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SUMMARY & CONCLUSIONS 

A new data analysis methodology uses system level event 

dates to recognize unreliability of any system with complex 

causes and effects and forecasts the time to the next event date 

as a probability distribution.  A single datum is often sufficient, 

and this makes it uniquely valuable for systems requiring 

catastrophic events and failures to be minimal. 

The classical reliability equation e-λt for constant failure 

rate λ is shown to be a systems theory emergent property 

revealed with event interval probability (EIP).  Example 

datasets are technological, human, and societal to highlight the 

fact that the system need not be defined or even be definable.  

The method is shown from the classical reliability and systems 

theory viewpoints. 

The Boeing 737 MAX crash and precursor events 

(extended stick-shaker activations) are two datasets showing 

application to technological systems.  Complaints of police 

officer abuse of force prior to and upon the death of George 

Floyd in Minneapolis, Minnesota in 2020 is a human system 

example.  A societal system example is the death of an eight-

year-old child in Houston, Texas in 2020 from abuse and 

starvation, with the mother and another adult charged with 

murder.  All 348 fatalities are shown to be avoidable by using 

EIP.  A fifth dataset is what is believed to be the most referenced 

failure time dataset in the reliability literature.  Early detection 

of unreliability with EIP would allow 12 of 23 equipment 

failures to be avoided.  This has gone unrecognized despite the 

long history and frequent use of this dataset.  

All example event interval data belong to a region of 

constant average event rate and the systems jump from one 

reliability level to the next.  These reliability levels are shown 

to be chaos theory attractors following the universal system rule 

e-λt.  The classical reliability equation with events being failures 

is a specific case of this general rule.  Jumps from one reliability 

to another – one attractor to another – are readily seen in the 

datasets.  The jumps to different attractors, of course, come 

from a change in the system of complex causes and effects, but 

the attractors are autonomous from the system.  Causes and 

effects are irrelevant to EIP.    

Using all data in the five examples, prior dataset values are 

used to forecast the next event interval.  The actual realized 

interval to each event is compared with its forecast distribution.  

All datasets together provide an opportunity to make 29 

forecasts as probability distributions with six of the forecast 

distributions being made with a single datum.  All 29 realized 

event intervals fall within their respective 90% confidence 

interval, providing evidence for proof of method.  
   

1 INTRODUCTION 
 

Event intervals are time between events (TBE), including 

the time to the first event.  Events can be failures, crashes, 

precursors, occurrences, happenings, etc., - any countable 

random happenstance in time.  A null hypothesis is formed that 

event intervals are random variation from a homogeneous 

Poisson process (HPP) event generator with a reference, 

expected event rate.  This null allows the Poisson distribution 

to be used in a reverse fashion to identify event intervals that do 

not fit the null hypothesis.  Poisson p-values are used like 

conventional test statistic p-values where the null is rejected or 

not based upon the strength of this probability evidence.  The 

Poisson expectation uses an event rate that may typically be a 

peer population mean or the mean for the dataset, along with 

the sum of the contiguous TBEs for that portion of the dataset 

used in Poisson calculations.  This is further explained via 

example calculations.  The term “event rate” and sometime 

“failure rate” is used when speaking in general terms; however, 

all calculations use the reciprocal “mean time between 

event(s)” (MTBE), or a variant depending upon the dataset.     

Upon rejecting the null, the system generated interval(s) 

are used to derive a reliability probability distribution.  This is 

also the TBE distribution.  It provides the probability of the next 

event as a function of time.  Risk is obtained by multiplying this 

distribution by the consequence of the event, thereby providing 

risk of an unreliable system remaining in service as a function 

of time.  The math for forecasting reliability is presented and 

the Monte Carlo method is used to combine random variables. 

A constant event rate is used in the Monte Carlo method.  

This assumption has been defended in conventional terms of 

reliability theory, engineering judgement, and experience [1].  

This paper further justifies the assumption with systems theory 

where system reliability is shown to be a system emergent 

property not predicted by what is inside the system but is only 

determinable at the system level.  Systems of all types generate 

random events according to a universal rule that is e-λt or e-

t/MTBE.  The classical equation for reliability with constant 

failure rate is only one case of this universal system rule.  The 

constant average event rate will be shown to be a chaos theory 

attractor.  All dataset values belong to a specific attractor.  The 

systems and chaos theory viewpoint may seem a little mystical, 



but from a reliability theory viewpoint it is exactly what should 

be expected.   

