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SUMMARY & CONCLUSIONS 

A newly developed data analysis methodology drawing 

upon statistics, probability and reliability theory and Monte 

Carlo simulation uses event interval probabilities to recognize 

real reliability degradation in a system with random variation in 

the data.  The analysis method uniquely allows a complete 

probabilistic analysis with a dataset as small as one; therefore, 

it is useful for systems requiring high reliability where system 

failures must be few.  It has been shown capable of avoiding 

failures such as the Boeing 737 MAX crashes with the 346 

fatalities and tens of billions of dollars in economic loss 

[1,2,3,8].  The purpose of this paper is to encourage use of the 

analysis method in the future – not only in commercial aviation 

but other applications.  The 737 MAX datasets provide an 

opportunity to illustrate both the method and value of the data 

analysis. 

Updated datasets for the Boeing 737 MAX crash events 

and precursor events are analyzed and results presented.  

Aspects of the analysis methodology applied to the 737 MAX 

have been presented in various papers since 2020 [1, 2, 3], using 

the best data and estimates that were assembled at that time.  

Here we consolidate the applicable elements of the analysis 

method with results in one paper, using current best publicly 

available raw data for the analysis.  The event interval 

probability (EIP) analysis input data used is that which was 

available at the time of the crash or precursor.  A precursor 

event is a relatively minor event that can be an early warning of 

an impending major event such as a crash.   The 737 MAX 

precursor is “sustained stick-shaker activation”.  

The unreliability of the 737 MAX is identified upon the 

first crash with a probability of 0.02202 that the event could be 

random variation of a fleet that is as reliable as the worldwide 

fleet.  This p-value rejects a null hypothesis and unreliability 

distributions – departures to crash distributions – allows risk to 

be quantified.  The distributions are formed with Monte Carlo 

simulations to solve a math problem – not computer simulation 

in the normal sense of evaluating a model.  The probability of a 

crash within the nine days to an air worthiness directive 

incurred a risk with expected value of approximately 23.0 

fatalities.   

Upon the second crash, the probability of the events 

occurring in such a short number of departures by random 

chance is 0.00084.  With the null hypothesis rejected, the risk 

associated with continued operation of the unreliable fleet for 

three days before grounding, considering all the fleet flying, is 

about 7.9 fatalities.  This high risk is due to a currently 

unrecognized long left tail of the unreliability distribution.  

Because of high fatality risk within even short intervals, the risk 

of uncorrected continuation in-service should be quantified 

immediately upon any serious event with low p-values.  

The first sustained stick-shaker activation precursor 

occurred on October 28, 2018. Input data for this precursor is 

calculated from publicly available sources.  EIP analysis could 

recognize the event as a statistical outlier and provide an 

opportunity to avoid even the first crash.  The probability of the 

precursor is 0.0235 before a Bayesian-like prior probability is 

applied.  The final probability adjusted for the prior information 

is 0.0136.  This low p-value would alert to the event interval 

being a statistical outlier signaling need for investigation.  This 

would provide another opportunity to recognize a possible 

reliability issue, ground the problem plane, and investigate.   If 

action on this precursor had been taken, it is possible to have 

avoided the first crash.  An appreciation for the importance of 

precursors is a prerequisite to their analysis. 

1 INTRODUCTION 

Significant events on important systems often are very few 

because of high reliability and safety demands; however, it is 

typical that statistical and probabilistic analysis need a quantity 

of data.  The event interval probability (EIP) methodology is as 

applicable to a dataset of one as to a dataset of one hundred.  

Also, the method is unchanged with any dataset size.  This 

makes EIP especially valuable in situations where high 

reliability and high safety are required – where even one event 

is one too many.  The data analysis and risk assessment method 

comprising EIP is demonstrated with the Boeing 737 MAX 

crash and precursor events.  All analysis input data come from 

or are derived from public sources.   

