounding the fleet is 
analyzed in detail.  

All aircraft analyzed are shown to have been placed into 
service while unreliable as measured against the worldwide 
commercial fleet (domestic fleet for the DC 6).  Great strides 
have been made to reduce this worldwide fatal accident rate, but 
for the systems analyzed, some of the improvement is a result 
of lessons learned from serious, often fatal, accidents.  Of 
course, we learn from accidents, but better yet not to have the 
accident.  The analysis method can help keep low reliability 
systems from entering service.  When certifying air worthiness, 
the FAA is encouraged to set p-values below which fleets will 
be automatically grounded, in the absence of strong cause and 
effect data to the contrary.  This performance requirement will 
serve as incentive to ensure that total system reliability is 
considered, including pilot error, human factors, and training, 
for example.  A net benefit will accrue to the aircraft 
manufactures as the low false positive rate is trivial compared 
to the impact of low reliability aircraft being in service.  



1 INTRODUCTION 

Failure and accident events on important systems often are 
very few, e.g. 0, 1, 2, …, while data analysis with statistics and 
probability typically require a significant quantity of data.  
Event interval analysis, or failure time analysis as it is often 
applied, is conventionally applied to datasets and is not 
applicable to very small datasets.  This conventional method is 
applicable to larger datasets as the DC 6 and DC 8 analysis will 
illustrate.  The nonconventional event interval probability 
analysis method is applied to all aircraft types and events.  It is 
applied to individual events and contiguous groups of events, 
such as the Boeing 737 MAX first event, second event, first and 
second events combined, and risk of a third event.  This is to 
identify an event interval or contiguous group of event intervals 
that signal a statistically significant deviation from the expected 
or target rate.   

A homogeneous Poisson process (HPP) is taken as a null 
hypothesis with the null having a mean interval equal to the 
expected.  The expected interval for aircraft used in this paper 
is mean departures between fatal events (MDBE) for the 
worldwide commercial jet fleet at the time of the events under 
analysis.  The alternative hypothesis is the event interval(s) is 
less than that of the null.  The null is rejected on the strength of 
probability values (p-value) from either Poisson probability or 
computer simulation.   

Poisson and simulation provide nearly identical p-values, 
although these are totally different concepts.  While different in 
concept, they share common underlying mathematics. Both 
methods are required. Each accomplishes tasks not possible or 
practical by the other.  Application to the Concorde event will 
demonstrate method.  Input data, results, and grounding 
decisions are shown for all systems and events analyzed.  

Probability maps are presented to organize the numerous 
related equations and present results in an understandable 
manner, illustrated with a process pump dataset example. 

2 PROBABILITY BY SIMULATION  

The null hypothesis against which we test event interval 
data is an HPP.  For the null, we say the system under analysis 
generates events so that there is a constant event rate over time.  
The average number of events over a fixed time interval is 
unchanged over time.  All variation in event intervals from one 
to another in this null hypothesis system is 100% due to only 
natural randomness with 0% due to real system changes.  Real 
data from real systems are never a perfect HPP as cause and 
effect impacts would have to be perfectly frozen.  This is 
impossible, so perfect HPP event data must always be computer 
generated.  Our null hypothesis is simply a convenient 
mathematical abstraction.  It provides an infinite quantity of 
perfect data that has a perfect absence of cause and effect 
influences on event intervals.  Real events are compared with 
the null generated events.  If the real event “fits in” with the null 
generated events, we do not reject the null.  If the real event 
seems to be an outlier, it does not “fit in” with the null generated 

population of event intervals.  The degree to which real events 
“fit in” is quantified with p-values.  These measure the 
probability that the real event intervals are not consistent with 
natural randomness in the null hypothesis.  From a quality 
control or statistical process control viewpoint, this is a way to 
distinguish special cause events from common cause events.  
The Boeing 737 MAX data have been plotted on an SPC control 
chart.  The event intervals data fall into the rejection regions of 
the control chart (12).     

Figure 1 describes the basic process for Monte Carlo 
simulation.  The cumulative failure distribution, equation 1, is 
the complement of reliability, or unreliability.   A uniformly 
distributed zero to 1 random number is transformed to a time 
sample, or DBE sample, by equation 2 and 3, respectively.  
Figure 1 illustrates the basic process.   

