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SUMMARY & CONCLUSIONS 
 
   The traditional means of availability assessment as a 
probability distribution are not widely used on manufacturing 
plants and facilities producing goods and services, in part 
because of a lack of accurate data. An alternative method was 
developed for such plants using permutations of readily 
available system data. The method may be found to be of 
value for other repairable systems.   
   This paper presents a method of calculating system 
availability and reliability probability distributions using 
permutations of inseparable system failure and restore data 
sets. Such data sets usually come from system history, as 
reflected in a performance measurement such as daily 
production. A direct relationship is maintained between any 
failure and its consequence; that is, time-between-failure 
(TBF) and time-to-restore (TTR) are an inseparable set. 
Furthermore, TTR need not be single-valued but may take the 
form of another data set to accommodate system degradation 
and dependent failures. A time line can be developed (in a 
computer spreadsheet or as a mathematical concept) on which 
the data sets are placed. A time window (W) equal to a time 
interval of interest (mission time) is advanced along the time 
line returning an availability discrete random variable value at 
each position. In general, there are {H(N!) – (W-1)} mission 
times of length W in history of length H containing N 
independent failures. For example, 12 failures in two years 
provide about 350 billion mission time values. From these 
values, or a sample of the values, availability frequency 
distributions are formed for all mission times of interest. 
When the mission times of interest are continuous, as is 
necessary for certain business decisions, the distributions form 
a 3-dimensional probability surface. From this data, both the 
probability and expected magnitude of performance below or 
above any value is calculated for use in making a large range 
of technical and business decisions. 
   The avoidance of traditional assumptions, the accuracy of 
calculation and the abundant supply of accounting quality data 
provide an opportunity to make risk-based decisions that are 
not otherwise possible. For example, in manufacturing the 
issues which can now be optimized with known probability 

and consequence include production budgeting, product 
inventory control, profit projections, material requirements 
planning, production scheduling and measuring the statistical 
significance of any change in production output. This capacity  
and availability assessment process (CAAP™) is patented in 
the United States for systems producing products and services, 
such as manufacturing, telecommunications, power generation 
and other utilities. 
 
 

1. INTRODUCTION 
 
   Usually availability and capacity of systems, for which there 
is some operating history, are measured using mean values. 
An expectation of future performance is based on mean 
availability over recent history. It may be factored up or down 
to reflect expected change in the system, but the basis is 
measured past performance. Variation in future performance is 
often not realistically considered. Safety margins are 
subjectively and perhaps subconsciously built in through 
conservative goals, lower production budgets, etc., but these 
are of unknown magnitude. For example, setting production 
targets is often a negotiation between plant operators that want 
a conservative target they are sure to reach and the corporate 
business managers that want a stretch production target for 
maximum profits for their business sector. Both parties are 
establishing their positions without knowledge of the 
stochastic characteristics of their plant availability.  
   Monte Carlo simulation has been used to assess availability, 
but is not used on most systems. For whatever reasons, there is 
a perceived lack of cost effectiveness. We believe a major 
weakness is the quality of the required data. Failures of 
complex systems stem from multiple roots such as human 
reliability, management systems, design, operation, 
maintenance and physical environment. Root cause failure 
analysis usually reveals failure to involve system root causes 
that are specific to that system. Monte Carlo modeling can not 
simulate this ill-defined environment of system influences and 
must logically be of questionable accuracy; where as, system 
performance data captures the impact of these system 
influences. Additionally, the equipment failure data required 
for conventional computer simulation is often sparse and of 
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unknown accuracy. The collection of generic data that Monte 
Carlo methods need in order to become widely useful is 
likewise hindered by the presence of system failure roots. The 
system that generates the failure data and the system that uses 
the failure data have different system failure roots, thus 
compounding the accuracy problem. The CAAP™ concept 
evolved from early attempts to check the accuracy of Monte 
Carlo results against actual experience.  
   The probabilistic assessment process described here is an 
inherently precise calculation, arguably a measurement, of the 
availability variability embedded in a set of system failure 
data where the failures are either independent or the 
dependency is described. The family of availability 
distributions for all mission times from the shortest to longest 
of interest form an availability probability surface. The same 
data used to generate a single-valued mean availability is used 
in this method to calculate the relationship between 
availability, mission time, and probability. When this 
availability surface is used for a forecast, only the most 
fundamental assumption is required; that is, system 
availability in the immediate future will be like that in the 
historic period from which the failure data were acquired 
(except as the failure data are modified to reflect anticipated 
change). This is the same practical assumption basic to any 
forecast, including those based upon single-valued numbers. 
System performance in the recent past is used to predict the 
immediate future. 
 