A null hypothesis is taken that the dataset is generated by a 

homogeneous Poisson process.  This allows the Poisson 

distribution to be used to calculate Poisson probability values 

for all the dataset event counts within the intervals associated 

with those counts.  As the Poisson probability approaches either 



zero or one, it is statistical strength of evidence of reliability 

degradation or improvement, respectively.  Sufficient strength 

of evidence rejects the null.  After the null is rejected, risk of 

the uncorrected system remaining in-service is determined with 

Monte Carlo generated probability distributions for system 

unreliability.  

1.1 Null Hypothesis 

A null hypothesis is taken that the system producing the 

event data is a homogeneous Poisson process (HPP) with a 

mean interval equal to that of a comparative population mean.    

For the 737 MAX, this population is the worldwide jet 

commercial scheduled carrier fleet.  Poisson probability is used, 

but not directly.  Event data of interest will not meet the 

conditions for using Poisson.  However, Poisson can be used in 

reverse by applying event data to the null hypothesis.  Poisson 

p-values tell us how well our event data matches the 

comparative population.  These p-values provide strength of 

evidence to reject or not reject the null hypothesis. P-values are 

calculated for individual events and contiguous groups of 

events.  This is to identify an event interval or group of event 

intervals that signal a statistically significant deviation from 

random variation within the comparative population.   

1.2 Poisson Probability 

The Poisson probability of any number of events occurring 

within any Poisson interval is given by equation 1.  The 

compliment of equation 1 will calculate the probability that our 

dataset fits the Poisson distribution.  If our dataset fits poorly, 

indicative of a low probability, we will reject the null.  The 

calculated Poisson probability will be used like a common p-

value that evaluates a test statistic.  

 

P(x; μ) = (e-µ) (μx)/x!     (1) 

 

Where: 

P(x; μ): Probability that exactly x events occur within a 

specified interval when the expected number in the interval 

is μ 

x: Specific number of events in an interval, x = 0, 1, 2 …. 

μ: Expected number of events within an interval 

e: Euler’s number. 

 

For the null hypothesis that is an HPP, the expected number 

of events over an interval, μ, is developed below and with a 

Poisson interval of time.  Time is a common Poisson interval 

and is more likely to be familiar to the reader.   

 

μ = λt        (2)                               

λ = 1/MTBE    

t = ∑TBE  

therefore:     μ = ∑TBE/MTBE                         (3)  

 

Where: 

λ: Expected event rate, event counts per time 

t: Time between event (TBE) or ∑TBE   

MTBE: Expected (Mean) time between events 

∑TBE: Dataset sum of time between contiguous events 

(further explained by examples) 

  

2 BOEING 737 MAX CRASH INTERVAL  

For evaluation of aircraft crash events, departures are the 

better Poisson interval with departures between event (DBE) 

and its mean (MDBE) used for TBE and MTBE, respectively.  

For the null hypothesis to which we apply the above equations, 

there is no distinction between the first event interval and 

subsequent intervals.  In some data analysis contexts, 

departures to first event would be appropriate, but here we can 

use the term “departures between event” for even the first event.  

2.1 First crash  

The first crash on 10/29/2018 occurred with a 737 MAX 

fleet DBE of 135,980 departures [4] with 6,105,714 worldwide 

fleet MDBE calculated from published data [5]  - number of 

fatal crashes over a recent 10-year period and the number of 

departures over the same period.  With Poisson probability for 

the first event being defined as event 1 p-v1, we get the 

probability of one or more events within the interval of the one 

event using the complement of equation 1.   

 

p-v1 = 1- (e-µ) (μx)/x! = 0.02202 

 where x=0 

DBE = 135,980  

MDBE = 6,105,714 

μ = DBE/MDBE = 135,980/6,105,714 = 0.02271 

 

Event 1 p-v1 answers the question, what is the probability 

of one or more events occurring within the interval of the one 

event?  This Poisson probability is used like a common p-value 

as strength of evidence against the null.  This low p-value 

indicates how poorly our data fits the null hypothesis.  The data 

is not likely to be random variation in a fleet that is as reliable 

as its peer group, the worldwide fleet.  This p-value is 

sufficiently low to reject the null and accept the alternative 

hypothesis that the 737 MAX fleet is unreliable compared to the 

peer group. 