F(t) = 1-e-λt         (1) 
F(t) = 1-e-λt  = RN  

RN = uniformly distributed random number from 0 to 1 
e-λt  = 1-RN 

the complement of a random number is a random number  
e-λt  = RN 
-λt = ln(RN) 

λ= 1/MTBF 
t = -MTBF*(ln(RN))              (2) 

changing time to departures between events (DBE) and 
MTBF to MDBE, 

DBE = -MDBE*(ln(RN))              (3) 

The Concorde fleet consisted of a small number of planes 
operated by Air France and British Airways each operated 
seven airplanes.  At the time of the Concorde crash, the 
Concorde fleet had accumulated 83,941 departures(8).   

The commercial worldwide jet fleet mean departures 
between fatal events at the time of the Concorde crash was 
4,000,000(4), as approximated from a chart.  This is the value of 
MDBE in equation 3.  Numerous DBE samples make up the 
distribution of figure 2. The number of departures for the 

Figure 1 
A failure time sample is determined with a random number 

draw that is transformed to a failure time by the failure 
distribution.  The graph shows two examples of failure 

times sampling. 



Concorde system at the time of the crash is marked in figure 2. 
The fraction of the area to the left of the marker is the 
probability of failure by 83,941 departures and is 0.02124. 
(Throughout this paper, estimates and calculated values are 
shown to several decimal places. This is to help those 
duplicating the calculations to confirm method and does not 
imply significance at, say, five decimal places). This probability 
value is sufficiently low to reject the null hypothesis.  There is 
about a 1 in 50 chance that a value as low as 83,941 would be 
experience by simply random variation of an otherwise reliable 
system (as reliable as the null hypothesis). With the null 
rejected the alternative hypothesis is accepted. The system is 
statistically less reliable than the worldwide fleet. We act and 
make decisions as though it is an unreliable system. We cease 
to view the event as unfortunate randomness within a reliable 
system. Randomness is distinguished from true deviation from 
the standard with statistics and probability. There is always a 
chance of being wrong with this decision. In this case, the 
probability of rejecting the null when it is true, i.e., a false 
positive, is 0.02124.    

Air France and British Airways both had seven aircraft in 
service. A crash happened on July 25, 2000 and the Air France 
fleet was grounded immediately.  British Airways continued to 
operate the fleet for 21 days before grounding.  The risk of a 
second crash within the 21 days is significant.  The alternative 
hypothesis is that the fleet is significantly less reliable than the 
standard. To measure the risk associated with the 21 days of 
operation with low reliability aircraft, a distribution of DBEs 
for the low reliability aircraft type is needed. 

Equation 3 provides DBE samples from a population with 
known mean.  The mean is a parameter. With the null rejected, 
the mean is unknown.  The DBE of 83,941 is a sample from an 
unknown mean. It is a statistic. The unknown mean is a random 
variable – a distribution.  If there are numerous samples, the 
distribution will be narrow, otherwise the distribution is widely 
spread.  Equation 3 is used with the mean 83,941 to generate 
sample DBEs.  If, for example, if there are five events, equation 
3 is used to generate five consecutive event intervals that are 

averaged. This number is used as a sample of the unknown 
MDBE.  A numerous collection of these averages provides a 
distribution of the statistic MDBE as a random variable, or 
MDBERV.  Equation 3 is used to produce MDBERV in equation 
4.  In the special case of only one event, the distribution for 
MDBERV is identically equal to the distribution of figure 2, 
because an average of a single number is the single number.  
Equation 4 is equation 3 used twice within the same calculation, 
with two different and independent random numbers. 

DBE = -MDBERV*(ln(RN))              (4) 

In summary, equation 3 with our statistic mean is used to 
generate the number of DBE values equal to the number of 
events in the data.  These events are averaged and are one 
sample of the MDBERV in equation 4.  Then equation 4 provides 
a sample DBE for the failure distribution, that is figure 3 for the 
Concorde.  The null hypothesis, figure 2, is rejected by a low p-
value, and the alternative hypothesis, figure 3, is accepted.  This 
is accomplished with a dataset that, in this case, contains only 
the one failure - thanks to a null hypothesis that provides an 
infinite quantity of perfect data.   

