

Chap 26 Programming languages

Compare and contrast programming language categories

Software developers write code and use programming languages to create software that
meets an organization's business objectives. These programming languages each have
different commands and formatting, and focus on different types of development right now
we'll learn the following:

• interpreted
• compiled programming languages
• query languages
• assembly language

Programming languages categories

Computers execute code in different ways depending on the type of programming language
used. They may either interpret the code directly or first compile it into a format that can be
executed.

In either case program is developed applications by writing instructions in a language that
looks similar to English. Figure below shows an example of code written in the R
programming language which is commonly used for statistical and machine learning
applications. Don't worry about the content of the code at this point I just want you to have
an idea of what the code looks like.

Above: Code written in R Language. The difference between interpreted and compiled code occurs when it

comes to executing code.

Interpreted code

When you use interpreted code, the computer reads the actual instructions written by the developer as it
executes the code. The computer does this by using software called an interpreter that is designed to
understand a specific language. There are two subcategories of interpreted languages: scripting languages
and markup languages.

Scripting languages

Scripting languages or scripted languages are often used by administrators to automate actions on the
computer and for a variety of general programming tasks. Here are some examples of scripting languages:

• Perl
• R
• Python
• JavaScript
• VB script

markup languages

The second category of interpreted language is the markup language. These are languages that provide tags
that you can use to mark up text documents. The two most common examples of these are the Hypertext
Markup Language (HTML), which is used to create web pages, and the Extensible Markup Language (XML)
which is used to exchange structured data between systems.

Below shows an example of a red page written in DML. If you notice all of the text highlighted in blue these are
the tags that represent different types of formatting that should be applied to the text these tags usually
appear in pairs the first tag includes the instruction inside less than and greater than brackets and the second
tag is exactly the same except that there is a/ after the less than symbol any text that appears between the
two tags is given the formatting indicated by the tag. Below is a Webpage written in HTML.

<HTML>
<HTTM>

This is a bold text.

For more certification
information, visit <A
HREF=https://www.certmike.com
the CertMike website

</BODY>

</HTML>

https://www.certmike.com/

The next figure shows an example of a document written in HTML. This document provides a set of data
elements that are going to be exchanged between systems. HTML uses tags just like those in HTML to provide
names for each data element. Remember that scripting and markup languages are both examples of
interpreted languages.

Compiled code in languages that use compiled code the programmer runs a tool called a compiler on their
program to produce an executable file. This executable file contains instructions in machine language that
carry out the programmer’s instructions. When a user wishes to run the program they launch an executable
file rather than the programmer's original source code examples of compiled languages are as follows:

• C and C++
• Java Go
• Go
• Julia
• FORTRAN

Exam tips: You won't find any exam questions requiring you to know how to write code in any specific
language. The questions you encounter will either test you on general concepts or ask you to read pseudo-
code that is written in a generic way.

In an interpreted language the computer directly executes the source code written by the developer using a
program called an interpreter in a compiled language a program called a compiler must first be used to
convert the source code into an executable file. Compiled code normally runs faster than interpreted code.

Specialized languages, there are two other categories of languages that we need to talk about, but for special
use cases.

Interpreted languages are executed from source code using an interpreter. Interpreted languages may be
either scripting languages such as Perl or Python Ruby JavaScript and vbscript or mockup languages such as
HTML and XML.

Compiled languages use a compiler to convert source code into executable machine language. Compiled
languages include C, C++, Java, Go, Julia, and FORTRAN.

Structured Query Language is used to interact with relational databases assembly language is written to work
on a specific hardware processor.

Assembly languages

Assembly language allows programmers to write code that works directly with the hardware, bypassing
compiled or interpreted languages. Each type of processor you might use has a different assembly language,
but it is fairly rare to write code in assembly language for this reason (and because it is pretty challenging to
use) . Assembly language isn't quite the same as machine language, but they're very close. Today, the only
time you see people writing assembly language is when they're working on specialized hardware, such as
embedded devices or Internet of Things devices.

