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SUMMARY & CONCLUSIONS  

Two methods for calculat ing availab ility and capacity 

probability distributions are discussed. One gives exact results , 

but has narrow application. The other is approximately exact 

but is a general method applicable to time varying data. Each 

method uses high level system data that is both available and 

accurate.  

 The two methods can be implemented using personal 

computers and spreadsheets. Templates with cell equations are 

provided so the user can build their own working 

spreadsheets. The first method presented is capacity outage 

probability tables (COPT) used routinely in the electric power 

industry. It calculates exact empirical instantaneous 

availability and capacity distributions for limited but practical 

applications. The second method is probability mass function 

(PMF) series, a general method for measuring accumulated 

system performance with a dense family of empirical 

distributions. 

COPT is mathematically exact and PMF series is 

essentially so. PMF series is computer intensive with accuracy 

increasing with increasing computations. Excellent results are 

achievable on personal computers. In an example, COPT and 

PMF series results are shown to be comparable in the special 

case in which these totally different concepts can be 

compared.    

Two non-conventional applications will be discussed as 

examples. One of these is personal injuries recorded by an 

industrial maintenance contractor. The probability and risk 

associated with any performance-based contract safety goal 

can be determined. If risk (measured in units of recorded 

injuries) is high, it can easily be identified and managed down 

by changing the “system” that generates injuries. 

Alternatively, new contract commitments can be negotiated, 

again with the new risk calcu lated.  

The other nonconventional application is a business 

system that delivers a medical services product. The risk 

associated with management’s goals for the next month or the 

next quarter can be assessed. Risk-based goals can be set, and 

once goals are established, unacceptable risk can be managed 

by changing the business system. 

Computer simulat ion models or other traditional methods 

are not now being routinely used for these non-conventional 

applications. Likewise there are numerous risk assessment 

applications residing within engineered physical systems, such 

as manufacturing plants , that are underserved. Also, traditional 

applications, such as capacity assessment of manufacturing 

plants, can benefit due to no modeling requirement and the 

availability of high quality data.  

1 CAPACITY  OUTAGE PROBABILITY TABLES (COPT) 

The electric power industry uses a system risk assessment 

method that is also applicable to other systems. The method is 

capacity outage probability tables (COPT) [1]. The forced 

outage rate and capacity of each individual generating unit are 

the input data. Only basic probability theory and simple 

arithmetic are used with this fundamental and availab le data 

for the system instantaneous capacity probability. The load 

demand curve is combined with the capacity distribution to 

obtain the loss of load probability (LOLP). The risk of 

inability of capacity to meet demand is the loss of load 

expectation (LOLE) in MW-hrs. Generating units are 

shutdown or started up as necessary to keep the risk within 

targeted values. This allows efficient operation of the system 

(minimum generating capacity on line) while controlling the 

expected value of the generating system capacity shortfall to 

an acceptable level.  

COPT can be used for other applications . For example, 

when several steam generators in a refinery fail to produce a 

certain quantity of steam, refinery processes must be reduced 

in rate or shut down. The risk to the refinery is the product of 

probability of steam load being below demand (LOLP) and the 

economic impact when the steam supply is below demand. 

Figure 1 is a fictit ious system composed of three units  that 

illustrates the COPT input and output data. The simple and 

readily obtainable unit input data of Figure 1 are placed in   

Figure 1 

Illustration with a 3 unit system with unit availability and 

capacity used to calculate the system capacity probability 

distribution as shown in Table 1. 