For all five datasets, there are 29 opportunities to forecast 

the next event interval within the attractor.  Forecasts versus the 

actual realized intervals provide empirical evidence for proof of 

method.  Sufficient information and data are provided to 

replicate the results. 

2   POISSON PROBABILITY 

The first step in the EIP methodology is to take a null 

hypothesis that the event interval data are generated by random 

chance from a system that produces events as an HPP – a 

process with events independently and identically 

exponentially distributed (IIED).  The event rate value is a 

constant average and may be that of an appropriate comparative 

population mean or the mean for the dataset if there is history.  

This rate is used as a system expectation and the null is that our 

system is as reliable as the expectation.  Inherent in this null 

hypothesis is that the event intervals are IIED random variables.  

Complex repairable equipment systems that are repaired as 

good as new are expected by reliability engineers to conform to 

the requirements of the null hypothesis.  However, it is 

nonconforming events that are of interest.  Evaluating the null 

hypothesis is a way to identify nonconforming events by using 

Poisson probability in a reverse fashion.   The event intervals of 

interest are those that are too short or too long to be null 

hypothesis random chance events.  Very low and very high 

Poisson probabilities allow the null to be rejected and the 

alternative hypothesis to be accepted.  The alternative 

hypothesis is that the event interval(s) are not random chance 

variation of a system with an event rate equal to that of the null, 

but they are generated by a system with a statistically 

significant different event rate.  Although the system elements 

may not have obviously changed, it has moved to a new level 

of reliability.  The low p-values are the probability that the 

system is indeed reliable and that the decision to reject the null 

is wrong, i.e., it is the false positive. 
The Poisson probability distribution of events is: 

 

P(x; μ) = (e-µ) (μx)/x!            (1) 
 

Where: 
P(x; μ): Probability that exactly x events occur within 

a specified interval when the expected number is μ 
x: Number of events in an interval, x = 0, 1, 2 …. 
μ: Expected number of events within the interval 

e: Euler’s number. 
For the null hypothesis, the expected number of events, μ, 

over an interval is developed below and with a Poisson interval 

of time.  A dataset must have events of the same type and have 

a date of occurrence.  (Grouped data can be used but is not 

covered in this paper). The date of an occurrence is typically 

what distinguishes one event from another of the same type.  

EIP begins with these dates.  The Poisson interval is often time, 

but time can be converted to a different Poisson interval as will 

be illustrated with the 737 MAX crash and precursor datasets.  

Below, the Poisson expectation is developed as a ratio of time 

between events and the average time between events. 
 

μ = λt             (2) 
λ = 1/MTBE 
t = ∑TBE 

therefore:     μ = ∑TBE/MTBE                                (3) 
 

Where: 
λ: Expected event rate, event counts per time unit 
t: Time between event (TBE) or ∑TBE 
MTBE: Expected (Mean) time between events 
∑TBE: sum of time between appropriate contiguous events 

 

In this paper event rate λ is used in general description, as 

it seems more familiar than using MTBE.  For calculations, 

however, the complement of event rate, MTBE, is always used. 

3   BOEING 737 MAX CRASH INTERVALS 

For evaluation of aircraft crash events, departures are the 

better Poisson interval with departures between event (DBE) 

and its mean (MDBE) used for TBE and MTBE, respectively.  

Also, the peer group mean is in units of departures.  For the null 

hypothesis to which we apply the above equations, there is no 

distinction between the first event interval and subsequent 

intervals.  In some data analysis contexts, departures to first 

event would be appropriate, but here we can use the term 

“departures between event” for even the first event. 
 

3.1 First crash 
 

The first crash on 10/29/2018 occurred with a 737 MAX 

fleet DBE of 135,980 departures [2].  The worldwide jet 

commercial scheduled carrier fleet is a peer population against 

which the 737 MAX fleet is compared.  This peer population 

MDBE is 6,105,714 calculated from published data [3] - 

number of fatal crashes over a recent 10-year period and the 

number of departures over the same period.  With Poisson 

probability for the first event being defined as event 1 p-v1, the 

probability of one or more events within the interval of the one 

event is obtained using the complement of equation 1. 
 

p-v1 = 1- (e-µ) (μx)/x! = 0.02202 
 

where: 

 x=0 
DBE = 135,980 
MDBE = 6,105,714 
μ = DBE/MDBE = 135,980/6,105,714 = 0.02271 

 

Event 1 p-v1 answers the question, what is the probability 

of one or more events occurring within the interval of the one 

event?  This Poisson probability is used like a test statistic p-

value as strength of evidence against the null.  This low p-value 

indicates how poorly our data fits the null hypothesis.  The data 

is not likely to be random variation in a fleet that is as reliable 

as its peer group, the worldwide fleet.  This p-value is 

sufficiently low to reject the null and accept the alternative 

hypothesis that the 737 MAX fleet is unreliable compared to the 

peer group.  
 

