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SUMMARY & CONCLUSIONS 

Data for the analysis comes from Boeing publications and 
public announcements. The analysis input data are believed to 
be conservative, i.e., the data produces results that tend to 
understate the significance of the analysis findings and 
conclusions. Using data existing at the time, the analysis shows 
the 737 MAX should have been grounded sooner. Perhaps after 
the first event (crash) but certainly after the second. The 
decision not to ground after the second event led to high risk of 
a third event. If all planes remained in service, the risk of a third 
event in three days is about 1 in 25. This high risk indicates that 
Boeing and the FAA did not do a failure time analysis. It is 
supposed those that chose to voluntary ground their aircraft 
made the decision without data analysis as well. At the time of 
the events, cause and effect data were sparse, but the event time 
data were readily and immediately available. This unused data 
were of tremendous value in quantifying risk for decision 
making. An objective of this paper is to assure failure time data 
are analyzed in the future, not only in engineered systems, but 
in business, medical, and any other data system where special 
cause events are of interest and a homogeneous Poisson process 
(HPP) is a reasonable null hypothesis.  

The analysis is shown in sufficient detail so Boeing, the 
FAA or accident investigators can conduct an analysis with 
precise input data. The analysis method is of general interest 
broader than the two crash investigations. They are of course 
obligated to correct or improve the analysis methodology as 
well. Human nature will tend to blame Boeing and the FAA for 
not conducting the analysis for their risk related decisions 
regarding grounding. While understandable, this would be 
irrational. Boeing and the FAA, like essentially everyone, did 
not know to do the analysis. The Poisson methodology was only 
published in early 2018 [1]. It is otherwise not in any text books 
and technical papers that the author has encountered. A 
different concept, Monte Carlo simulation, confirms Poisson 
results. (These concepts are completely different but share a 
HPP null hypothesis - explicit with Poisson and implicit with 
simulation). Both concepts are simple and seemingly obvious 
once recognized. Accident investigators and others should 
consider if it is possible to hold Boeing and the FAA 
accountable for not doing a particular data analysis that data 
analysis experts don’t do.  

The 737 MAX example shows how Poisson and simulation 
failure time analysis can use even a single event for powerful 
information useful in decision-making. It also illustrates how 
we are essentially always too late in doing the analysis. For in-

service repairable systems, (and in general any point process for 
which a HPP null hypothesis is reasonable) the primary value 
of analyzing intervals is to identify events that may be special 
cause events needing immediate intervention. The value is in 
immediate intervention and avoidance of otherwise predestined 
failures. But a primary restraining paradigm is that failure time 
analysis is used only when a need is otherwise identified. So we 
don’t use failure time analysis when we should, i.e., before we 
know that we need to use it. We only use it when it is too late 
to be of greatest value, i.e., after we know we need to use it. The 
result is we derive lower value in the analysis and this reinforces 
the paradigm. If the analysis is of low value, then there is little 
justification in doing it, especially when there is no obvious 
need. It may be beyond the scope of accident investigators (and 
certainly beyond the scope of this paper), but it is of general 
interest to study the restraining paradigms that culminated in 
the absence of failure time analysis on the 737 MAX.  The 
mathematics for Poisson have been around for nearly 200 years. 
Computer simulation has been readily available for over 30 
years. Why aren’t we using them? 

How can an analysis be done prior to recognizing a need? 
Computers can automatically analyze all failure times 
immediately upon failure and report only those that are 
statistically significant. Perhaps ultra-critical events like fatal 
accidents can be analyzed contemporaneously upon occasion 
by policy and procedure. But most applications will require 
automated data analysis to find the few events of interest among 
numerous events on numerous assets. With much data being 
electronic, automation is practical, but this requires a major 
shift to a new paradigm in how, when, and why we use failure 
time analysis.  