Query languages

Query languages are used to ask questions of databases, and the main language in this category is the
Structured Query Language, or SQL. We will cover this later in detail.

Identifying languages

We covered a lot of different categories and languages, and you need to know which language fits in which
category for the exam. The summary chart below will help you remember the major languages that you might
see on an exam.

Practice question 1

Which of the following languages requires A compiler to create executable code?

This question asks you to recognize which category each programming language falls into. From the
knowledge you gain in this chapter, you should know that C and C++ are compiled languages. In these
languages, the developer writes source code in that language and then uses a compiler to create a machine
language file that can be executed.

Python and Perl are interpreted scripting languages. In those languages, the code written by a software
developer is directly executed by the language’s interpreter. SQL is a query language used to send commands
to a relational database. The correct answer is (C) C++

Practice question 2

You are upgrading the hardware and operating system on a server that runs custom code that was created by
the software development team in your organization. Which of the following types of code is most likely to
need to be written for the new server?

Code that is written in assembly language is written to work on specific hardware processor. A server upgrade
that changes the process is likely to require a new assembly language code that is designed to work on a new

processor. Software written in compiled languages does not need to be written. Instead the developer can
take the original source code and recompile it to work on a new processor.

Similarly interpreted languages do not need to be rewritten. The System Administrator simply needs to ensure
that an appropriate interpreter is installed on the new server.

Query languages such as structured query language are not hardware specific, and as long as the same
database server is installed on the server, existing SQL commands should continue to execute in the same
way that they did on the old server. The correct answer is D, assembly language

Study Guide: Chapter 26 – Programming

Languages

Overview

Programming languages enable developers to write software that meets organizational goals.

Different types of programming languages exist, each with unique features, execution models,

and use cases.

Categories of Programming Languages

1. Interpreted Languages

• Executed line-by-line using an interpreter.

• Good for rapid development and scripting.

Subtypes:

• Scripting Languages

o Automate system tasks, support general-purpose programming.

o Examples: Perl, Python, R, JavaScript, VBScript

• Markup Languages

o Used to format text or exchange data (not to perform computations).

o Examples: HTML, XML

Note: Interpreted languages do not require compilation before execution.

2. Compiled Languages

• Code is translated by a compiler into an executable machine language file before

execution.

• Tend to run faster than interpreted code.

Examples:

• C, C++, Java, Go, Julia, FORTRAN

3. Query Languages

• Used to interact with databases, especially relational databases.

• Not hardware-dependent.

Example:

• SQL (Structured Query Language)

4. Assembly Language

• Low-level language that interacts directly with hardware.

• Hardware-specific; often used for embedded systems and IoT.

• Must be rewritten for different processors.

Key Differences Summary Table

Category Execution Model Examples Hardware

Dependency

Interpreted Line-by-line via

interpreter
Python, R, Perl,

HTML, XML

Compiled Pre-compiled to

executable
C, C++, Java, Go,

Julia

Query Language Database commands SQL

Assembly Language Direct hardware

interaction Varies by processor

Visual Reference

• The R code example in the image shows a scripting language.

• It calculates mean, median, and standard deviation, and creates a histogram.

• R is an interpreted scripting language, ideal for statistical tasks.

Exam Tips

• You won’t need to code, but you must identify language types.

• Understand the execution model (compiled vs interpreted).

• Know which languages are hardware dependent (like assembly).

• Focus on application rather than syntax.

Practice Questions Recap

Q1: Which language requires a compiler?

• Answer: C++

• Why? It’s a compiled language.

Q2: Which code must be rewritten for new hardware?

• Answer: Assembly Language

• Why? Assembly is hardware-specific.

SEMtech Insights

Drawing from Marshall McLuhan's notion that "the medium is the message", understanding

programming languages is key not just to what software does—but how it communicates with

machines, and how that shapes the developer’s logic and outcomes.