3.2 Second crash 
 

The number of departures to the second crash is not 



believed to be publicly available and is estimated from data that 

are available.  Plane delivery dates are available from the 

Boeing website.  The delivery date for individual planes allows 

plane-days in service to be aggregated for the fleet.  The first 

crash plane-days in service is 47,711 and to the next is 41,352.  

From the departures to the first crash and the plane-days to the 

first crash, the average number of departures per day is 2.85.  

Using this first interval average as an estimate for the second 

interval gives 2.85 * 41,352 = 117,856 departures. 
Using equation 1 and 3, the second event p-v1 (the 

probability of the second event occurring in an interval of the 

second event) is: 
 

p-v1 = 1 – (e-µ) (μx)/x!) = 0.01912 
where: 
x=0 
DBE = 117,856 
MDBE = 6,105,714 
μ = 117,856/6,105,714 = 0.01930 

 

Using equation 1 and 3 with departures as the Poisson 

interval, the second event p-v2, the probability of two or more 

events within the interval of the two events, is: 
 

p-v2 = 1 – {(e-µ) (μx0)/x0!) + (e-µ) (μx1)/x1!)} = 0.00084 
 

where: 
x0 = 0 
x1 = 1 
μ = ∑DBE/MDBE = (135,980 + 117856)/ 6,105,714 =                     

253,836/6,105,714 = 0.04280 
MDBE = 6,105,714 

 

The probability of two or more crashes within the interval 

of the two crashes, if the fleet is as reliable as the peer group, is 

0.00084.  The approximately eight chances in 10,000 that the 

737 MAX is as reliable as the worldwide fleet is overwhelming 

evidence for rejecting the null.  The alternative hypothesis that 

the fleet is less reliable than its peers could be accepted after the 

first crash, and certainly after the second.  But it was not, and 

unreliable aircraft continued in service for three days after the 

second crash before the fleet was grounded at a risk of 

approximately 7.9 additional fatalities on average [1].  

Figure 1 is the upper portion of a Microsoft Excel 

spreadsheet designed to easily implement EIP analyses.  The 

equations used for p-v1 and p-v2 are in the appropriate cells for 

calculation using DBE, in green, and MDBE input data.  

(Sufficient information for constructing the workbook is in 

earlier papers [4] and is available without cost at 

www.pmfseries.com).  What is the meaning of the probability 

values?  They are the probabilities that the system is as reliable 

as the reference system, in this case the worldwide fleet.  If the 

null is rejected, they are the probabilities of the decision being 

wrong.  They are the probabilities that the worldwide fleet could 

have intervals that short by random chance.  They are the false 

positive values.  
 

4 737 MAX PRECURSOR INTERVALS 
 

EIP application to precursor events are applied to the 737 

MAX to indicate how the first crash could have been avoided; 

thereby, illustrating how to avoid similar events in the future.  

Precursors are less severe events that can signal a system 

problem.  The first precursor “extended stick-shaker activation” 

occurred on the first fatal crash plane on the prior flight on 

10/28/2019.  The cause of the precursor was not corrected, nor 

was the affected plane removed from service for investigation.  

The issue continued the next flight – the fatal flight. 

A second extended stick-shaker activation occurred on the 

second fatal flight.  Probability values for the two instances are 

seen in figure 2.  (Reference 1 published in 2023 updates prior 

papers on the Boeing 737 MAX event interval probability input 

data and results.  It also provides additional information on data 

sources, analysis considerations and details, and a more 

thorough discussion of EIP specifically applied to the 737 

MAX.  This paper covers only the basics for the 737 MAX 

analysis). 

We see that both crash intervals and precursor event 

intervals are sufficiently low to reject the null hypothesis and 

accept that the 737 MAX fleet is unreliable relative to the peer 

population upon the first event, and overwhelmingly so upon 

the second event.  The next step in EIP is to determine the actual 

reliability from the system performance data and forecast future 

failures as a probability distribution.  But before this next 

forecasting step, the analysis method is applied to social and 

human systems to demonstrate how the method is applicable to 

any event from a complex system of any type.   
 