2.2 Second crash 

The number of departures to the second crash in not 

believed to be publicly available and is estimated from data that 

are available.  Plane delivery dates are available from the 

Boeing website.  The delivery date for individual planes allows 

plane-days in service to be aggregated for the fleet.  The first 

crash plane-days in service is 47,711 and to the next is 41,352.  

From the departures to the first crash and the plane-days to the 

first crash, the average number of departures per day is 2.85.  

Using this first interval average as an estimate for the second 

interval gives 2.85 * 41,352 = 117,856 departures.  

Using equation 1 and 3, the second event p-v1 (the 

probability of the second event occurring in an interval of the 

second event) is: 

 

p-v1 = 1 – (e-µ) (μx)/x!) = 0.01912 



 where:  

x=0 

DBE = 117,856  

MDBE = 6,105,714 

μ = 117,856/6,105,714 = 0.01930 

 

Using equation 1 and 3 with departures as the Poisson interval, 

the second event p-v2, the probability of two or more events 

within the interval of the two events, is: 

 

p-v2 = 1 – {(e-µ) (μx0)/x0!) + (e-µ) (μx1)/x1!)} = 0.00084 

 

where:  

x0 = 0  

x1 = 1 

μ = ∑DBE/MDBE = (135,980 + 117856)/ 6,105,714   

= 253,836/6,105,714 = 0.04280 

MDBE = 6,105,714 

 

The probability of two or more crashes within the interval 

of the two crashes, if the fleet is as reliable as the peer group, is 

0.00084.  The approximately eight chances in 10,000 that the 

737 MAX is as reliable as the worldwide fleet is overwhelming 

evidence for rejecting the null.  The alternative hypothesis that 

the fleet is less reliable than its peers is accepted.     

But before the null is rejected and we analyze the risk of 

not correcting the problem, we consider more deeply what p-

value is and how it can be changed to even lower values. 

3 POISSON VERSUS COMMON P-VALUES 

In statistics a p-value is commonly associated with a test 

statistic.  The common p-value informs as to the likelihood of 

the test statistic being as extreme, or more so, than the value 

produced by the dataset.  This p-value is not related to the 

dataset directly.  It does not indicate the probability of the null 

being true; however, there is a common misconception that it 

does.   

The Poisson p-values are related to the dataset – not to a 

test statistic.  This p-value is the probability that the null is true.  

It is not the misconception associated with common p-values.  

Table 1 illustrates the difference between the two p-values – 

common and Poisson. 

While common p-values are derived from frequentist 

statistics and are not changed by prior information or belief, 

mathematically derived Poisson p-values can be modified by a 

prior probability. 

4 PRIOR PROBABILITY 

As with Bayesian statistics, the Poisson probability can be 

changed by a prior probability that reflects prior information or 

belief.  While the term prior or prior probability is associated 

with Bayesian statistics, Bayesian statistics is not used.  We 

only borrow from Bayesian statistics the concept of using a 

prior probability and combine that with Poisson probability. 

An example of why we sometimes need to use the prior is 

illustrated by the 737 MAX input data to equation 3, using DBE 

and MDBE in lieu of TBE and MTBE, respectively.  MDBE is 

the average number of departures between crash events for the 

worldwide fleet that consists of demonstratively reliable 

aircraft.  The 10-year period from which the mean was 

calculated preceded the 737 MAX crashes and included no 

crash of a new aircraft fleet design.  DBE in equation 3 is from 

a new design type that is not mature and does not have proven 

reliability.  If the MAX was a mature fleet, then the p-values 

could not be improved with this prior, but being a new design 

provides additional information.   

