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Abstract

Cryo-electron microscopy (cryo-EM) allows a macromolecular structure such as protein-DNA/RNA complexes to be reconstructed in
a three-dimensional coulomb potential map. The structural information of these macromolecular complexes forms the foundation
for understanding the molecular mechanism including many human diseases. However, the model building of large macromolecular
complexes is often difficult and time-consuming. We recently developed DeepTracer-2.0, an artificial-intelligence-based pipeline that
can build amino acid and nucleic acid backbones from a single cryo-EM map, and even predict the best-fitting residues according
to the density of side chains. The experiments showed improved accuracy and efficiency when benchmarking the performance on
independent experimental maps of protein-DNA/RNA complexes and demonstrated the promising future of macromolecular modeling
from cryo-EM maps. Our method and pipeline could benefit researchers worldwide who work in molecular biomedicine and drug
discovery, and substantially increase the throughput of the cryo-EM model building. The pipeline has been integrated into the web
portal https://deeptracer.uw.edu/.
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Introduction
In 2003, the Worldwide Protein Data Bank [1] (wwPDB) was formed
to ensure that the PDB data would be publicly available and
archived for researchers to use [2]. In 2012, the resolution revolu-
tion in cryo-electron microscopy (cryo-EM) allowed an exponen-
tial growth of biological macromolecules structural data, which
also extended the protein structure to other types of macro-
molecules such as RNA/DNA. As of 24 August 2022, there are
currently 21807 published cryo-EM maps. However, only 12166
structural models are available to these maps [3, 4]. Figure 1
shows an overall process of how Cryo-EM data are processed to
make a protein-DNA/RNA complex model (Figure 1).

DeepTracer is a fully automated deep-learning-based method
for a fast de novo multi-chain protein complex structure modeling
from cryo-EM maps [5]. When comparing DeepTracer with the
state-of-the-art methods of Phenix [4], Rosetta [6] and MAINMAST
modeling [7], DeepTracer’s protein carbon alpha (Cα) prediction
is more accurate, with higher percent matching averages of
Cα at 85–90% and lower root-mean-square deviation (RMSD)
values based on the Cα position [5]. However, the previous
DeepTracer-1.0 did not account for map regions that involve
other macromolecules, such as nucleic acids. This could lead
to problems as DNA/RNA, carbohydrates and fatty acids can
potentially be misidentified as amino acids, thereby making
an inaccurate prediction with a given cryo-EM map. In this

paper, we propose DeepTracer-2.0 to extend the functionality
of DeepTracer-1.0 by incorporating the identification of nucleic
acids along with amino acids. DeepTracer-2.0 adds segmentation
steps for separating cryo-EM maps and a nucleotide U-Net
architecture that identifies phosphate and carbon atom positions
in the segmented nucleotide cryo-EM map [8]. Combined with
the preprocessing and postprocessing steps, the DeepTracer-2.0
pipeline achieves fast and accurate macromolecular structure
prediction given variable-size cryo-EM inputs. The website
https://deeptracer.uw.edu allows users to perform automated
macromolecular complex modeling using 3D cryo-EM maps
and provides them the option to choose between predicting a
complex of amino acids and nucleotides, an amino-acid-only or
a nucleotide-only structure.

Challenges of protein-DNA/RNA
macromolecular modeling
In our early work, we have recognized several key challenges of
protein-DNA/RNA macromolecular modeling from cryo-EM maps.
This includes separating out the voxels, identifying the critical
atoms for each type of macromolecule and then building the
correct chains of macromolecules based on atom positions. It
is challenging to distinguish different macromolecules without
the accurate separation of the voxels, leading to false positive
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Figure 1. The overall cryo-em macromolecular data processing pipeline. This process illustrates the use of the microscope to analyze a portion of
a biological structure, get the area of interest and transform the image data into a 3D density map. Once complete, the map will contain both the
protein-DNA/RNA complex.

predictions and the misinterpretation of the voxels as part of the
structure.