5 CPS ABUSE INVESTIGATIONS 
 

In year 2020, a Houston, Texas, 8-year-old child died by 

abuse and starvation.  The mother and her domestic partner 

were charged with murder.  This case study is important for 

engineers to consider because it demonstrates EIP applicability 

Figure 2 – Extended stick-shaker activations are crash 

precursors.  The number of these events for all of Boeing’s 

fleets in a specific period and fleet plane-days in-service 

over the same period, obtained from plane delivery dates on 

Boeing’s website, provide the Poisson expectation µ against 

which the 737 MAX precursors can be compared [1]. 

Figure 1- 737 MAX departures between crashes in green 

with worldwide mean placed in a Poisson probability 

map.  Equations for p-v1 and p-v2 (as just reviewed) 

calculate appropriate probability values in the right most 

columns of the spreadsheet.  Color formatting brings 

visual attention to actionable p-values. 



to events in general and complex systems in general.  Experts 

in particular systems and events, that we will call subject matter 

experts (SMEs), are commonly resistant to accepting EIP as a 

reality apart from what is inside the system.  Use of EIP in non-

technological applications may improve their understanding 

and acceptance of system performance as an independent 

measurement of reliability that is independent of what is inside 

the system.  The system that generates Texas Family and 

Protective Services (that we will call the more general Child 

Protective Services or CPS) abuse investigations is both 

undefined and undefinable.  Without any knowledge of the 

causes and effects within the system, the reliability of the 

system can be completely understood.  Later, we explain that 

reliability of complex systems is a systems theory emergent 

property.    

Incidences of abuse are hidden.  They are unknown and 

unknowable.  The system that produces an abusive environment 

is a subsystem within our system.  CPS investigations are 

triggered by reports of abuse or possible abuse.  This reporting 

system is also a subsystem within our system.  These two 

subsystems are both complex and work together to produce a 

CPS investigation.  CPS investigation dates are all we have 

available and are all that is needed for EIP, as with the 737 

MAX datasets.  Due to the death, CPS investigation dates for 

this case are publicly available [5].  The mean days between 

child abuse in Texas is available from the number of children 

in Texas and the number of investigations per year [6].  The 

mean is used for the Poisson expectation in equations 1 and 3.  

Figure 3 is the probability map that organizes the equations, 

allows efficient data analysis and trends probability values.  

Sufficient Excel equations are shown to allow all the equations 

to be understood upon inspection of the patterns.  Excel rows 

and columns are shown.  The equations for p-v1 and p-v2 were 

shown for the 737 MAX crash dataset.  To explain an additional 

p-value for understanding, the equation in cell M7 is for p-v3 at 

the 4th event on 12/16/2020.  The cell value answers the 

question “what is the probability of three or more investigations 

within the sum of the intervals of the last three investigations”?  

Embedded Excel formulas are used allowing the most efficient 

answer to our question to be the complement of the cumulative 

probability of two events.  The probability value of 0.00007 

means there are seven chances out of 100,000 that there could 

be three or more events within the time of these three events for 

an average Texas child.  This rare chance rejects the null 

hypothesis that the investigation dates are random variation of 

a normal child’s “system” of abuse and abuse reporting.  Armed 

with this information, investigative attention could be focused 

on this particular child.  If EIP had been used to recognize the 

significance of investigation dates, the death of the child five 

days later could have been prevented.  The last event is not the 

normal CPS investigation, but it is the death of the child.  The 

5-day interval is shorter than EIP prediction.  It is statistically 

different from prior intervals and is statistical evidence that the 

child was dying from abuse and starvation upon the 12/16/2020 

investigation when, because of the Covid-19 pandemic, the 

child was not observed.  The mother and her domestic partner 

were charged with murder by abuse and starvation.  Early 

identification of the child’s probabilistic data could have 

avoided not only death but 594 days of avoidable exposure to 

abuse and starvation.  In the United States alone, five children 

per day die by abuse [7].  Applying science to event intervals 

could save some by informing stakeholders early. 
 

6  POLICE USE OF FORCE 
  

Derek Chauvin, the former Minneapolis, Minnesota police 

office found guilty in the death of George Floyd by use-of-force 

in 2020, was identifiable as unreliable 994 days prior with 

0.00199 probability of a false positive (figure 4 event 4 p-v3).  

At 465 days prior to Floyd’s death, the probability of the system 

being as reliability as the reference was 0.00064 (figure 4 event 

5 p-v4); therefore, the system was most assuredly unreliable.  It 

should be obvious without explanation how early identification 

of police officers that are statistically prone to use of force 

would have a favorable impact on American society by forcing 

a more stringent police complaint investigation on those that are 

statistical outliers. The Chauvin system illustrates that 

calculations involve no knowledge of the system that generates 

occasions of use-of-force. Only the dates on which our system 

generates an event are used. The event intervals determined by 

citizen complaint dates [8] and the mean complaint rate for 

police officers in large municipalities [9] are used in the 

calculations. The system is everything that influenced the dates.  