Poisson methodology automation using Microsoft Excel 
has been demonstrated and is being applied in a process 
industry plant. About 2,500 work orders per year are 
automatically and contemporaneously analyzed with a series of 
Poisson p-values that flag special cause events for intervention. 
Once the automation identifies low p-value events, data may 
need editing (the data are dirty) and analyzed as a single dataset. 
Single datasets are easily analyzed one at a time within 
Microsoft Excel with tables called probability maps, with 
confidence intervals determined with commercially available 
Excel add-in packages for Monte Carlo simulation. Cell 
equations are given so probability maps of any size can be built. 
Automated analysis needs commercial software providers to 
transition from the current “one dataset at a time” analysis 
capability to the functionality of proactively screening large 



numbers of individual datasets to identify the few of interest.                    

1 INTRODUCTION 

This paper is specifically directed to failure time analysis 
of in-service repairable equipment and systems such as found 
in process plants. In process plants, it is important to identify 
special cause failures immediately to provide the opportunity to 
intervene in the repair planning and execution. By recognizing 
reliability degradation at an opportune time, intervention can 
avoid future failures. It is uncommon to use Poisson probability 
for failure time analysis, but it is required to detect failure rate 
step change. Coincidentally, the Boeing 737 MAX is an in-
service repairable system and provides an example of useful 
decision information obtainable with only a few failures. The 
737 MAX also exemplifies how failure time analysis is 
invariably done too late to be of maximum value. 

2 POISSON PROBABILITY 

The Poisson distribution is used to determine the 
probability of specific numbers of events occurring within a 
specified time interval, when the events are generated by a HPP. 
Failures times are independent and identically distributed 
exponential random variables. The mean number of events must 
be constant for any time interval of equal length. Repairable 
system failures are, in general, such a HPP. But new failure 
modes, improper repair, and any other special cause produces 
time-between-failure (TBF) data that do not fit the HPP 
conditions for Poisson. Moreover, it is these nonconforming 
special cause failures that are of most interest. Therefore, on the 
surface, using Poisson to find special cause failures that do not 
conform to the requirements of Poisson use may appear to be 
inconsistent. But here the Poisson is used in reverse to identify 
data that appear not to conform to Poisson distribution 
requirements. 

The Poisson probability distribution of events is:  

P(x; μ) = (e-μ)(μx)/x!     (1) 
Where: 
e: An approximately 2.71828 constant, the base of the 
natural logarithm system. 
μ: The mean number of events expected 
x: A specific number of events 
P(x; μ): The Poisson probability that x events are 
experienced, given the mean number expected is μ.  

The general Poisson expression is now adapted specifically 
to failure events, the mean of which comes from equipment 
failure dates and the resulting TBF values. 

μ = t/MTBF    (2) 

Where: 
MTBF = mean-time-between-failure  
 t = the specified time period, a TBF value of interest or 
sum of one or more consecutive TBF values. 

So the Poisson distribution for failure events gives the 
probability of any specific number of failures x and is 
dependent on the time interval and MTBF, as below: 

 P(x; t/MTBF) = (e-t/MTBF)(t/MTBF)x/x!  (3) 

3 PROBABILITY MAP 

Using Poisson probability for failure time analysis involves 
numerous related equations that quickly become unmanageable 
without a systematic approach. With spreadsheet tables 
(probability maps) populated with appropriate equations, the 
entered input TBF data generates all probability values 
instantly. Other cells are positioned for Monte Carlo simulation 
and Poisson probability value (p-value) distributions for 
confidence intervals with a single simulation. Each event in the 
probability map is analyzed using only then current history and 
not future events.  Figure 1 is the upper section of a probability 
map for a process pump with 13 failures. The TBF data are in 
column C. Column D is the running average of Column C TBF 
values. The p-values are given a nomenclature described by 
example. The probability p-v1 at, for example, cell F13 is the 
10th failure with a TBF value of 8 and MTBF of 466. This is a 
one event lookback. The equation in cell F13 is the probability 
of one or more events occurring within the interval. This is 
efficiently expressed as the complement of zero events with 
Excel nomenclature. So event 10 p-v1 is: 

   p-v1 =1-(EXP(-C13/D13)*POWER(C13/D13,0))/FACT(0) 