Unit 1
•Availability =0.95
•Capacity=10

Unit 2
•Availability =0.85
•Capacity=18

Unit 3
•Availability =0.90
•Capacity=7

Capacity Probability

0 0.00075
7 0.00675

10 0.01425
17 0.12825
18 0.00425
25 0.03825
28 0.08075
35 0.72675

System



rows 2 and 3 of Table 1 to demonstrate how the COPT process 

is applied. The reader can use Table 1 as a template for 

building a larger spreadsheet to accommodate systems with 

more units. Only fundamental p robability theory is used and 

the cell equations are shown. System operating state 

probability and the capacity at that state are calculated in 

columns H and L, respectively. Each operational state defines 

which units are operating or otherwise available, and which 

are under forced shutdown (unavailable). The number of 

operational states increases exponentially with the number of 

units in the system. For example, a system of ten units has 

1,024 unique operational states. Units that are planned down 

are assigned an availability of zero during this time. Likewise, 

a spreadsheet for, say, 10 units can be used to assess a system 

of less than 10 units by assigning zero availability to the non-

existing units. 

The electric power industry uses input data of forced 

outage rate. Table 1 uses availability here defined as the 

complement of fo rced outage rate. Therefore, scheduled 

outages and other outages not related to forced downtime from 

unreliability, such as market d ictated downtime, are 

appropriately excluded from the unit availability metric . 

The binominal distribution should always be used to 

check the accuracy of the spreadsheet. When unit availabilities 

are equal, the spreadsheet system probability for each 

operating state will exactly equal the probability from the 

binominal distribution. If not identical, an operating state may 

have been missed or duplicated in build ing the spreadsheet.  

This method gives exact results when unit operations are 

either up or down. Columns H and L produce the system 

instantaneous capacity discrete probability distribution. When 

unit capacities are normalized to a system maximum capacity 

of unity, columns H and L give the instantaneous availability 

discrete probability distribution. 

The results of Table 1 are combined with a load or 

demand curve, as illustrated in Table 2. This spreadsheet 

determines the probability of failure to meet demand and the 

expected value of the capacity shortfall (equivalent to LOLP 

and LOLE). Again, Table 2 is designed to serve as a guide in 

setting up spreadsheets for larger systems and more complex 

demand curves. Cell equations are shown. The demand curve 

for Table 2 consist of three discrete loads, each applicable for 

some fraction of the total time. Demand curves can be as 

simple as a single value or as complex as a probability 

distribution. If demand is characterized by a continuous 

distribution, then the distribution should be approximated with 

discrete values. Whereas Table 2 has only three demand 

levels, an approximated demand distribution may have many 

levels as necessary for the appropriate accuracy. Except for 

approximation of the demand curves, the results of Table 2 are 

also mathematically exact.  

The COPT process is completed with Tables 1 and 2 for 

our simple Figure 1 example. As Table 2 row 12 shows, there 

is a probability of a capacity shortfall o f 21.38% (LOLP) and 

the expected value of the shortfall is 1.82 capacity units per 

time unit (LOLE). Units are the same as Table 1 row 3 units.  

2 PROBABILITY MASS FUNCTION (PMF) SERIES  

PMF series [2] is a new technology for probabilistic 

assessments. It is a fundamentally different concept from that 

of COPT or any other risk assessment method. It uses high 

level system data that is already on hand, such as in the case of 

engineered systems, time-between-failure (TBF) and time-to-

restore (TTR). Where COPT produces a single instantaneous 

capacity distribution, PMF series produces a dense family of 

accumulated performance probability distributions.  

The technology is not limited to physical systems. It is 

applicable to systems in the broadest sense of the word where 

the concepts of failure and availability do not apply and where 

the system can only be treated as a black box, as illustrated in 

A B C D E F G H I J K L

1 Unit Number 1 2 3

2 Unit Availability 0.95 0.85 0.9

3 Unit Capacity 10 18 7

4
System Operating 

State

System Probability 

at Operating State

System Capacity 

at Operating State

5 1 UP UP UP 0.95 0.85 0.9 0.72675 10 18 7 35

6 2 UP UP DOWN 0.95 0.85 0.1 0.08075 10 18 0 28

7 3 UP DOWN UP 0.95 0.15 0.9 0.12825 10 0 7 17

8 4 DOWN UP UP 0.05 0.85 0.9 0.03825 0 18 7 25

9 5 UP DOWN DOWN 0.95 0.15 0.1 0.01425 10 0 0 10

10 6 DOWN UP DOWN 0.05 0.85 0.1 0.00425 0 18 0 18

11 7 DOWN DOWN UP 0.05 0.15 0.9 0.00675 0 0 7 7

12 8 DOWN DOWN DOWN 0.05 0.15 0.1 0.00075 0 0 0 0

13 Sum = 1.00000

Unit Probability at 

Operating State
Unit Operating State

Unit Capacity at 

Operating State

=IF(B5=“DOWN",1-B2,B2)

