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ABSTRACT Methods are described for the analysis of electron micro- 
graphs of biological objects with helical symmetry and for the production of 
three-dimensional models of these structures using computer image recon- 
struction methods. Fourier-based processing of one- and two-dimensionally 
ordered planar arrays is described by way of introduction, before analysing 
the special properties of helices and their transforms. Conceiving helical 
objects as a sum of helical waves (analogous to the sum of planar waves used 
to describe a planar crystal) is shown to facilitate analysis and enable 
three-dimensional models to be produced, often from a single view of the 
object. The corresponding Fourier transform of such a sum of helical waves 
consists of a sum of Bessel function terms along layer lines. Special problems 
deriving from the overlapping along layer lines of terms of different Bessel 
order are discussed, and methods to separate these terms, based on analysing 
a number of different azimuthal views of the object by least squares, are 
described. Corrections to alleviate many technical and specimen-related 
problems are discussed in conjunction with a consideration of the computer 
methods used to  actually process an image. A range of examples of helical 
objects, including viruses, microtubules, flagella, actin, and myosin fila- 
ments, are discussed to illustrate the range of problems that can be addressed 
by computer reconstruction methods. 

Computer image processing has been a 
powerful tool in the investigation of helical 
assemblies of biological macromolecules 
and has often provided spectacular insights 
into their structure and arrangement that 
cannot be obtained by simple inspection. 
Because the patterns from the top and bot- 
tom of helices overlap, an interference pat- 
tern is usually produced in which it is 
difficult to make out the subunit positions 
or their shape. Computer methods enable 
these problems to be circumvented and, 
moreover, enable three-dimensional models 
of the structures to be easily produced, often 
from a single view. In this way, new in- 
sights have been obtained on the structure 
of objects such as filamentous viruses, mus- 
cle and cytoskeleton filaments, bacterial 
flagella, and nucleosomes. 

This article reviews computer image pro- 

INTRODUCTION cessing of biological objects with helical sym- 
metry. It is assumed that the reader is fa- 
miliar with the elements of Fourier-based 
image processing applied to planar objects, 
such as two-dimensional crystals, and so this 
article will concentrate on the specific prop- 
erties of helices; the methods used to process 
images of helical objects; and some illustra- 
tive examples of the results that can be ob- 
tained. Readers not intimately familiar with 
image processing of planar objects are re- 
ferred to the companion article in this vol- 
ume (Stewart, 1988) and to a number of re- 
cent reviews of the subject (for example, Aebi 
et al., 1984; Amos, 1974; Stewart, 1986); only 
a brief introduction to these methods will be 
given here. Before proceeding to discuss the 
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image processing of helices, it is, however, 
helpful to consider the general nature of he- 
lical symmetry and to appreciate why bio- 
logical objects with this symmetry are so of- 
ten found. 

HELICAL STRUCTURES 

A wide range of biological assemblies are 
constructed from subunits arranged in a reg- 
ular manner. These structures usually take 
the form of two- or three-dimensional crys- 
tals, helices, or shells. This arrangement is 
because, in these sorts of structure, each re- 
peating unit is located in an equivalent en- 
vironment (at least approximately), and so 
the interactions between subunits are al- 
ways the same (Caspar and Klug, 1962). 
This is important, because it means that 
only a small number of interaction surfaces 
need to be specified. If the contacts between 
subunits in a large assembly were all differ- 
ent, a very large number of interaction sur- 
faces would have to  be specified, which 
would greatly increase the complexity of the 
structure of the individual units. Thus as- 
semblies in which the units are equivalent 
require much less information to specify 
their structure and can easily self-assemble. 

Helices and shells can be thought of as 
special cases of two-dimensional crystals, in 
which the crystalline sheet has been de- 
formed into a cylinder or a sphere, respec- 
tively. These structures seem to occur nat- 
urally in biological systems with rather 
greater frequency than crystals, possibly 
because helices and shells are bounded in 
two and three dimensions, respectively, and 
so have more defined limits placed on their 
size and growth. Aggregates of this form 
have been adapted to serve a broad range of 
roles. Virus capsids, for example, are fre- 
quently helical or icosahedral shells. Heli- 
ces also find a more general application 
when elongated structures are required, 
since, although their diameter is fixed, he- 
lices can be extended more or less indefi- 
nitely. Examples of naturally occurring he- 
lical structures include DNA, viruses, 
cytoskeletal and muscle filaments, flagella, 
and the a-helix that forms an important 
component of protein secondary structure. 
In addition, biologically interesting mole- 
cules can sometimes be induced to form 
helical aggregates or bind to helical struc- 
tures, thereby facilitating analysis by elec- 
tron microscopy and X-ray diffraction. Ex- 
amples of the latter sort of aggregate 

include nucleosomes (Klug et al., 1980), 
decorated muscle thin filaments (Taylor and 
Amos, 1981), glutamate synthetase (Frey et 
al., 19751, catalase (Kiselev et al., 19681, 
and the recA protein (Egelman and Stasiak, 
1986). 

Helical objects can often be ideal objects 
for analysis by electron microscopy and com- 
puter image processing because they have 
particular properties that make it relatively 
straightforward to obtain a three-dimen- 
sional view of the subunit, at least at mod- 
erate resolution (about 2 nm). However, 
although this analysis is direct and quanti- 
tative, it does require some considerable care 
and also an understanding of the special 
properties of helices and their Fourier trans- 
forms. Some aspects of this theoretical basis 
for processing helical particles are different 
from the concepts generally employed for 
planar crystalline arrays. Moreover, some of 
the differences are rather subtle and can eas- 
ily confuse even experienced workers. Con- 
sequently, before reviewing the methods em- 
ployed in analysing helical particles, some 
space will be devoted to explaining the basis 
of the method and to examining some of the 
special properties of helices and their trans- 
forms. Because many readers of this article 
will probably be biologists without a deep 
background in mathematics, emphasis will 
be placed on geometric properties and the 
manner in which the problem should be con- 
ceived. Although equations are also pro- 
vided, one need not worry unduly about 
detailed derivations provided the basic 
concepts are understood, since computer pro- 
grammes are available to carry out the 
detailed calculations. There have also been a 
number of helpful reviews covering the 
mathematical basis of image processing to 
which the reader is directed (Aebi et al., 
1984; Amos, 1974; Amos et al., 1982a; De- 
Rosier and Moore, 1970; Fraser and MacRae, 
1973; Misell, 1978; Stewart, 1986). 

BACKGROUND TO IMAGE PROCESSING 

Image processing is a powerful adjunct to 
electron microscopy when investigating the 
structure and arrangement of biological 
macromolecules and subcellular assemblies. 
These methods aim to alleviate many of the 
problems generally present in electron mi- 
crographs of biological material and thereby 
enable higher-resolution structural infor- 
mation to be extracted and analysed. In this 
way, a more quantitative view of the struc- 
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ture is often produced than is obtained by 
simple inspection. Thus high-resolution fea- 
tures or small differences between objects 
that are usually masked by poor contrast 
and granularity from stain and support film 
can be reliably delineated; confusion caused 
by superposition of information from differ- 
ent levels of the object resolved; and often a 
three-dimensional model produced to over- 
come the inherently limited two-dimen- 
sional view obtained by electron micros- 
copy. Ideally most of these methods can be 
applied to any general object, but the meth- 
ods are usually most powerful when applied 
to regular objects, such as crystals, helices, 
or shells. This article will concentrate 
mainly on helical objects; the application of 
these methods to two-dimensional crystals 
is treated elsewhere (for example, Aebi et 
al., 1984; Amos, 1974; Stewart, 1986; 1988). 

Image processing of regular two-dimen- 
sional crystals relies on the particular prop- 
erty that the Fourier transform of such an 
object is concentrated into a number of 
spots, placed on a lattice that is related to 
the original crystal lattice. Background 
“noise” is, by contrast, distributed over the 
entire Fourier spectrum, and this enables 
noise to be filtered out of images, which can 
result in a dramatic enhancement of fine 
structural detail (see, for example, Stewart, 
1988). To process images digitally, it is 
necessary to first convert them into a nu- 
merical form suitable for computer analysis, 
using a digitiser that scans the negative in 
a raster pattern and records the densities a t  
regular intervals over the area to be pro- 
cessed. These data are stored on magnetic 
disc or tape until required for processing, 
which is usually carried out along the lines 
suggested by DeRosier and Moore (1970). 
Fourier transforms are calculated using 
standard fast algorithms (Cooley and Too- 
key, 1965; Fraser, 1974) and displayed us- 
ing either line printers or raster graphics 
devices. The required parts of the transform 
are then selected and averaged internally 
according to the symmetry of the object or 
with data from other micrographs if re- 
quired, and a filtered image is reconstructed 
by Fourier synthesis. The filtered image is 
displayed either graphically (often using 
contour plots for two-dimensional objects) or 
on a raster graphics device. Figure 1 shows 
a flow chart of the basic steps in this proce- 
dure. 

Electron micrographs of biological mate- 

rial can sometimes be made difficult to 
interpret by the interference of information 
from different structural levels in the object. 
Because the depth of focus in the electron 
microscope is large compared with specimen 
thickness, all levels of the object will be in 
focus simultaneously. Thus, if two regular 
layers overlap, their lattices will be super- 
imposed in the image; this produces moire 
patterns that make it difficult to ascertain 
the structure of each lattice by simple in- 
spection. If the lattices are rotated relative 
to each another, it is usually possible to 
separate the contributions of each layer in 
the Fourier transform, since most reciprocal 
lattice points from one layer usually do not 
overlap with those from the other. Thus, 
provided that the contributions from each 
layer can be identified, an image of a single 
layer can be produced by Fourier synthesis. 
Figure 2 illustrates how this can be done. 
Note that, in this instance, not only has 
noise been removed by filtering, but so has 
the contaminating periodic structural infor- 
mation from the other regular layer. It is 
sometimes possible to separate the contribu- 
tions from overlapping layers that are re- 
lated by translation rather than rotation. 
However, this requires some knowledge of 
the structure of the underlying individual 
layers, since the spots from each reciprocal 
lattice now overlap. Least squares analysis 
can be employed to decompose the composite 
pattern and show, at  least, that it is consis- 
tent with two overlapping layers, as was 
done, for example, with the double surface 
layer of Aquaspirillum serpens MW5 (Ste- 
wart and Murray, 1982). 

A common source of superimposed lattices 
is the collapse of a cylinder, as happens 
often, for example, when dried in prepara- 
tion for electron microscopy. A moire pat- 
tern then forms between the top and bottom 
of the flattened tube. The classic example of 
this sort of pattern is that found in bacte- 
riophage T4 polyheads (Laemmli et al., 
1976; Steven et al., 1976; Yanagida et al., 
1972), but other more recent examples in- 
clude tubes of actin (Aebi et al., 19811, 
acetyl choline receptors (Brisson and Un- 
win, 1984), sarcoplasmic reticulum ATPase 
(Buhle et al., 1983; Castellani and Hard- 
wicke, 1983; Taylor et al., 1984), cyto- 
chrome reductase (Leonard et al., 19811, and 
myosin subfragment-2 (Quinlan and Ste- 
wart, 1987). A naturally occurring example 
is the sheath of Methanospirillum hungatei 
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MICROGRAPHS 

OPTICAL DIFFRACTION select best preserved areas with 
optimum focus and astigmatism 

obtain densities on a raster 
1 

DIGITISE 

MASK OFF AREA 

COMPUTE FOURIER TRANSFORM 

INDEX PATTERN identify lattice on which spots lie 

OBTAIN STRUCTURE FACTORS values of transform at lattice points 

AVERAGE DATA (a) within an image according to symmetry 
(b) between images 

RECONSTRUCT IMAGE by Fourier inversion of structure factors 

Fig. 1. Flow chart for Fourier-based image processing of regular one- and two-dimensional 
planar objects. 

(Stewart et al., 1985a). In all these exam- 
ples, the lattices from the top and bottom 
were rotated relative to one another, and so 
views of a single side were easily produced 
by filtering. 