Final Tips for Mastery

• Match each language with its category and use case.

• Remember: Interpreters execute, compilers translate.

• Think in terms of abstraction layers: from high-level (e.g., Python) to low-level (e.g.,

Assembly).

• Apply the Postman principle: Don’t just learn tools—understand their cultural and

operational impact.

Study Review Questions – Chapter 26:

Programming Languages

Multiple Choice (20 Questions)

Choose the best answer for each question.

1. Which of the following is a compiled programming language?

A. Python

B. C++

C. HTML

D. XML

2. What is the purpose of a compiler?

A. To run SQL queries

B. To translate code into machine language before execution

C. To interpret scripts line-by-line

D. To manage database transactions

3. Which language would you use to develop a webpage?

A. Python

B. C++

C. HTML

D. SQL

4. Which of the following is a scripting language?

A. C

B. Go

C. Perl

D. FORTRAN

5. Which programming language is commonly used for statistical analysis and

machine learning?

A. HTML

B. Java

C. R

D. C++

6. What is the correct category for SQL?

A. Scripting language

B. Query language

C. Compiled language

D. Assembly language

7. What is the main characteristic of interpreted languages?

A. Code is converted to an executable file

B. Code runs directly through an interpreter

C. Code is used for web formatting only

D. Code cannot interact with hardware

8. Which of the following is NOT an interpreted language?

A. Python

B. JavaScript

C. C

D. VBScript

9. Which language is best suited for writing software that interacts directly with

the hardware?

A. SQL

B. Java

C. Assembly language

D. JavaScript

10. What are HTML and XML examples of?

A. Query languages

B. Compiled languages

C. Scripting languages

D. Markup languages

11. Which language is compiled and used frequently in system-level

programming?

A. Python

B. HTML

C. C

D. XML

12. What is a key benefit of compiled languages over interpreted ones?

A. They are easier to read

B. They run faster

C. They require fewer lines of code

D. They support more languages

13. What must be installed on a server to run interpreted code?

A. Operating system

B. Compiler

C. Interpreter

D. Processor firmware

14. Which language allows for automated actions and general programming

tasks?

A. SQL

B. HTML

C. Java

D. Scripting languages

15. What kind of code would need to be rewritten if a server's processor is

upgraded?

A. Compiled language code

B. Query language code

C. Assembly language code

D. Interpreted language code

16. Which of these is not a scripting language?

A. Perl

B. JavaScript

C. C++

D. Python

17. What does XML primarily do?

A. Format graphics

B. Perform calculations

C. Exchange structured data

D. Compile code

18. Which tool transforms source code into an executable file?

A. Interpreter

B. Compiler

C. Parser

D. Debugger

19. Java is unique because:

A. It cannot be compiled

B. It is a markup language

C. It is a compiled language with interpreted capabilities

D. It is only used in databases

20. Which of these is an interpreted language used in browsers?

A. SQL

B. Java

C. JavaScript

D. Go

Short Answer (5 Questions)

21. What is the primary difference between compiled and interpreted

programming languages?

22. Why is assembly language rarely used in most software development projects

today?

23. Name two markup languages and explain their use.

24. Explain the role of a query language in software development.

25. Describe a scenario where a scripting language is the best choice for solving a

problem.

Vocabulary – Chapter 26: Programming

Languages

Term Definition

Programming Language
A set of rules and syntax used by software developers to write

instructions that a computer can understand and execute.

Interpreted Language
A type of programming language in which the source code is

executed line-by-line by an interpreter, without prior compilation.

Interpreter
A software program that reads and executes code directly from the

source file, translating one line at a time during runtime.

Scripting Language
A subtype of interpreted languages used for automating tasks and

general programming (e.g., Python, Perl, JavaScript, VBScript).

Markup Language
A type of interpreted language that uses tags to format and structure

documents (e.g., HTML, XML).

HTML (Hypertext

Markup Language)

A markup language used to create and format content for web

pages.