=E5*F5*G5

=IF(B5=“DOWN",0,B3)

=SUM(I5:K5)

 
Table 1 

Capacity outage probability table (COPT) for the Figure 1 system. This table is to be used as a template in building 

spreadsheets for larger systems. All possible operating states must be listed (B5:D12). For risk assessment, system capacity and 

probability results from columns H and L are combined with a load demand curve, as shown in Table 2.  



A B C D E F G H I J K L

1 Demand Level 30 25 20

2 Time Fraction at 

Demand Level

0.5 0.3 0.2

3

System Capacity 

at Operating 

State

System 

Probability at 

Operating State

Loss of Load 

Probability at 

Operating State

Time Fraction 

Capacity  < 

Demand

System Risk 

at Operating 

State 

Total System 

Shortfall at 

Operating State 

4 35 0.72675 0 0 0 0 0 0 0 0 0 0

5 28 0.08075 0.040375 0.5 0.08075 1 2 0 0 0.5 0 0

6 17 0.12825 0.12825 1 1.218375 9.5 13 8 3 0.5 0.3 0.2

7 25 0.03825 0.019125 0.5 0.095625 2.5 5 0 0 0.5 0 0

8 10 0.01425 0.01425 1 0.235125 16.5 20 15 10 0.5 0.3 0.2

9 18 0.00425 0.00425 1 0.036125 8.5 12 7 2 0.5 0.3 0.2

10 7 0.00675 0.00675 1 0.131625 19.5 23 18 13 0.5 0.3 0.2

11 0 0.00075 0.00075 1 0.019875 26.5 30 25 20 0.5 0.3 0.2

12 0.213750 1.817500

Capacity 

Shortfall at 

Demand Level

Time Fraction 

Capacity < 

Demand

•A3 and B3 values from Table 1

•C4 = B4*D4

•D4=SUM(J4:L4)

•E4=F4*B4

•F4=G4*B2+H4*C2+I4*D2

•G4=IF(A4>=B1,0,(B1-A4))

•J4=IF(A4>=B1,0,B2)

•C12=System Loss of Load Probability (in time period of A1 units)

•E12=System Risk (measured in A1 units) 

 

Table 2 

Operating state capacity and probability are combined with a demand curve. The demand in this example is 3 discrete levels 

with the time fraction at each level. Cell equations are shown so the table can be used as a template to form spreadsheets for 

more complex systems and demand curves. 

two examples to follow. It is also applied to reliability 

assessment of both repairable and non-repairable systems and 

time-to-first-failure of components and systems [2].  

PMF series transforms conventional data into a new 

numbering system. Figure 2 summarizes the data conversion 

with a simple example of three failure events identified by 

TBF and TTR data [3]. The failure data can be historical, 

simulated, or surrogate (data from a similar system). It  is not 

Figure 2 

Transformation of TBF and TTR data to availability cycle 

data sets consisting of values between 0 and 1for each small 

time interval is demonstrated with 3 failure events. These data 

sets form a time line that can be extended with permutations 

(arrangements) of the independent failure events. 

necessary that raw data be in TBF and TTR form, but Figure 2 

uses this form. Events can be cyclical or changing over time 

and dependent; however, Figure 3 is for a stable process and 

independent failure events. The TBF and TTR data are 

converted into availability cycles defined by a series of 

numbers ranging from 0 to 1. These cycles are laid end to end 

to form a time line of availability fractions for the smallest 

time interval of interest (STII) [3]. The STII is the unit of time 

for which we cease to be concerned for variation. For 

example, the STII for a manufacturing process with product 

storage is usually one day. For such a plant, there is typically  

no business purpose in knowing hour-to-hour capacity 

variation. The STII for a business system and a “system” that 

generates industrial in juries  is one week in examples to 

follow. The availab ility cycle, the sum of TBF and TTR, must 

be made to sum to a whole number by rounding or changing 

units. The concept is computer intensive, and computations 

can be reduced by keeping the STII no smaller than necessary. 