Helices are, of course, unflattened cylin- 
ders, and consequently these objects also 
suffer from interference between patterns 
on their upper and lower surfaces. This can 
often make it difficult to decide, by visual 
inspection, even their symmetry, let alone 
the shape or orientation of their subunits. 
However, it is, in principle, possible to sep- 
arate the contributions from top and bottom 
and so reconstruct single-sided images that 
allow these features to be appreciated more 
fully (DeRosier and Klug, 1968). An exam- 
ple of this sort of analysis is shown in Figure 
3. However, the Fourier transform of helical 
objects is somewhat different from that of 
plane layers, and so it is necessary to exam- 
ine the properties of helical objects and their 
Fourier transforms in some detail before 
proceding to a discussion of the methods 
employed to analyse and process these ob- 
jects. 

HELICES AND THEIR FOURIER TRANSFORMS 

Helices can be considered as being formed 
from a regular two-dimensional lattice 
rolled into a cylinder, as illustrated in Fig- 
ure 4. In addition, whereas the thickness of 
a two-dimensional crystal can be thought of 
as being built up from a number of thin 
sheets stacked on top of one another, a 
helical structure can be considered as a 
series of thin coaxial cylinders. This concep- 
tualisation is central to the discussion of 
helices and their transforms. I t  forms the 
basis of computer methods used to analyse 
these structures and produce filtered images 
and three-dimensional reconstructions from 
electron micrographs. 

If one conceives of a helix as a planar 
lattice rolled into a cylinder, then one can 
also describe the variation of density in the 
structure in terms of an analogous sum of 
waves. However, these will be helical waves 
following helical tracks, rather than the 
plane waves following linear tracks that 
were employed in planar objects (Fig. 5). A 
helical wave is simply formed by rolling a 
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Fig. 2. Generation of a moire pattern by superposi- 
tion of two regular images. A rotational moire pattern 
(a) is produced by superimposing two regular arrays 
@,c) that have been rotated relative to one another. The 
shape of the subunits can be easily made out in a single 
layer, but is confused in the moire pattern. The trans- 
form (d) of the superimposed layer contains spots from 
the transforms of each single layer, but the spots from 
each layer do not overlap. Thus the transform of a single 
layer (e) can be identified and used to reconstruct a 
single layer [in this case, (c)]. Reproduced with permis- 
sion from Stewart (1986). 

plane wave onto a cylinder. However, in 
contrast to  the ideally infinite plane wave, a 
helical wave is limited and, moreover, must 
repeat an integral number of times in the 
circumference of the cylinder: that is to say, 
helical waves must have an integral rota- 
tional frequency, n. The other parameter 
that specifies a helical wave is the axial 
distance traversed for it to rotate azimuth- 
ally (that is, perpendicular to the helical 
axis) by one complete revolution: this is its 
pitch. Thus each helical wave can be speci- 
fied by three parameters: its radius, r; its 
rotational frequency, n; and its pitch, p .  

When analysing helical particles, it is 
generally more convenient to use cylindri- 
cal coordinates (see Fig. 6) rather than the 
more common Cartesian (x,y,z) ones. Thus, 
in real (image) space, the object density a t  
any position is described in terms of its 

Fig. 3. Moire pattern (a) produced by superposition 
of the patterns from the top and bottom of a helix. The 
transform of a helix (c) has elongated spots, but contri- 
butions from one side can be identified (d) and used to 
reconstruct a one-sided image (b) in which the location 
and substructure of the repeating units is clear. Repro- 
duced with permission from Stewart (1986). 

radius, r, its axial position along the direc- 
tion of the helix axis, z, and its azimuthal 
rotation, Cp, about the helix axis. Similarly, 
in Fourier space, the position of a point in 
the transform is described in terms of its 
radius, R, its axial translation from the 
origin, Z, and its azimuth, a. The same 
reciprocal relationships hold as in planar 
objects, so that Z = l/z and R = l/r. The 
convention is that lower case is used for 
terms in real (image) space, whereas upper 
case is used for Fourier space. 

The density distribution within a sheet of 
radius, r, will be the sum of all the possible 
helical waves that can be accommodated by 
the helical lattice. Like a plane lattice, the 
possible helical waves are severely re- 
stricted, and only those corresponding to the 
lattice and its “overtones” will contribute to 
the overall density. Consequently, only se- 
lected waves, having special values of n and 
p, will contribute to the object density. In 
this respect, therefore, an object with helical 
symmetry is analogous to  a planar lattice in 
which only particular waves make a contri- 
bution to the density of a regular object. The 
density a t  any point in the helical object is 
the sum of all the helical waves at that 
point. 
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b 

Fig. 4. Relation between a helical lattice (a) and a 
planar one (b). If the cylinder on which the helix is 
drawn is cut out and laid flat, it will give the pattern 
shown in (b) and, conversely, (b) rolled into a cylinder 
and joined along the vertical edges will give the helix 

Because a helical object's density distri- 
bution can be conceived as a sum of helical 
waves, its Fourier transform will be a sum 
of the transforms of individual waves, in the 
same way as the Fourier transform of a 
planar array is the sum of the transforms of 
its constituent waves. Because the helical 
wave follows a curved surface, its Fourier 
transform is more complicated than that of 
a plane wave and, instead of being a pair of 
points, becomes elongated into a pair of 
lines, arranged symmetrically about the or- 
igin in the Fourier transform (Fig. 3). The 
lines are perpendicular to the direction of 
the helix axis (Z) and are spaced axially at 
multiples of the reciprocal of its pitch, p. 
These lines are generally referred to as 
"layer lines." Cochran et al. (1952) showed 
that the value of the Fourier transform, as a 
function of radius, R, along this line, is 
given by a Bessel function of order, n, mul- 
tiplied by a phase term exp[in(+ + d2)] .  
Thus the magnitude of the transform of a 
helical wave is independent of azimuth, 
whereas the phase of the transform varies 
through n cycles of 0" to 360" for a rotation of 
360" in the azimuth of the original helical 
wave. This is a key result and forms the 

(a). In contrast to the ideally infinite lattice used to 
describe planar arrays, the helical lattice has to repeat 
around the circumference of the cylinder and so is 
restricted to particular angular frequencies. 

basis of the analysis and reconstruction of 
helical particles described below. 

The Fourier transform of a helical struc- 
ture therefore consists of a series of layer 
lines corresponding to the helical waves 
from which the object is constituted. The 
position of the layer lines and the distribu- 
tion of intensity along them depends on the 
helical symmetry of the object and the struc- 
ture of its subunits. In this context, there 
are some simple rules that govern the ap- 
pearance of the Fourier transform of a helix. 
These rules become clear from a consider- 
ation of first, the transform of a continuous 
helix and second, the transform of a helix 
composed of a number of regularly spaced 
points (Cochran et al., 1952). As shown in 
Figure 7, the transform of a continuous 
helix of radius, r, and pitch, p, is a series of 
layer lines, perpendicular to the helical (Z) 
axis and spaced 1 = l/p apart. The first 
layer line corresponds to the basic helical 
wave, while the higher layer lines corre- 
spond to its overtones. As shown by Cochran 
et al. (19521, the value of the Fourier trans- 
form across a layer line is given by a Bessel 
function having the same order, n, as the 
layer line number, 1. Bessel functions of 
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Fig. 5. Illustration of a helical wave. Density varies 
periodically in a cylindrical shell of radius r. Compare 
with the lattice shown in Figure 4. (The wave shown 
here corresponds to one of the directions present in the 
lattice in Figure 4.) 

order n are denoted by J,. Thus the zeroth 
layer line (the equator of the transform) is 
given by a Jo Bessel function, the fir& layer 
line by a J1 Bessel function, the second layer 
line by a J2 Bessel function, and so on. 
Figure 8 shows a plot of a number of Bessel 
functions of different order, n. With the 
exception of the Jo function, they all have a 
similar shape, being initially zero, rising to 
a maximum before declining, and then os- 
cillating to give a series of weaker subsid- 
iary maxima. The Jo Bessel function instead 
starts at its maximum value and then de- 
clines. The position of the first (primary) 
maximum of a Ressel function J,(x) occurs 
a t  higher values of x for increasing n and, as 
a first approximation, occurs at approxi- 
mately x = n + 2. Table 1 lists the position 

z 
t 

J 
X 

Fig. 6. Cylindrical coordinate system used to 
analyse helical particles and their Fourier transforms. 
A general point in the transform (X,Y,Z) is conveniently 
described in terms of its radius (R), azimuth (4), and 
axial position (Z). 

of these maxima for Bessel functions of up to 
order 12. Because Bessel functions of in- 
creasing order have their primary maxi- 
mum progressively further from the origin 
(which, in helical diffraction patterns corre- 
sponds to the meridian of the pattern), the 
transform of a continuous helix takes the 
form of a cross, centered on the origin 
(Fig. 7). 

A discontinuous helix is produced by mul- 
tiplying a continuous helix by an axial 
interference function with a repeat distance 
of a. If the helix were to be constructed from 
equally spaced points, its transform would 
take the form of a series of equally spaced 
lines perpendicular to the helix axis (see 
Fig. 7). The Fourier transform of a discon- 
tinuous helix is thus the transform of two 
functions multiplied together, which is 
equivalent to the convolution of their Fou- 
rier transforms [see Lipson and Lipson 
(1969) for a detailed discussion of this 
point]. This convolution means repeating 
the Fourier transform of a helix a t  each 
point of the transform that corresponds to 
the series of lines. Since the transform of the 
series of lines is simply a series of points 
spaced at  lla along the Z axis, the composite 
transform will consist of a series of helical 
crosses (each containing layer lines spaced 
1 = l /p apart) spaced by lta along the Z axis 
(see Fig. 7). 
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__ 1 
a - 
t 
I 

.... 

continuous x sampling = discontinuous 
helix function helix 

(a 1 (b) (C) 

Fourier transforms 

Fig. 7. Transform of continuous and discontinuous 
helix. A continuous helix in projection gives a cosine 
wave (a) of period, p, corresponding to the helical pitch. 
The transform (d) of this structure is a series of layer 
lines, spaced lip apart, which form a cross centred on 
the origin. A discontinous helix (c) is formed by multi- 
plying a continuous helix by a sampling function ing to the sampling function. 

(b) corresponding to lines spaced a apart. The transform 
of this sampling function (e) is a row of spots along the 
meridian spaced at  l/a. The transform of the discontin- 
uous helix (f) is the convolution of the transforms of the 
continuous helix (d) and the sampling function (e) and 
so is a series of crosses centred on the spots correspond- 

The possible values of n and 1 that are 
present in the Fourier transform of a helix 
are restricted, because only particular heli- 
cal waves will make an identical contribu- 
tion to all the subunits in the helical lattice. 
This is analogous to the restriction placed 
on two-dimensional waves in planar objects, 
although not quite as straightforward. It is, 
however, possible to derive a simple selec- 
tion rule (Cochran et al., 1952; Klug et al., 
1958) that predicts the possible combina- 
tions of n and 1 for a particular helical 
symmetry. This selection rule states that if 

the structure has u units in t turns along a 
basic helix (that is, a helix that passes 
through all equivalent points in the lattice), 
then: 

1 = tn + um, (1) 

where m is an integer that can be positive, 
negative, or zero. Moreover, this relation- 
ship gives rise to a regular lattice of points 
when n (rather than R) is plotted against 1 
or Z. 

When using the selection rule, it is neces- 



BIOLOGICAL STRUCTURES WITH HELICAL SYMMETRY 333 

n = 3  

n-10 

Fig. 8. Plot of Bessel functions of order 0, 1, 3, and 10. 

TABLE 1 .  Positions of  Bessel function maxima 

Bessel order Value of 2nRr for orimarv maximum 
~ 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

1.8 
3.1 
4.2 
5.3 
6.4 
7.5 
8.6 
9.7 
10.7 
11.8 
12.8 
13.9 

sary to  define the hand of helices, and the 
usual convention (Klug et al., 1958) is to  
assign right-handed helices positive Bessel 
orders. A right-handed helix is designated 
as one in which the azimuth (as defined in 
Fig. 6) increases with increasing z. The 
hand of a helical structure can be deter- 
mined by tilting (for example, Finch, 1972) 
or shadowing (for example, Kensler and 

Stewart, 1983). Figure 9 illustrates the dif- 
ference between right- and left-handed he- 
lices. 