Air France grounded their fleet immediately upon the 
crash, but British Airways operated their fleet for an additional 
21 days. With an assumed one flight per day for seven aircraft, 
the 147 departures applied to the figure 3 data gives a 
probability of a second crash of 0.0112.  Of course, this high 
risk was unmeasured and not recognized, as has always been 
the case so far.  In figure 3, notice the wide distribution with a 
long left-tail, even with a log scale that visually minimizes risk 
at the lower departure values.  Additional failure data will 
tighten the distribution; however, in service failure of critical 
systems do not allow this.  We must develop and use methods 
applying the failure and accident data that we unfortunately 
have with the goal of reducing and eliminating even this 
minimal data.   

Now we consider the risk of a second Concorde fatal 
accident within the additional 147 departures.  The consequence 

Figure 3 
With the null rejected, the failure distribution for the now proven 

unreliable aircraft is determined from equation 4.  The 
probability of a second crash by 147 departures is 0.0112, the 

fraction of area to the left of the marker.  The long left-hand tail 
indicates early low-level probability of an additional event.    

zzzzzz Figure 2 
Worldwide commercial jet fleet DBE distribution around the 

mean of 4 million departures.  This is the null hypothesis 
against which event data are compared.  The probability of an 

event by 83,941 departures is 0.02124.  This low p-value should 
reject the null.   The crash cannot be treated as an unfortunate 

accident of an otherwise reliable aircraft.   

Distribution of DBE Samples Around Population Mean 4,000,000



of a second event can be said to be either 0 or 109 fatalities, the 
number in the first crash.  Actual experience will be one or the 
other, but neither reflects true risk.  Risk is the product of 
probability and consequence; therefore, risk is 0.0112 
probability from immediately above multiplied by 109 fatalities 
or 1.22 virtual fatalities.  This risk would never be taken for the 
benefit of 21 days of operation if it had been recognized.  Event 
interval probabilistic analysis will permit better risk-based 
decisions by exposing this risk. 

3 POISSON PROBABILITY 

Poisson probability is a different event interval concept that 
confirms the simulation method and allows practical 
implementation not feasible with simulation. The Poisson 
distribution is used to determine the probability of specific 
numbers of events occurring within a specified time interval, 
when the events are generated by an HPP.  Failures and time 
are common Poisson events and intervals, respectively.  But for 
commercial aircraft, departures are the better event interval 
measure.  The airplane systems and events covered span 75 
years so various types of data are available.  Departures were 
used when available or could be estimated; otherwise, various 
ways are used to get system intervals consistent with the 
population mean unit of measure.  The source of raw data and 
basis for estimates are noted in footnotes in Table 1.  The 
Poisson probability distribution of events is:   

   (1) 
Where: 
e: An approximately 2.71828 constant, the base of the 
natural logarithm system. 
μ: The mean number of events expected in an interval 
x: A specific number of events in the interval 
P(x; μ): The probability that x events are experienced, 
given the mean number expected is μ.  

The general Poisson expression is now adapted specifically 
to failure events. 

μ = t/MTBF    (2) 

Where: 
MTBF = mean time between failure, the reciprocal of 
failure rate.  
 t = time period, a time between failure (TBF) value of 
interest or sum of one or more consecutive TBF values. 

The Poisson distribution for failure events gives the 
probability of any specific number of failures x and is 
dependent on the time interval and MTBF, as below: 

 P(x; t/MTBF) = (e-t/MTBF)(t/MTBF)x/x!  (3) 

Changing common nomenclature to that appropriate for 
aircraft: 

           P(x; DBE/MDBE) = (e-DBE/MDBE)(DBE/MDBE)x/x!   (4) 

  For the following Poisson probability results, p-v1 is the 
probability value for one or more events occurring in the DBE 
Poisson interval for that one event, as described in earlier 
papers(1,2).  The probability of one or more events within the 
interval experienced is the complement of the probability of 
zero events in the interval, therefore: 

Concorde crash: p-v1 = P(x≥1) = 1-P(x=0) = 0.02077 

This is essentially the same as the simulated value.  Just as 
the very low simulation p-value shows the fleet should be 
grounded, the Poisson concept renders the same decision with 
low p-values.   