The system does not need to be defined or understood.  The 

Figure 3 – CPS investigations of an 8-year-old child.  DBE is days between events and MDBE is mean days between 

events.  The first event on 10/1/2018 was not statistically significant.  Events 2, 3 and 4 show increasing strength of 

evidence that intervals are not IIED with mean of 10,564 days (population / investigations), the peer group average.  Excel 

rows and columns are shown so that equations for probability on the right can be read.  The few equations shown reveal 

the pattern for all probability equations.  The last event is the child’s death by abuse and starvation that was preventable by 

recognizing the increasing probability evidence for abuse that could allow investigative resources to be more focused 

according to the individual child’s risk.    



probability map is figure 4.  (There is evidence that data are 

missing prior to 2/15/2015, but that is not essential to the 

purpose of this paper.  Also, it would only lower the p-values). 
 

7 RELIABILITY DISTRIBUTIONS 
 

Time to next event probability distributions are obtained 

with Monte Carlo simulation.  Monte Carlo is used to solve the 

math problem of adding and multiplying random variables – 

adding and multiplying probability distributions.  Using Monte 

Carlo may seem too complex to be practical, but the equations 

to be reviewed are easy to manage with computer spreadsheets 

with equations positioned to achieve the purpose.  (The 

workbook can be built by the user or downloaded at no cost).  

The distributions will provide the probability of the next event 

occurring as a function of time.  Time is converted to departures 

between events and plane-days between events for crashes and 

precursors, respectively.  Risk of continued system operation, 

without any effectual change, is found by the product of this 

probability and the consequences of an event.  This is especially 

critical if the system has been discovered to be unreliable 

relative to expectation.   
Figure 5 graphically demonstrates the basic process for 

Monte Carlo simulation to obtain samples of time to the next 

failure (TBF) where the events are failures.  Many random 

number draws, or iterations, form probability distributions for 

TBF.  The cumulative failure distribution, equation 4, is the 

complement of reliability, or unreliability.  This is the 

complement of equation 1 with x = 0.  Equation 4 is well known 

and accepted by reliability engineers, so this will be used; 

however, we could just as well start with the equation for 

reliability and get a mirror image of figure 5 that contains 

identical information.  The math applies to all systems that 

behave as complex repairable systems.  The 737 MAX is such 

a system, although it is not repairable in the way one may think.  

The crashed planes are simply removed from service and the 

total planes in the fleet are reduced by one then two, and the 

repair time is zero.  The math for the distributions applies to any 

system of any kind when the causes and effects generating the 

event are complex, i.e., events are IIED random variables.  This 

allows use of a constant failure rate.   
 

     F(t) = 1-e-λt                        (4) 
 

Failure rate λ in equations 1 and 4 is a constant average.  

Before the null is rejected, the null hypothesis assures the 

constant failure rate by definition – it is inherent to the null 

hypothesis.  Now that the null is rejected, use of equations 1 and 

4 requires an assumption of a constant failure rate.  This is 

expected to be the case for complex repairable systems and is 

always the case for systems that behave as complex repairable 

systems.  The constant average event rate is justified from 

reliability theory and experience [1].  It will be further justified 

from a systems theory perspective later in this paper.   
A uniformly distributed zero to one random number is 

transformed to a time sample using Equation 4.  Equation 4 is 

set equal to a random number (RN). 
 

F(t) = 1-e-λt  = RN      
Where:                    
RN = uniformly distributed random number from 0 to 1 
λ = failure rate or, more generally, event rate 
t = time 
 

rearranging terms, 
   

 e-λt = 1- RN                                   
  

Event rate is constant, so λ = 1/MTBE and the complement of 

a 0 to 1 uniformly distributed random number is a 0 to 1 

uniformly distributed random number, so  
    

e-t/MTBE = RN            (5) 
 

Taking natural log of both sides and simplifying, 
 

ln e-t/MTBE  = ln(RN) 

-t/MTBE = ln(RN) 

t = -MTBE*(ln(RN)) = TBE sample    
 

The time to first event sometimes must be distinguished from 

subsequent time between events, but for constant λ the term 

TBE can also be used for the first event.  So, equation 6 is for 

the length of any event interval, including the first: 
 

TBE = -MTBE*(ln(RN))          (6) 
 