It is important to note that there can be 
Bessel functions of more than one order on 
any particular layer line (i.e., for any par- 
ticular value of I in the selection rule there 
are a range of values of n corresponding to 
the different values of m). Usually, a t  the 
comparatively modest resolutions encoun- 
tered in electron microscopy, only a single 
Bessel function makes a major contribution 
to each layer line, but this is not always the 
case. This particular problem will be dis- 
cussed in some detail later. 

Sometimes there is not a single helix that 
runs through all equivalent positions. In 
this case there will be a number, k, of 
helices, related by a k-fold azimuthal rota- 
tion, that together will pass through all 
equivalent positions. (In other words, the 
structure will be composed of k helical 
strands). The effect of this situation is that 
only values of n that are multiples of k are 

Fengbin Wang
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a b 
Fig. 9. Hand of helical structures. (a) shows right- 

handed helical tracks, whereas (b) shows left-handed 
tracks. 

allowed in the selection rule. The use of the 
selection rule can be illustrated by an ex- 
ample. Consider a basic helix containing 7 
units in 2 turns. The helical waves contrib- 
uting to this structure are therefore defined 
as: 

I = 2n + 7m. 

If, as in bacteriophage T4, the structure is 
composed of six such helices (that is, k = 61, 
then n will be restricted to multiples of 6. 

The value, F, of the Fourier transform 
along a layer line, I ,  (where the spacing of 
the first layer line corresponds to the axial 
repeat distance, c, of the helical object) can 
be easily calculated. If the particle density 
is conceived as a sum of helical waves, then 
the Fourier transform will be the sum of the 
transforms of these waves. Each (n,Z) helical 
wave will give rise to a term of Bessel order 
n on layer line 1, and so the value along a 
layer line is the sum of all the transforms of 
helical waves that contribute to the layer 
line. Thus: 

F(@,R,Z) = C Gn,L(R)exp[in(@ + d2)I. (2) 

The value of each (n,Z) term, Gn,l(R), is 
related to  the corresponding helical wave 

coefficient gn,l(r) by Fourier-Bessel trans- 
formation: 

and 

where gn,l(r) (which is a complex number) 
specifies the amplitude and phase of the 
helical wave of pitch cl l  and rotational fre- 
quency n, and J,(2~iRr) is a Bessel of order n 
and is defined by the integral 

Bessel functions are easily evaluated by 
computer and are tabulated in standard 
textbooks such as Jahnke and Emde (1945). 

Thus the value of the Fourier transform 
along a layer line is a sum of Bessel func- 
tions. The selection rule restricts the layer 
lines and Bessel orders that are found in the 
transform, so that only terms with values of 
n and I that are consistent with the selection 
rule are non-zero. 

INDEXING HELICAL DIFFRACTION PATTERNS 

Determining the helical symmetry pa- 
rameters (“indexing”) of a particle is per- 
haps the single most important step in its 
analysis and is a vital prerequisite for any 
subsequent processing. Unless the indexing 
is correct, all subsequent steps will lead to 
artefactual results that may be very diffi- 
cult to recognise as such. Essentially, index- 
ing the structure aims to associate all the 
layer lines present in the Fourier transform 
with a single selection rule and so recognise 
the parameters that specify the helical 
structure, namely: the number of subunits 
per turn and the number of helical tracks. 
This procedure is analogous to indexing a 
planar pattern, whereby one aims to find 
the underlying attice and deduce its sym- 
metry element B And where one aims to 
determine a lattice and assign Miller indi- 
ces for a planar pattern, for a helical pat- 
tern there is an analogous lattice assign- 
ment in terms of n and I .  The problem of 
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Fig. 10. The Fourier transform of a helix (a) gives a 
series of layer line reflections corresponding to its top 
and bottom that form two overlapping lattices. These 
can be most easily analysed in a (n,O plot (b). This plot 
shows the lattice terms from the top (filled circles) and 
bottom (open circles) of the helix. Once the lattice has 
been identified, it can be used to deduce the helical 
symmetry, which in this case is six strands, each 
containing 15 subunits per turn. 

indexing a helical diffraction pattern thus 
reduces to assigning values of n and 1 to 
each layer line and thereby deducing the 
selection rule that specifies the object’s sym- 
metry. To do this, one first assigns an ap- 
proximate lattice to the different layer line 
maxima in the pattern, as illustrated in 
Figure 10. One can then assign layer line 
numbers. These are often somewhat arbi- 
trary, but one can usually draw an approx- 
imately equally spaced set of lines that 
contain all the maxima. One can then de- 
termine n from the radial position of each 
layer line maximum. This is most easily 
done if the structure is confined to a thin 
cylindrical surface so that all the material 
lies at a single radius, r. One then simply 

computes the value of the argument 27rRr 
and compares it with values for different 
values of n. Table 1 lists values of the 
argument 2rRr corresponding to  the pri- 
mary Bessel function maximum for values 
of n up to 12. Thus 27rRr should be close to 
1.8 for n = 1, 3.1 for n = 2, and so on. In 
practice, the material is usually spread over 
a number of radii, and so the distribution of 
intensity along the layer line does not follow 
exactly the shape of a Bessel function. But 
usually the intensity still has a pronounced 
peak close to that predicted, since terms 
from high and low radii tend to cancel to 
some extent. Flattening of the particle can 
also cause the radial position of the maxi- 
mum to shift. If the particle simply collapses 
as, say, a result of radiation damage, then it 
will be indistinguishable from a native par- 
ticle, since the projected density will not 
change. If, however, the particle is flattened 
by compressive forces (such as those from 
drying), then it will take on an elliptical 
cross section and appear to have an in- 
creased diameter. This effect can be diffkult 
to detect without tilting the particle and, 
moreover, usually gives rise to a clearer 
optical diffraction pattern than seen with 
unflattened particles (Moody, 1967a). Since 
flattening due to compression increases the 
particle’s apparent diameter, it will mani- 
fest itself in the transform by maxima ap- 
pearing at  a lower radius, R, along the layer 
lines than would be predicted. The magni- 
tude of this effect depends on the degree of 
flattening, but calculations (for example, 
Moody, 1967a) indicate that it could reduce 
the apparent radius of the maximum by up 
to 20%. 

It can sometimes be difficult to determine 
the radius at which most material in the 
structure is located, particularly when den- 
sity appears superimposed as in an electron 
micrograph. One clue can come from the 
intensity distributions of any Jo terms 
present. This is because, in addition to their 
central maxima, they usually show subsid- 
iary maxima. The position of the first sub- 
sidiary maximum, which is a highly sensi- 
tive measure of the effective radius of the 
particle, occurs at a value of 27rRr of about 
3.8. Another clue to radii can come from 
fortuitous views down the helix axis that 
are sometimes observed with shorter parti- 
cles, such as phage tails (Moody, 1967a) or 
tubes of bacterial surface layer proteins 
(Stewart and Murray, 1982; Stewart et al., 
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1985a). However, even in these cases there 
is sometimes uncertainty about the precise 
value of n, although the number of possible 
alternatives is usually small. One method 
that is often effective in deciding between 
alternatives is to take advantage of the 
phase differences on opposite sides of a layer 
line. When the phase origin is located accu- 
rately on the helix axis, the phase of a 
particular Bessel term at  a given radius 
passes through n cycles of 0" to 360" for an 
azimuthal rotation of the particle of 360" 
(see equation 2). Therefore it follows that for 
odd-order Bessel functions, the phase differ- 
ence will be 180", whereas for even-order 
Bessel terms it will be 0. Consequently, 
determining the phase difference on oppo- 
site halves of a layer line can often decide 
whether n is odd or even, and this test may 
be sufficient to enable a clear decision to be 
made between different symmetries. An ex- 
ample of this was seen in muscle thick 
filaments: Limulus (horseshoe crab) fila- 
ments were shown to be either three-, four- 
or five-stranded on the basis of the radial 
position of the prominent maxima on the 
first layer line, but since the phase differ- 
ence between different sides was within a 
few degrees of zero, the structure had to be 
four-stranded, with the terms on the first 
layer line deriving from J4 Bessel functions 
(Stewart et al., 1981). Similarly, both bio- 
chemical evidence and the position of the 
radial maxima indicated that frog muscle 
thick filaments were either three- or four- 
stranded, but a computed phase difference 
of close to 180" showed conclusively that 
these structures were three-stranded (Ken- 
sler and Stewart, 1983). A simple optical 
method for deciding whether terms have 
odd or even Bessel order has also been 
described (Aizawa and Maeda, 1980). 

SEPARATION OF CONTRIBUTIONS FROM THE 
TOP AND BOTTOM OF HELICES 

Once the helical transform has been in- 
dexed, one can assign reflections to  either 
the top or bottom of the structure and so 
reconstruct a view of one side (Klug and 
DeRosier, 1966), as illustrated in Figure 3. 
This view can often give a good idea of the 
arrangement and shape of subunits, partic- 
ularly when most material is located over a 
narrow band of radii, as, for example, in 
muscle thick filaments (Stewart et al., 
1981). But even when material is located 
over a range of radii, as, for example, in 

phage tails, simple one-sided views can of- 
ten give a considerable insight into the 
arrangement of material. In the T4 phage 
tail, for example, such a filtered image 
showed clearly that there was material lo- 
cated primarily at two radii (Klug and De- 
Rosier, 1966). 

THREE-DIMENSIONAL RECONSTRUCTION 

Although one-sided filtered images of he- 
lical objects can often give a considerable 
insight into the arrangement and structure 
of subunits, a much more powerful method 
of investigating these features is to produce 
a three-dimensional reconstruction. This is 
often possible from a single view of a helical 
structure, because of the particular way in 
which the Fourier transform of a helical 
particle alters with azimuth. If the contri- 
bution on a particular layer line is made up 
from terms having only a single Bessel 
order, then, at a given radius, R, the ampli- 
tude of the transform (the sum of Gn,l terms) 
will not change with azimuth, whereas its 
phase will change in a simple predictable 
way depending on the order n of the Bessel 
function (see equation 2). Specifically, the 
phase will pass through n cycles of 0" to 360" 
for every 360" of azimuthal rotation. There- 
fore, if the amplitude and phase are known 
for a particular azimuth of the particle, it is 
possible to predict the amplitude and phase 
for any other azimuth and thereby generate 
a three-dimensional transform of the parti- 
cle. And once a three-dimensional trans- 
form has been obtained, a three-dimen- 
sional structure can be produced by Fourier 
inversion (although, in practice, this is more 
easily done by Fourier-Bessel transforma- 
tion, as discussed below). 

The density distribution seen in electron 
micrographs corresponds to a projection of 
the particle density in the direction of view 
(that is, parallel to the electron beam or 
perpendicular to the grid). A central theo- 
rem of Fourier transforms, the projection 
theorem (DeRosier and Klug, 19681, states 
that the Fourier transform of this projected 
density corresponds to a section through the 
three-dimensional transform of the object 
that contains the origin and is perpendicu- 
lar to the direction of projection. If, as is 
usually the case, the helix axis is perpendic- 
ular to the direction of view, then the trans- 
form of the projected density will correspond 
to a section through the transform that 
contains the helical (Z) axis. Thus the Fou- 
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Fig. 11. Reconstructions of thick filaments from 
Lirnulus and scorpion muscle obtained after separating 
contributions from overlapping terms of different Bessel 
order on layer lines 0 to 9 inclusive. The two reconstruc- 
tions on the left used all the data, whereas the equato- 
rial data was omitted from those on the right. The 
reconstructions show bi-lobed projecting subunits that 
correspond to two myosin heads. Reproduced with per- 
mission from Stewart et  al. (198513). 

rier transform of the projected structure 
seen in an electron micrograph gives the 
value of the three-dimensional transform at  
two azimuthal positions separated by 180°, 
which correspond to the back and front (or 
top and bottom) of the particle. If the helical 
symmetry is known, the manner in which 
phase varies with azimuth can be deduced 
for each layer line term. Consequently, a 
three-dimensional transform can be pro- 
duced from the transform of each side, and 
this three-dimensional transform, in its 
turn, enables a three-dimensional density 
distribution to be produced by Fourier- 
Bessel inversion. If the particle density is 
formulated in terms of a sum of helical 
waves, g,,L terms can be computed from the 
corresponding G,,L term on each layer line, 
using equation 4. Once all the gn,L terms are 
known for the object, these can be used to 
resynthesise the density as a sum of helical 
waves. 