Table 2 showing design flaw history provides the basis for 

establishing the prior probability that can be multiplied by the 

737 MAX p-values.  Eleven of 19 designs did not have a design 

flaw so severe that correction was required.  The probability of 

any new fleet design being acceptably reliable can be taken as 

11/19 or 0.579 probability.  This prior probability, which is 

Common p-values Poisson p-values

Shows how rare the test statistic 

is given the null hypothesis is true

Shows how rare the data are given 

the null hypothesis is true

Based on a model (like Z or t 

statistic)

Based on mathematics - no model 

beyond use of a null hypothesis

Uses assumptions No assumptions

Uses variation within data (like 

variance)

Does not use variation within the 

data

Uses number of samples Does not use number of samples

P-value is not the probability of 

the null being true

P-value is the probability of the 

null being true

Table 1 – Poisson Versus Common P-values 

Table 2 – Flaws in new design types discovered in-service 

and sufficiently severe that correction was mandatory.  

Eleven designs out of 19 were reliable when placed into 

service (DC 8, 737 & 777 design flaws discovered later in 

life).  The Bayesian-like prior probability is 11/19 = 0.579.   

Plane 

Type

Significant 

Flaw 

Requiring 

Correction?

Flaw Description

Flaw 

Caused 

Fatalities?

Flaw 

Failure 

Rate

DC 6 Yes Inflight fuel spillage & fire Yes Constant

DC 6 Yes CO2 in cockpit Yes Constant

DC 7

DC 8 Yes Cockpit human factors Yes Constant

DC 9

DC 10 Yes Cargo door latching system Yes Increasing

MD-11

MD-80

MD-90

707

717

727

737 Yes Rudder control Yes Constant

747

757

767

777 Yes Engine blading fatigue Increasing

787 Yes Battery fire Constant

737 MAX Yes Loss of control Yes Constant



independent from the p-values, can be multiplied by the Poisson 

p-values to get lower adjusted p-values that use all available 

information. 

Interpretation of Table 2 is subjective, and the use of a prior 

probability is sometimes criticized because of this nonscientific 

feature of Bayesian statistics.  Some intelligent people could see 

the history of new designs in-service as irrelevant to the 

reliability of a particular new design that is in-service.  For these 

people, the prior probability is 1.0.  The prior will have no 

impact on the final p-value.  Other intelligent people may think 

that only recent history is important and use the last three 

designs with zero out of three chance that the new design does 

not have a flaw that will require correction when found.  Their 

prior would be 0.0 probability that the new fleet is acceptably 

reliable.  This range of results for the prior is the total possible 

range.  It extends from zero to one probability; therefore, the 

basis for the prior needs to well considered and explained.  The 

prior should be used with caution, as it can lead to bad results, 

while not using it when needed is also wrong.  Choosing to use 

the entirety of Table 2 for this paper, the prior probability of 

0.579 can be multiplied by any 737 MAX Poisson p-values to 

improve the strength of evidence for null rejection.  The 737 

MAX event Poisson p-values are so low that they reject the null 

without the prior being needed, but the prior will be applied to 

the precursor Poisson p-value to demonstrate method.      

5 PROBABILITY DISTRIBUTIONS / RISK ASSESSMENT 

With the null rejected and the alternative hypothesis that 

the fleet is not as reliable as the worldwide fleet accepted, the 

departures to next crash distribution is needed.  This 

distribution informs as to the risk of continued operation 

without correction.  It provides the probability and fatality risk.   

Figure 1 describes the basic process for Monte Carlo 

simulation to obtain departures to crash probability 

distributions.  The cumulative failure distribution, equation 4, 

is the complement of reliability, or unreliability.   This is the 

complement of equation 1 with x = 0.   

