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SUMMARY & CONCLUSIONS 

In some operating process plants, equipment systems are 
monitored and all failure times are immediately analyzed to 
reveal possible onset of reliability degradation. This allows 
intervention and avoidance of future failures that otherwise will 
be experienced. Uncommon methods of failure time analysis 
and data visualization are required to detect the immediate onset 
of trends. Also, the large number of analyses are made practical 
only with some degree of automation. 

A null hypothesis concept allows the Poisson distribution 
to be used in reverse to identify failures that do not fit the 
homogeneous Poisson process (HPP). Low probability values 
(p-values) for the last failure, last two failures, etc., provide  
evidence that special cause failures are occurring and 
intervention is appropriate. With the various p-values regarded 
as random variables, probability distributions are formed for 
each via Monte Carlo simulation. 

Poisson analysis is aided by two data visualization 
methods. A probability map displays all p-values for the time-
between-failure (TBF) data set. Simple conditional formatting 
in an Excel spreadsheet highlights any developing trends. A 
TBF residuals graph (abscissa being actual failure number 
minus failure number predicted by the data set mean and 
ordinate being cumulative time) sensitively displays trends and 
supports efficient calculation of the various p-values.  

The failure time residuals graph produces a largest positive 
or smallest negative residual value. This transition point is a 
change in trend direction. It exist even if the trend is only 
random variation in a HPP. This transition is a data set statistic. 
With Monte Carlo simulation of numerous HPP data sets, a 
probability distribution for this statistic is formed and serves as 
a null hypothesis against which the data set statistic is 
compared. The p-value for the data set maximum/minimum 
residual statistic is used as strength of evidence of a data set 
trend.   

Crow-AMSAA, Poisson, and maximum/minimum residual 
methods are compared using a well know data set widely cited 
in the reliability literature.  

While most work to date has been directed at reliability 
degradation detection, the methods are thought to be of 
potential value in reliability growth. 

Additional work that is needed is to describe the residual 

maximum/minimum statistic mathematically and to evaluate 
Poisson and maximum/minimum residual methods against 
others over a complete range of computer simulated data sets. 
The Poisson is obviously limited to those situations where the 
HPP is a valid null hypothesis.   

1 INTRODUCTION 

Repairable systems in the process industries can 
experience abrupt and unexpected increase in failure rates that 
often are belatedly recognized. In order to recognize a change 
in reliability as quickly as possible for intervention, two non-
traditional methods are introduced. These are Poisson 
probability values (p-values) and time-between-failure (TBF) 
maximum/minimum residual. Both are treated as random 
variables with probability distributions around the mean 
developed with Monte Carlo simulation. These are effective 
with very small data sets and are efficient. Efficiency is 
important because to detect failure trends at the earliest possible 
time, analysis is contemporaneous with the failure. With 
thousands of assets in the typical process plant, the analysis 
volume is high; therefore, practicality requires the methodology 
be sufficiently automated. Fundamental to both methods is the 
use of the HPP as a null hypothesis.  

A particular data set is used throughout the paper to 
demonstrate how p-values are obtained and how probability 
distributions around the p-values are obtained with Monte Carlo 
simulation. Multiple p-values for various look back periods to 
identify the significance of step changes in failure rate are 
introduced. 

TBF residual trends and probability maps are introduced 
and described using the same data set. These allow very 
efficient analysis and visualization of the results.  

A TBF maximum/minimum residual value is introduced. 
This value is a data set statistic, although not mathematically 
defined as far as we know. The null hypothesis probability 
distribution for this statistic is developed by obtaining 
numerous statistic samples from computer generated data sets 
known to be independent and identically distributed 
exponential. 

Crow-AMSAA, Poisson, and maximum/minimum residual 
methods are compared. The comparison will emulate 
contemporaneous analysis where each failure uses only the then 



current history and is blind to the future.  