Three-dimensional reconstructions of he- 
lical particles can be displayed in a number 
of ways. The overall envelope of the struc- 
ture can be simulated either by making 
models out of sheets of balsa wood or trans- 
parent plastic, or by simulating the appear- 
ance of this sort of model using computer 
graphics methods (see Figs. 11 and 15). 
Sections through the structure are also use- 
ful and can be easily displayed as two- 

dimensional contour plots. The most useful 
types of section are perpendicular to the 
helix axis (so that the structure can be built 
up from a stack of successive sections) or 
cylindrical sections (at a constant radius, so 
that the density is built up from a number 
of coaxial cylindrical shells, rather like 
growth rings in a tree). The latter have the 
advantage that they are not influenced by 
the equatorial data (i.e., that from layer line 
zero), which is often less reliable than those 
from other layer lines. Figures 13 and 16 
illustrate these sorts of section and how 
they can be used to investigate particular 
structural aspects. Other series of sections, 
such as a series containing the helix axis 
and differing in azimuth, or a stack of 
sections parallel to the helix axis, can be 
useful in some special applications. 

OVERLAPPING BESSEL TERMS 

It is clear from the general formulation of 
the selection rule (equation 1) that there 
can be more than one Bessel order n on each 
layer line (there will generally be a differ- 
ent value of n for each value of m). Fortu- 
nately, at the comparatively low resolution 
(usually > 2 nm) that is generally present 
in electron micrographs of biological speci- 
mens, usually only one Bessel order contrib- 
utes to a layer line; higher-order Bessel 
terms usually occur at higher resolutions 
(further out along the layer line) and are not 
present in the data analysed. However, in 
some instances, terms deriving from more 
than one Bessel order are present on a layer 
line. When this occurs, the Fourier trans- 
form cannot be analysed as simply, because 
the different Bessel terms will beat with one 
another, causing the amplitude at a partic- 
ular radius to alter with azimuth. This 
behaviour comes about as a consequence of 
the way in which the phase of each Gn,z term 
varies with azimuth (equation 2). Since 
each term goes through n cycles of 0" to 360" 
for 360" of azimuthal rotation of the object, 
the phase of higher-order terms will change 
more rapidly than that of lower-order ones. 
Therefore the phase difference between dif- 
ferent Gn,L terms will vary, thus altering the 
amplitude and phase of their sum. This 
behaviour is in marked contrast to the case 
of nonoverlapping Bessel terms and means 
that, when terms overlap, the three-dimen- 
sional transform cannot be deduced simply 
from a single view. Therefore, before these 
more complex objects can be analysed and 
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images reconstructed, it is necessary to  sep- 
arate overlapping terms along a layer line 
that derive from different Bessel orders. 
Except for the special case in which there 
are only two overlapping terms with one 
having an even Bessel order and the other 
having an odd order, more than one view of 
the particle is needed to separate the over- 
lapping terms. 

Two overlapping Bessel terms, one odd and 
the other even 

Flagellar microtubules are an example of 
this problem, since layer line 1 [at Z = 1/ 
(8 nm)] contains Bessel terms of order 5 and 
-8 (Amos and Klug, 1974). Layer line 2 has 
terms of order 10 and -3, but these are so 
widely separated that there is little overlap 
between them. The problem posed by the 
first layer line in microtubules is the sim- 
plest case of overlapping terms, because an 
azimuthal rotation of 180" of the object will 
change the phase of odd-order Bessel terms 
by 180" but will not alter the phase of 
even-order terms. The key to analysing this 
sort of structure is the realisation that the 
front of the particle is rotated by 180" rela- 
tive to the back, and so the two halves of 
each layer line correspond to transforms of 
particles rotated by 180". Thus, at any ra- 
dius R on layer line 1 for flagellar microtu- 
bules, the value of the Fourier transform is 
given by: 

F(@) = G5exp(5i(Q,++/2)) + 
GP8exp(-8i(@ f 7~/2)) 

Taking one side as Q, = +I2 and the other as 
Q , = -  ~ / 2  gives: 

F(-+/2) = G5 + G-8 
F(7~/2) = G5 - G-s 

These two simultaneous equations can then 
be solved for G5 and GP8, which effectively 
separates the two terms of order 5 and -8. 
In this way, Amos and Klug (1974) were 
able to separate the J5 and J-8 terms of 
layer line 1 and so produce a three- 
dimensional reconstruction of flagellar 
microtubules to a resolution of 3 nm. 

Overlapping Bessel terms when particle 
azimuth can be determined directly 

Analysis of objects when there are two 
overlapping terms on a layer line that are 
both odd or both even are more complicated 

to analyse, because the rotation of 180" 
between top and bottom produces the same 
effect on each term (either shifting both by 
180" if they are odd, or causing no change if 
they are even). Consequently, both sides of 
each layer line will be the same and so 
cannot be used to generate the simulta- 
neous equations needed to separate the two 
Gn,L terms. If there are more than two over- 
lapping terms on a layer line, then it is clear 
that more than two simultaneous equations 
will be needed to separate them. In both 
these cases, therefore, more than a single 
azimuthal orientation of the original parti- 
cle will be required. 

Ideally, a series of different azimuthal 
views of a helical particle could be obtained 
by taking a tilt series of micrographs, with 
the tilt axis parallel to the helix axis (other 
orientations of the tilt axis could, in theory, 
be analysed, but would pose more difficul- 
ties); this has, in fact, been done in one 
instance (Stewart and Kensler, 1986-see 
below). However, obtaining data of this sort 
is technically demanding and can be seri- 
ously influenced by any flattening of the 
particle. An alternative strategy can be 
used when it is possible to determine the 
azimuthal orientation of each particle abso- 
lutely. If this is possible, then a number of 
micrographs of different particles, each hav- 
ing a different (but known) orientation, can 
be combined to give the necessary series of 
simultaneous equations needed to separate 
the overlapping Bessel terms. Such an anal- 
ysis has been successfully employed to 
analyse thick filaments from arthropod 
muscles (Crowther et al., 1985; Stewart et 
al., 1985b). These filaments are four- 
stranded structures that have morphologic 
subunits separated by 14.5 nm axially and 
that repeat after 43.5 nm, so that each helix 
has a pitch of 12 x 14.5 = 174 nm. The 
helical selection rule is 41 = n + 12m. 
Therefore, layer lines that are a multiple of 
3 (that is, 0,  3, 6, 9 . . .) contain terms of 
order 0,  + 12, and -12, whereas other layer 
lines contain terms of order + 4  and -8, or 
-4 and + 8. Although an approximate one- 
sided image and three-dimensional recon- 
struction can be obtained by ignoring this 
overlap of terms (Stewart et al., 1981), a 
more correct and also more revealing view 
of the structure is obtained if they are 
separated. Fortunately, although the pri- 
mary maximum of the JP8 term on the first 
layer line overlaps with the secondary max- 
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imum of the J4 term, the primary maximum 
of the J4 term is not disturbed, and, since it 
is a strong feature of the structure, its phase 
(after being referred to a suitable origin) can 
be used to determine the azimuthal orienta- 
tion of isolated particles unambiguously. 

Although ideally only two different views 
would be needed to separate the overlapping 
J4 and J8 terms in the arthropod filaments' 
transforms, a more reliable result is ob- 
tained by using a larger number of views 
and determining the values most consistent 
with all of them. Crowther et al. (1985) 
devised a least squares method for achiev- 
ing this separation, which is generally ap- 
plicable to the problem of overlapping Bes- 
sel function terms. Thus, if there are k 
different Bessel terms of order nl, n2, n3 . . . 
nk on a layer line, then the value of the 
Fourier transform at radius R and azimuth 
@ will be 

F(R,@) = c Gk(R)eXp[nki(@ + .~r/2)]. (5) 

If there are v different views of the object, 
each associated with a different azimuthal 
orientation, +, there will be v different 
observed Fs giving v simultaneous equa- 
tions in the unknowns Gk(R). Provided the 
number of observations, v, is equal to or 
greater than the number of different Bessel 
orders, k, these equations will have a 
unique solution. In practice, each measured 
F will have an error associated with it, and 
so it is prudent to use substantially more 
views than the number of Bessel orders. 
Furthermore, the least squares solution of 
the simultaneous equations will be most 
reliable when the different views sample 
the possible orientations of the particle 
evenly. Thus, for example, if the particle is 
four-stranded, it will repeat every 90" azi- 
muthally, and so views spanning orienta- 
tions of 0" to 90" in approximately equal 
steps should be employed. If all the orienta- 
tions used were similar (say, in the four- 
stranded example, clustered between 20" 
and 40"), then the least squares problem 
will be poorly posed, and the various G,(R) 
terms will not be determined very reliably. 
When a satisfactory data set has been ob- 
tained, each layer line is analysed over a 
range of radii, determining the values of the 
G,(R) terms from the values of the trans- 
form at each radial point. The procedure can 
often be simplified somewhat by noting that 
the value of Bessel functions is close to zero 

for 2nRr less than n - 2, and so higher order 
terms can be omitted at  lower radii. Fortu- 
nately, there is an internal check on this 
method. The manner in which the least 
squares problem is posed does not assume 
that the individual terms are derived from 
Bessel functions. One can therefore assess 
the likely reliability of a solution obtained 
in this way by inspecting the radial varia- 
tion of the individual GJR) terms. Poorly 
determined terms, in which the phase does 
not behave in approximately the expected 
manner, are probably best omitted from the 
reconstruction. 

Arthropod muscle thick filaments are an 
example of a helical structure in which 
there are overlapping terms along layer 
lines, and they serve as an illustration of the 
results that can be obtained. Figure 11 
shows reconstructions of Limulus and scor- 
pion thick filaments (Stewart et al., 1985b); 
analogous results were obtained (Crowther 
et al., 1985) for tarantula. In all cases, the 
projecting morphological units are clearly 
bi-lobed; this appearance correlates well 
with the known presence of two myosin 
heads in each morphological unit. Cylindri- 
cal sections through the centre of the mor- 
phological units (Fig. 12) show the bi-lobed 
division of density particularly well. It 
seems more likely that the two heads in 
these units derive from different myosin 
molecules rather than from the same myosin 
molecule (Crowther et al., 1985; Stewart et 
al., 1985b), but the connectivity has been 
difficult to establish unequivocally, because 
this feature of the reconstruction is rather 
weak. The detailed appearance of the units 
depends on the equatorial data, which, as 
discussed below, are not as accurately deter- 
mined as the other layer line data. The clear 
splitting of the morphological unit into two 
lobes was not apparent when the overlap- 
ping J4 and JP8 terms were not separated in 
a preliminary reconstruction (Stewart et 
al., 19811, although the overall outline of 
the morphological unit was essentially the 
same. The splitting into two lobes, which is 
critical for identifying the positions of the 
two myosin heads, was only seen when these 
terms were separated, and so our example 
underscores the importance of this tech- 
nique when attempting to define fine detail. 

More complicated examples 
With microtubules and Arthropod muscle 

thick filament examples described above, 
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Fig. 12. Cylindrical sections of the scorpion (a) and 
Limulus (b) thick-filament reconstructions that show 
the division of the density of each projecting morpho- 
logical unit into two lobes. The radius of these sections 
corresponds to the centre of mass of the morphological 

there were generally only two or three 
terms of different Bessel order overlapping 
on a layer line. Furthermore, because there 
were strong J4 terms on the first and fourth 
layer lines that did not overlap with any 
other terms, the orientation of particles 
could be determined directly from inspec- 
tion of their transforms. However, with 
other particles, azimuth sometimes cannot 
be determined directly from the transform, 
because there are no strong layer line peaks 
that derive from a single Bessel order term. 
It is then necessary to employ tilt series to 
separate the different G,(R) terms. An ex- 
ample is the thick filaments from frog skel- 
etal muscle. These are three-stranded struc- 
tures (Kensler and Stewart, 1983), but they 
have cylindrical rather than helical symme- 
try (Kensler and Stewart, 1986; Stewart 
and Kensler, 1986). This means that, on 
each layer line, there are terms of Bessel 
order 0, k3,  +6, +9  . . . , and so all the 
non-zero order terms overlap. Thus, for ex- 
ample, even the prominent inner maximum 
seen on the first layer line derives from 
overlapping J o ,  J3, and 5-3 terms. Conse- 
quently, the phase of the Fourier transform 
at a particular radius will not vary linearly 
with azimuth, but will follow an undulating 
path, as shown in Figure 13. However, be- 

unit, and the probable outline of the myosin heads is 
shown on each. The data seem most consistent if the two 
heads in each morphological unit were derived from 
different myosin molecules. Reproduced with permis- 
sion from Stewart et  al. (1985b). 

cause it is three-stranded, the structure will 
repeat after a rotation of 120". Furthermore, 
one side will be 180" out of phase with the 
other. Consequently, the full 120" repeat 
can be spanned by an azimuthal rotation of 
only 60", since the top half of the pattern 
(corresponding to  the right-hand side of 
each layer line) will give the values of the 
Fourier transform from 0" to 60", while the 
bottom half (the left-hand side of each layer 
line) will give the values of the transform 
corresponding to 60" to 120". Therefore, a 
tilt series about the filament axis of 60" 
would sample all of the possible azimuthal 
orientations. 