 

     F(t) = 1-e-λt                              (4) 

 

Failure rate λ in equations 1 and 4 is constant.  Before the 

null is rejected, the null hypothesis assures the constant failure 

rate by definition – it is inherent to the null hypothesis.  Now 

that the null is rejected, use of equations 1 and 4 requires an 

assumption of a constant failure rate.  That assumption must be 

justified.   

The null hypothesis is that the 737 MAX fleet is at least as 

reliable as the worldwide fleet peer group.  This null hypothesis 

737 MAX fleet is defined to be system A.  Once the null is 

rejected, the 737 MAX fleet is system B.  System B is unreliable 

compared to system A.  The difference in the systems is 

“problem causes”; otherwise, these two systems are identical.  

These problem causes do not need to be known, and they are 

usually unknown or at least not fully understood.  The failure 

events that rejected the null can be considered a dataset from 

system B.  Initially, system B has only one crash event, and later 

has two events.  It would require several crash events to confirm 

with failure data that system B has a constant failure rate, but 

the very purpose of EIP is to eliminate these future failures by 

acting as soon as p-values signal unreliability, hence the 

requirement of an assumption.     

The basis for the constant failure rate assumption applied 

to this system B (the 737 MAX fleet with the alternative 

hypothesis accepted) is: 

• Theoretically, complex repairable systems have a 

constant failure rate.  System B has a higher failure rate, 

but it is expected to be constant from reliability theory. 

• By engineering judgement, the historical design flaws in 

commercial aircraft types in Table 2 are mostly constant 

failure rate.  Use of a constant failure rate in the two cases 

of increasing failure rate is a close approximation and 

provides a lower bound on risk. 

• EIP experience with many datasets demonstrates 

constant failure rate until the system B is corrected by 

intervening and implementing change.  When the causes 

of reliability degradation are eliminated, system B 

reverts to system A, as is logical. 

Given the constant failure rate assumption, a uniformly 

distributed zero to one random number is transformed to a time 

sample, or DBE sample using Equation 4.  Equation 4 is set 

equal to a random number (RN) and the equation solved for t. 

 

  F(t) = 1-e-λt  = RN    

                    

RN = uniformly distributed random number from 0 to 1 

  e-λt  = 1-RN 

the complement of a random number is a random number 

     e-λt  = RN 

taking the natural log 

      ln e-λt  = ln RN 

    -λt = ln(RN) 

For constant λ 

       λ= 1/MTBF 

therefore 

       t = -MTBF*(ln(RN))          (5) 

 

changing time to departures between events (DBE) and 

MTBF to MDBE, 

 

       DBE = -MDBE*(ln(RN))         (6)     

 

Before the null was rejected, MDBE was the mean for the 

worldwide fleet.  It was a single-valued parameter for a 

population of known mean.  Now MDBE in equation 6 is the 

mean for a population – the 737 MAX fleet – with an unknown 

mean.  After the first crash, we have a sample of one from a 

population of unknown mean.  After the second crash, we have 

a sample of two from a population of unknown mean.  Small 

sample sizes suggest there will be great uncertainty, but this 

should not suggest great inaccuracy.   

We now describe developing the departures to next event 

probability distribution after the second crash as seen in figure 

2.  This is the probability distribution for departures to a third 

event.  Equation 6 is used as described graphically in figure 1 



to get two DBE samples, DBE1 and DBE2.   These are averaged 

for a sample MDBE for our system with unknown mean.  Each 

set of DBE averages provides a sample of MDBE as a random 

variable (MDBERV).  In the same calculation, this MDBERV 

sample is used in equation 6 a second time with a different 

random number.  This produces a different DBE sample that is 

a sample for the departures to next event.  The smooth 

distributions in figure 2 are formed by repeating this process to 

obtain 10,000 samples.  This distribution, using the Poisson 

interval time, is the time to failure probability distribution that 

engineers are more familiar with.  From the departures to next 

event distribution, the probability of a third crash within any 

number of departures is found. 