3 AIRCRAFT FLEET GROUNDING DECISIONS 

Six grounding decisions by the FAA or their predecessor 
organization, CAA and DGAC (UK and France equivalent, 
respectively) were revisited with both the computer simulation 
and Poisson probability methods.  These decisions and the 
analyses used in the decision review are obviously applicable 
to any engineered system.  The surveyed decisions covered 75 
years, five aircraft types and 30 p-values with all but four 
rejecting the null hypothesis and calling for fleet grounding.  P-
values would ground immediately upon 9 of the 10 events.  The 
only event that p-values would fail to ground when grounding 
was the correct decision was a DC 6 crash in 1947.  The first 
opportunity to ground is the most important decision. The FAA 
made the correct decision to ground upon the DC 10 pylon 
failure in 1979.  The other four first opportunity to ground 
decisions were proven wrong by events shortly after the 
decision.  Event interval probability analysis suggested the 
correct decision to ground in five out of six cases.  A p-value of 
0.237 failed to reject the null hypothesis upon the first crash of 
the DC 6.   

The above decisions are judged wrong only if they are 
reversed due to future events.  Groundings that perhaps should 
have occurred but did not – a second DC 6 certainly and 
possibly a DC 8 grounding - are not included in the above and 
are reviewed later.  

Input data and results are shown in table 1.  Reading table 
1 requires defining the terms “p-value1 and p-value2”.  P-
value1, usually shortened to p-v1, for any event is the 
probability of one or more events occurring in the Poisson 
interval of that event.  P-value2, or p-v2, is the probability of 
two or more events occurring within the Poisson interval of the 
event at which p-v2 is assessed plus the prior event.  Probability 
maps are introduced later.  These have equations that will assist 
understanding.  

Of course, the use of p-values in grounding decisions 
means there is a chance of a false positive that will 
unnecessarily ground a fleet.  The sum of all the first 
opportunity to ground p-values in table 1 is 0.0467.  The 4.7% 



chance of a single error over a span of several decades is small 
compared to the 503 actual fatalities and 9.45 virtual (expected 
value) fatalities that were avoidable.  Also, this is an extremely 
small risk relative to the financial impact of the 737 MAX not 
being grounded upon the first crash and the unrecognized high 
risk of a third event that exposed Boeing and the FAA to 
exponentially even more severe impacts.   

4 PROBABILITY MAPS 

Probability maps(1, 2) are a computer spreadsheet for the 
organization of input data and numerous interrelated equations 
to produce and display event interval probabilistic results 
efficiently and effectively.  The simple and straight forward 
calculations, as in the Concorde example above, are impractical 
with larger data sets without a probability map or some 
equivalent method not yet developed.  

A pump failure dataset from the process industry provides 
a probability map in the most general-purpose form, figure 4.  

(The DC 6 and DC 8 probability maps in special purpose form 
are reviewed later).  There is no reasonable population to serve 
as the null hypothesis; therefore, the pump MTBF at the time of 
each failure will serve as the null hypothesis.  This MTBF is a 
sample statistic. The true pump MTBF is unknown.  Most 
engineered systems will not have a population of 
contemporaries to provide a single-valued null hypothesis as 
with commercial aircraft.  Most will have MTBF as a random 
variable.  Even when a contract requirement or project goal can 
serve as a null, there will be no similar null for precursor events, 
so figure 4 will be frequently used.  A characteristic equation is 
shown for each function.  These are in Microsoft Excel form to 
leverage their efficiency.  Probability maps can be formed by 
understanding the map, then copying down and across making 
any minor corrections.  (The probability map showing all 
equations can be found at www.pmfseries.com).  

As both the Concorde and the pump example illustrate, the 
event interval methodology described provides decision-
making information immediately upon a single event or small 

Table 1 
Summary of data sources and estimates, p-values, grounding decisions and consequences.  P-values in red font are those that 
should reject the HPP null hypothesis, i.e., departures between events indicate statistically significant unreliability relative to 

contemporary aircraft. 



number of events; however, implementation to realize the full 
value of the methodology presents a challenge and opportunity.  
Avoidance of the last three failures in figure 4 required 
recognition and action at the time of failure 10.  The Concorde 
data was needed by British Airways on the date of crash.  The 
value of the analysis was great on the day of the crash but was 
of no value at the end of 21 days when risk was at zero.  
Analysis must be contemporaneous with the failure.  Perhaps it 
is possible by policy and procedure to trigger ad hoc application 
when the events are so few and so important as commercial fatal 
accidents; however, the pump is an example where ad hoc 
analysis cannot be effective.  A typical process plant consists of 
tens of thousands of equipment assets from large turbines to 
small instruments with several thousands of events occurring 
every year.  In general, neither the asset nor event(s) that trigger 
a p-value alarm can be known in advance.  This necessitates all 
assets and all events be analyzed with automation so that only 

the events that trigger probability alarms draw the attention of 
reliability engineers, maintenance craftsmen, or others 
depending upon significance.  Automation will likewise be 
appropriate for applying event interval probabilistic analysis to 
aircraft precursor events to avoid even the first major event.     

