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SUMMARY & CONCLUSIONS 

The application of statistics and probability to event 
timing data is an unrecognized powerful decision-making aid.  
Cause and effect data that are necessary to identify issues and 
make corrections are sparse or nonexistent at the time of the 
event.  Cause and effect data can take days or months to 
acquire and analyze, but event interval timing data are simple 
system performance data and are available at the instant the 
event occurs.  Event interval probability analysis is 
independent from cause and effect and organizational and 
other interfaces, e.g., human factors design and pilot error.  It 
considers bottom-line total system performance only.  

Statistics and probability analysis demand much data; 
however, for serious critical events failure data must be few.  
This conflict is resolved by a null hypothesis that the data are 
generated by a homogeneous Poisson process (HPP).   The 
analysis uses the infinite quantity of perfect data inherent in 
this null hypothesis.   Event data are compared with the null 
hypothesis and the null is rejected or not with Poisson and/or 
computer simulation probability values (p-values).  The 
Poisson interval is not limited to time, and for this paper, the 
number of departures between accidents are used, except 
where noted. 

This paper reviews six fleet groundings on five aircraft 
types with 13 different grounding decisions.  Data for the 
analysis and all analysis results are presented; however, the 
first opportunity to ground decision is the most important.  The 
first opportunity to ground decision is retrospectively judged 
to be wrong if future events unfolded that demonstrate earlier 
grounding would have been appropriate.   

Decisions for five of the six fleet groundings revisited 
involved US designed and manufactured aircraft with 
grounding decisions made by the FAA or its predecessor 
organizations.  On these five critical decisions, the grounding 
of the DC 10 due to a crash from engine pylon cracking on 
5/25/79 was correct.  The other four decisions were proven to 
be incorrect by future events.  The FAA made only one correct 
grounding decision out of five.   

Event interval probability analysis failed to ground on first 
opportunity upon a DC 6 crash on 10/24/47, using data that 
existed contemporaneously with the crash.  The other five first 
opportunity decisions (including the Concorde) had p-values 
less than 0.025.  The method would reject the null hypothesis 

and ground on these five occasions.  So, the application of 
event interval probability analysis would lead to five out of six 
correct decisions, in the total absence of cause and effect data. 

There is always a possibility of a false positive with these 
statistical methods.  The total false positive probability for the 
five correct decisions is 0.0467 for an average false positive 
per grounding decision of 0.0093.  An average one percent 
chance of unnecessarily grounding a fleet is small relative to 
the risk of not grounding timely, as the current Boeing 737 
MAX situation demonstrates.  The first crash of the 737 MAX 
has a p-value of 0.022.  Upon the second crash, the p-value is 
0.00099.   Grounding by p-values would have led to immediate 
grounding upon the first crash, and certainly after the second.    

When the null hypothesis is rejected, the alternative 
hypothesis that the fleet accident rate is above expectation by 
a statistically significant amount is accepted.  Upon acceptance 
of the alternative hypothesis, unreliability probability 
distributions are obtained via computer simulation for the 
demonstrated low reliability aircraft fleet.  From these 
probability distributions, the risk of continuing to fly the low 
reliability aircraft is found.  For example, the risk of flying 
three days following the second 737 MAX crash, assuming all 
the fleet was flying, was 4.75% chance of a third event.  After 
the Concord crash, British Airways flew an additional 21 days 
following the crash with a significantly low reliability aircraft 
and incurred an unrecognized 1.12% chance of a second event. 

The current FAA and predecessor decision record of 20% 
correct versus 83% correct using event interval probability 
analysis indicates that the FAA and aircraft manufactures can 
improve their decision-making by incorporating the method.  
Note this poor decision record covers 75 years; therefore, 
cannot be attributed to current organizations and individuals.  
The following specific steps are recommended: 
1- The FAA should conduct an event interval probability 
analysis of the aircraft events in this paper using best available 
data and publish results.   
2- The method should be conducted immediately upon future 
major events, such as crashes, by manufacturers or the FAA.  
Departure intervals and p-values should be made public. 
3- Air worthiness certification should specify the p-values at 
which a serious event will lead to automatic grounding of the 
fleet, in the absence of immediately available and strong cause 
and effect evidence indicating to the contrary.    