Several computational methods have been proposed to
reconstruct macromolecular structures from cryo-EM maps [9].
Phenix’s Map_To_Model is the only other software that takes a
cryo-EM map and then converts the map into a macromolecular
model that contains both Protein and DNA/RNA [4]. The other
modeling systems either predict one macromolecule type, or
identify the secondary structure of the cryo-EM map, but they
do not predict both. For clarification, Phenix [4], Rosetta de-novo
[6], MAINMAST [7] and EM-Fold [10] utilize Cryo-EM to predict
proteins. Programs like AAnchor [11] and RENNSH [12] focus on
secondary structure building. CR-I-TASSER [13] and EMBuild [14]
build 3D protein structures. Emap2sec+ is capable of predicting
DNA/RNA along with protein, but it only predicts secondary
structures [15].

Amino acids are building blocks that combine to form the
protein. Each amino acid has a carbon alpha (Cα) also known as
the central carbon, an amino group and carboxyl group. For each
amino acid variation, their R-group defines their characteristic,
such as nonpolar, polar acidic, basic or aromatic. Results are
better when the resolution is at 4 Å or higher. High resolution
has allowed for strategies such as atomic structure modeling, de
novo main-chain tracing, structure refinement or a combination
of the strategies to identify amino acids [16]. Fasta files are text-
based that represent either nucleotide or peptide sequences, in
which base pairs or amino acids represent a single-letter code,
the description line and sequence are distinguished by a greater
than (>) symbol [17]. In fasta files, they are represented as a sin-
gle letter abbreviation. Although there are 21 different common
amino acids in proteins, the previous DeepTracer-1.0 pipeline [5]
focuses on identifying 20 amino acids from the density maps, with
selenocystene (SeH), left out of predictions [18]. Each amino acid
is attached to another amino acid by a peptide bond, through the

carboxyl group and amino group. This resulting chain of amino
acids is called a polypeptide chain. Each polypeptide will have a
free amino end, the N terminal, as well as a free carboxyl group,
the C terminal [19].

In 2021, about 13% of cryo-EM maps had protein–nucleic acid
interactions [16]. Currently, around 3046 released cryo-EM maps
with either DNA or RNA included out of 21 806 maps, which brings
the map total to 14% of experimental maps [20]. Nucleic acids are
macromolecules made up of building blocks called nucleotides.
They carry the genetic information of a cell and the instructions
for a functioning cell. The two main types of nucleic acids are
deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Each
nucleotide consists of three components: a nitrogenous base, a
pentose sugar and a phosphate group. DNA consists of four possi-
ble nitrogenous bases, adenine, cytosine, guanine and thymine,
while RNA has the same three bases, but has uracil in place
of thymine. The nitrogenous base is attached to the 1′ carbon
and the phosphate group is attached to the 5′ carbon. Nucleic
acids are linear chains of nucleotides, and are held together by
phosphodiester linkages between the 3′ carbon nucleotide and 5′

carbon nucleotide phosphate group of another nucleotide. The
first nucleotide will have a free phosphate at the end of its 5′

carbon, whereas the last nucleotide will have a free 3′ hydroxyl
group at its 3′ carbon [21]. Figure 2 shows the overview of an amino
acid and a DNA structure, followed by a closeup of a chain of three
amino acids and a chain of three nucleic acids (Figure 2).

The U-Net architecture is a strategy that allows it to work with
a moderate number of cryo-EM maps to identify the position of
critical atoms for proteins and nucleotides. The U-Net architec-
ture is used in the segmentation steps as well as atom location
predictions for amino acids and nucleic acids. The main idea
is to supplement a contracting network by successive layers in
order to increase the resolution of the output. The high-resolution
features from the contracting path are combined with the
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Figure 2. Structural models of amino acids and nucleotides. The left figure shows a protein structure and a closeup of three amino acids. The right
figure shows the nucleic structure of DNA. Blue represents nitrogen atoms, red represents oxygen atoms, orange represents phosphates, light gray
shows the side chain carbons and dark gray shows the backbone carbons. Each side chain can have 20 different conformations for amino acids and five
different kinds of DNA/RNA nucleotides.