2 POISSON DISTRIBUTION 

The Poisson distribution is used to determine the 
probability of specific numbers of events occurring within a 
specified time interval, when the events are generated by a HPP. 
Failures times are independent and identically distributed 
exponential random variables. The mean number of events must 
be constant for any time interval of equal length. Repairable 
system failures are, in general, such a HPP. But new failure 
modes, improper repair, and any other special cause produces 
TBF data that does not fit the HPP conditions for Poisson. 
Moreover, it is these nonconforming special cause failures that 
are of most interest. Therefore, on the surface, using Poisson to 
find special cause failures that do not conform to the 
requirements of Poisson use may appear to be inconsistent. But 
here the Poisson is used in reverse to identify data that appear 
not to conform to Poisson distribution requirements. 

The Poisson probability distribution of events is:  

P(x; μ) = (e-μ)(μx)/x!     (1) 
Where: 
e: An approximately 2.71828 constant, the base of the 
natural logarithm system. 
μ: The mean number of events that occur in a specified time 
period. 
x: Specific number of events that occur in a specified time 
period. 
P(x; μ): The Poisson probability that exactly x events are 
experienced, given the mean is μ.  

The general Poisson expression is now adapted specifically 
to failure events, the mean of which comes from equipment 
failure dates and the resulting TBF values. 

μ = t/MTBF    (2) 

Where: 
MTBF = mean-time-between-failure  
 t = the specified time period, a TBF value of interest or 
sum of one or more consecutive TBF values. 

So the Poisson distribution for failure events gives the 
probability of any specific number of failures x and is 
dependent on the time interval and MTBF, as below: 

 P(x; t/MTBF) = (e-t/MTBF)(t/MTBF)x/x!  (3) 

Figure 1 is the Poisson distribution for a particular data set 
discussed by Ascher and Feingold [1]. They discuss that an 
obvious change following an overhaul went unnoticed for 16 
years although this data were almost certainly the most widely 
cited in repairable system literature. This data set will be used 
throughout the paper.  

3 CONTEMPORANEOUS DATA ANALYSIS 

In this section, we demonstrate the feasibility of a detailed 

analysis immediately upon each failure event. This proactive 
analysis method gets maximum value from failure time data.  

Currently it is customary to analyze data if there is an 
apparent trend or a reliability issue is otherwise recognized. The 
cost of these infrequent analyses may not be a significant factor. 
With contemporaneous analysis, all failures on all monitored 
equipment are analyzed before there is an obvious reason to do 
so. The analysis results flag significant events for human eyes 
to be directed to the situation. This high analysis volume 
requires the process to be as automated as possible, although 
the methodologies are certainly applicable to ad hoc analysis of 
single equipment data sets.  

Fortunately, today most data are electronic and available in 
a form that can be made useable.  A semi-automated process 
currently in use is outside the scope of this paper, but is 
mentioned because the trending and analysis methodologies 
were, in part, driven by the automation requirement. The 
trending and analysis methods are discussed below. Again, 
these methods are appropriate for individual one-at-a-time use.

3.1 Residuals Trending 

Figure 1 data are trended in figure 2 in a way to most 
sensitively see trends. The ordinate is cumulative time 
(cumulative TBF) and the abscissa is the difference between the 
failure count predicted by the data set MTBF and the actual 
failure count. This trend method allows ready selection of the 
TBF data to be assessed and the generating p-values. In figure 
2, the time of last failure and time of the 10th failure back are 
inputs. All other inputs for equation 3 are then calculated. The 
lookback calculated p-value is here called p-v1 for a time period 
equal to the last failure TBF. This p-value is the probability of 
1 or more failures within a time period equal to the TBF of the 
last failure. For a look back of 10 failures where a trend started, 
the p-value is the probability of 10 or more failures occurring 
within a time period equal to the sum of the last 10 TBF values. 
This value is called p-v10.  