 

2. ASSESSMENT CONCEPT 
 
   We will use a simple example to illustrate the availability 
assessment process so that all calculations can be seen. For 
purposes of our example, during 30 days of system operation, 
three system failures were extracted from system performance 
data with time-between-failure (TBF) and time-to-restore 
(TTR) as seen in Table 1. The system performance data may 
be daily production for a manufacturing plant, for example. 
Mean availability for the 30 days is 0.80. The system starts up 
after repair on Day 1 and completes a repair on Day 30, for 
simplicity of example.  
 

Table 1 
Simple Example – Three failures with Time-Between-Failure (TBF) and 

Time-To-Restore (TTR) Data 

Availability = ∑TBF/(∑TBF + ∑TTR) = 24/30 = 0.80

 Failure TBF (days) TTR (days)
A 5 2
B 12 1
C 7 3

24 6

 
 
   The TBF and TTR for each failure of Table 1 are treated as 
an inseparable set. A time line can be established on which N 
failures over a selected history of length H is used to forecast 
N factorial permutations of future operation of length H(N!). 

The concept of the time line is seen in Figure 1 for our 
example of three failures in 30 days. The only requirement on 
the data is that failures must either be independent or 
dependency must be defined. Usually only common 
knowledge of the system failures is necessary to know the 
failures are independent, otherwise failure analysis is required. 
Because these are system failures, presumably of economic 
importance, any failure analysis that may be required for this 
purpose should already be justified. We only assume that the 
availability of the plant (equipment, people, management 
systems, etc.) in the immediate future will be effectively the 
same as that in a selected history. The data from history can be 
changed for anticipated availability improvement or 
deterioration. Often, but not necessarily, the selected history 
extends backward from current time and is continuous.  

   
History

3 failures

A  B  C A  B  C    B  C  A    C  B  A    A  C  B    B  A  C    C  A  B

Future

3! permutations

-t             t = 0            t              2t            3t            4t             5t            6t  
Figure 1 

The time line concept showing selected history (actual, modified or 
simulated) consisting of three failures in time t. All permutations of failures 
A, B and C are laid down on the time line extending into the future. Actual 

time line values are seen in Figure 2. 
  

   Figure 2 is the actual time line with TBF and TTR data 
reflected in the availability for each day. In this example, the 
smallest time increment of interest is one day. A time window 
equal to a mission time of interest is incrementally advanced 
along the time line. Availability within the time window is 
determined at each location, thus returning a discrete random 
variable value for availability. An availability frequency 
distribution for that time window (mission time) is now 
known. The process is repeated with other time windows 
(mission times) of interest. The cumulative distribution forms 
for the simple example data are seen in Figure 3.  
   It is immediately recognized that not all of the data of Figure 
2 was evenly weighted. Because of the initiation and 
termination of the moving window, the data at the beginning 
and end of the 180 day time line is counted less frequently 
than that in the middle. This is generally not an issue with real 
failure data; however, it is corrected as will be explained.  
   The length of the time line with N number of failures is N 
factorial times the length H of the historical data record. The 
historical record is one month in our simple example. In 
general, the length is then: 
            Time Line = H(N!) 
An example of real data may be, say, 12 failures over an 
historical record length of two year. The length of this time 
line to record all permutations of the 12 failures is then: 
            Time Line = (2 years)(12!) ≈ 1 billion years 
The number of random variable values for availability 
obtainable for a time window of length W in days is, in 
general: 
         Number of values = H(N!) - (W-1) 
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Figure 2 