up-sampled output, and the successive convolutional layer can
make a more precise output based on the information. One
important modification is upsampling a large number of feature
channels. A segmentation map only contains the pixels, for which
the full context is available in the input image. Cropping is
necessary due to the loss of border pixels in every convolution.
It is important to select the input tile size such that all 2 × 2
max-pooling operations are applied to a layer with an even x-
and y- size [22]. The amino acid consists of four U-Nets and
the Nucleotide U-Net would consist of two to capture the atom
positions.

Once the atoms are identified from their amino acid and
nucleotide U-Net architectures, the amino acid inputs and
nucleotide inputs proceed to their postprocessing steps. Although
the locations of the critical atoms are determined, each macro-
molecular type requires corresponding steps to connect the
backbone atoms correctly. Amino acid and nucleotide chains
can have a number of ways to connect each atom to form the
backbone, and this makes it impossible to have an exhaustive
search of all possible solutions that connect the atoms into chains
[5]. Additionally, DeepTracer-2.0 requires a way of respecting the
input sequence when building the structural model from cryo-
EM maps. Aligning amino acids is challenging due to the fact
that some amino acid types have a similar appearance. At lower
resolutions, cryo-EM maps lead to the U-Net mismatching the
frequency of certain amino acid types [5] [23]. Nucleotides have
four bases pairs compared with the 20 different amino acid side
chain atom types, but still have to correctly distinguish between
and pyrimidines as well as distinguish the sugar ribose as DNA
or RNA. Therefore, the pipeline adds in nucleotide postprocess-
ing strategies to make the phosphate atoms fit a DNA/RNA
structure.

DeepTracer-2.0 pipeline
After the nucleotide U-Net was created, all of the U-Net com-
ponents could be used to separate the macromolecular densi-
ties and then predict each macromolecule density as a struc-
ture. Our project development uses Python and machine learning
algorithms provided by TensorFlow. There are three main pro-
cesses that allow the prediction of the amino acid and nucleotide
macromolecule, see Figure 3. The first step is the segmentation
to extract the density maps for separate macromolecules. Once
separated, the amino acid and nucleotide pipeline work on model-
ing their structure from their respective density map. When both
predictions finish, the protein and DNA/RNA structures can be
combined to give a final prediction of the macromolecular model
(Figure 3).

Convolutional neural network and
macromolecular density segmentation
Most strategies utilize convolutional neural networks (CNNs) to
categorize the voxels [24]. Haruspex utilizes CNN to combine tra-
ditional image analysis with machine learning and convolutional
filters to obtain high-resolution cryo-EM maps that annotate the
protein’s secondary structure and DNA/RNA voxel regions. To do
this, Haruspex employs a state-of-the-art U-Net architecture to
take input that contains the input of 40 [3] voxels segments. The
volume is passed through multiple convolutional layers and pool-
ing features which determine the relevant secondary structure
elements for proteins or nucleotides. In the second upconvolu-
tional part of the network, activators recover the spatial detail.
The output has four channels that annotate the voxel data α-
helical, β-strand, nucleotide or unassigned which is used for the
segmentation process. Haruspex’s work which reconstructs each
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Figure 3. The system design of the macromolecular pipeline. The pipeline is organized into four major steps: segmentation, preprocessing, their
respective machine learning and postprocessing steps. Both amino acids and nucleotides share the same segmentation and preprocessing of their
density maps. Once the cryo-EM maps values are normalized and resized to fit a 64 [3] shape, the amino acid U-Net determines the positions of the
Cα and other backbone atoms, while the nucleotide U-Net determines the position of phosphate atoms and sugar carbon atoms. Both outputs will be
processed through separate postprocessing steps to add on atoms and complete a structure. The models are then combined to generate a complete
macromolecular structure. The cyan indicates DeepTracer-1.0’s amino acid pipeline and the dark blue are DeepTracer-2.0’s nucleotide pipeline.