The previous paragraph describes the method using a 

dataset of two.  The method is identical for any number of 

events.  For one event, the MDBERV sample is the average of 

only one DBE sample.  For 100 events, each MDBERV sample 

is the average of 100 DBE samples.  A distribution for MDBERV 

will narrow as the number of DBE samples increase.  The broad 

distributions in figure 2 are in part due to the small number of 

samples that form MDBERV.  Systems demanding high 

reliability will always have small major event sample sizes 

because failures are intolerable.  The small sample size leads to 

uncertainty (broad distributions), but not to inaccuracy.  

In the above process of obtaining 10,000 samples for the 

figure 2 distributions, Monte Carlo simulation is not conducted 

as in the typical application where a system model is designed 

to approach reality closely enough to be useful.  Simulation is 

used here to solve a math problem.  Equation 6 is used to 

generate a probability distribution for MDBERV, and that 

probability distribution is convolved with a distribution for the 

natural log of an evenly distributed zero to one random number 

– the right most part of equation 6.  So, figure 2 distributions 

for departures to next crash should be viewed as math solutions 

and not as computer simulations in the normal sense.  Monte 

Carlo generated random numbers is an efficient way to perform 

this convolution of two probability distributions.  These 

distributions accurately reflect uncertainty of outcome.  

Because the addition and multiplication of probability 

distributions are by Monte Carlo, the accurate results have 

imprecision.  For example, the second crash occurred after an 

additional 117,856 departures by calculated estimate.  To find 

the probability of a crash by that number of departures, five 

simulations of 10,000 iterations produced probability results of 

0.6793, 0.6871, 0.6914 and 0.6841.     

An airworthiness directive (AD) was issued by the FAA 

nine days after the first crash.  Even if the AD totally resolved 

the problem, the 9-day delay incurred significant risk that is 

currently unrecognized.  There were 227 planes in service 

during the nine days with an average of 2.85 departures per day, 

as calculated earlier, resulting in about 5,823 departures in the 

period.  Using data that formed figure 2, the probability of a 

crash within nine days is about 0.133.  The average number of 

fatalities can be considered the consequence of a crash, or 346/2 

= 173 fatalities/crash.  Risk is probability times consequence or 

0.133 * 173 = 23.0 fatalities on average.   

Similarly, following the second crash there was a 3-day 

delay in grounding the fleet.  During the 3-day period there were 

384 planes in-service.  (Some planes were grounded earlier but 

Boeing and FAA risk decisions presumably would have been 

using the entire fleet). The number of departures in the 3-days 

are 384 * 2.85 * 3 = 3,283 departures in the interval.  Using the 

“After 2nd crash” probability distribution in figure 2, the 

probability of a third crash is about 0.0459.  Risk is 0.0459 * 

346/2 = 7.9 fatalities on average. This risk obviously would not 

have been deliberately taken.  There is general lack of 

knowledge regarding EIP data analysis and especially the long 

left-hand tail of the unreliability distribution associated with 

exceedingly small datasets.  

6 BOEING 737 MAX PRECURSOR 

To avoid the first crash, precursors must be used.  

Precursors are less severe events that can signal a system 

problem.  The 737 MAX publicly available raw data 

demonstrate how precursor events and their analysis can 

potentially avoid even the first crash.  Serendipitously and 

unrelated to precursors, there were data included in the accident 

Figure 1- A failure time sample is determined with a 

random number draw that is transformed to a failure 

time by the failure distribution.  The graph shows two 

samples of failure time. 

Figure 2 – Probability distributions for departures to 

next crash immediately upon the 1st and 2nd event.  