The original data after transformation are seen graphically in  

the middle of Figure 2. 

System failure events are typically independent. In a 

petrochemical plant, for example, within a database period of 

a few years the same equipment with the same failu re mode 

will usually not be repeated. Reliability engineers work hard  

to assure this is so. As soon as a failure occurs, action is taken 

to prevent it from repeating. Dependent events, systems 

undergoing improvement or deterioration and cyclical 

performance cannot be reordered. These require a 

modification to the methodology not discussed in this paper. 

The six (3! or 3 factorial) ways the three failure events can be 

reordered are seen at the bottom of Figure 2. The time line is 

TBF TTR Availability Cycles 

3.6        2.4                 1,1,1,.6,0,0
6.8        3.2                  1,1,1,1,1,1,.8,0,0,0

4.3        0.7                   1,1,1,1,. , 3

Conventional format PMF Series format

Failure Number 

1 
2  

3              

System Up System Down

Availability cycle data sets – time line extended with permutations 
1 1 1 .6  0  0   1  1   1   1   1  1  .8 0   0 0 1  1   1 1 .3  

All  permutations of the 3 independent failure events :

123, 132, 213, 231, 312, 321



extended by using all data permutations, though not shown in 

Figure 2 due to space. Greater detail has been published [3]. 

 Table 3 shows the extended time line formed in Figure 2 

placed in a spreadsheet – column B. Only the first permutation 

(orig inal data) and part of the second permutation are shown, 

but the reader can easily build their own spreadsheet from the 

pattern established. Permutation and failure event numbers are 

seen in column A with the availab ility cycle data forming the 

time line in column B. For some applicat ions, all series over a 

long interval of time is needed. For example, the risk of not 

meet ing a daily shipping schedule requires evaluating risk one 

day into the future, two days ahead, three days ahead, etc. This 

may continue for 365 days. In Table 3 we limit  the series for  

Table 3 

The time line of Figure 2 is placed in column B with the use of 

permutations to extend the line. Only the first permutation and 

part of the second are shown. The cell equations will allow the 

user set up their own spreadsheet. Columns B through K 

random variable values form distributions for accumulated 

availability for the time period shown in row 1. 

 

simplicity of illustration. Every number in Table 3 columns B 

through K is a random variable value fo r that particular series 

accumulated availab ility distribution. The random variable 

values are grouped into a histogram and displayed as seen in 

Figure 3 for  the fifth and tenth series. Figure 3 is accumulated 

availability in cumulative form. For example, if our 

production goal for the next 10 days is 65% of maximum 

capacity, i.e. without any scheduled downtime we need at least 

65% availab ility, we can read from Figure 3 that there is 20% 

chance of not making the goal. Full risk assessment with 

probability and consequence is explained in detail in [3].  

 

 

Figure 3 

5 and 10 time unit accumulated availability distributions 

from histogram data of Table 3 columns F and K in 

cumulative form. Note useable distributions from only 3 

failures.  

Figure 4 

A 10 unit system with PMF series using TBF and TTR data 

and COPT using availability from the same data. Results are 

comparable although concepts are totally different. 

  

The accumulated availability values in column C through K in 

Table 3 are not entirely accurate because the running average 

does not give full weight to the first few and last few numbers 

in the time line of column B. With adjustment for the 

weighing, the distributions from Table 3 are mathematically  

exact. In practice, the time line is so long that this is 

insignificant and does not require correct ion.  