XML (Extensible

Markup Language)

A markup language used to store and transport data in a structured

format.

Compiled Language
A programming language that must be translated into machine code

by a compiler before it can be executed.

Compiler
A software tool that converts source code into machine code or an

executable file before the program runs.

Executable File
A file that contains machine code generated by a compiler, ready to

be run by the computer’s operating system.

Machine Code
The lowest-level code, consisting of binary instructions that a

computer’s processor can directly execute.

Query Language
A specialized programming language used to retrieve, modify, and

interact with data in a database (e.g., SQL).

SQL (Structured Query

Language)

A query language used to perform tasks like querying, updating, and

managing data in relational databases.

Assembly Language
A low-level programming language that is hardware-specific and

closely related to machine code.

Low-Level Language
A language that operates very close to the hardware level, providing

little abstraction from the computer's architecture.

High-Level Language
A language that provides more abstraction from hardware, using

human-readable syntax (e.g., Python, Java).

Term Definition

Source Code
The original code written by a programmer in a human-readable

programming language.

Syntax
The set of rules that defines the combinations of symbols considered

correctly structured in a programming language.

Tag
A markup language element that indicates formatting or data

structure, typically enclosed in angle brackets (e.g., ,).

Hardware Dependency
The extent to which code must be tailored to specific hardware; high

in assembly languages, low in high-level languages.

Embedded System
A computer system designed to perform specific tasks, often using

assembly language due to hardware constraints (e.g., IoT devices).

Execution
The process by which a computer performs instructions written in a

program.

Run-Time The period during which a program is running (executing).

Automation
The use of scripts or software to perform tasks without manual

intervention.

Data Formatting
The process of organizing and structuring data for display or

storage, often using markup languages.

Relational Database
A type of database that stores data in tables with relationships

between them; typically accessed using SQL.

Pseudo-Code
A simplified, language-agnostic way of writing program logic that

resembles real code but is not meant for execution.

General-Purpose

Language

A language that can be used across various domains and

applications, not limited to a specific task (e.g., Python, Java).

	Study Guide: Chapter 26 – Programming Languages
	Overview
	Categories of Programming Languages
	1. Interpreted Languages
	Subtypes:

	2. Compiled Languages
	Examples:

	3. Query Languages
	Example:

	4. Assembly Language

	Key Differences Summary Table
	Visual Reference
	Exam Tips
	Practice Questions Recap
	SEMtech Insights
	Final Tips for Mastery

	Study Review Questions – Chapter 26: Programming Languages
	Multiple Choice (20 Questions)
	1. Which of the following is a compiled programming language?
	2. What is the purpose of a compiler?
	3. Which language would you use to develop a webpage?
	4. Which of the following is a scripting language?
	5. Which programming language is commonly used for statistical analysis and machine learning?
	6. What is the correct category for SQL?
	7. What is the main characteristic of interpreted languages?
	8. Which of the following is NOT an interpreted language?
	9. Which language is best suited for writing software that interacts directly with the hardware?
	10. What are HTML and XML examples of?
	11. Which language is compiled and used frequently in system-level programming?
	12. What is a key benefit of compiled languages over interpreted ones?
	13. What must be installed on a server to run interpreted code?
	14. Which language allows for automated actions and general programming tasks?
	15. What kind of code would need to be rewritten if a server's processor is upgraded?
	16. Which of these is not a scripting language?
	17. What does XML primarily do?
	18. Which tool transforms source code into an executable file?
	19. Java is unique because:
	20. Which of these is an interpreted language used in browsers?

	Short Answer (5 Questions)
	21. What is the primary difference between compiled and interpreted programming languages?
	22. Why is assembly language rarely used in most software development projects today?
	23. Name two markup languages and explain their use.
	24. Explain the role of a query language in software development.
	25. Describe a scenario where a scripting language is the best choice for solving a problem.

	Vocabulary – Chapter 26: Programming Languages