Probability times consequence (fatalities upon a crash) 

equals risk measured in expected number of fatalities. 
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investigation report into the October 29, 2018, Lion Air crash 

[6] that we analyze to identify a precursor capable of avoiding 

the first crash.  Event count data are extracted from the report 

and are in the left-hand section of table 3 in grey.  The green 

part of table 3 is in-service plane days within the 18-year period 

from which event counts came, calculated from plane delivery 

date data downloaded from the Boeing website.  Calculations 

using data in the grey and green region of the table are shown 

in yellow in the three columns on the right.  The single 737 

MAX stick shaker activation seen in table 3 may appear to be 

unimportant relative to other fleet types; however, the relative 

rate calculation in the right most column puts the 737 MAX into 

perspective.  Relative rates are shown in the figure 3 graph.  The 

737 MAX is 31 times the Boeing average.  The Poisson p-value 

calculation using the complement of equation 1 is: 

 

      p-v1 = 1- (e-µ) (μx)/x! = 0.02350 

 where: 

  x=0 

  μ = PdBE/MPdBE = 0.02378 

  PdBE = plane-days between event = 47,481  

  MPdBE = mean plane-days between events = 1,996,497 

 

The prior probability developed earlier is applicable, so 

adjusting for the prior, p-v1 = 0.0235 * 0.579 = 0.0136.  

With or without prior probability consideration, the 

precursor could trigger grounding the problem plane for 

investigation; thereby providing an opportunity to identify any 

safety issues and their causes.  (The data reported in the 

Indonesian accident report must be a subset of all stick shaker 

activations.  The Australian Transport Safety Bureau [7] 

reported many more activations on Boeing fleets during a 

subset of the time, aircraft and geography considered in the 

Indonesian report.   From the context of the crash report, the 

reported stick shaker activations are most likely those that 

extended for a long, but unspecified, duration.)   

7 BEYOND BOEING 737 MAX 

There is nothing unique to the Boeing 737 MAX datasets 

that render them favorably to the analysis method.  Several 

aircraft designs placed into service with design flaws that were 

identified and corrected in-service have been analyzed with 

contemporaneous data [2, 8].  Table 4 is a summary.  EIP failed 

to identify the first crash of the DC 6 in 1947 as being evidence 

of an unreliable fleet.  All others were properly identified as 

being unreliable upon the first event with no case of a false 

positive.  The FAA (and their predecessor organizations) 

response record is equivalent to five false negatives.  

EIP application is not limited to commercial aviation or 

engineered systems.  In 2020, the death of George Floyd by 

police officer Derek Chauvin in Minneapolis led to social unrest 

with protests and riots.  EIP analysis of sustained use of force 

events reveals the former police officer to be an outlier relative 

to his peer group long prior to the George Floyd incident.  Data 
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Figure 3 - Stick shaker activation relative rate for all 

Boeing fleets from table 1.  The single stick shaker 

activation the day prior to the first crash is an obvious 

outlier – 31 times the Boeing average.  The precursor p-

value of 0.0235 (0.0136 with prior probability 

adjustment) is sufficient to reject the null hypothesis that 

the quick event is due to random variation.  The 

precursor p-value could trigger immediate grounding of 

the affected plane with investigation.     

Table 4 - The FAA and predecessor organizations are slow 

to respond to the first opportunity to recognize and act 

upon unreliability. The EIP decision record is one false 

negative, no false positive and five true positives.  

 

 

EIP

 FAA and 

predecessors response 

sufficient to prevent 

next event? 
DC 6 Fire yes no - false negative no

DC 6 CO2 in cockpit yes yes  - true positive no

DC 10 Cargo door yes yes  - true positive no

Concorde Fire yes yes  - true positive not applicable

Boeing 787 Battery thermal no yes  - true positive
(1)

no
(1)

737 MAX Flight control yes yes  - true positive no

   Note: 1 - Battery thermal runaways while plane is out of service are treated as major events   

Aircraft 

Type

Design Flaws 

(discovered 

early in 

service)

Fatalities?

Unreliability Identified Upon 1st Event? 

on the assumption these events would have been experienced in the air, but for random 

Table 3 - Stick shaker activations for Boeing fleets from 

the Indonesian report on the 2018 accident are in the 

grey two left columns.  Plane-days in the interval are 

calculated from fleet delivery dates from the Boeing 

website in green.  The “stick shaker activations” 

calculations for MDBE, rate and relative rate are in 

yellow on the right.  Calculations should be obvious. 