  COPT and PMF series can be compared side by side in 

special circumstances. Though different concepts, they 

produce comparable results when the 1-day PMF series (such 

as in column B Table 3) and COPT unit capacities (such as in 

row 3 Table 1) are capacity units per day – they have common 

time units. A demonstrative 10 unit system with a range of 

unit capacities were created from TBF and TTR data from a 

number of power and petrochemical plants. Unit availabilit ies 

calculated from this data were used for COPT input data. PMF 

series used permutations of the data to form indiv idual unit 

time lines that were combined to form a system time line. The 

methodology to combine unit time lines into a system time 

line is similar to that described for time-to-first- failure [2]. 
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A B C D E F K

1

Permutation/ 

Failure Number

1-Time 

Unit

2-Time 

Units

3-Time 

Units

4-Time 

Units

5-Time 

Units

10-Time 

Units
2 1.0000
3 1.0000 1.0000
4 1.0000 1.0000 1.0000
5 0.6000 0.8000 0.8667 0.9000
6 0.0000 0.3000 0.5333 0.6500 0.7200
7 0.0000 0.0000 0.2000 0.4000 0.5200
8 1.0000 0.5000 0.3333 0.4000 0.5200
9 1.0000 1.0000 0.6667 0.5000 0.5200

10 1.0000 1.0000 1.0000 0.7500 0.6000
11 1.0000 1.0000 1.0000 1.0000 0.8000 0.7600
12 1.0000 1.0000 1.0000 1.0000 1.0000 0.7600
13 1.0000 1.0000 1.0000 1.0000 1.0000 0.7600
14 0.8000 0.9000 0.9333 0.9500 0.9600 0.7400
15 0.0000 0.4000 0.6000 0.7000 0.7600 0.6800
16 0.0000 0.0000 0.2667 0.4500 0.5600 0.6800
17 0.0000 0.0000 0.0000 0.2000 0.3600 0.6800
18 1.0000 0.5000 0.3333 0.2500 0.3600 0.6800
19 1.0000 1.0000 0.6667 0.5000 0.4000 0.6800
20 1.0000 1.0000 1.0000 0.7500 0.6000 0.6800
21 1.0000 1.0000 1.0000 1.0000 0.8000 0.6800
22 0.3000 0.6500 0.7667 0.8250 0.8600 0.6100
23 1.0000 0.6500 0.7667 0.8250 0.8600 0.6100
24 1.0000 1.0000 0.7667 0.8250 0.8600 0.6300
25 1.0000 1.0000 1.0000 0.8250 0.8600 0.7300
26 0.6000 0.8000 0.8667 0.9000 0.7800 0.7900
27 0.0000 0.3000 0.5333 0.6500 0.7200 0.7900
28 0.0000 0.0000 0.2000 0.4000 0.5200 0.6900
29 1.0000 0.5000 0.3333 0.4000 0.5200 0.6900
30 1.0000 1.0000 0.6667 0.5000 0.5200 0.6900
31 1.0000 1.0000 1.0000 0.7500 0.6000 0.6900
32 1.0000 1.0000 1.0000 1.0000 0.8000 0.7600
33 0.3000 0.6500 0.7667 0.8250 0.8600 0.6900

1/1

1/2

1/3

2/1

2/3

=AVERAGE(B2:B3)

=AVERAGE(B3:B4)

=AVERAGE(B2:B11)

=AVERAGE(B5:B14)



For this system, Figure 4 shows that the the first of the PMF 

series, such as from column B of Tab le 3, gives  results that are 

comparable to COPT.   

The prior simple illustration of Figure 2 and Table 3 with 

three failure events is smaller than normal. Realistic databases 

have more failure events, and with permutations the analyzed 

data quickly become astronomically large. For example, a  

petrochemical plant had 66 failures over a 1,924 day time line, 

with scheduled outages excluded. The total time line consists 

of 66! permutations and is over 1E96 values long. These large 

numbers may be incomprehensible without some sort of 

reference. If these values were printed with 500 values per 

8x11 inch page and neatly stacked with 250 pages per inch 

height, the volume of paper would fill the universe 26 million 

times, given a spherical universe of 125 b illion light-year 

diameter. 