Although simple in concept, a tilt series of 
this nature was rather difficult to achieve in 
practice, because most particles examined 
had been flattened, either by drying or by 
radiation damage. The transform of a flat- 
tened particle does not vary in three dimen- 
sions in the same way as a native particle, 
and so cannot be used to decompose the 
overlapping terms. Fortunately, it was easy 
to detect flattened particles by measuring 
the azimuthal orientation required to 
change the phase of a prominent peak (in 
this case, the strong inner peak on the first 
layer line) to that observed initially for the 
corresponding peak on the other side of the 
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Fig. 13. Variation with particle azimuth of the am- 
plitude and phase of the prominent inner maximum on 
the first layer line of transforms of frog thigh muscle 
thick filaments (data from three tilt series). The ampli- 
tude oscillates substantially, and the phase does not 
change linearly because of beating between terms of 
different Bessel order. Therefore reconstructions cannot 
be made from a single view, and, moreover, particle 
azimuth cannot be deduced a priori from the transform 
phase. Different symbols refer to different filaments. 
Reproduced with permission from Stewart and Kensler 
(19861, copyright Academic Press, 1986. 

meridian. Ideally this should have been 60°, 
but it was increased in flattened particles. 
Thus, by recording tilt series over an 80" or 
90" azimuthal range, it was possible to iden- 
tify particles that had not been grossly 
flattened (a flattening of up to 20% was 
considered acceptable, as this could be com- 
pensated for with only marginal error by 
adjusting the value given the actual azi- 
muth of the view). Tilt series from these 
particles could then be employed in subse- 

quent processing to obtain the different 
G,,l(R) terms. It was found that particles 
simply negatively stained with uranyl ace- 
tate were invariably flattened too much to 
be employed in further processing, but some 
particles that had been pretreated with tan- 
nic acid (Kensler et al., 1985; Stewart and 
Kensler, 1986) were sufficiently well pre- 
served. Three such particles were analysed 
and gave the G,,J(R) terms in Figure 14, 
which were used to produce the reconstruc- 
tion in Figures 15 and 16. This shows pro- 
jecting morphological subunits analogous to 
those seen in Arthropod muscle thick fila- 
ments, but they are perturbed axially, radi- 
ally, and azimuthally from ideally helical 
positions; it is this perturbation that gives 
rise to the cylindrical symmetry of the fila- 
ment (Stewart and Kensler, 1986). This is to 
say, the objects had translational symmetry 
and three-fold rotational symmetry, but 
these were not paired, as in a helix. Cylin- 
drical symmetry is a lower form of symme- 
try, of which helical symmetry is a special 
case; it is discussed at length by Vainstein 
(1966). 

CORRECTION OF IMAGES 

The discussion of helical objects thus far 
has assumed that the object is perfectly 
preserved, aligned perpendicular to the di- 
rection of view, and stained so as to per- 
fectly reflect its structure. In practice, these 
criteria are seldom fully satisfied, and this 
will introduce some degree of error or arte- 
fact into any reconstruction obtained. How- 
ever, it is often possible to at least partially 
correct for some of the shortcomings in the 
original micrographs and thereby obtain a 
more reliable result. Some corrections can 
also be made for errors introduced by the 
electron microscope imaging system. 

Tilt corrections 
One often finds that the axis of a helical 

object is not exactly perpendicular to the 
optic axis of the electron microscope. This 
can come about either because the support 
film is not completely flat or because the 
object is sheared in a plane perpendicular to 
the support film. The magnitude of these 
effects is usually quite small, of the order of 
a few degrees, but nevertheless can intro- 
duce errors into the layer line data and 
result in an imprecise reconstruction. Fig- 
ure 17 illustrates the effect on the Fourier 
transform of the helix axis being tilted. The 
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Fig. 14. Separated terms of different Bessel order 

obtained by least squares analysis of layer line data 
from three tilt series of frog muscle thick filaments. 
Reproduced with permission from Stewart and Kensler 

(1986), copyright Academic Press, 1986. For each com- 
bination of n and I ,  the phase is graphed in the upper 
box and amplitude in the lower box as a function of 
radius in Fourier space. 
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Fig. 15. Three-dimensional reconstruction of frog 
muscle thick filaments using the data from Figure 14. 
( a d )  are four views of the reconstruction rotated suc- 
cessively by 30", whereas (e) is a reconstruction of 
scorpion muscle. The frog filament clearly has project- 
ing morphological subunits analogous to those from 
Arthropods, but they are perturbed from the positions 
expected for a helical arrangement, and instead this 
structure has cylindrical symmetry. Reproduced with 
permission from Stewart and Kensler (1986), copyright 
Academic Press, 1986. 

projection of the structure seen in the mi- 
crograph is now not perpendicular to the 
helix axis and so corresponds to a section 
through the three-dimensional Fourier 
transform that does not include the Z axis. 
This section will therefore not cut the suc- 
cessive radial anulii along a layer line on a 
diameter, but instead on a chord. Conse- 
quently, the phase of either side seen in the 
transform will be altered. In addition, a 
small portion of the layer line, correspond- 
ing to terms at low radius, will not be 
included at all. Fortunately, because the 
terms in the Fourier-Bessel integral used to 
generate the gn,l terms for a reconstruction 
(see equation 4) are weighted by their ra- 
dius, R, this error has only a comparatively 
small influence on the final result. The 
radial position of the data along the layer 

Fig. 16. Sections through the frog thick-filament 
reconstruction perpendicular to the axis at three suc- 
cessive levels of projecting morphological units. These 
sections show that the units on successive levels lie at 
different radii, in addition to being perturbed axially 
and azimuthally. Reproduced with permission from 
Stewart and Kensler (1986), copyright Academic Press, 
1986. 
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Fig. 17. Effect of particle tilt on the layer line data 
seen in a Fourier transform. A schematic diffraction 
pattern of layer lines is shown on the left. In an untilted 
object, the micrograph transform corresponds to a sec- 
tion (a-a) including the meridian. As can be seen in the 
cross section A-A, this section cuts successive annuli of 
the layer line along diameters. However, if the particle 

line will also be slightly in error. High layer 
lines will have greater errors because the 
distance of the section from the axis will be 
greater; high-order Bessel terms will also 
have greater errors, since their phase 
changes more rapidly with azimuth. Errors 
will also be greater a t  lower radii. 

The degree of tilt can be estimated from 
the phase errors on each layer line (see 
DeRosier and Moore, 1970) and, provided 
the errors are small, they can be adequately 
compensated for by introducing a phase 
shift, according to the radius and layer line 
number, and by altering the apparent ra- 
dius of the term. If the particle is tilted by 
an angle a, then on a layer line with appar- 
ent 2 = Z' and radius R = R', the phase 
error A0 is given by (DeRosier and Moore, 
1970): 

A0 = -2n arctan(Z'sina/R'). 

The actual value of the tilt angle, a, is 
usually determined in conjunction with re- 
finement of the phase origin (see below). 

4 b a  

b a  

Section A-A 
is tilted, the projected transform corresponds to section 
(b-b), which cuts successive annuli on chords. This effect 
alters the phase and radial scale of the projected trans- 
form. Because the sense of the phase change is different 
on opposite sides of a layer line, the phase gradient can 
be used to estimate the tilt and so correct the observed 
transform values. 

Unbending 
One rarely finds micrographs in which 

helical objects are perfectly straight. They 
usually become curved to a greater or lesser 
extent as a result of forces arising from 
sample preparation (for example, drying in 
negatively stained material) or because of 
their inherent flexibility. As discussed in 
detail by Vainstein (1966), the effect of 
curvature is to spread layer lines axially to 
an extent that increases with radius in the 
Fourier transform. This has two effects: 
first, it makes weak data more difficult to 
detect above background noise; second, it 
means that if layer line amplitudes are 
obtained by interpolation along a line in the 
Fourier transform (as is usually done), they 
will be systematically underestimated at  
higher radii. Since the data in the Fourier- 
Bessel transformation used to generate the 
g,, l  terms are weighted by the radius in the 
Fourier transform (equation 4), these ef- 
fects can exert a considerable influence on 
the reconstruction. Consequently, particles 
used for reconstruction should be as straight 



BIOLOGICAL STRUCTURES WITH HELICAL SYMMETRY 345 

as possible. With many objects, one can 
eventually find sufficiently straight parti- 
cles (that is, particles that are so slightly 
curved that the errors introduced are negli- 
gible) if a large number of fields is exam- 
ined. However, some types of particle are so 
flexible that it becomes technically impos- 
sible to meet this criterion. This is particu- 
larly so for thin particles (which correspond- 
ingly have a low moment of inertia and high 
flexibility) with long helical pitches, such as 
actin and the paired helical filaments seen 
in Alzheimer’s disease. 

Egelman (1986) has devised an algorithm 
for correcting (or a t  least reducing) particle 
bending that is based on the normal engi- 
neering treatment of bending beams. The 
position of the helix axis is defined at  a 
number of positions along the particle 
(using either a line printer grey-scale rep- 
resentation of the object, or, more conve- 
niently, a raster graphics display). These 
data points are then fitted to a cubic spline 
function to define a smooth axial path and 
the data interpolated to compensate for 
bending along this path. (The method is in 
many ways analogous to the lattice correc- 
tion schemes used to correct for irregulari- 
ties in crystalline arrays-see, for example, 
Frank et al., 1978; Henderson et al., 1986; 
Saxton and Baumeister, 1982). This method 
has proved useful with tobacco mosaic virus 
(Egelman, 1986) and recA proteidDNA ag- 
gregates (Egelman and Stasiak, 1986). It is, 
of course, limited to small degrees of curva- 
ture and by the accuracy to which the posi- 
tion of the helical axis can be defined. This 
latter consideration usually means that an 
improvement is obtained only out to a lim- 
iting radius in Fourier space (related to the 
accuracy to which the axis can be defined). 
This method may also be useful for helical 
particles preserved in vitreous ice, although 
it can only compensate for curvature in the 
plane of the film and not for any curvature 
in planes perpendicular to this. Autocorre- 
lation methods for correcting distortions 
also appear promising (Chiu et al., 1986). 

Corrections for microscope imaging 
conditions 

To a first approximation, the image of 
biological material seen in electron micro- 
graphs can be considered as arising by a 
combination of amplitudelaperture contrast 
and phase contrast arising from a weak 
phase object (see Erickson and Klug, 1971; 

Glaeser, 1985). Both mechanisms of image 
formation can be represented as multiply- 
ing the Fourier transform of the object by 
respective transfer functions (the phase con- 
trast transfer function and the amplitude 
contrast transfer function). These contrast 
mechanisms produce different changes at  
different spatial frequencies, and so the 
resultant image is not exactly the same as 
the original object. Moreover, because these 
effects involve convolution in real space, 
they are often difficult to assess intuitively. 
With negatively stained material, ampli- 
tudelaperture contrast is strong a t  low spa- 
tial frequencies, whereas phase contrast is 
strong at higher frequencies. Therefore, pro- 
vided the microscope is focused optimally, 
the image will not be greatly different from 
the original object density and can be inter- 
preted with some confidence (Erickson and 
Klug, 1971). Work with tobacco mosaic vi- 
rus has indicated that this is probably a 
valid procedure, a t  least to resolutions of the 
order of about ll(2 nm), since differences 
between structures produced by electron 
microscopy and X-ray diffraction seemed to 
be due mainly to artefacts associated with 
negative staining (Unwin and Klug, 1974). 