The Poisson p-v10 value for 10 failures within the time 
period of 350 days (the sum of the last 10 TBF values) when 
the MTBF is 95.7 (the MTBF at the 23rd failure) is 0.0045. 
Therefore, this group of 10 failures are unlikely to have 
occurred by random chance. A problem has been statistically 
proven, but unnecessary failures have occurred that could have 
been avoided. The object of data analysis is, or should be, 
earliest possible recognition and initiation of action to intervene 
in the reliability degradation.  
To see the earliest possible problem indication, we go back in 
time ignoring the last 7 failures. This is done by deleting the 
last 7 TBF values in figure 2. With contemporaneous data at 
the time of the 16th failure, the p-value for the last three 
failures (failure 16, 15 and 14) is 0.0325. In keeping with the 
established terminology, p-v3 at the 16th failure is 0.0325. 
This could trigger a response, depending upon the value of 
asset uptime, repair cost, etc. This probability can be 
considered the likelihood of a false positive. A false positive is 
one in which we think there is a special cause when the low p-
value is due only to randomness is a HPP. The risk of 
investigating a common cause, random failure can be balanced   



Figure 1 - The probability of 10 or more failures, within a time equal to the sum of the last 10 failures when the MTBF is 
that of the data set. The low p-value (called p-v10) is strong evidence that the 10 failure times do not belong to the data set null 

distribution. There is a special cause for failure worthy of investigation. For this data, it is known that an overhaul occurred 
just prior to the last 10 failures. 

Figure 2 - Residuals trend of figure 1 data. The trend is sensitive and allows data of interest to be selected for p-values. The 
lower right p-value is identical to figure 1 and is found with related Poisson look-up tables in Excel. It is the probability of 10 or 

more failures in a time interval of 350 days when the MTBF is 95.7   

Figure 3 - A portion of the spreadsheet probability map for the data of figures 1 and 2 for failures 13 thru 23 with p-values 1 
thru 12. The MTBF and p-values are calculated with contemporaneous data, i.e., each line of data uses only history, not future 
data. The last failure p-v10 (10 failure look back) is identical to figures 1 and 2 values. Conditional formatting shows low p-

values starting at failure 16 that could have triggered earlier intervention.

13 118 142.38 0.5634 0.6552 0.4545 0.5235 0.8200 0.8188 0.7075 0.6312 0.5875 0.4903 0.4171 0.3146

14 34 134.64 0.2232 0.3115 0.4870 0.3279 0.4210 0.7667 0.7774 0.6640 0.5933 0.5574 0.4666 0.4003

15 31 127.73 0.2155 0.0929 0.1745 0.3542 0.2352 0.3365 0.7137 0.7366 0.6230 0.5583 0.5297 0.4450

16 18 120.88 0.1384 0.0630 0.0325 0.0877 0.2421 0.1591 0.2594 0.6575 0.6938 0.5810 0.5226 0.5015

17 18 114.82 0.1451 0.0400 0.0215 0.0125 0.0447 0.1639 0.1077 0.1997 0.6041 0.6528 0.5421 0.4900

18 67 112.17 0.4497 0.1761 0.0659 0.0333 0.0185 0.0454 0.1492 0.1006 0.1856 0.5776 0.6309 0.5241

19 57 109.26 0.4065 0.3137 0.1428 0.0612 0.0328 0.0188 0.0410 0.1312 0.0901 0.1687 0.5500 0.6083

20 62 106.90 0.4401 0.3058 0.2534 0.1267 0.0598 0.0337 0.0200 0.0395 0.1205 0.0843 0.1580 0.5279

21 7 102.14 0.0662 0.1473 0.1279 0.1235 0.0588 0.0270 0.0155 0.0095 0.0224 0.0840 0.0590 0.1235

22 22 98.50 0.2002 0.0357 0.0668 0.0660 0.0706 0.0336 0.0156 0.0092 0.0058 0.0150 0.0639 0.0453

23 34 95.70 0.2990 0.1170 0.0293 0.0437 0.0442 0.0492 0.0240 0.0114 0.0069 0.0045 0.0118 0.0529

Failure TBF MTBF p-v1 p-v2 p-v3 p-v4 p-v5 p-v6 p-v7 p-v8 p-v9 p-v10 p-v11 p-v12



against the need for high reliability. If reliability is critical, we 
would investigate. In this case study, we know the future. Seven 
more failures are predestined to occur without recognition and 
action. 