TBF and TTR data for the three failures (A, B and C) in 30 days of history 
with all six permutations forming a time line extending 180 days into the 

future, broken at two locations for convenience of display. Availability for 
each day is displayed as a number from 0 to 1. For this simple data all days 

have an availability value of either 0 or 1, indicating either down or up 
operation, respectively. The first 10 contiguous days returns a random 

variable value of 0.8 for availability (upper left). The window is advanced one 
time increment at a time returning an availability value at each. The last 

window returns a value of 0.9 (lower right). 
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Figure 3 

Cumulative availability distributions from the 3 failures of Figure 2. Time 
windows (mission times) are 10, 30 and 50 days as indicated on each 

distribution. Note each time window has a different distribution. The means 
are somewhat less than the actual data mean of 80% because of unequal data 

weighting in the time window process of Figure 2. 
This is corrected by random sampling in Figure 4. 

The example of real data with H = 2 years and N = 12 failures 
provides the following (window length W being insignificant 
to this calculation):  

Number of values = 2(365)(12!) - (W-1) 
 ≈ 350 billion values  

   We see that the time line is so long that the uneven 
weighting at the beginning and end is not an issue. Also, the 
number of availability values is so great that a time line 
containing all of the failure permutations, such as in Figures 1 
and 2, is both problematical and unnecessary. The 
permutations can be randomly sampled until convergence. 
Convergence is accomplished when cumulative distributions 
for availability cease to change with increasing number of data 
permutations and time line length. The example data 
permutations were randomized repeatedly and laid down on a 
time line of convenient length. The distributions, seen in 
Figure 4, are not smooth because we only have three failures 
in this simplistic example, but they are accurate with only 
trivial error due to sampling and data manipulation. 
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Figure 4 

The permutation order for the three failures of Table 1 are randomized 2,184 
times and the daily availability values laid down in a time line of 65,520 days. 

Convergence is achieved sooner, but this time line was used because it is a 
convenient limit of a computer spreadsheet. Note little change in the 

distributions from those of Figure 3 because only three failures greatly limit 
the possible availability outcomes.  However, means are very close to the 

actual with the difference being insignificant process error. 
 
   The first permutation on the future time line of Figures 1 
and 2 is a replication of the history. If the history, and 
therefore the first permutation, is sufficiently large, then we 
would expect the cumulative distributions from that one 
permutation (history) to converge with those developed from 
all permutations. This was tested with data from a 
petrochemical plant that spanned a nine-year history with 76 
failures. Figure 5 distributions are 30, 90, 180 and 365-day 
time windows for this plant. Advancing the time windows 
along a time line containing only the permutation identically 
equal to history forms the ragged distributions. These 
distributions simply replicate history. Because the history is 
quite large, these distributions approach the smoother 
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distributions that include samples of the 76 factorial 
permutations. Availability distributions formed directly from 
recorded history converge with those formed from all data 
permutations, as history is enlarged. This is empirical 
validation of the process. 
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Figure 5 

A petrochemical plant with 76 failures over nine years of history. Limiting the 
window concept to the first permutation that is identically equal to actual 

history forms the rougher availability distributions. They converge with the 
smoother distributions formed by random samples of the 76 factorial 

permutations. 
 
   The question may be asked, then, why do we need to 
examine the failure permutations? Why not obtain a large 
amount of historical data and use the advancing window 
technique along the actual history time line? Often system 
availability changes over time so that only selected segments 
of the history, and its contained failure data, should be used to 
forecast future availability. The distributions in Figure 5 are 
obtained from a long history that includes early years of low 
availability that is expected to be uncharacteristic of the 
future. The future can only be forecast with historical data that 
is expected to represent the future, or that can be modified to 
represent the future. 
   To select the appropriate history on which to base a forecast, 
a variation of a cumulative sum plot is generated. Cycle 
availability is defined as TBF / (TBF + TTR) for each failure 
and the cycle time is (TBF + TTR). Upon each failure a target 
TBF value is calculated by multiplying cumulative cycle time 
by the mean availability from all data. The difference between 
this target TBF and the cumulative actual TBF is the ordinate 
plot location for the particular failure. The corresponding 
abscissa location is cumulative cycle time upon that failure. 
Figure 6 is the availability trend plot for the Figure 5 TBF and 
TTR data. The slope between any two plot points is the 
availability in the time interval between them. This plot can be 
used to select the appropriate history for the forecast. The 