Cell I16 is the p-v4 probability at event 13. It looks back at the 
TBF values for the last 4 failures. It is the probability of four or 
more failures within a period of 8 + 38 + 46 + 11 when the mean 
is 365, the dataset mean at the 13th failure. So cell I16 is the 
probability of 4 or more events in the time of the 4 events. This 
is efficiently expressed as the complement of the cumulative 
probability of 3 events. Taking advantage of Excel’s embedded 
statistical formulas, cell I16 is event 13 p-v4, or: 

p-v4 =1-POISSON.DIST(3,SUM(C13:C16)/D16,TRUE) 

P-v4 is alarmed with 0.00021 probability. This is very strong 
evidence for rejecting the null hypothesis of no step change, but 
there is sufficient earlier evidence that could have been acted 
upon. The low p-v1 value in cell F13 is visually alarmed by a 
low p-value. This suggests the TBF value of 8 is inconsistent 
with a HPP with the demonstrated MTBF of 466. The Poisson 
interval of 8 with 1 event will occur in an HPP by random 
chance with only 0.01704 probability. The HPP null hypothesis 
can be rejected. We can say there is a step change in reliability 
at failure 13 with small chance of being incorrect 
As happens nearly all the time in the absence of 
contemporaneous analysis, the step change in reliability was 
detected much too late – not at failure 10 but at failure 13. The 
opportunity to avoid the last three failures was missed. (Root 
cause analysis of why the reliability degradation was not 
detected sooner led to this current methodology).  
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Deliveries  
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Deliveries

Departures 

within Month

Cummulative 

Departures

linear ramp up

Jun-17 10.57 10.57 997.81 997.81

Jul-17 10.57 21.14 1995.62 2993.42

Aug-17 10.57 31.71 2993.42 5986.85

Sep-17 10.57 42.28 3991.23 9978.08

Oct-17 10.57 52.85 4989.04 14967.12

Nov-17 10.57 63.42 5986.85 20953.97

Dec-17 10.57 74 6984.66 27938.62

Jan-18 11.20 85.19 8041.94 35980.56

Feb-18 11.20 96.39 9099.22 45079.78

Mar-18 11.20 107.59 10156.50 55236.27

Apr-18 11.20 118.79 11213.78 66450.05

May-18 11.20 130 12271.06 78721.10

Jun-18 28.57 158.56 14968.06 93689.17

Jul-18 28.57 187.13 17665.07 111354.24

Aug-18 28.57 215.70 20362.08 131716.32

Sep-18 28.57 244.27 23059.09 154775.41

Oct-18 28.57 272.84 25756.10 180532
Nov-18 28.57 301.41 28453.10 208984.61

Dec-18 28.57 330 31150.11 240134.72

5/16/2017 1st delivery 94.4/mo with immediate service

Column 

/ Row
B C D E F G H I J K

3 Event TBE MTBE p-v1 p-v2 p-v3 p-v4 p-v5 p-v6

4 1 13 13 0.63212

5 2 99 56 0.82930 0.59399

6 3 885 332 0.93026 0.79493 0.57681

7 4 759 439 0.82253 0.88784 0.75753 0.56653

8 5 60 363 0.15227 0.65863 0.84686 0.72991 0.55951

9 6 503 387 0.72786 0.42757 0.66419 0.82100 0.71042 0.55432

10 7 761 440 0.82263 0.78102 0.57884 0.69565 0.80250 0.69550

11 8 1308 549 0.90788 0.89022 0.84661 0.70555 0.73861 0.78934

12 9 259 516 0.39445 0.80600 0.82740 0.79635 0.65771 0.70803

13 10 8 466 0.01704 0.11328 0.65706 0.73753 0.72795 0.59017

14 11 38 427 0.08522 0.00541 0.03598 0.52257 0.65244 0.66533

15 12 46 395 0.10995 0.01966 0.00177 0.01291 0.41035 0.57464

16 13 11 365 0.02966 0.01097 0.00241 0.00021 0.00352 0.30916

F
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Jan-19 19.70 349.68 33009.79 273144.51