4- To help avoid even the first accident, the FAA and/or 
manufacturers should continuously monitor accident precursor 
event p-values.  These precursor events typically precede a 
more serious event, e.g. maintenance and operational issues.  
This will require automating the analysis due to volume and 
complexity.    

1 INTRODUCTION 

The analysis methodology, here applied to aircraft fleet 
grounding decisions, was first published in 2018(1) with 
application principally in process industries.  It was applied to 
the Boeing 737 MAX in 2020(2); therefore, it is unrealistic to 
expect the FAA and Boeing to have applied the method to the 
737 MAX decisions or any earlier decisions.  The purpose of 
this paper is to assure the method is used by the FAA and 
aircraft manufacturers in the future.  

Traditionally, event interval analysis is applied to datasets 
to determine if there is a trend in the dataset and to forecast the 
number of future events.  Here analysis is applied to individual 
events and contiguous groups of events for identification of a 
step change or shift from expected rate.  The objective is 
immediate recognition of the step change so intervention can 
correct the issue and thereby avoid future events.  The entire 
dataset is not used except perhaps to establish the expectation 
by way of the mean for the system.  The emphasis is on 
preventing future failures; therefore, analysis must be 
contemporaneous with the event.  The value in the analysis is 
not historical after the fact information.  The value is in being 
alerted that an event has triggered a p-value denoting need for 
intervention when otherwise the significance of the event 
interval would be ignored or underappreciated. 

Data for this analysis was pulled from many sources and 
estimates were required.  Raw data and results of the analysis 
are found in table 1.  Table notes reference data sources and 
basis for estimates. 

The FAA and/or aircraft manufacturers should conduct 
their own event interval analysis with the more precise data 
that assuredly are obtainable.  Furthermore, while no aircraft 
was excluded because it did not fit a narrative, there was no 
attempt to obtain a statistical sample of crash events or aircraft 
types.  It may be appropriate for the FAA to expand the 
analysis to other systems and report results and show method. 

2 ANALYSIS 

The results of all events and aircraft types are presented, 
but Boeing 737 MAX data are selected to present the 
methodology.  Data are analyzed with three concepts: 

 Poisson Probability 
 Computer Simulation 
 Statistical Process Control (SPC) 

These three concepts are completely different with apparently 
nothing in common.  The use of three concepts are to promote 
understanding and acceptance. Analysis results are 
harmonious and nearly identical.  This is because the 
underlying mathematics are the same.  Poisson probability and 
simulation are both required to fully implement the 
methodology in practice. 

Throughout this paper, decimal places beyond those that 
are truly significant are used.  For example, probability values 
may be shown to 5 decimal places for the purpose of allowing 
the calculations to be duplicated by others for understanding, 
applying better data, and for use in other applications.  

2.1 Poisson Probability and Null Hypothesis 

Poisson probability is used to determine the probability of 
specific numbers of events occurring within a specified time 
interval, when the events are generated by a homogeneous 
Poisson process (HPP). Failures times are independent and 
identically exponential distributed random variables. The 
expected number of events are constant for any time interval 
of equal length. Repairable system failures are, in general, such 
an HPP.  But new failure modes, improper repair, and any other 
special cause produces failure times that do not fit the HPP 
conditions for Poisson.  Moreover, it is these nonconforming 
special cause failures that are of most interest.  Therefore, on 
the surface, using Poisson to find special cause failures that do 
not conform to the requirements of Poisson use may appear to 
be inconsistent.  But here the Poisson is used in reverse to 
identify time between failure (TBF) data that appear not to 
conform to Poisson distribution requirements. 

The Poisson probability of events, with time being the 
Poisson interval, is:  

P(x) = (e-µ)(μx)/x!  and     (1) 

μ = λt = t/MTBE                       (2) 

Where: 
P(x): The Poisson probability that exactly x events are 
experienced, given the mean is μ.  
x: Specific number of events in a specified time interval, 

x = 0, 1, 2, 3 …. 
μ: The mean number of events expected in a specified time 
interval. 
e: An approximately 2.71828 constant, the base for natural 
logarithms. 
λ: Event rate, number of events over time. 
t: time interval 
MTBE: Mean time between events. 