history need not be contiguous. As the historic record 
becomes shortened in this selection process and there are 
fewer failures in the analysis, extending the time line by 
adding failure permutations becomes increasingly important. 
   When subsystem performance data is available, a parallel 
time line for each is used and combined with appropriate logic 
to obtain the system time line. Also, sometimes a system may 
have a particular failure mode repeated in the history. This is 
not a significant issue with complex systems like plants, 
because usually each system failure is unique within any 
history record of a few years. When repeat system failure 
modes do occur within the history to be used, consideration 
should be given to treating them as a subsystem. When the 
TBF and TTR data for these repeats are significantly different 
from all other data, then they must be on a separate time line 
to prevent the availability distributions from being too wide. 
The availability trend in the form of Figure 6 is useful in 
identifying and evaluating this situation. A complete 
discussion of subsystems is beyond the scope of this paper.  
   The fundamental time increment for which TBF and TTR 
data are acquired and the time line scale are the smallest of 
interest. This is usually one day for process plants. The time 
increment of interest for power generation plants is much 
shorter, such as ½ hour. The time increment of interest for 
telecommunications is measured in seconds. 
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Figure 6 

A variation of a cumulative sum plot provides a sensitive availability trend. 
Each of the 76 failures experienced over nine years produces a data point. The 
ordinate location is the difference between a target value and cumulative TBF. 

The target value is a calculated cumulative TBF obtained by multiplying 
cumulative cycle time by the mean availability for all data. The abscissa 

location is cumulative cycle time. The slope between any two points 
determines availability for that interval. Availability for three slopes is 

recorded. 
 
 

3. System Performance Degradation and Dependent 
Failures 

 
   Complex systems, exemplified by manufacturing plants, 
often have availability that is neither 0 nor 1. This may be 
from operating during only some fraction of the smallest time 
increment of interest or by operating with a forced reduction 
in rate. This assessment methodology accommodates partial 
system operation quite readily. TTR is traditionally a single 
number, but it can be a data set. For example, a system failure 
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that involves partial availability during the smallest time 
increment of interest may have a time-to-restore in the form of 
the following: 
         TTR = {.1, .3, .6, 1, 1, .5} 
Where each value within the set is the unavailability of the 
system for the smallest time interval of interest. If this were a 
manufacturing plant, the smallest interval of interest may be 
one day and the example would read as a reduction from 
maximum availability of 10%, 30%, 60%, 100%, 100%, and 
50%, respectively, for the six days over which the 3.5 days of 
equivalent downtime is spread. The following data set 
describes the availability for the six days. It is the complement 
of the TTR data set: 
       Availability = {.9, .7, .4, 0, 0, .5} 
This data set is inserted at the appropriate locations on the 
time line prior to advancing the time window. 
   A system failure may be dependent upon another failure. For 
example, after a particular plant failure a six-hour shutdown 
may be required three days later for a follow-up action. The 
TTR data set above will then be extended with two days of 
zero TTR followed by one day with six hours (0.25 days) of 
TTR. This full TTR data set then reads as follows: 
       TTR = {.1, .3, .6, 1, 1, .5, 0, 0, .25} 
The availability data set at the locations of this example failure 
along the time line will then be the complement of the TTR 
data set, or: 
      Availability = {.9, .7, .4, 0, 0, .5, 1, 1, .75} 
The unavailability due to the subsequent outage may also be a 
random variable, but we do not pursue that here.  
 