Helical objects (or in fact any bounded 
particle) viewed in vitreous ice may present 
problems, because here the image is formed 
mainly by phase contrast (reviewed by Ste- 
wart and Vigers, 1986). Consequently, low- 
frequency terms are substantially underes- 
timated. Moreover, because such images are 
often recorded at  rather large defocus Val- 
ues, the phase contrast transfer function 
may change relatively rapidly with position 
and so alter the relative weight of terms at  
different radii along a layer line as well as 
the relative weight of high and low layer 
lines. It therefore seems prudent to correct 
layer line data for the effect of phase con- 
trast. This can be done by determining the 
degree of defocus from the position of the 
Thon rings (Thon, 1966) from a carbon sup- 
port film, computing the value of the con- 
trast transfer function for different spatial 
frequencies (see Erickson and Klug, 1971) 
and correcting the cfata accordingly. Be- 
cause the contrast transfer function can 
sometimes be very small (resulting in large, 
and therefore unreliable, corrections), it 
would seem advisable to use data from a 
number of different defocus values. Failure 
to make this correction could result in 
changes in the weight of different helical 
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waves in the reconstruction. This error 
would be unlikely to affect the azimuthal 
and axial position of subunits greatly, but it 
could alter their shape and radial position. 
There are special problems with equatorial 
data from objects in vitreous ice; these are 
discussed below. 
COMPUTER PROCESSING OF HELICAL OBJECTS 

Computer programmes for processing he- 
lical objects are freely available, and many 
of these have been described in some detail 
by DeRosier and Moore (1970). Figure 18 
gives a flow chart of the sort of processing 
steps usually undertaken. In some respects 
the sequence is similar to that used for 
planar objects (Fig. 1): a large number of 
objects are scanned by optical diffraction to 
select only the best for processing; objects 
are then digitised for computer processing, 
areas are selected, and Fourier transforms 
are calculated. However, there are some 
special features that need to be considered 
for helical objects. 

Position of particle boundary 
Because stain often falls off rapidly at  the 

edge of a helical object (see Fig. 201, it is 
easy to underestimate the radial extent of 
the particle. Care is therefore needed when 
selecting the detailed area to process, if 
some high-radius information is not to be 
lost. When deciding where to choose the 
boundary, it is sometimes helpful to project 
the particle density axially. If in any doubt, 
it is probably better to use a large area for 
processing (with a consequent slight in- 
crease in the noise level), rather than risk 
losing high-radius data. 

Digitising 
The theoretical discussion of helical 

transforms was based on a continuously 
varying object density and corresponding 
Fourier transform, whereas digital comput- 
ing procedures use an object density and 
transform sampled at discrete intervals. 
There are some important consequences of 
this sampling. First, the object must be 
sufficiently finely sampled that significant 
information is not lost. Generally, it is nec- 
essary to sample the object density a t  a 
minimum of twice the frequency of the 
highest frequency term one wishes to retain 
(see section on sampling in Radermacher’s 
article, this volume). Thus, to analyse the 
data to a resolution of 2 nm, sample raster 

points must be spaced on the original object 
to correspond to  not greater than 1 nm (for a 
micrograph recorded at  30,000 x , this would 
be a raster spacing of 0.03 mm). In practice, 
aliasing problems indicate that it is usually 
prudent to sample about twice as finely as 
indicated simply by resolution consider- 
ations, and even more finely if one wishes to 
interpolate the raw data onto a new raster 
(either for technical considerations or, for 
example, to correct for bending). DeRosier 
and Moore (1970) discuss these problems in 
some detail. Also, because of grain size and 
electron scattering, information on electron 
micrograph negatives is usually not well 
preserved below spacings (on the negative) 
of about 0.01 mm, and this may influence 
the actual choice of magnification at which 
images are recorded. 

Effect of the shape function of the area 
selected for processing 

Helical objects are usually long and nar- 
row, and so the area selected for Fourier 
transformation usually occupies only a 
small portion of the actual matrix of pixels 
transformed. (The rest are set to zero.) The 
edges of this “box” that encloses the particle 
makes a substantial contribution to the 
computed Fourier transform. It is particu- 
larly strong along the meridian and equa- 
tor, but also influences the remainder of the 
transform to a greater or lesser extent. 
Figure 19 shows the transform of such a box 
function. It is clearly desirable to minimise 
the effect of this function. DeRosier and 
Moore (1970) suggested subtracting the av- 
erage edge density of the box from all terms 
within it (which they called “floating” the 
image), thus minimising the difference be- 
tween the object and the zeros surrounding 
it. This procedure certainly reduces the ef- 
fect of the box function, but it can still be a 
substantial problem, particularly if one is 
trying to obtain accurate equatorial or me- 
ridional data. 

The large contribution of the box function 
to the Fourier transform is a consequence of 
the well-known Gibbs phenomenon and is 
due to the sharpness of the edge of the box. 
It can therefore be reduced to virtually 
negligible proportions by making the tran- 
sition between box and embedding zeros 
more gradual. This can be achieved by ex- 
tending the edge density by a few pixels and 
gradually decreasing it as one moves fur- 
ther away from the box, so that it follows a 
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MICRO GRAPHS select straightest particles 

OPTICAL DIFFRACTION select best preserved areas with 
optimum focus and astigmatism 

DIGITISE obtain densities on a raster 

MASK OFF AREA ensure particle periphery included 

INTERPOLATE NEW RASTER (a) to unbend distorted objects 
(b) to align layer lines 

REDUCE EFFECT OF BOUNDARY (a) average edge density to zero 
(b) apodise edge with Gaussian 

COMPUTE FOURIER TRANSFORM 

I 
INDEX PATTERN 

sample twice as Anely along axis 

identify layer lines and Bessel orders 

OBTAIN LAYER LINE DATA values of transform along layer lines 

CORRECT LAYER LINE DATA for particle tilt, orientation, etc 

SEPARATE OVERLAPPING 
TERMS 

using least squares analysis of a number 
of particles with different azimuth 

between top and bottom or between particles AVERAGE DATA 

RECONSTRUCT ONE-SIDED 
IMAGE 

by Fourier inversion of layer line data 

THREE-DIMENSIONAL 
RECONSTRUCTION 

Fourier-Bessel inversion to convert 
G,,l(R) terms to helical waves g,.l(r) 

Fig. 18. Flow chart for the computer processing of helical particles. 
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Fig. 19. Fourier transform of a rectangular box 
function. The transform has prominent “spikes” along 
equator and meridian and smaller contributions over 
the remainder. This effect can be greatly reduced by 
adjusting the average edge density of the particle to 
zero and apodising the edges of the box with a Gaussian 
or similar function. 

Gaussian envelope (Stewart et al., 1981). 
This method is nothing more than a com- 
puter equivalent of the well-known optical 
technique of apodisation and is highly suc- 
cessful in reducing the effect of the box 
function. 

Obtaining layer line data 
It is also important to consider the effect 

of the digital nature of the transform on the 
reliability of layer line data obtained. Gen- 
erally the value of the Fourier transform of 
a helical particle changes relatively slowly 
with radius along a layer line and so, pro- 
vided sampling points are sufficiently finely 
spaced in this direction, values at a partic- 
ular radial spacing can be safely determined 
by interpolation. Layer line data are usu- 
ally extracted with a different radial sam- 
pling frequency to the transform by such 
interpolation. (This change in sampling 
may be because different particles have 
different magnifications or because it is 
required to perform a synthesis a t  a partic- 
ular raster spacing.) However, it is impor- 
tant that the final sampling along the layer 
line must be finer than the reciprocal of the 
particle diameter because, as a consequence 
of convolution, when an image is recon- 

structed, a number of copies will be pro- 
duced separated by the reciprocal of the 
spacing between points in Fourier space. 
Thus, if the spacing between sampling 
points in the transform is less than the 
inverse of the particle diameter, the recon- 
structed images will overlap, and the result- 
ant density distribution will not reflect that 
of a single isolated particle. 

A further problem can arise if the layer 
line does not lie along the sampling raster of 
the Fourier transform. This can come about 
because the layer line is not parallel to the 
transform sampling raster or, if it is paral- 
lel, because it lies between two lines of 
raster points. In either case, interpolation is 
not a very reliable procedure, because layer 
lines are usually fairly sharp in the axial 
direction. Thus, although the value of the 
transform may only vary slowly radially 
along a layer line, it varies rapidly in the 
axial (Z) direction (perpendicular to the 
layer line). This is particularly so if long, 
regular objects are studied. Although layer 
line data are often obtained by interpolation 
in such circumstances, they may be subject 
to considerable error, both in terms of rela- 
tive weight of different layer lines and in 
terms of amplitude distribution along a 
layer line. These problems can be reduced 
substantially by interpolating a new den- 
sity raster using the original image data 
(Stewart et al., 1981). Since the sampling 
raster in the Fourier transform is deter- 
mined by the sampling raster in the object, 
a new object raster can be interpolated so 
that the layer lines are at least parallel to 
the transform sampling raster (by altering 
the orientation of the raster), and, if the 
layer lines are all evenly spaced axially (or 
a t  multiples of some axial spacing) they can 
also be made to correspond precisely to a 
line of sampling points in the transform (by 
adjusting the spacing between points in the 
image raster). This correction is particu- 
larly helpful when obtaining data for anal- 
ysis by least squares to decompose overlap- 
ping Bessel terms (Stewart et al., 198513; 
Stewart and Kensler, 1986) and results in a 
substantial reduction of the least squares 
residual. 

Determination of particle phase origin 
The phase relationships of helical diffrac- 

tion theory hold only when the phase origin 
is located on the helix axis. If the phase 
origin is displaced radially by some dis- 
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tance, r, then all the terms along a layer 
line will undergo a phase shift of 2.srRr. 
Although it is common practice to set the 
phase origin on the helix axis by eye when 
computing the Fourier transform, this posi- 
tioning is seldom completely accurate and 
usually requires some adjustment. This 
problem is easily recognised by the presence 
of a phase gradient across the maxima on 
layer lines and is usually corrected, in con- 
junction with corrections for particle tilt, by 
observing the effect of making small 
changes in phase origin position and parti- 
cle tilt on the layer line phase residuals. 
Ideally, the phase difference between points 
a t  the same radius but on different sides of 
the meridian will be either 0" or 180" (for 
even- and odd-order Bessel terms), and so, 
in this instance, the phase residual is de- 
fined as between the actual difference 
across the meridian and that predicted from 
the particle's helical symmetry. An effective 
way to make these corrections for tilt and 
phase origin position was described by De- 
Rosier and Moore (1970) and involves find- 
ing (by trial and error) the combination of 
tilt and phase origin movement that minim- 
ises the amplitude-weighted phase diver- 
gence, Q, defined as: 

where A0 is the difference between observed 
and predicted phases. 

Aweraging data from different particles 
When averaging data from different par- 

ticles, it is necessary to adjust the position of 
the phase origin along the helix axis and 
also to notionally rotate the particles so that 
they all have the same azimuthal orienta- 
tion. Both these corrections are made by 
introducing appropriate phase shifts. In ad- 
dition, it is usually necessary to determine 
particle polarity and adjust the radial scal- 
ing along layer lines. Ways of carrying out 
these adjustments have been discussed in 
some detail by Amos and Klug (1975) and 
usually involve the minimisation of some 
form of residual. After experimenting with 
a number of different types of residual (such 
as least-squares or residuals related to the 
Q residual above), they concluded that a 
residual of the type: 

was most appropriate, as it gave lower 
weight to the strong low-order terms that 
often contained little information about po- 
larity. In this formulation, A+ represents 
the azimuthal shift, Az the axial shift, and 
A0 the phase error, which is given by: 

A0 = 02 - 61 - nA+ + 2.srZAz - k 2 ~ ,  

where €ll and 62 are the observed phases of 
the two particles and k is an integer, so that 
A0 lies between -.sr and +T. To determine 
orientation, minimum residuals are found 
for the particles in either orientation (that 
is, a second residual is determined for one 
particle turned upside down), and the lower 
of these corresponds to both particles having 
the same orientation. In some instances, 
such as muscle thick filaments (Stewart et 
al., 1981), orientation can be determined 
directly on the basis of defined characteris- 
tics of the particle. 