For aircraft accidents, the appropriate Poisson interval is 
not time, but number of departures (flights or cycles) for the 
aircraft type.  The common time between failure (or event) is 
replaced with departures between events (DBE) with mean 
departures between events (MDBE) determined by the 
worldwide commercial jet fleet MDBE existing at the time the 
event being analyzed was experienced.  

The first Boeing 737 MAX crash occurred upon 135,980 
departures(11).  Departures between the first and second crash 
are unknown to the author, but in an earlier paper(2), those 
departures were conservatively estimated to be 139,313 and 
this estimate is used.  Also, the mean (MDBE) for the 
worldwide fleet was determined to be 6,105,714 departures 
between fatal accidents (35 fatal accidents in 213.7 million 



departures)(4). 
  For the following Poisson probability results, p-v1 is the 

probability value for one or more events occurring in the DBE 
Poisson interval for that one event while p-v2 is the probability 
of  two or more events occurring in the sum of the last two 
DBEs, as described in detail in earlier papers (1, 2, 12).  

1st crash: p-v1 = P(x≥1) = 1-P(x=0) = 0.02202  

2nd crash: p-v1 = P(x≥1) = 1-P(x=0) = 0.02256  
          p-v2 = P(x≥2) = 1-[P(x=0) + P(x=1)] = 0.000986  

The null hypothesis that the 737 MAX is as reliable as the 
worldwide fleet mean is rejected upon the first crash and is 
overwhelming rejected at the time of the second crash. We 
accept the alternative hypothesis that the system is less reliable 
than the worldwide mean and the difference is statistically 
significant.  The quick events are not simply random variation 
events of an otherwise reliable system.  P-values for both 
Poisson and computer simulation are reported in table 1 for all 
accidents in the analysis.  

2.2 Simulation Probability – Null Hypothesis Evaluation 

Probability values for testing the HPP null hypothesis can 
also be obtained by computer generated DBE samples.  This is 
useful in promoting understanding and acceptance of the event 
interval methodology.  Furthermore, computer simulation is 
required to assess risk of operating after the null should have 
been rejected but was not.  Equation 3 is the cumulative 
probability of failure for the independent and identically 
distributed exponential failure time of a repaired like new and 
steady state repairable system – our null hypothesis.  Each 
random number generates a sample failure time. Equation 4 
changes the Poisson interval of time to number of departures, 
as this measurement is more appropriate for aircraft accidents.   

F(t) = 1-e-t/MTBF = RN       (3) 
    RN = Random Number 

With departures replacing time, equation 4 provides a 
DBE sample (DBEs) for each random number. 

DBEs = -MDBE*(ln(RN))           (4) 

Our null hypothesis and the conditions for which 
equations 3 and 4 are valid are the same.  Equation 4 produces 
a large number (one for each random number) of DBE samples 
from a population with a known mean. The parameter mean 
can be a goal or target. For the airplane systems analyzed here, 
the reciprocal of the worldwide commercial jet fleet fatal 
accident rate at the time of the accident is used.  For the DC 6, 
it is in-service plane-days divided by fatal domestic accidents.   

Applying equation 4 to the 737 MAX, numerous DBE 
samples from the worldwide fleet with MDBE 6,105,714 
forms the probability distribution in figure 1. The probability 
of a crash occurring by 135,980 departures is the proportion of 
area under the curve to the left of that value. This probability 

is 0.022 and is consistent with the Poisson p-v1.  This low p-
value should reject the null hypothesis.  

Figure 1 
Probability vs DBE distribution of the DBE samples 
from the worldwide fleet using equation 4.  The 

probability of experiencing an event within the number of 
departures of the first 737 MAX crash by random chance 

is 0.022.

Figure 2 
Probability vs DBE. Two consecutive events within 

275,293 departures will occur about one time in a 
thousand within the worldwide fleet.  Therefore, the null 

hypothesis is rejected.  The 737 MAX is less reliable 
than contemporaries with statistical significance. 

Figure 3 
Probability vs DBE distribution upon the 2nd 737 

MAX crash, or unreliability distribution. This shows the 
probability of a crash within any certain number of 
departures. The probability of a crash within 3,948 
departures(2), the estimate for all planes flying for 3 

days, is 0.0475. 