Stick 

shaker 

activations

Plane-days 

in interval

MDBE 

(plane-days)
Rate Relative rate

1 64,970 64,970 1.54E-05 30.73

4 5,758,881 1,439,720 6.95E-07 1.39

4 5,879,761 1,469,940 6.80E-07 1.36

18 14,313,713 795,206 1.26E-06 2.51

1 5,617,794 5,617,794 1.78E-07 0.36

1 969,491 969,491 1.03E-06 2.06

1 4,315,924 4,315,924 2.32E-07 0.46

30 59,894,917 1,996,497 5.01E-07 1.00

757-200/200M/200PF

767-200/200ER

767-300/300ER/300F

All Boeing 

737-800/800A

Boeing stick shaker activations from 2001 thru 2018 from page 169 Lion Air 

10/29/2018 crash investigation report in two left columns in grey, plane-days 

calculated from delivery dates on Boeing web site in green, yellow columns 

are calculations. (All Boeing plane-days exclude business and military). 

Boeing type

737 MAX

737-300

737-700/700C/700W



analysis results could have affected police complaint 

investigations, especially with the low false positive probability 

of 0.001.  Incorporating this additional data can improve these 

investigations.  These examples demonstrate what is thought to 

be universal application of EIP to any event(s).  

8 RECOMMENDATIONS 

8-1 General 

Events can be either desirable or undesirable and intervals 

can be outliers by being either too long or too short.  While EIP 

can be applied in all four combinations, these recommendations 

are limited to engineered systems for which events are 

undesirable, such as for failures (or accidents) of the system.   

Rare major events on important systems can simply be 

analyzed manually by policy and procedure immediately upon 

system failure.  When events are numerous or systems are 

numerous, the analysis will generally require automation.  

When even a single event is unacceptable, precursor events 

should be analyzed, and these will usually require automation 

of the data analysis process.  

Probability values that reject an appropriate null hypothesis 

are of little value until failure investigation, failure analysis or 

root cause analysis both reveals and corrects the causes of 

reliability degradation.  EIP simply provides the alarming 

probability values immediately upon an event, and these trigger 

the investigation into cause so that future failures can be 

avoided.   

When the null is rejected, the risk of continued uncorrected 

operation should be assessed.  This provides information for 

risk-based decisions regarding the allowable time to correct.  It 

should be recognized that when intervals are short and the 

failure dataset is small, the long-left tail of the unreliability 

distribution extends toward zero.  Any uncorrected continued 

operation of the system may involve substantial risk. 

P-values should be viewed as strength of evidence and not 

necessarily as a “go/ no-go” gage.  P-value magnitudes can be 

used in conjunction with the cost of investigation and the cost 

of failure.  For example, lower cost of failure and higher 

investigative cost can require lower triggering p-values.  

8-2 Specific  

The academic community should incorporate EIP into 

engineering curriculum. 

The FAA should incorporate EIP in decision-making 

following major events and precursors.  The NTSB should 

include the analysis in their event investigations.  The industry 

should recognize both the high probability of any new design 

being found unacceptable in service and the risk of operating 

unreliable fleets due to the long-left tail of fleet unreliability 

distributions.  Continuous improvement in the design and 

certification process has not been sufficient in the past 75 years 

and should not be 100% relied upon in the future.  EIP should 

be considered a second independent layer of protection to 

minimize the risk of unreliable aircraft being in service.  Such 

a position by the FAA will be a driving force for manufactures 

to seek out and learn from any precursors to avoid the potential 

of a first major event.  At some point, attempts to assure the 

design and certification process is flawless will harm the 

industry’s commercial viability and prevent development of 

new and safe products.  EIP can help avoid any overreaction to 

the 737 MAX disasters in trying to make the design and 

certification process perfect.    
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