5 NEW SYSTEM UNRELIABILITY 

All the aircraft types in table 1 were introduced into service 
with low reliability as measured against contemporaries. These 
systems were, and are being, improved in response to in-service 
failures and accidents.  Only the very earliest failures are seen 
in table 1. The DC 6 and DC 8 events were tracked over a 
portion of the fleet life to allow initial low reliability with 
reliability growth in-service to be clearly seen and understood.  
The DC 8 was never grounded but the first 13 fatal commercial 
crashes are evaluated.  Cumulative fatal crashes are plotted 

Figure 4 
Pump probability map.  Time between failure (TBF) for each failure are entered starting at cell C4. Each line of data considers only that 
line and history to that point in time.  At failure number 10 a change in rate has occurred with increasing statistical strength of evidence 

through failure 13.  At failure 13, p-v4 (the probability of 4 or more events occurring within an interval equal to the sum of the last 4 TBF 
values – SUM(C13:C16) - when the mean is cell D16) is 0.0002.   If recognized, action could have avoided the last 3 failures. This upper 
section calculation is made as though MTBF is a parameter.  The middle section determines MTBFRV of equation 4.  The lower section 

determines a probability distribution for each p-value, from which p-value confidence intervals are determined.    

=1-NORM.S.DIST(((SUM($E$4:E12)-E12)/(B12-1)-E12/2)/(E12*POWER(1/(12*(B12-1)),0.5)),TRUE)



versus cumulative departures in figure 5.  This is a conventional 
way to see reliability change over time.  The worldwide 
commercial fleet is being fast improved during the time of the 
13 crashes.  This population mean is also plotted.  By the fourth 
crash, the DC 8 had nearly three crashes more than the 
population.  By the 13th crash, the DC 8 was improved so that it 
was only about 1.5 events more than the population.  The 
worldwide fleet population MDBE is also improving during 
this 10-year span, but comparatively, the DC8 initial low 
reliability is obvious.  

Figure 6 is the probability map for the DC 8 with the map 
changed from that of figure 4 to reflect the worldwide fleet 
MDBE null hypothesis is a population parameter and that the 
parameter changes over time.  Each p-value is determined with 
the null that existed at the time of each event.      

The DC 6 was grounded after the second event, but the first 
four events are evaluated.  Departure data from 1947 was not 
found. The domestic air carrier planes in-service and the fatal 
accidents in 1947(9) provides a null hypothesis of 33,854 mean 
plane-days between fatal accidents.  The dates of the four 

events(6) and the delivery date for each plane in-service(3)

provides the data for figure 7 that show a rate of events that is 
higher than the domestic fleet.  The four events in figure 7 
occurred within one year, so the domestic fleet mean does not 
see reliability growth.  It is a single number for that year. 

To evaluate figure 7 qualitative data with event interval 
analysis, the probability map of figure 8 is used.  The fleet was 
appropriately grounded upon the second event.  The third and 
fourth events were failures of the fix installed during grounding.  
The third event p-values show the plane is still highly 
unreliable.  A p-value of 0.01065 suggest the plane should have 
been grounded and the fix for the first grounding seriously 
reevaluated.  This should have prevented the fourth event. 

6 DISCUSSION 

The FAA and aircraft companies are not to be blamed for 
absence of event interval probability analysis in prior grounding 
decisions as the null hypothesis to evaluate rate step change is 
unconventional and only recently published.  However, future 
grounding decisions should include event interval p-values and 
p-values and their basis should be made public.  Phenomenal 
achievement in aircraft safety has been accomplished, 
nonetheless, this sampling of aircraft types shows the planes are 
initially unreliable relative to contemporaries and grounding 

Column/ 
Row B C D E F G H I J K L M N O P Q R S T

3
Failure TBF MTBF

Cum 

TBF

LaPlace 

p-value
p-v1 p-v2 p-v3 p-v4 p-v5 p-v6 p-v7 p-v8 p-v9 p-v10 p-v11 p-v12 p-v13 p-v14

