

Interactive Design Ideas for "Internal Computing Components"

1. Virtual Disassembly Lab

Objective: Help students explore and identify internal computer components by virtually "opening up" a machine and inspecting its parts.

Description:

A simulated **drag-and-discover** experience where learners:

- Click to remove the **computer case**, revealing internal parts.
- Click each component (e.g., CPU, GPU, RAM, PSU) to see:
 - o Name
 - Function
 - o Volatility (RAM vs. HDD/SSD)
 - o Key specs (e.g., GHz, cores, bit addressing)

Key Features:

- Animated motherboard with labeled ports and slots.
- Pop-ups for BIOS/UEFI functions and startup sequence.
- Side-by-side comparison (e.g., SSD vs. HDD: speed, capacity, price).

Learning Outcomes:

- Reinforce hardware recognition.
- Develop **functional understanding** of each part.
- Encourage **systems integration awareness**, per Negroponte's model of digital environments.

2. CPU Performance Tuner

Objective: Visualize how CPU characteristics (clock speed, cores, architecture) affect system performance under different workloads.

Student Engagement & Mentoring in Technology

Description:

An interactive simulator where learners:

- Select a task (e.g., web browsing, video rendering, AI training).
- Adjust CPU parameters: GHz, core count, 32-bit vs. 64-bit architecture.
- See visual performance output: "Estimated completion time: 3.2 seconds" or "System overheating—activate cooling."

Key Features:

- Toggle between single-core and multi-core performance.
- Educational tooltips explaining bottlenecks.
- Thermal meter showing need for cooling/PSU consideration.

Learning Outcomes:

- Understand how CPU specs impact computing tasks.
- Evaluate hardware needs for different roles (gamer, designer, analyst).
- Reflect on **Arthur's principle** of performance scaling through modularity.

3. Interactive System Builder Challenge

Objective: Apply knowledge by assembling a system tailored to a user's needs using correct internal components.

Description:

Students are given real-world use cases:

- "Build a workstation for a data scientist."
- "Assemble a budget gaming rig."
- "Design a basic admin office PC."

They must choose:

- CPU type and speed
- GPU (if needed)
- RAM capacity
- Storage (SSD/HDD)
- Cooling and power setup
- NIC type (onboard vs. USB adapter)

Key Features:

- Performance score and cost tracker.
- Compatibility alerts ("Chosen PSU does not support GPU power draw.")
- Results summary: "You chose wisely! This system supports multitasking and high data throughput."

Learning Outcomes:

- Integrate theory with practical configuration.
- Make cost-performance tradeoffs.
- Appreciate **hardware-software synergy** (McLuhan: "The hardware shapes the software environment").

Summary: Interactive Strategy Alignment

Tool	Focus	Learning Competency Developed
Virtual Disassembly Lab	Identification, location, function	Hardware literacy, systems integration
CPU Performance Tuner	Clock speed, cores, heat, architecture	Processor fluency, optimization insight
System Builder Challenge	Decision-making, specification	Real-world application, cost- performance balancing
Embedded Wordwall Activities	Vocabulary reinforcement	Recall, matching, technical language fluency