Feb-19 19.70 369.38 34869.47 308013.98

Mar-19 (to 3/10) 6.60 376 11830.84 319845

t 3 failures
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4.2 Worldwide fleet fatal accident rate 

In the process pump example, the MTBF was developed 
from that particular pump’s history. But if the equipment has 
insufficient history, then MTBF of similar equipment can be 
used. Boeing reports 35 fatal accidents in 213.7 million 
departures of similar aircraft and service in a recent 10 year 
period [1]. There are fatal accidents that do not involve crashes. 
The data was a little vague so that conservatism was left in the 
analysis and this industry average is used. Our null hypothesis 
is that the 737 MAX reliability as measured by mean departures 
between events (MDBE) is equal to the industry mean of 
6,105,714 with events generated by a process that is an HPP. 
This null hypothesis is a benchmark against which we compare 
the 737 MAX using Poisson p-values as rejection criterion. 
Computer simulation is used as an independent concept whose 
matching p-values provide confirmation of method. 

4.3 Analysis and Results 

Again this analysis with specific results is intended to show 
the method. Final results and the method used to get the results 
should be obtained and reported by Boeing, the FAA, or 
accident investigators. The basic results are presented in the 
upper region of figure 4. As mentioned earlier, in all but 
extremely small datasets, the number of equations and their 
relationships require an organized calculation approach. So we 
use the probability map for this. This upper region duplicates 
figure 1, with some exceptions to use worldwide mean MDBE 
instead of 737 MAX history, and third event probability. The 
middle and lower sections of the probability map relate to 
confidence intervals around the calculated p-values. These were 
omitted from figure 1 for simplicity. Cells D4 and D5 are the 
worldwide fleet MDBE. Upon the first event, the p-v1 is 
0.02913. So about a 3% chance that the quick event would 
occur by random chance if the 737 MAX had average reliability 
as measured by MDBE. The equations for the cell values in 
figure 4 are found in figure 5. Row 5 in figure 4 for the second 
event shows p-v1 = .02256 and p-v2 = 0.00133. To refresh, p-
v2 is the probability of two or more events occurring in a 
departures interval equal to the sum of the last two DBE. So the 
p-v2 value suggests there is about 1 in a thousand chance of a 
plane system with worldwide fleet reliability having two fatal 
accident events within 319,845 departures. The null is 
definitely rejected. The 737 MAX is statistically below 
worldwide mean in reliability, using data known 
contemporaneously with the event. 

The related p-value equations in the upper region of figure 
5 are based on equation 3 but using the complement, and usually 
in cumulative form, to simplify. 

Row 6 in figure 4 is to evaluate the probability of a third 
event. The low p-values for the first two events cause us to 
reject our null hypothesis and say the 737 MAX reliability is 
statistically less than industry average. Cell C6 is the number of 
departures to be expected by the method discussed earlier for a 
time of 3 days. The number of planes in service for 3 days 
following the second event is not known, so the C6 value is 
based on all flying as normal. Presumably the decision by 

Boeing and the FAA not to ground was based on all flying. 
Also, the decision not to ground could have been extended 
beyond 3 days. The D6 value is the 737 MAX MDBE, the 
average of cells C4 and C5. The third event never happened but 
the probability of an event within 3 days is 0.04 from the 
probability distribution found in figure 5 cell I392 (to be 
discussed later).     

Computer simulation is required for p-value confidence 
intervals and as the second confirming concept. The middle 
region of the probability map, rows 390 thru 392 are for treating 
MTBF (or MDBE) as a random variable. A random variable 
sample of failure time is determined by equation 4. This 
equation solved for t is equation 5. A random number from 0 to 
1 in equation 5 returns a sample TBF or DBE.  