3.2 Poisson Probability Map 

A probability map is an effective way to see and measure 
trends in TBF data. Figure 3 is such a map with only a portion 
of the map shown because of size. The TBF data are the same 
as used in figures 1 and 2. The nomenclature for figure 3 is 
explained by example. P-v1 refers to the probability of 1 or 
more failures within a time interval equal to the last TBF. P-v10 
is the probability of 10 or more failures occurring in the time 
interval equal to the sum of the last 10 TBF. The first statistical 
alarm of significance is 0.0325 for p-v3 at failure 16, and how 
this is obtained will be described as an example. The Excel 
equation in the cell row with failure number 16 and column p-
v3, using values instead of cell locations for clarity, is: 

p-v3=[1-POISSON.DIST(2,(18+31+34)/120.88,TRUE)]       (4) 

The null hypothesis HPP would produce 3 or more failures 
within this time (18+31+34) by random chance. Therefore, we 
conclude with moderate confidence (the complement of 
0.0325) that the TBF data indicate a system degradation upon 
failure number 16. This conclusion is based on 
contemporaneous data available upon failure 16. There is no 
knowledge of the next 7 failures. The probability map values 
are identical to the residuals Excel tool of figure 2, but all of the 
p-values are seen simultaneously. The increasing strength of 
evidence of equipment with a new problem, in this case worse 
than new following overhaul, is evident in figure 3. The p-
values in the box show continuously increasing strength of 
evidence of a problem as failure data arrives. That is clear now 
but was not seen at the time or for the next many years although 
looked at often in the reliability literature [1]. 

4 P-VALUE PROBABILITY DISTRIBUTIONS 

The p-values of figure 3 are calculated using the 
cumulative MTBF at each failure. If this MTBF is true, then the 
p-values are single-valued and true. Most generally, the TBF 
should be treated as a sample drawn from a population and 
MTBF is actually a random variable, thus the p-values are a 
random variable. The MTBF values in the 3rd column of Figure 
3 are only best estimates of the true population MTBF. Using 
these estimates, the appropriate number of TBF values are 
generated in Excel using a random number generator. A random 
number from 0 to 1 is used in the following Excel equation to 
generate a TBF random variable sample from a HPP. 

TBF = -MTBF*LN(RAND())   (5) 

To demonstrate, at failure number 16, there were 16 TBF 
data that produced the mean 120.88 seen in figure 3. So 
equation 5 uses the mean 120.88 and generates 16 TBF values. 
These 16 TBF values are averaged to give a MTBF random 
variable value. Each of these MTBF random variables are used 

in the Poisson probability map to generate the p-value random 
variables. With this process repeated numerous times with 
Monte Carlo simulation in the Excel spreadsheet, probability 
distributions around all the p-values are obtained. The process 
above described for the 16th failure is conducted on every 
failure number in the data base. With spreadsheet add-ins, such 
as @Risk, these are all done concurrently with a single 
simulation.   

 Figure 4 is the 16th failure p-v3 distribution with 90% of 
the values between 0.0127 and 0.101.  

Figure 4 - The 16th failure could have triggered attention. The 
p-v3 is 0.0325 with only 5% chance of being above 0.1. 

5 RESIDUAL MAXIMUM 

Residual trends such as figure 2 produce a maximum and 
minimum value. The most extreme value (largest positive or 
smallest negative) is the point of maximum change in slope 
within the data base. A positive value indicates an increasing 
failure rate (decreasing MTBF) and a negative extreme value is 
a decreasing failure rate (increasing MTBF). This most extreme 
residual value is independent of the order of events before and 
after that data point. It is a data set statistic found to be useful 
in distinguishing true trends versus HPP random variation. To 
illustrate, we take the data set at failure number 4. The residual 
trend is seen in figure 5. The data set extreme value residual at 
this 4th failure is 2.16 as seen in the figure. Included in figure 5 
are five other data sets formed by using the TBF random 
variable samples generated by equation 5. These additional five 
data sets are samples from a trendless HPP. The trend indication 
by sight, but more importantly by the residual statistic, allows 
the data set trend to be compared to null hypothesis generated 
sample data sets. With the TBF values used in figure 5 linked 
to equation 5 TBF random variable samples, one can hit the F9 
key and qualitatively judge if random samples tend to exceed 
the data base maximum (or minimum for reliability growth) 
even without Monte Carlo. For simplicity, we refer to the 
method as residual maximum, recognizing it is the smallest 
negative for reliability growth trends. 