 Now Equation 4 is used to obtain the sum of two 
consecutive random draws from the worldwide fleet 
population.  The distribution of this sum is seen in figure 2.   In 
the worldwide fleet population, the probability of two 
consecutive events occurring within a total of 275,293 
departures is 0.00099.  In other words, the worldwide fleet may 
see two events or more within this interval as often as one in a 
thousand by random chance. Using the logic of classical 
statistics, we should reject the null and accept the alternative 
hypothesis.  

The aircraft is proven via statistics and probability to be 
unreliable relative to the goal, target or standard.  In this case 
the standard is the worldwide fleet fatal accident rate.  The risk 
of a false positive is the p-value.  The probability of an 
inappropriate grounding, a false positive, upon the second 
crash is 0.00099 – determined with data available at the time.        

With the null hypothesis rejected, it is of interest to 
measure the risk of continued operation of the unreliable 
aircraft.  The 737 MAX MDBE is unknown.  We have two 
DBE data samples from a population with an unknown true 
mean.  This dataset mean, 137,647, is used with equation 4 to 
generate numerous samples of the mean of two consecutive 
DBE values.  MDBE in equation 4 is now a random variable. 
Equation 4 is used again, but within the same calculation, with 
a different random number draw to generate DBE samples.  
Numerous samples form the probability distribution of figure 
3.  This is the departures to fatal accident distribution, or 
unreliability distribution.  The area under the curve to the left 
of the departures acquired in 3 days is the risk of a third event.  
The process of using equation 4 twice to obtain MDBE as a 

random variable, then again using the random variable mean 
sample to obtain DBE samples to failure is described in more 
detail in reference 12.  

The plane was grounded by Boeing and the FAA three 
days after the second crash.  The probability of a third event 
within three days, if all planes were flying, is 0.0475.  The risk 
exposure in the three days is 8.22 virtual fatalities 
(Risk=Probability * Consequence or 0.0475 * (189 + 157)/2).  
The risk of not grounding timely can be under appreciated 
because of the long left-tail of the unreliability distribution of 
figure 3.  Note the log scale of the distributions that partially 
obscures the length of the tail.  

2.3 Statistical Process Control 

Many engineers and others are familiar with statistical 
process control and quality control charts.  Seeing the data 
within that concept may aid in appreciating the null hypothesis 
and its rejection.  Figure 4 shows 350 simulated DBEs from 
the worldwide fleet population placed on a statistical control 
chart.  The DBE distribution for the worldwide fleet is seen on 
the left of figure 4.  This distribution is identical to figure 1 
rotated 90 degrees.  The 350 control chart points can be thought 
of as having been drawn from the distribution.  The two 737 
MAX events fall into the out of process control region by 
control chart rules. The p-v2 value is not defined in the control 
chart concept due to granularity; however, its Poisson and 
simulation value is appropriately placed and is just outside the 
-3sigma control line.  If granularity could be improved, the 
SPC concept would converge with the Poisson and simulation 
concepts as granularity became finer.  The basic mathematics 
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350 simulated historical crashes with 1998 to 2017 fatal accident rate 

(mean departures between crash =  6,105,714)

2nd crash p-v1 = 0.0220

2nd crash p-v2 = 0.0009
equivalent to 1 crash at about 5938 departures

Control chart rules:
2 out of 3 points between 2σ and 3σ is process out of control 
1 point beyond 3σ is process out of control
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1st crash p-v1 = 0.0226

Boeing 737 MAX data in oval 

All 737 MAX data shows
process out of control.

Figure 4 
Statistical process control chart for 350 simulated DBE from the worldwide fleet.  The distribution for this fleet is on the left.  
All the simulated events are random variation.  By chance some are outliers.  The 737 MAX two event are just outside the -2σ 
line. By control chart rules the process is out of control.  The p-v2 probability is identical to one event at 5938 departures as 

measured by p-value. This point placement is just outside the -3σ line. This point is also in the rejection region. 



behind the three concepts are the same. 