F(t) = 1-e-t/MTBF = RN   (4) 
 RN = Random Number 

t = -MTBF*(ln(RN))   (5) 

Equation 5 is in columns F and G of the probability map 
middle section with the samples returning a random sample 
MTBF or MDBE in column E. The distributions for the p-
values are then found in the lower region of the probability map, 
rows 746 thru 748. This lower region has formulas related to a 
commercially available Microsoft Excel risk analysis add-in - 
Palisade @Risk (free trial downloads). Any other can be 
substituted or the term “RiskOut()+” in the equations can be 
deleted. Then recalculation with the F9 key will allow 
variability to be visually observed.  

Equation 5 is also used to obtain p-values using simulation. 
The column at the extreme right of the probability map is added. 
This sums samples of consecutive TBF or DBE values. For the 
first event this sum on row 390 is equal to cell F390. This cell, 
cell F390, contains the distribution of DBEs seen in figure 6. It 
shows that 2.9% of the random samples from our null 
hypothesis is below the number of departures at the time of the 
first event. This matches the Poisson probability. While Poisson 
and computer simulation are two completely different concepts 
giving equal answers, they are not independent. Equation 3 and 
5 are related. 

Col / 

Row B C D E F G H

DBE Random 

Samples

Event TBE MTBE p-v1 p-v2

4 1 180,532 6,105,714 0.02913

5 2 139,313 6,105,714 0.02256 0.00133

6 3 3,549 159,923 0.02195

Event TBE MTBE MTBE RV TBE-1 TBE-2

390 1 180,532 6,105,714 5,083,569 5,083,569 5,083,569

391 2 139,313 6,105,714 16,891,216 31,135,026 2,647,405 33,782,431

392 3 3,549 159,923 7,284 7,284 7,284

Event TBE MTBE MTBE RV p-v1 p-v2

746 1 180,532 6,105,714

747 2 139,313 6,105,714

748 3 3,549 159,923
Probability map

modified or deleted for  
right is added for si

Poisson values. Relate
5,083,569 0.03489

16,891,216 0.00821 0.00018

7,284 0.38568

Figure 4 
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d cell equations are found in Figure 5.
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Col / 

Row B C D E F G I

Event DBE MDBE p-v1 p-v2

4 1 180532 6105714 =1-(EXP(-C4/D4)*POWER(C4/D4,0))/FACT(0)

5 2 139313 6105714 =1-(EXP(-C5/D5)*POWER(C5/D5,0))/FACT(0) =1-POISSON.DIST(1,SUM(C4:C5)/D5,TRUE)

6 3 3549 =AVERAGE(C4:C5) =1-(EXP(-C6/D6)*POWER(C6/D6,0))/FACT(0)

Event DBE MDBE MDBE RV DBE-1 RV DBE-2 RV

390 1 =C4 =D4 =AVERAGE(F390:F390) =RiskOutput()+-$D390*LN(RAND())

391 2 =C5 =D5 =RiskOutput()+AVERAGE(F391:G391) =RiskOutput()+-$D391*LN(RAND()) =-$D391*LN(RAND()) =RiskOutput()+SUM(F391+G391)

392 3 =C6 =D6 =RiskOutput()+AVERAGE(F392:G392) =RiskOutput()+-$D392*LN(RAND()) =-$D392*LN(RAND()) =RiskOutput()+-E392*LN(RAND())

Event DBE MDBE MDBE RV p-v1 RV p-v2 RV

746 1 =C4 =D390 =E390 =RiskOutput()+1-(EXP(-C746/E746)*POWER(C746/E746,0)/FACT(0))

747 2 =C5 =D391 =E391 =RiskOutput()+1-(EXP(-C747/E747)*POWER(C747/E747,0)/FACT(0))=RiskOutput()+1-POISSON.DIST(1,SUM(C746:C747)/E747,TRUE)

748 3 =C6 =D392 =E392 =RiskOutput()+1-(EXP(-C748/E748)*POWER(C748/E748,0))/FACT(0)

Poissson Probability Map - modified for Boeing 737 MAX analysis

Poissson Probability Map - modified for Boeing 737 MAX analysis
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