 

4. AVAILABILITY AND CAPACITY FORECASTING 
 
   It should be clear that the probability distributions produced 
by this process are derived by calculation, as opposed to 
simulation. When we use the distributions for forecasting, we 
must only assume that the future mean availability and its 
variability will be like that indicated by the failure data, the 
data often coming from operating history. The historic data 
may be modified to reflect anticipated improvement or 
deterioration in reliability and/or maintainability, but that is 
not addressed in this paper. If history is not available, 
estimation or simulation may form substitute failure data. 
Also, surrogate data from a similar system, with modification 
if appropriate, can be used until a history is established. 
   The simple, logical forecast assumption and the inherent 
accuracy of the system failure data and calculation produces 
credible availability data.  The data are comprehensive even to 
the point of a dense family of distributions or probability 
surface.  This credible and comprehensive data, when 
converted to decision information, opens a new domain of 
engineering and business decisions to quantitative risk 
analysis.  This is particularly so when the availability 
distributions are accessed by computer with decision-making 
interfaces tailored to the needs of the particular system 
managers. For efficient quantitative decisions, segments of the 
distributions are reduced to expected values in ways that are 

useful to the particular decision. Before proceeding with a 
discussion of quantitative analysis using the forecasted 
availability distributions, we present a simple example that 
illustrates the basic concept used to extract decision 
information from the probability distributions. 
   A die is known to return values of 1, 2, 3, 4, 5, and 6, each 
with a probability of occurrence of 1/6. The distribution, seen 
in Figure 7, returns a mean value of 3.5. Say a value of at least 
3 is needed. This may be analogous to the availability required 
to meet a sales forecast over a particular period of time 
(mission time). A value less than 3 will result in a shortfall. 
We explore both the probability of a shortfall and the expected 
magnitude of any shortfall. We recognize that many decisions 
must be made with only one roll of the die dictating the actual 
results. For example, there is only one chance to make 
production during any one future time interval – one chance to 
make next month’s production. The probability of a value less 
than 3 is 1/3 for any one roll, or P(v<3) = 1/3. Thus, there is a 
one in three chance of obtaining a value below target. To 
obtain the expected value of below target performance, we 
convert that portion of the original probability density to a 
new probability density. This process reduces a selected 
portion of the original probability density to a single value 
needed for efficient quantitative decisions. The expected value 
of all values less than 3 is 1.5, or EV(v<3) = 1.5. The mean 
shortfall, given there is a shortfall, is the difference between 
this expected value and the target, or {EV(v<3) – 3} = -1.5.  
Both the probability of a shortfall and the expected magnitude 
of the shortfall have now been calculated; namely, there is a 
33.3% probability of a shortfall and the size of the shortfall, 
when there is one, is 1.5 units on average. The likelihood of a 
shortage and a meaningful measure of the consequence of a 
shortage are now known. Engineering and business decisions 
can now be made to reduce the exposure to loss or compensate 
in some manner as economics dictate. The calculations for 
shortfall are seen in Figure 7 (left side). The complementary 
or overage (surplus) situation is seen in Figure 7 (right side). 
Note the bottom line of Figure 7 calculates a simultaneous 
mean shortfall and mean overage expectation. This data is 
appropriate for those situations requiring multiple rolls of the 
die, such as capital investment decisions. 
   The assessment for a chemical plant for a 30-day time 
window is seen in Figure 8 and Table 2. The data that 
comprise the availability distribution is analyzed in the same 
way as the die example. As the probability of each die value is 
known, so is the probability of each small increment of 
availability for every time window. Capacity is a useful 
parameter for many systems and is related to availability by a 
multiplier. The multiplier is labeled maximum daily capacity 
in Table 2 and is the expected capacity capability in a failure-
free day. 
   A change in availability or capacity performance is easily 
evaluated for statisical significance. For the 30-day window of 
Figure 8 and Table 2, the probability of availability below 
68.92% is 5%, as seen in the upper portion of Table 2. In this 
example, should our measured availability be 68.92% in a
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Figure 7 

The known probability of each possible outcome of the die roll allows analysis for quantitative decisions.  In this case the decisions surround the target or goal 
of rolling at least a value of three. A roll with its outcome variability is analogous to the availability variability of a system over a particular time window. 

 
Table 2 

Capacity and availability risk analysis for Figure 8 distribution. The analysis 
parallels that of Figure 7. Maximum daily capacity is a multiplier relating 

capacity to availability. Percentages are availability, fractions are probability, 
"lbs." is production volume. 

     30 Day Time Window

      Maximum Daily Capacity:   100,000 lbs.