2.4 Individual Aircraft Analysis 

Analysis by aircraft type has been discussed so far.  Two 
occasions were identified in which individual aircraft data 
analysis would have been helpful.   On 6/12/72 a DC 10 
required an emergency landing due to a door locking 
mechanism failure that allowed a cargo door to blow open, 
leading to a crash landing.  From the mechanism, prior events, 
and human interfaces description(6), it appears to be wear-out 
failure mode at the subsystem level.  This is wear-out in the 
sense of a subsystem deteriorating with time in service with a 
Weibull failure distribution shape parameter greater than one.  
The aircraft was only 46 days since delivery, but still one of 
two of the oldest aircraft in service.  The shape parameter is 
unknown, however, if a value of one is used as a conservative 
estimate, the Weibull failure distribution reduces to equations 
3 and 4.  The resulting p-value of 0.00128 is likely larger than 

actual.  The event was treated as though it were a random event 
on a reliable system, not as proof that the system was highly 
unreliable.  The fleet p-value seen in Table 1 is 0.01686.  The 
fleet could have been grounded whether by fleet or individual 
aircraft p-value.  It was not grounded and not reliably fixed and 
twenty months later the same door locking system caused 346 
fatalities.   

The DC 10 crashed on 5/25/79 due to cracking of a pylon 
attaching an engine to the wing.  Cracking was initiated due to 
a maintenance procedure change on a few aircraft a short time 
earlier(5).  In this case DBE are measured from the procedural 
change and only for those aircraft exposed to the new 
procedure.  The p-value is 0.00016.  The fleet was grounded, 
obviously without event interval probability analysis, and is 
the only correct FAA first opportunity to ground decision of 
those reviewed. 

3 SUMMARY RESULTS & RECOMMENDATIONS 

Table 1 
Summary of data sources and estimates, p-values, grounding decisions and consequences.  P-values in red font are those that should 
reject the HPP null hypothesis, i.e., departures between events indicate statistically significant unreliability relative to contemporary 
aircraft. Correct grounding decisions are green and incorrect are red. Yellow means correct decision but late with incurred risk of 

additional fatalities. Virtual fatalities are the expected value from risk = probability * consequence.  



Table 1 contains the raw data and analysis results for the 
various airplane types and events analyzed.  All p-values that 
are in red font indicate values below 0.025 that should reject 
the null hypothesis.  All the aircraft types are shown to have 
been unreliable relative to the then worldwide fatal accident 
rate, using data for the analysis that existed at the instant of the 
event.  Where actual data were unknown to the author, 
estimates were derived from other data in various ways.  See 
reference 2 as an example.  The FAA and aircraft companies 
have access to more accurate data.  They should conduct this 
analysis with data as exact as possible.   

The FAA and aircraft companies are not to be blamed for 
the absence of event interval probability analysis in grounding 
decisions as the null hypothesis to evaluate rate step change is 
unconventional and only recently published.  However, future 
grounding decisions should consider event interval p-values 
and p-values should be made public. 

Phenomenal achievement in aircraft safety has been 
accomplished, nonetheless, this sampling of aircraft types 
shows the planes are initially unreliable relative to 
contemporaries.  Reliability is improved after introduction into 
commercial service and after major events have occurred, 
often with avoidable loss of life.  (Reference 12 expands the 
aircraft type sample and underscores this point).   Certification 
of new aircraft should include the p-value at which a serious 
event will, in the absence of immediately available cause and 
effect data showing to the contrary, lead to automatic 
grounding of the fleet.  This performance-based “contract” 
requirement between the FAA and aircraft companies will 
provide a driving force for the companies to seek reliability in 
the design stage, including training, documentation, e.g., that 
is critical to system safety.  Also, aircraft companies as well as 
carriers will be incentivized to monitor the much less serious 
precursor events that typically precede a crash or emergency 
landing.  After the DC 10 crash near Paris, it was reported that 
the fleet had 1,000 incidents with the cargo door in only the 
prior six months(6).  The precursor events most likely would 
have triggered probability alarms.      

The use of p-values in grounding decisions means there is 
a chance of a false positive that will unnecessarily ground a 
fleet.  The average false positive seen in Table 1 is 0.00934.  
This is an extremely small risk relative to, for example, the 
impact of the 737 MAX not being grounded upon the first 
crash.  Also, the unrecognized high risk of a third event 
exposed Boeing and the FAA to exponentially more severe 
impacts.  The use of event interval p-values will benefit the 
aircraft companies, the FAA, and the flying public.
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