With such a large quantity of data, the ability to obtain a 

sufficient sample of the permutations may be questionable. 

However, d istributions quickly converge with increasing 

sample size within the capability of personal computers. 

Figure 5 is the 30-day distribution of accumulated 

availability/capacity in cumulative form of the petrochemical 

plant example . Only when a small area of Figure 5 is enlarged, 

as in Figure 6, can differences in resolution (number of 

permutations sampled and length of the time line) be seen. The 

solid lines are formed from three different time lines of about 

one million rows in a spreadsheet. They are closer together 

than the dashed lines formed with three different time lines of 

about 65,000 rows. Figures 5 and 6 show that the distribution 

 Figure 5 

30-day accumulated availability for a petrochemical plant 

with 66 failures. Distributions calculated using different 

number of permutations (different resolution) show similar 

results. See Figure 6. 

formed with no permutations approaches the others. With 

large quantities of events, such as the 66 petrochemical plant 

failures, reasonably good distributions can be formed without 

permutations and the necessity for the events to be 

independent.  

 

Figure 6 

The distributions of Figure 5 show better convergence as the 

number of permutations is increased. For large quantities of 

raw data, no permutations (upper line) provides useable 

results 

 

Some systems do not have distinguishable failure events, 

and use of permutations is not possible. Po lypropylene plants 

are an example. Failure events are not easily defined, or 

impact on production easily allocated. Process problems 

overlap equipment problems such that all we can measure 

accurately is total unreliability impact for the day. Here the 

daily production quantities and the reliability related 

production losses are used to form the availability fraction for 

each day. Permutations are not allowed because the daily 

values are not independent. The running average errors such 

as seen in the first few and last few values of Table 3 are 

driven to insignificance by conceptually looping the time line. 

In practice, this is accomplished by extended the time line as 

previously discussed, but the order of events are maintained.  

PMF series is a general approach applicable to a wide 

range of non-conventional applications.  Two will be 

presented. A business process delivers a particular medical 

service. Sales data for 13 weeks were used to forecast the 

system capacity for the next quarter. The business system in  

the near future is expected to reflect the recent past. Sampling 

of the 13! permutations and developing the time line as in 

column B of Figure 3 produces the 3-month accumulated 

capacity distribution of Figure 7. The probability and risk 

associated with any management objective can be assessed. 

Management adjustments can be made if risk is unacceptable.  

Another non-conventional application is for industrial 

safety. A large maintenance service company’s recordable 

injuries over a 15 month period were analyzed. The numbers 

of injuries by week were normalized by dividing all values by 

the largest weekly value. This converts all values to a value 

between zero and one, convenient for PMF series. The 

normalizat ion also serves to code the real data. For 

confidential or sensitive data, the analyst can work with only 
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normalized data. The risk assessment is done with a maximum 

value of 1 (or any lower positive number) and real values are  

Figure 7 

A medical services business system capacity for a 3-month 

period. Business commitments can be assessed for risk and 

management adjustments made if risk is unacceptable. 
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Figure 8 

The 13-week PMF series maintenance injury distribution. 

Assessment reveals the risk associated with any performance-

based contract commitment. High risk can be managed down 

by changing the “system” that generates injury.  
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Figure 9 

The injury distribution of Figure 8 in cumulative form. There 

is a 10% chance that the number of injuries will exceed 42.7% 

of the maximum weekly number that is confidential. Data such 

as this helps drive safety improvements. 

revealed only by a mult iplier which can be confidential. 

Results are seen in Figures 8 and 9.  
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analysis; statistical and probabilistic analysis; vibration 

analysis; and capacity and availability forecasting. He has 

chaired conferences on plant reliability, authored several 

technical papers on the subject, and has organized and taught 

seminars on reliab ility issues.  He holds three patents on 

business methods using new probabilistic methods.   
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