      Enter Probability to Get Capacity
      Capacity at probability x or (Cx)     C 0.0500  =  68.9219%    or    2,067,656 lbs.

      Enter Capacity to Get Probability
      Capacity to be assessed Ca                      Ca =  80.0000%      or    2,400,000 lbs.

      Probability of capacity below Ca              Probability of capacity above Ca
                        P(C < Ca) =          0.1903                         P(C >= Ca) =           0.8097

      Mean capacity below Ca                            Mean capacity above Ca
                     EV(C < Ca) =    72.6269%                       EV(C >= Ca) =     93.8589%
                                          2,178,808 lbs.                                              2,815,768 lbs.

       Mean shortfall, given C < Ca                     Mean overage, given C >= Ca
                  [EV(C < Ca) - Ca] =    -7.3731%             [EV(C >= Ca) - Ca] =    13.8589%
                                           -221,192 lbs.                                                 415,768 lbs.

       Mean shortfall                                            Mean overage
                  [EV(C < Ca) - Ca]       -1.4033%              [EV(C >= Ca) - Ca]       11.2213%
         x P(C < Ca)            =   -42,098 lbs.           x P(C >= Ca)           =    336,638 lbs.

 
 
30-day period, we would know there was only a 5% 
probability of it being that low by chance. We would conclude 
that the poor performance is statistically significant. 
   The lower portion of Table 2 assesses the probability of 
achieving any value of availability or capacity. This is done in  
the same manner that the value of 3 was assessed in the die  
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Figure 8 

Chemical plant cumulative distribution for availability for a 30-day window 
(30-day mission time) 

 
example. A target availability of 80% or 2.4 million lbs. 
(maximum daily rate is 100,000 lbs.) has a 19% chance of not 
being reached, just as there was a 33.3% chance of rolling less 
than 3. Likewise, as in the die example, the expected value of 
availability (capacity) below the target is 72.63% (2,179,000 
lbs.) and the expected value of the shortfall, given there is a 
shortfall, is -7.37 percentage points (-221,200 lbs.). Therefore, 
concerning the goal of 2.4 million lbs. for the 30-day period, 
here is a 19% chance the goal will be missed, and if it is 
missed, the size of the shortfall will average 221,200 lbs. The 
acceptability of this risk and consequence can now be 
considered and ways to manage either the risk or consequence 
can be evaluated. Similarly, for the complementary condition 
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there is an 81% chance of exceeding the goal by an average of 
415,800 lbs. Here management attention may be directed at 
whether this potential surplus should be sold, how the overage 
would impact product inventories, when and how much to 
reduce production rates, etc. 
   The class of decisions just discussed are those for which 
there is only one opportunity to achieve a goal. Some  
decisions require averaging results. For example, return on 
investment is determined over a number of years involving 
multiple proverbial rolls of the die. To illustrate, in the 
chemical plant example, a new project to increase the 
production rate may appear to have no value. The needed  
quantity is below the mean capability. We see in Table 2 
(bottom left), however, that there is a mean shortfall of 42,100 
lbs. In Table 3 with conditions identical to Table 2 except for 
a 10% increase in maximum daily capacity, the mean shortfall  
is 15,000 lbs. Therefore, the new project reduces the average 
monthly shortfall by 27,100 lbs. This reduction in expected 
production shortfall can be used for project justification; 
where as, conventional economic analysis would show no 
capacity related benefit. (For simplicity, in this example 
availability is unchanged by the new project and the 
production requirement does not change over the life of the 
project.) 
 

Table 3 
Availability identical to Table 2, but with an increase in maximum daily 

capacity. For the identical target used in Table 2, all probabilities and 
quantities change. 

     30 Day Time Window

      Maximum Daily Capacity:   110,000 lbs.

      Enter Probability to Get Capacity
      Capacity at probability x or (Cx)     C 0.0500  =  68.9219%    or    2,274,422 lbs.

      Enter Capacity to Get Probability
      Capacity to be assessed Ca                      Ca =  72.7273%      or    2,400,000 lbs.