cryo-EM density map based on a protein’s secondary structure
and DNA/RNA voxel regions [25]. To utilize the output data, the
α-helical, β-strand protein and unassigned probabilities are com-
bined to represent the amino acid density of the map. Meanwhile,
the nucleotide density probabilities are used to represent the
nucleic acid structure. The segmentation network architecture
separates density maps that allow each pipeline to model its
respective macromolecule in the DeepTracer-2.0 pipeline. Figure 4
shows the result of density segmentation (Figure 4).

Nucleic acid network architecture
Because DeepTracer focuses on high resolution, only maps with
a resolution of 4 Å or better were selected. The initial amino
acid network was trained with 1800 experimental maps and their
corresponding deposited model structures [5]. For the nucleotide

network training, 293 EMDB/PDB pairs were selected if the cryo-
EM map and model represented the same structure and it fit
visually well [20]. These maps required at least one protein chain
as an α-helix or β-sheet one nucleotide chain that is at least
20 base pairs or larger, and the resolution was 4 Å or better [8].
With these parameters, it narrows down the number of solved
structures to a few hundred maps and their respective PDBs.

After separating the densities, each macromolecule would
undergo preprocessing to normalize the density value of each
voxel from a range of 0 to 1 and resize each map into a 64
[3] voxel size. The preprocessed density map would proceed to
the nucleotide U-Net for its atom and backbone prediction. Due
to the different molecular structure of nucleotides and amino
acids, amino acids use an amino acid U-Net and DNA/RNA use
a separate nucleotide U-Net to define the structural aspects of
the nucleic acid. Preprocessed cryo-EM maps are fed into the 64
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Figure 4. Density segmentation and model structure of EMD-6777. (A) The cyan and dark blue densities are used to solve both the amino acids and
nucleic acids structures. On the left is the density map that needs to be separated; the cyan color depicts amino acids where α-helical, β-strand and
other data have been combined. The dark blue color depicts RNA density. (B) On the right is the model structure embedded in the density.

[3] input layer for each U-Net. The atoms for the nucleotide U-
Net focus on whether each voxel contains a phosphate atom (P),
a carbon one atom (C1’), a carbon four atom (C4’) or no atom.
This has a total of four channel outputs. The backbone U-Net
determines if each voxel is part of the sugar phosphate backbone,
part of the nitrogenous base or not in either group. This has
three different channel outputs. The network architecture for
both the atom and backbone U-Nets was heavily focused on
determining the structure of the DNA/RNA phosphate backbone.
After nucleotide postprocessing is used to refine the phosphate
and carbon atom positions, the DeepTracer-2.0 pipeline predicts
the nucleotide structure from a cryo-EM map and nucleotide
sequence.

Nucleotide postprocessing strategies
Postprocessing steps attempt to reduce the number of phosphates
predicted by the U-Net and construct a sugar-phosphate back-
bone that is consistent with DNA/RNA biological principles. The
sugar pucker is predominantly in the C3’ endo (A-DNA or RNA)
or a C2’ endo, which corresponds to the DNA’s form (either A
or B DNA). Most DNA and RNA conformations fall within the
5.9 Å range as this confirms an A-conformation [26]. However,
with larger distances that can appear in B conformations, the
postprocessing model allows phosphate atoms that are within 8 Å
from each other.

Pseudotorsions were also used to model connecting phos-
phates to each other. The pseudotorsion simplifies the RNA
dihedral angles using the angles between C1’ atoms and P to
distinguish and simplify the construction of the backbone [27].
The presence of the sugar pucker seems to impact the distance
between neighboring P atoms.

The Brickworx model then uses the P atoms and Cryo-EM map
to finish modeling the nucleotide. Brickworx finds the matching
position of double-stranded helical motifs in the cell, and if the
structure is RNA, the helical fragments extend to recurrent RNA
motifs that can contain single-stranded segments [28].