MTBE in equation 6 can be a population mean that is 

single-valued, as discussed thus far, and produce the blue 

Event Date

Event 

# TBE MTBE  p-v1 p-v2 p-v3 p-v4 p-v5 p-v6

service year 1/1/2001

Julian Hernandaz 2/15/2015 1 5158 3842 0.73881

Jimmy Bostic 4/15/2016 2 425 3842 0.10472 0.42636

Zoya Code 6/25/2017 3 436 3842 0.10728 0.02166 0.20804

John Pope 9/4/2017 4 71 3842 0.01831 0.00798 0.00199 0.07677

Sir Riley Peet 2/15/2019 5 529 3842 0.12863 0.01100 0.00267 0.00064 0.03108

George Floyd 5/25/2020 6 465 3842 0.11399 0.02822 0.00289 0.00071 0.00017 0.01156

Figure 4 – Police use of force complaints against officer 

Chauvin upon and prior to the death of Floyd. Poisson 

probability values overwhelming reject the null 

hypothesis 994 days before the last event.  These 

probabilities and their trends could inform any 

stakeholder and lead to more focused and thorough 

complaint investigations. 

Figure 5 – An event interval sample, here called failure 

time sample, is determined with a random number draw 

from the secondary y-axis that is transformed by 

equation 4 to a failure time.  The graph shows two 

samples of failure times derived by equation 6. 



distribution in figure 6.  Without a peer group, the running 

average is used and is a sample statistic from a population of 

unknow mean.  After the null is rejected, the data are always a 

sample from a system of unknown mean.  MTBE as a random 

variable is explained in the context of forecasting the next 

event.    

The number of TBE values available for the next event 

forecast is n, where n can be any positive integer including only 

one.  Notice that the number of events available is used in the 

forecast.  A restraining paradigm is that using only a little data 

in the forecast means the forecast cannot be accurate.  In our 

examples, getting more data means having more fatalities.  Data 

analysis methods are needed that use ultra small datasets, 

especially when the data are catastrophic events.  The method 

following applies to any number of events starting at one.     

Starting with a TBE dataset used to forecast the next event 

interval as a probability distribution, equation 6 is used to 

generate TBE samples using the dataset mean – sample mean – 

to get a sample of the population mean as a random variable. 
 

MTBERVs1 = (TBEs1 + TBEs2 +…… TBEsn)/n  
 

Where: MTBERVs1 = 1st sample of the mean TBE as a     

random variable 

TBEsn = Time between event random variable sample n 

n = number of TBE values used for the forecast 
 

Using equation 6 with the dataset mean,  
 

 MTBERVs1 = {[-MTBED*ln(RNs1)] + [-MTBED*ln(RNs2)] 

+  ……[-MTBED*ln(RNsn)}/n               (7) 
 

Where: MTBED = dataset mean 

RNsn = Random number draw, one for each n 
 

The RN subscripts above are to assure that each random 

number is independent of any other draw.  When the random 

numbers are assured to be independent during the Monte Carlo 

simulation – such as when a computer spreadsheet is properly 

designed - we can omit the RN subscript.  Now the MTBE 

random variable sample is used in equation 6 a second time with 

the mean as a random variable from equation 7.  But this is all 

within the same calculation – the same Monte Carlo iteration – 

for equation 8. 

TBEFs= -MTBERVs1*ln(RNsn+1)           (8) 
 

Where: TBEFs = forecast sample, sample of TBE 

RNsn+1 = an additional unique RN. 
 

Figure 6 is 100,000 iterations or samples of TBEFs that are 

sorted from smallest to largest to form a TBE distribution for 

the 737 MAX second crash using the number of departures to 

the first crash as input data.  This distribution is the forecast for 

a second crash.  The actual experienced departures between the 

first and second crash is 117,856, by calculated estimate.  This 

number of intervals projected to the cumulative probability y-

axis is expected to not be exceeded with probability 0.69.  In 

other words, two thirds of the time the second crash would 

occur even sooner than it did.   

Figure 6 for departures to the next crash should be viewed 

as math solutions and not as computer simulations in the normal 

sense.  Monte Carlo generated random numbers is an efficient 

way to perform this convolution of two probability 

distributions.  The resulting distributions accurately reflect 

uncertainty of outcome, but because the addition and 

multiplication of probability distributions are by Monte Carlo, 

the accurate results have imprecision.  To illustrate the 

imprecision of the accurate forecast, the process for generating 

the second crash forecast distribution of figure 6 was executed 

five times.  The actual interval of 117,856 projected to 

cumulative probability with five simulations of 100,000 

iterations produced probability results ranging from 0.68737 to 

0.68927. 