In addition to positioning particles (by 
adjusting azimuth, axial translation, and 
orientation), it is also frequently necessary 
to adjust the radial scaling slightly. This is 
because different particles may shrink, 
stretch, or flatten to varying extents and 
also because magnification may vary 
slightly between micrographs. In adjusting 
this parameter, Amos and Klug (1975) 
found that a least squares residual between 
the two data sets was most useful. This is 
because the phase changes slowly across a 
peak (and so is a poor indicator of its posi- 
tion and thus radial scaling), whereas the 
amplitude (measured by the least squares 
residual) changes rapidly with position and 
so is much more sensitive to radial scaling. 
Thus the correct radial scaling can be deter- 
mined by minimising the residual, S, de- 
fined as: 

S(A+,Az) = V(2 IF1 - F z  1 2 > ,  
where F1 and F2 are the values of the 
Fourier transforms after phase shifts appro- 
priate for A+ and Az have been applied to 
the second transform. Usually, the phase 
and least squares residuals are complemen- 
tary and are used together to define the 
most appropriate parameters to fit one par- 
ticle to another. 

Generally one particle is chosen as refer- 
ence and then the others fitted to it. To av- 
erage data, differences in orientation are 
compensated for by applying phase shifts 
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Fig. 20. Schematic representation of stain distribu- 
tion around a negatively stained particle. Clearly the 
stain is not radially symmetric, and this introduces 
errors primarily on the equator. 

and differences in radial scale by interpolat- 
ing new values a t  the required intervals, so 
that all transforms correspond to  one an- 
other. A similar series of steps is employed in 
preparing data for analysis by least squares 
to separate overlapping terms, although in 
this case the original orientations are not 
changed, and the fitting procedure is used 
only to adjust axial position, tilt, and radial 
scaling (Crowther et al., 1985; Stewart et al., 
1985b; Stewart and Kensler, 1986). 

PROBLEMS AND INTERPRETATION 
Equatorial data 

The formulation of helical diffraction 
given above assumes that the transform 
derives only from the object that is embed- 
ded in an infinite volume of zero (or, strictly, 
constant) density. This is clearly not strictly 
valid when considering negatively stained 
biological assemblies. Here the particle is 
embedded in a thin layer of stain, and the 
actual contrast in the image arises from the 
stain and not the object itself. Moreover, the 
stain layer is seldom of constant thickness 
but instead tends to follow roughly the 
contours of the particle, as illustrated in 
Figure 20. Consequently, the projected den- 
sity recorded is not precisely that of the 
particle. This effect is most marked when 
considering the average cross section of the 
object, which gives rise to the equator in its 
Fourier transform. As shown in Figure 20, 
the amount of stain near the periphery of 
the object is generally less than would be 
expected if the helix were embedded in a 
uniformly thick stain layer; thus the object 
density inferred from the stain density will 
be too high in this region. Similarly, the 
object density will tend to be underesti- 
mated near the helix axis. For this reason, 
the equator computed from negatively 

stained electron micrographs is unlikely to 
represent that element of the structure very 
faithfully. Moreover, the stain envelope sur- 
rounding the particle may correlate with 
some structural features, particularly those 
that contribute most to the equator, and this 
can add further uncertainty to this aspect of 
the data (see Trus and Steven, 1984). 

Errors in the equator can have a substan- 
tial influence on the reconstruction ob- 
tained, as this part of the Fourier transform 
gives rise to the go,o helical wave that spec- 
ifies the radial variation of density in the 
image. Errors in the equator will therefore 
result in the average density at different 
radii being incorrect. Consequently, the rel- 
ative density of features at different radii 
may not be correct. Moreover, the undulat- 
ing radial density variation so produced 
may result in contrast from other layer line 
terms (which is usually much less influ- 
enced by these errors) being superimposed 
on a sloping background; this can alter the 
shape and connectivity of different struc- 
tural features. Problems with equatorial 
data can be even more involved when using 
tilt series (see, for example, Stewart and 
Kensler, 1986). Errors in the equatorial 
data can exert a considerable influence on 
the appearance of the reconstruction, and so 
some caution is usually required in making 
detailed interpretations of three-dimen- 
sional reconstructions of helical particles 
obtained in this way. 

Obtaining reliable equatorial data from 
electron micrographs is usually very diffi- 
cult. However, sometimes it is possible to 
obtain other estimates for the equator, and 
these can be used to obtain a more reliable 
reconstruction. End-on views of particles 
can sometimes be obtained [for example, in 
T4 phage tails (Moody, 1967a,b)l, and these 
images can be used to obtain a measure of 
the radial density variation. Alternatively, 
X-ray diffraction data are sometimes avail- 
able (as for such objects as tobacco mosaic 
virus and muscle filaments). In both these 
instances, however, there can be problems 
in scaling the equatorial data with that 
from the other layer lines. 

Micrographs of helical objects embedded 
in ice do not suffer from the same problems 
with the equator, because, to a reasonable 
approximation, the ice layer is uniformly 
thick. There are, however, other problems 
with this sort of object, related mainly to its 
primarily phase nature. As a result, most 
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low-resolution terms are only weakly pre- 
served in the image, and substantial correc- 
tion is required before such data can be used 
with confidence (Stewart and Vigers, 1986). 
The problem is compounded by there being 
some uncertainty regarding the exact mech- 
anisms of contrast generation at low resolu- 
tions in these images. When reconstructing 
electron micrographs of T4 bacteriophage 
tails in vitreous ice, Lepault and Leonard 
(1985) corrected only layer line data and 
used the native equator. Mandelkow and 
Mandelkow (1985) used an X-ray diffraction 
method to extend their low-resolution equa- 
torial data for microtubules in ice. Although 
this method was quite successful in this 
instance, the success may have been be- 
cause most of the contrast in microtubules 
was concentrated over a narrow band of 
radii. Trinick et al., (1986) used X-ray equa- 
torial data combined with electron micro- 
scope layer line data when reconstructing 
actin filaments in ice. 

Given the various problems associated 
with equatorial data in both negatively 
stained and frozen hydrated specimens, it 
seems prudent to always exercise consider- 
able caution when interpreting features in 
reconstructions that can be influenced by 
errors present in this portion of the data. It 
is often useful to compute reconstructions 
with and without the equatorial data, to 
ascertain which features are independent of 
it and so are unlikely to be affected by errors 
of this nature. Reconstructions omitting the 
equator are also often useful in representing 
the local contrast in the specimen, which 
can be a helpful guide to  resolving ambigu- 
ities of interpretation. 

Material at different radii 
A number of problems of interpretation 

can arise when there is substantial material 
present a t  different radii in the object. Be- 
cause the radial resolution is often only 
modest, density from features a t  different 
radii will often tend to merge, making the 
definition of boundaries difficult. This prob- 
lem is compounded by errors due to the 
equatorial data. Moreover, it is important to 
realise that other errors in the reconstruc- 
tion will not be uniformly spread over dif- 
ferent radii. Layer line data are invariably 
truncated at high radii in the transform, 
and this will result in errors at low radii in 
the reconstruction. Moreover, since the in- 
tegration used to generate the gn,l terms is 

R-weighted, errors a t  high radius in the 
transform will be accentuated. For these 
reasons, features near the helix axis should 
always be treated with considerable cau- 
tion. Similarly, errors in particle tilt often 
mean that data near the meridian of the 
transform are not well determined, which 
results in errors, primarily a t  high radius in 
the reconstruction. Consequently, the most 
reliable region of the reconstruction is at 
intermediate radii. 

Reliability of different aspects of 
reconstructions 

It is clear from the discussion above that 
some aspects of the structure are more 
likely to be faithfully preserved than others 
in three-dimensional reconstructions from 
electron micrographs. As in most Fourier- 
based image processing, the phase informa- 
tion in the layer line data is usually more 
reliable than the amplitude information. 
This is because the transform phase gener- 
ally varies much less rapidly than ampli- 
tude and so is more reliably determined by 
interpolation. Phase information tends to 
influence position of features more than 
their weight, whereas the converse is true of 
amplitudes. Therefore, it is positional infor- 
mation that is generally most reliable in 
three-dimensional reconstructions. Conse- 
quently, positions of subunits are usually 
quite reliable. However, detailed shape in- 
formation and relative weights of different 
features are more subject to error, both 
because of errors in the amplitude informa- 
tion and also because of the effect of errors 
in the equatorial data. It is therefore often 
difficult to decide on precise particle bound- 
aries in reconstructions or on the connectiv- 
ity between different structural features. 
An example of these problems can be seen 
with the reconstructions of Arthropod mus- 
cle thick filaments (Crowther et al., 1985; 
Stewart et al., 1985b) that were discussed 
earlier in the context of separating overlap- 
ping Bessel terms. As shown in Figures 11 
and 12, the projecting morphological sub- 
units in these reconstructions were bi-lobed, 
and this observation correlated with the 
presence of two myosin heads. Moreover, it 
was easily seen from these reconstructions 
that the two heads in each morphological 
unit were at slightly different radii. How- 
ever, the actual connectivity between them 
was difficult to establish, as this was a weak 
feature and tended to be influenced by the 
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choice of equator employed. Thus, with Li- 
mulus and scorpion thick filaments, the 
appearance of this feature was not quite the 
same when the equator was omitted, in- 
cluded at  full or half weight, or when a 
synthetic equator based on a cylindrical 
filament shaft surrounded by a halo of 
heads was employed. Also, it was not possi- 
ble to define the exact outline of each head, 
because the data tended to merge substan- 
tially, although it was clear that the heads 
were elongate, pear-shaped objects and 
overlapped one another substantially. 

Trachtenberg and DeRosier (1987) inves- 
tigated the reliability of bacterial flagella 
reconstructions in considerable detail. They 
obtained reconstructions from a number of 
different particles and then computed the 
mean and variance of the density for each 
sampling point. In this way they were able 
to establish areas in which the density was 
significantly positive or negative using Stu- 
dent’s t-test. Only the features of their re- 
construction at  intermediate radii were sig- 
nificant at the 95% level, and so, by using 
this method, they were able to make a 
decision about which aspects of their model 
should be treated with some caution. This 
statistical approach seems to offer great 
advantages when attempting to interpret 
three-dimensional reconstructions, and it 
would seem highly desirable to employ such 
methods when sufficient particles are avail- 
able. 

Another problem of interpretation is that 
it is not easy to place the data on an abso- 
lute scale, and so it is often not completely 
clear where particular features begin and 
end. If there is enough information avail- 
able about the object, one can calculate the 
volume of different boundary contour values 
and choose one that gives a value consistent 
with the molecular weight of the subunits. 
However, this can only be an approximate 
guide, as negative stain, for example, rarely 
defines particle boundaries exactly. 

Finally, three-dimensional reconstruc- 
tions are density maps and not determina- 
tions of surfaces. Although one is usually 
primarily interested in surfaces, these are 
not obtained directly. Surface representa- 
tions are generally obtained by presenting a 
single density contour, and the choice of this 
density contour is usually arbitrary to  some 
extent. Often small changes in contour can 
alter the apparent shape of the particle, as 
can a sloping background, which is often 

produced by errors on the equator. Very 
careful examination of the data is often 
needed before attempting to define surfaces 
with any confidence. 

SOME APPLICATIONS 
Virus particles 

Reconstructions have been obtained for a 
number of helical viruses, and these have 
proven useful in determining the general 
shape and arrangement of their capsid sub- 
units. The most studied has been tobacco 
mosaic virus (Finch and Klug, 19711, which 
now also serves as an excellent test object, 
since high-resolution structural informa- 
tion is now available from X-ray diffraction 
on both the native virus (Namba and 
Stubbs, 1986) and its stacked disc aggregate 
(Champness et al., 1976). Studies of this 
system have also been useful in evaluating 
the effect of negative staining and radiation 
damage (Unwin, 1974). The tail of bacte- 
riophage T4 has been studied in some detail. 
This structure undergoes a conformational 
change when infecting a bacterium. The 
helical tail of the bacteriophage contracts, 
and this forces its core into the bacterium 
rather like a hyperdermic needle. This in- 
jected core then serves as the route whereby 
the virus nucleic acid is introduced into the 
host. Amos and Klug (1975) and Smith et al. 
(1976) have examined the structure of the 
contracted and extended tail and thereby 
delineated the structural transition in- 
volved in the conformational change. 