The maximum and minimum values for each iteration are 
captured and the distribution for the 4th failure residual 
maximum is shown in figure 6. Figure 6 probability distribution 
is the null hypothesis against which the data set residual 



maximum can be tested. The p-value is 0.011, indicating only  
about 1% of HPP trendless random samples have trend 
indication greater than our data base through failure number 4. 
So we reject the null hypothesis that there is no trend. With 
contemporaneous analysis, this would trigger an investigation 
at failure number 4. Figure 7 is a cumulative distribution for the 
residual at failure number 2, demonstrating that only two 
failures are sufficient to test against the null hypothesis.  

Figure 5 – Residual trend at failure number 4 with 5 data 
sets using TBF random variable values generated using 
equation 5. These generated data sets are trendless by 

definition with apparent trends being random variation. 

Figure 6 – Probability distribution for the residual 
maximum at failure number 4. The distribution is the HPP null 

hypothesis against which the data set residual maximum of 
2.16 can be tested. The null is rejected with a p-value of 0.011 

Figure 7 – Cumulative probability distribution for 
failures 1 and 2 residual. There is only one residual point for 

each iteration due to only 2 failures. About 3.8% of the 
random sample residuals are larger than the data set residual 
of 0.93. The residual maximum method for trend detection is 

applicable to data sets as small as two. 

6 COMPARISON OF METHODS 

6.1 Background 

Wang and Coit [2] evaluated several trend tests and 
reported the Crow/AMSAA to be the most robust. Therefore, 
the Crow/AMSAA was selected for comparison with the 
Poisson and residual maximum methods. The data base was 
analyzed by the three methods emulating contemporaneous 
analysis, that is, at failure number 2 for example, only data for 
the first two failure are used. The analysis is blind to any 
future failures. (This is the protocol used throughout).  

6.2 Results 

Table 2 presents the evaluation results. The Crow/AMSAA 
test for a trend is known to be invalid for small data sets, but the 
results are included. The exact number at which Crow/AMSAA 
should not be used may not be universally agreed upon. This 
area of unsuitability is marked in table 2. The Crow/AMSAA 
test was conducted as described by Wang and Coit [2] and is 
identical to that described by Crow much earlier.   

First we considering the last 10 failures identified as being 
a trend in figures 1, 2 and 3. The Crow/AMSAA identified a 
trend at failure number 22 with a p-value of 0.0127. The 
Poisson was more sensitive by identifying a trend earlier at 
failure number 17 with a p-value of 0.0125 for the p-v4 (a 
lookback of 4 failures), about the same p-value as the 
Crow/AMSAA at failure number 22. The 90% confidence 
values from the p-v4 probability distribution are 0.0036 and 
0.0515. The residual maximum did not detect the trend until 
failure number 23 with a p-value of 0.014, a comparable p-
value. So the performance for the trend of the last 10 failure is 
as follows: 

 Poisson detected at failure 17 
 Crow/AMSAA detected at failure 22 
 Residual maximum detected at failure 23 

The first trend in the data set is actually immediately 
following the first failure. This trend was not mentioned by 
Ascher and Feingold [1]. Crow/AMSAA is not valid for this 
small data set. The Poisson had moderately high p-values in this 
region as well as broad probability distributions. However, the 
residual maximum p-value at failure number 4 is 0.0110. The 
residual maximum method is uniquely able to detect trends in 
very small data sets –as small as two failures. So for the first 
trend the performance summary is as follows: 

 Residual maximum detected at failure 4 
 Poisson p-values too high to detect 
 Crow/AMSAA invalid in this region 

The comparison results indicate the Poisson and Residual 
maximum methodologies are competitive with other methods 
and better in some instances. Their value is in testing against 
the null hypothesis of no trend. Their efficiency makes large 
scale data analysis practical.  