      Probability of capacity below Ca              Probability of capacity above Ca
                        P(C < Ca) =          0.0758                         P(C >= Ca) =           0.9242

      Mean capacity below Ca                            Mean capacity above Ca
                     EV(C < Ca) =    66.7474%                       EV(C >= Ca) =     91.7110%
                                          2,202,666 lbs.                                              3,026,464 lbs.

       Mean shortfall, given C < Ca                     Mean overage, given C >= Ca
                  [EV(C < Ca) - Ca] =    -5.9798%             [EV(C >= Ca) - Ca] =    18.9838%
                                           -197,334 lbs.                                                 626,464 lbs.

       Mean shortfall                                            Mean overage
                  [EV(C < Ca) - Ca]       -0.4534%              [EV(C >= Ca) - Ca]       17.5445%
         x P(C < Ca)            =   -14,961 lbs.            x P(C >= Ca)          =    578,967 lbs.

 
 
 

5. BUSINESS DECISIONS 
 
   Producing and then reducing any segment of any availability 
distribution, in the manner described in the die and chemical 
plant examples, allows decision information for a number of 
new applications. Once availability is fully characterized as a 
probability surface with axes of mission time, availability and 
probability, then capacity is characterized by simply 
multiplying by maximum rate. Introducing other simple 
information such as sales forecast and yields, and performing 

simple arithmetic quantifies probabilities and consequences 
for issues like production budgeting, product inventory 
control, profit projection, material requirements planning, and 
production scheduling. Risks from availability variation are 
fully quantified because not only are probabilities known, as 
importantly, consequences are measured.  Production budgets 
can be established with known risks. Product inventory can be 
managed to: 1) set limits of risk, 2) set allowable shortage 
magnitudes, and 3) optimum economic level. Material 
requirements, production schedules and profit projections are 
probabilistically established. 
   The issue of product inventory control illustrates the 
requirement for both total characterization of availability as a 
probability surface and efficient data reduction for these 
business decisions. To illustrate, first the desired inventory 
level for the beginning of a future peak sales period is 
established. The difference in the sales forecast and, for 
example, the C05 (capacity at 5% level of risk) for a mission 
time of sales season length is the product inventory that is 
adequate 95% of the time. Thereafter, inventory is managed 
by using the probability distribution for the remaining time to 
the peak sales season. Not only are the distributions to be used 
different from day to day, but current inventory fluctuates with 
actual production and actual sales. Hence, for that application 
and many others, all distributions from the shortest to the 
longest mission time of interest may be required. Therefore, 
for this new domain of business decisions, availability should 
be totally characterized with a probability surface. Many 
applications require frequent and efficient use. Computer 
interface with the probability surface allows easy and fast 
access to the decision information. 

 
 

6. UNCONDITIONAL RELIABILITY DISTRIBUTIONS 
 
   Traditionally, reliability is defined as the probability of 
surviving for a specified period of time, where time begins 
upon startup. This definition may not be appropriate for 
repairable systems. Often the reliability (probability of failure-
free operation) for a system is desired for a time interval 
beginning at a future time and the state of the system at the 
beginning of this future interval is unknown. When reliability 
is desired for a period of time that starts in the future, the 
beginning of the period may be located anywhere along the 
time line of Figures 1 and 2. To obtain the unconditional 
reliability (not conditional upon the system being just 
repaired) we use the window technique of Figure 2 on all or a 
random sample of the failure permutations. For each time 
window, the ratio of the number of failure-free windows to 
total windows is the unconditional reliability for that window 
interval. By examining all windows, a probability distribution 
for reliability is formed. The unconditional reliability 
distribution for the chemical plant of Figure 8 and Tables 2 
and 3 is seen in Figure 9. 
   The performance of some systems may be adequate if the 
system outage is limited in amount or duration. This can be 
incorporated in the definition of reliability. The window 
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Figure 9 

Unconditional reliability distribution for the chemical plant of Figure 8 and 
Tables 2 and 3. The start of time measurement is not conditional upon a newly 

repaired system.  Also shown is the complement probability of failure. 
 
technique allows the definition of failure to include the degree 
and duration of system performance reduction. Reductions of 
a small degree and/or a short duration could be included in the 
failure-free window count discussed above. 
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