Actin filaments 
Actin is a major constituent of muscle 

thin filaments and is also widely dispersed 
in the cytoplasm of eukaryotic cells. It is 
often described as a double helix, but is 
more correctly analysed as a single helix 
with approximately 13 subunits in 6 turns. 
Individual filaments are quite flexible, and 
this has made it difficult to obtain straight 
specimens using negative staining, al- 
though actin in vitreous ice seems superior 
in this respect (Trinick et al., 1986). Recon- 
structions have been obtained from mate- 
rial in ice (Trinick et al., 1986) and also in 
negative stain from the paracrystals formed 
with magnesium or polylysine (O’Brien et 
al., 1983; Smith et al., 1983). The filaments 
in these paracrystals are much straighter 
than isolated ones, but there may be prob- 
lems from superposition and intercalation 
(Egelman, 1985). Reconstructions generally 
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show that the actin subunits are bi-lobed, 
with the lobes located at  different radii. 
There is some controversy about connectiv- 
ity, and it is not completely certain whether 
the lobes in a subunit are connected along 
the long-pitch or short-pitch helices. This 
problem has proven difficult to resolve, be- 
cause it depends primarily on determining 
the relative intensities of the first and sixth 
layer lines. The usual problems in deter- 
mining such values accurately in computed 
transforms are compounded here by tor- 
sional disorder (Egelman et al., 1983), but 
the balance of opinion probably favours con- 
nectivity along the short-pitch helices 
(Egelman, 1985). In muscle, actin is associ- 
ated with tropomyosin and troponin. (These 
two proteins constitute the calcium-sensi- 
tive regulatory switch in skeletal muscle.) 
Tropomyosin is a rod-shaped molecule that 
lies in the grooves of the actin helix and can 
be seen in reconstructions (Milligan and 
Flicker, 1987; O’Brien et al., 1983; Spudich 
et al., 1972; Wakabayashi et al., 1975). 
X-ray diffraction indicates that tropomyosin 
moves in the actin groove in response to 
changes in calcium ion concentration (this 
movement is mediated by conformational 
changes in troponin), and reconstructions of 
thin filaments in either active or passive 
conformations are consistent with this 
model (O’Brien et al., 1983; Wakabayashi et 
al., 1975). 

Decorated actin filaments 
Contraction in muscle and many other 

systems is brought about by the interaction 
of myosin and actin. Myosin is a rod-shaped 
molecule with two globular heads that in- 
teract with actin. Proteolytic myosin frag- 
ments corresponding to the heads also bind 
to actin in the absence of ATP and form 
characteristic arrowheads. Decorated actin 
filaments have been studied extensively to 
define the shape of myosin heads and the 
interaction geometry (Amos, 1985; Amos et 
al., 1982b; Milligan and Flicker, 1987; 
Moore et al., 1971; Taylor and Amos, 1981; 
Wakabayashi and Toyoshima, 1981). These 
have proven difficult objects, however, be- 
cause material is present over a wide range 
of radii, and, since the structure is rather 
open, it is easily distorted. It has therefore 
been rather difficult to decide on exact 
boundaries between particles, although 
clearly the actin is located near the helix 
axis, whereas myosin is located at  interme- 

diate and high radii. The interaction geom- 
etry has suggested that tropomyosin might 
regulate skeletal muscle contraction by a 
“steric blocking” mechanism. The myosin 
heads in these reconstructions are also 
clearly curved and attach at an angle to the 
actin helix. Decorated actin has also been 
used to locate myosin light chains in the 
heads by obtaining reconstructions with 
and without light chains present. The dif- 
ference between these two reconstructions 
indicated that the light chains were located 
at high radius and so near the junction of 
the heads with the tail in the myosin mole- 
cule (Vibert and Craig, 1982). The myosin 
ATP-ase has also been located in a similar 
way by labelling the site with avadin (To- 
kunaga et al., 1987). 

Myosin-containing filaments 
A number of muscle thick (myosin- 

containing) filaments have been investi- 
gated. The arrangement of myosin heads on 
the surface of a number of Arthropod thick 
filaments (Crowther et al., 1985; Stewart et 
al., 1981, 1985b) has been established and 
has been further shown to be remarkably 
similar, even though the filaments them- 
selves have different diameters. The ar- 
rangement of myosin heads has also been 
established in scallop (Vibert and Craig, 
1983), Mytilus (Castellani et al., 1983) and 
frog (Kensler and Stewart, 1983, 1986) fila- 
ments. Vertebrate thick filaments are some- 
what different from invertebrate in that 
they have cylindrical rather than helical 
symmetry (Kensler and Stewart, 1986; Ste- 
wart and Kensler, 1986). This made recon- 
structions more difficult to obtain, although 
Stewart and Kensler (1986) have obtained 
one for the frog at modest resolution, using 
tilt series to decompose overlapping terms of 
different Bessel order. This reconstruction 
has shown that the heads are perturbed 
axially, azimuthally, and radially from the 
positions expected for an ideal helix, possi- 
bly as a consequence of the manner in which 
the myosin tails pack in the filament shaft. 
Moreover, these reconstructions indicated 
the position of accessory proteins and a 
marked positive-staining pattern in the fil- 
ament shaft. 

Microtubules 
Flagellar microtubles have been analysed 

in some detail and a three-dimensional re- 
construction of flagellar A-tubules gener- 
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ated that shows the general position of the 
tubulin monomers in the structure (Amos 
and Klug, 1974). Generally in this structure 
the a- and (3-tubulins are thought to be 
arranged alternately along each of the three- 
start genetic helices of the structure. Mi- 
crotubules reassembled in vitro from cyto- 
plasmic tubulin lack this symmetry. 
Mandelkow et al. (1986) suggest that alter- 
nate genetic helices contain either all a- or 
all (3-tubulin, so that these structures have 
a helical dislocation or seam along one side, 
thus resembling the C-shaped flagellar B- 
tubule. Cytoplasmic microtubules have also 
been investigated in vitreous ice and shown 
to have a very long-pitch supertwist (Man- 
delkow and Mandelkow, 1985). The ar- 
rangement of high-molecular-weight acces- 
sory proteins (“MAPS,) has also been 
investigated (Amos, 1977), and these pro- 
teins appear to form a superlattice of the 
A-tubule type microtubule lattice. 

Bacterial flagella 
Bacterial flagella are composed of a sin- 

gle protein, flagellin, but they are polymor- 
phic and assume several different structural 
conformations, most of which are curved. 
Two of these conformations are related to 
the physiologic “swimming” and “tumbling” 
states, but the entire series can be viewed as 
a series of mixtures of two basic structural 
states (Calladine, 1978). The structure of 
the most common straight form of flagella, 
which represents one of these states, can be 
described by a selection rule 1 = 15m + 
82m (Finch and Klug, 1972; O’Brien and 
Bennett, 19721, which indicates just over 11 
subunits in 2 turns. Three-dimensional re- 
constructions of these straight flagella (Shi- 
rakihara and Wakabayashi, 1979; Trach- 
tenberg and DeRosier, 1987) show a range 
of different interactions between subunits 
at different radii in the structure, which 
may be related to the observed polymorph- 
ism. These reconstructions also give some 
idea of the structure of the subunit, al- 
though it is difficult to make an unequivocal 
assignment of connectivity between differ- 
ent domains Shirakihara and Wakabayashi 
(1979) reconstructed negatively stained ma- 
terial and suggested that there were four 
domains, whereas Trachtenberg and DeRo- 
sier (1987) found only three significant do- 
mains when reconstructing material in 
amorphous ice. However, there was a re- 
markable correspondence between many as- 

pects of these two models, and the multido- 
main structure deduced for the subunit may 
impart the flexibility necessary for the 
structural transitions involved in generat- 
ing the various polymorphic configurations. 
Another straight flagella configuration has 
also been examined and is thought to corre- 
spond to the other basic state from which 
the curved polymorphs are derived (Kamiya 
et al., 1979). This second straight form has 
an opposite helical hand to the first type, 
but its exact helical structure does not seem 
to have been established unequivocally. 
Trachtenberg et al. (1987) have also studied 
more complex flagella from Rhizobium lu- 
pini H13-3 and have demonstrated in this 
case that there is a pairing of subunits to  
give three prominent helical strands on the 
exterior of the filament that seem to be 
associated with its greater rigidity and 
more brittle nature. The hooks that link 
flagella to the “motor” in the bacterial 
plasma membrane have also been investi- 
gated and have helical parameters remark- 
ably similar to those of flagella (Wagen- 
knecht et al., 1981). Three-dimensional 
reconstructions of hooks show prominent 
six-start helical grooves at medium to high 
radius; this feature may be important in 
conferring flexibility. Flagella hooks are 
polymorphic and seem able to  assume a 
range of conformations analogous to those 
in flagella (Kato et al., 1984). 

Other helical objects 
A range of other helical objects have been 

examined. Gastropod hemocyanin (Mellema 
and Klug, 1972) showed the subunits ar- 
ranged around the wall of a hollow cylinder, 
while the general outline of molecules such 
as catalase (Kiselev et al., 1968), glutamine 
synthetase (Frey et al., 1975), and nucleo- 
somes (Klug et al., 1980) have been deter- 
mined from helical aggregates. Bacterial 
pili (Steven et al., 1986) have been investi- 
gated in some detail and seem to have 
different surface lattices, depending on the 
organism from which they were obtained. 
Most, but not all, of the pili structures 
appear to have a central hole, but there does 
not appear to be any systematic relationship 
between the different structures analogous, 
for example, to that seen for bacterial fla- 
gella. A rather open and flexible helical 
structure, which seems to be based on two 
filaments winding around each other, is the 
sort of paired helical filament seen in Alz- 
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heimer’s disease (Wischik et al., 1985) and 
in aggregates of X protein from skeletal 
muscle (Bennett et al., 1985). Reconstruc- 
tions have also been obtained of the complex 
helical filaments formed from sickle-cell he- 
moglobin (Carragher et al., 1988; Garrell et 
al., 1979). Electron microscopy and image 
processing have also given insights into 
aggregates of helical molecules such as ac- 
tin in acrosomal processes (DeRosier et al., 
19771, paramyosin in the core of some mol- 
luscan muscle thick filaments (Elliott and 
Bennett, 19841, crystalline tubes of myosin 
subfragment-2 (Quinlan and Stewart, 
1987), and recA protein-DNA complexes 
(Egelman and Stasiak, 1986). 

CONCLUSIONS 

Helical structures are widespread in bio- 
logical systems, such as viruses, and subcel- 
lular assemblies, such as cytoplasmic fila- 
ments, flagella, and pili. These can often be 
ideal objects for analysis to moderate reso- 
lution (about 2 nm) by electron microscopy 
and image processing because of the ease 
with which three-dimensional models can, 
in many instances, be generated from a 
single view. Central to any form of analysis 
of these objects is the decomposition of their 
density distribution into helical waves and 
the consequent expression of their Fourier 
transform in terms of sums of Bessel func- 
tion terms. Provided the diffraction pattern 
can be correctly indexed, these terms can be 
evaluated quantitatively and reliable recon- 
structions can be produced. This is most 
easily done when terms of different order do 
not overlap along layer lines, but, if they do, 
then objective methods, based on least 
squares analysis of a number of different 
views of the particle, are available to sepa- 
rate overlapping terms. 

Although analysis of helical particle can 
sometimes involve considerable effort, the 
results obtained can often be spectacular, 
and insights into the structure can be ob- 
tained that cannot be achieved by simple 
inspection. These methods are, like the ma- 
jority of image processing methods, most 
powerful in detecting positions and orienta- 
tions of subunits and are often less precise 
regarding particle outlines and relative 
densities. This is particularly so when ma- 
terial is distributed over a substantial range 
of radii and so likely to be influenced by 
errors in the equatorial data. Notwithstand- 
ing these difficulties, image analysis of he- 

lical particles has proved a powerful tool in 
the analysis of these structures and in yield- 
ing a wealth of quantitative information 
about the structure, function, and assembly 
of many biological systems. 
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