-2

-1

0

1

2

3

0 200 400 600 800 1000 1200

R
e

si
d

u
a

l 
fr

o
m

 M
e

a
n

Residual Trend upon 4th Failure, with 5 Random Samples

Data Set

Random Variation 1

Random Variation 2

Random Variation 3

Random Variation 4

Random Variation 5

Maximum data set residual = 2.16

-1
.5

-1
.0

-0
.5

0
.0

0
.5

1
.0

1
.5



Table 2 - Crow/AMSAA, Poisson and Residual methods compared using the Ascher/Feingold data set. Crow/AMSAA is 
known to be invalid for very small data sets but values are shown for completion, but marked. Smaller p-values are shaded for 

ready comparison. 
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Failure 

number TBF Beta 2N/Beta

Chi square 

p-value

Specific 

minimum 

p-value

minimum 

p-value 

magnitude

5%        

p-value

95%        

p-value

Max/Min 

Residual          

p-value Trend direction

1 413

2 14 59.9944 0.0667 0.0005 p-v1 0.0635 0.0271 0.2970 0.0390 degradation

3 58 10.4143 0.5761 0.0032 p-v2 0.0741 0.0197 0.4840 0.0220 degradation

4 37 7.8644 1.0172 0.0019 p-v3 0.0526 0.0100 0.4520 0.0110 degradation

5 100 4.1332 2.4194 0.0080 p-v4 0.0902 0.0136 0.6140 0.0180 degradation

6 65 3.5156 3.4134 0.0081 p-v5 0.0950 0.0127 0.6330 0.0200 degradation

7 9 3.9221 3.5696 0.0025 p-v1 0.0692 0.0079 0.5850 0.0100 degradation

8 169 2.4195 6.6129 0.0200 p-v7 0.1303 0.0159 0.7480 0.0450 degradation

9 447 1.3556 13.2781 0.2252 p-v8 0.2793 0.0432 0.9020 0.1510 growth

10 184 1.2787 15.6405 0.2613 p-v9 0.3026 0.0458 0.9130 0.1540 growth

11 36 1.3651 16.1161 0.1899 p-v1 0.2278 0.1550 0.3720 0.2660 growth

12 201 1.2747 18.8282 0.2389 p-v11 0.3108 0.0440 0.9170 0.2490 growth

13 118 1.2739 20.4092 0.2282 p-v12 0.3146 0.0410 0.9190 0.3060 degradation

14 34 1.3408 20.8824 0.1698 p-v1 0.2232 0.1570 0.3410 0.3450 degradation

15 31 1.4059 21.3391 0.1230 p-v2 0.0929 0.0480 0.2020 0.3220 degradation

16 18 1.4801 21.6197 0.0828 p-v3 0.0325 0.0125 0.0988 0.3060 degradation

17 18 1.5514 21.9161 0.0544 p-v4 0.0125 0.0036 0.0515 0.1820 degradation

18 67 1.5609 23.0635 0.0467 p-v5 0.0185 0.0046 0.0869 0.1450 degradation

19 57 1.5790 24.0658 0.0383 p-v6 0.0188 0.0041 0.0982 0.1060 degradation

20 62 1.5883 25.1841 0.0326 p-v7 0.0200 0.0037 0.1130 0.0830 degradation

21 7 1.6591 25.3148 0.0195 p-v8 0.0095 0.0014 0.0722 0.0430 degradation

22 22 1.7092 25.7434 0.0127 p-v9 0.0058 0.0007 0.0511 0.0220 degradation

23 34 1.7406 26.4284 0.0091 p-v10 0.0045 0.0005 0.0446 0.0140 degradation
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