4 1 49420 83333 49420 0.4474
5 2 7674 76923 57094 0.0949 0.1602
6 3 32432 76923 89526 0.3210 0.3440 0.0968 0.1062
7 4 11928 76923 101454 0.1936 0.1436 0.1143 0.0313 0.0423
8 5 112146 76923 213600 0.8535 0.7673 0.4792 0.3327 0.1679 0.1418
9 6 14896 125000 228496 0.6583 0.1123 0.3583 0.1899 0.1300 0.0591 0.0533

10 7 168274 200000 396770 0.9459 0.5689 0.3109 0.3784 0.2567 0.1942 0.1164 0.0984
11 8 34488 200000 431258 0.8713 0.1584 0.2693 0.1301 0.1790 0.1111 0.0810 0.0452 0.0384
12 9 326852 222222 758110 0.9910 0.7703 0.5104 0.4698 0.3337 0.3680 0.2889 0.2404 0.1753 0.1522
13 10 197000 222222 955110 0.9914 0.5879 0.6822 0.4814 0.4508 0.3369 0.3656 0.2974 0.2541 0.1946 0.1716

=1-POISSON.DIST(0,SUM(C5:C5)/AVERAGE(D5:D5),TRUE)

=1-POISSON.DIST(3,SUM(C6:C9)/AVERAGE(D6:D9),TRUE)

=AVERAGE($C$4:C7) =1-NORM.S.DIST(((SUM($E$4:E12)-E12)/(B12-1)-E12/2)/(E12*POWER(1/(12*(B12-1)),0.5)),TRUE)=C9+E8

Figure 6 
DC 8 probability map. Column D is the reciprocal of the worldwide commercial jet fleet fatal event rate at the time of each event. 

LaPlace p-values use the contemporaneous dataset existing at the time of each event and show improvement over time.  Poisson p-values, 
particularly p-v3 and p-v4 at event 4, give early indication of subpar reliability.   

Figure 7 
Cumulative events versus cumulative domestic plane-days for 
the DC 6.  The 1st event was not statistically different than the 
domestic mean, but the next 3 events signaled low reliability 

that is quantified in figure 8. 

Figure 5 
Cumulative crashes versus cumulative departures for the DC 
8 and the then current worldwide fleet mean.  Both see great 
reliability growth; however, by the 4th DC 8 crash, the DC 8 
had nearly three crashes more that the worldwide fleet mean.  

This conventional qualitative information is quantified in 
figure 6. 



decisions are much worse that those made with a coin flip.  
Because the analysis spans 75 years, these wrong decisions and 
initial low reliability are not a function of any one company or 
organization.   

Reliability is improved after introduction into commercial 
service and after major events have occurred, often with 
avoidable loss of life.   Certification of new aircraft should 
include the p-value at which a serious event will, in the absence 
of immediately available cause and effect data showing to the 
contrary, lead to automatic grounding of the fleet.  This 
performance-based “contract” requirement between the FAA 
and aircraft companies will provide a driving force for the 
companies to seek reliability in the design stage, including 
training, documentation, e.g., that is critical to system 
performance.  Also, aircraft companies as well as carriers will 
feel pressure to monitor the much less serious precursor events 
that typically precede a crash or emergency landing.  After the 
DC 10 crash near Paris, it was reported(6) that the fleet had 1,000  
incidents with the cargo door in only the prior six months.  This 
was from deterioration in-service of the door locking 
mechanism.  It was a wear out failure mode.  The 1,000 
incidents would have increased exponentially over time and 
departures.  These precursor events would most likely have 
triggered probability alarms.  

While all six fleets reviewed were placed in-service while 
unreliable relative to contemporaries, the six fleets are not a 
random sample.  It is biased toward unreliable planes because 
it is biased toward those that have been grounded.  Nonetheless, 
the results are noteworthy.  The FAA and aircraft manufactures 
can fix the bias issue with event interval probability analysis 
over a broader range of systems.  Furthermore, the FAA, 
aircraft companies or any researcher are encouraged to analyze 
fleets in this paper with more precise data.  The author’s intent 
is to present data and sources so results can be replicated and 
improved.  The input data for this paper was calculated and 
estimated from various sources.  The details of how the data 
were obtained and estimated can be found at 
www.pmfseries.com.   
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Figure 8 
DC 6 probability map. The plane was appropriately grounded 

upon the 2nd event.  Between the 3rd and 4th events, the issue that 
caused those two events occurred on another aircraft type, but in 

the absence of alerting p-values, this warning was ignored.(6 ).   
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