An airworthiness directive (AD) was issued by the FAA 

nine days after the first crash.  Even if the AD totally resolved 

the problem, the 9-day delay incurred significant risk that is 

currently unrecognized.  There were 227 planes in service 

during the nine days with an average of 2.85 departures per day, 

as calculated earlier, resulting in about 5,823 departures in the 

period.  Using data that formed figure 6 second crash forecast 

distribution, the probability of a crash within nine days is about 

0.133.  The average number of fatalities can be considered the 

consequence of a crash, or 346/2 = 173 fatalities/crash.  Risk is 

probability times consequence or 0.133 * 173 = 23.0 fatalities 

on average. 

Similarly, following the second crash there was a 3-day 

delay in grounding the fleet.  The fatality risk for these 3-days, 

considering all the fleet to have been flying, is about 7.9 

fatalities [1]. These risks obviously would not have been taken 

if there was awareness. 

The reader may at this point think that Boeing and the FAA 

acted inappropriately.  But consider that everyone, including 

academia and this author, has overlooked the information found 

in only one or two event dates as there was no analysis method 

to reveal the information.   

 

8 SYSTEMS THEORY 
 

As explained by Hitchens [10], some complex systems can 

be better described by their behavior than by delving into the 

depths of system design, structures, processes, etc., and this 

Figure 6 – Forecast for a second 737 MAX crash, in 

green, using the first crash interval as in equations 7 

and 8.  This figure is like figure 5, but with log scaling 

on the x-axis.  The blue distribution is the worldwide 

fleet DBE.  The realized 2nd crash interval projected to 

the cumulative probability axis of its forecast shows 0.69 

probability of occurring prior to the actual interval. 



provides a way to manage complexity.  Systems exhibit 

emergent properties that cannot necessarily be explained or 

predicted by understanding the complexity of components and 

the interactions among themselves and their environment.  

Hitchens describes rare universal rules that apply to systems.   

Such a universal rule controls each individual datum in our five 

datasets – 37 in total.  The rule is equation 5, for systems with 

a constant event rate.  Systems with a complexity of causes and 

effects are expected to have a constant event rate from classical 

reliability.  The e-λt or e-t/MTBE rule is followed for all event 

intervals generated from any system that behaves as a complex 

system, defined as one in which events are generated by a 

complexity of causes and effects.  This is the equation for 

reliability of a constant failure rate system.  A systems theory 

perspective allows reliability to be seen as an emergent property 

of the system.  The math is identical to the classical reliability 

perspective, as that perspective is a specific case of the more 

general system perspective.  The system does not need to be 

defined as the event intervals are autonomous from what is 

inside the system; furthermore, EIP analysis using this 

autonomous data is independent from what is inside the system 

– it has nothing to do with what is inside the system.  This fact 

is, thus far and in general, incomprehensible to system subject 

matter experts (SMEs) and reliability professionals as is 

discussed in the next section. 

The independence of EIP and system contents is 

demonstrated by the child abuse example.  The system that 

generates CPS investigation events contains two subsystems.  

One subsystem produces an abusive environment for the child 

and the other is an abuse reporting subsystem.  Both subsystems 

are complex and unknown, and so much more are the 

interactions between these subsystems to produce the reports 

that trigger CPS investigations.   

The four datasets discussed thus far either begin with or 

move to a constant event rate.  Also, a fifth dataset seen in figure 

7, shows two distinct constant failure rates and the system 

jumps from one to another.  Figure 7 trends the 60-year-old 

dataset for an airplane air conditioner.  This dataset is thought 

to be the most referenced failure time dataset in the reliability 

literature [11], yet there is an unrecognized phenomenon.  TBE 

data residuals are trended.  This method for trending event data 

was developed for maximum sensitivity to changes in event 

rate, reliability, and availability.  The dataset shows two 

distinctly different system reliabilities for the same equipment.  

Although the system is physically the same throughout the 

dataset, system reliability jumps back and forth between two 

reliabilities.  Emergent reliability is attracted to one of two 

regions reflecting a change in the parameter MTBE in equation 

5, where chaos, or unpredictably, might otherwise be expected.  

In figure 7, these two regions are called reliable and unreliable 

with the unreliable regions enclosed within ellipses.  In the 

language of chaos theory, these regions are attractors.   

How randomness in complex systems translates into events 

in time is seen in figure 5.  The 0 to1 uniformly distributed 

random number on the secondary y-axis represents chaos that 

the universal system rule in equation 5 translates into events in 

time on the x-axis.  Dataset intervals are used to first check if 

they are consistent with the null hypothesis curve shape.  When 

the null is rejected, the dataset is used to determine the actual 

shape of the curve using Monte Carlo.  

Viewing reliability as an emergent property as revealed by 

EIP allows us to know all about system reliability even when 

knowing little or nothing about the system generating the 

events. We can imagine the data of figure 7 coming from a 

signal received from outer space.  This signal data is generated 

from some deterministic cause and effect process that we call a 

system.  The system could be technological, natural, social, or 

any combination.  We may have no idea how the signal is 

generated or even what the signal means, but we know the two 

emergent reliability levels of the signal generating system and 

the probability distribution for the next signal within that 

attractor.  (In the general case, system reliability is an example 

of strong emergence, though many scientists deny the existence 

of such.  Weak emergence, accepted by scientists, requires the 

system to be definable so that, at least in principle, the emergent 

property can be deduced from system contents; however, in the 

general case, system contents are scientifically unknowable.  

Discussion is beyond the scope of this paper). 

All the datasets have regions of constant average event rate 

where the e-t/MTBE universal rule shows a certain reliability level.  

This is additional support for the constant event rate used to 

develop probability distributions for forecasting the next event.  

For all five datasets, there are 29 opportunities to forecast the 

next event using the prior events in that attractor.  Six of the 29 

forecasts used a single data point - a single date.  The actual, 

experienced event interval is compared with the interval’s 

forecast distribution.  This is done in the manner shown in 

figure 6 where the second crash actual interval is projected from 

the x-axis via the probability distribution to the cumulative 

probability y-axis where 0.69 probability is read.  This was 

done for all 29 forecasts with results in figure 8.  The actual 

realized intervals all fell well within their respective forecast 

and, as well, they were scattered randomly as they should be as 

seen in figure 8.  This is empirical evidence for proof of method.  

All data necessary to replicate the results are in this paper.    

Figure 7 – A residuals trend for viewing change sensitively.  

Graph construction is revealed by axis description.  There 

are two stable regions, and the system jumps back and forth 

between the two.  The one labeled “unreliable” is enclosed 

with an ellipse.  An overhaul at the 13th event introduced a 

change to which the system is sensitive.  Something similar 

happened upon events 1 and 7 repairs causing the system to 

jump attractors.  Such information is needed in root cause 

analysis.  70% of the failures are in the unreliable attractor. 



 

9 REDUCTIONISM VERSUS EMERGENCE 
 

Reductionism is on the opposite side of the spectrum from 

emergence.  Reductionism is going inside the system to reduce 

the complexity of parts and their interactions to smaller 

elements.  If specific causes of unreliability are to be understood 

and corrected, it will be through reductionism.  Engineers and 

scientists are taught by both education and experience to solve 

problems by breaking them down into smaller, manageable 

pieces.  Use of system performance for reliability (emergence) 

seems incomplete and insufficient to any SME because they 

tend to be reductionist, whether reliability or aerospace 

engineer or, this engineer supposes, even sociologist.  There is 

tension between reductionism and emergence because, 

according to Damper [12] “the two creeds seem to work in 

opposite directions.”  These two divergent views (systems of 

thought, philosophies) regarding systems are often seen to be 

mutually exclusive with arguments as to which is true.  This is 

evident in Damper’s use of the word “creed” in his description 

of these two views.  Reductionists and emergentists seem to 

believe that their own philosophy precludes the other view.  But 

both views are valid in context and need to be taken one at a 

time.  Emergence and EIP should be considered first to see if 

the event could be random variation of a reliable system or 

evidence of a jump to a different and unacceptable attractor.  
 

10 RECOMMENDATIONS 
 

The FAA should use EIP as a second layer of safety that is 

independent of the design and certification process.  Events to 

be analyzed should obviously include major events such as 

crashes and plane-related emergency landings as in the first 

dataset, but precursors should also be sought out and the 

significance of these event intervals considered as in the second 

dataset.   

NTSB crash investigations should include any missed 

opportunities to avoid a crash, such as those described in the 

first two datasets. 
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Figure 8 – 29 realized events versus their respective 

forecast as in figure 6 plotted smallest to largest. An event 

and any prior events in the same attractor were used to 

forecast the next event interval cumulative probability 

distribution.  All actual results are within their respective 

90 % confidence interval.  Composite results are randomly 

scattered with 0.576 average versus 0.632 ideal. Realized 

results that match forecasted is empirical proof of method.  
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