Evaluation metrics
We examine the results of structure predictions based on their
accuracy of amino acid and nucleotide metrics. Testing and train-
ing datasets were collected from the publicly available EMDR
search tool [20]. DNA samples involving the keywords Repair,
Replication and Splicing, with the filters ‘has DNA’ and ‘<4 Å’.
RNA samples had the filters ‘has RNA(no ribosome)’ and ‘<4 Å’

and had no keywords. Ribosomes were avoided for evaluations
due to their large size and having nucleotides mixed in with
protein density, making ribosomes the hardest samples to predict.
From the hundreds of EMDB map entries, the 20 selected cryo-
EM maps have a deposited model structure, a fasta sequence and
fall within the resolution of 2–4 Å with a balance of complexes
containing DNA and RNA structures. The metric comparisons are
made between Phenix’s pipeline performance and DeepTracer’s
pipeline performance. The density map tested has both amino
acids and nucleotides, and the nucleotide chains are at least 10
nucleic acids or larger. For map comparisons, no modifications
or density map adjustments were made, and were run on the
default settings. For Phenix, this was the autosharp and gives
the resolution of the density map. Our method compared our
metrics with Phenix’s map_to_model in their version 1.19 of the
Phenix Suite, using the density maps that are generated from
the original density. The metrics comparing the quality of amino
acids are RMSD, % matching, % sequence matching and % false
positives [29]. The nucleotides metrics are phosphate precision
and nucleotide precision. The runtime total was combined for the
total length to give an assessment of how long the overall process
takes.

For amino acids, accuracy of the atom’s position is measured by
the RMSD for Cα in amino acid structures. RMSD serves to magnify
the significance of errors in the prediction based on the Cα, a lower
RMSD value represents a better result.

RMSD (v, w) =
√√√√ 1

n

n∑
i=1

||v − w||2 =
√√√√ 1

n

n∑
i=1

((
vix − wix

)2 +
(
viy − wiy

)2 + (
viz − wiz

)2
)

RMSD is expressed in angstrom units (Å) which equals 10−10

m. v and w represent two sets of points, v is for the model atoms
and w is for the predicted atoms. n represents the number of
equivalent atoms of the reference structure [30]. The second is
matching percentage;

Matching % =
( r

m

)
∗ 100%

r is the matching residue divided by m the solved structure and
multiplied by 100%. A matching residue is included, if the position
of the predicted Cα is within 3 Å of the model. The third metric is
a sequence matching percent, which compares if the predicted
amino acid has the same type of amino acid. s is the sequence at

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbac632/6995410 by U

niversity of Alabam
a at Birm

ingham
 user on 23 January 2023



6 | Nakamura et al.

the amino acid and m refers to the solved structure residue.

Sequence Matching % =
( s

m

)
∗ 100%

Lastly, the amino acids measure false positives % of predicted
residue, where p is the predicted residue and a is where no
matching residue is found.

False Positive % =
(

p − a
p

)
∗ 100%

Rules for judging nucleotides were taken from Brickworx’s
modeling assessment. These general rules were adapted by
Gruene and Sheldrick’s Geometric properties of nucleic acids with
potential for autobuilding [31]. For nucleotides, a P-atom position v
is considered correct if the distance to the reference structure m
is within 1.5 Å. The nucleotide position n is considered correct
if both the P and C1’ atom positions are less than 1.5 and 1.0 Å,
respectively [28].

Phosphate CC =
( v

m

)

Nucleotide CC =
( n

m

)

Both the phosphate and nucleotides were judged on their
precision, which refers to the percentage of predicted structure’s
phosphate and nucleotide C1’ atoms positions that are correct.

Results and comparisons
The quantitative results for amino acids are displayed in Figure 5,
a through d. For the amino acids scatter plots, the average of the
map results shows DeepTracer having a lower RMSD, % Matching,
% Sequence matching and % False Positive for the amino acids.
Without parameters or manual processing steps, the details on
cryo-EM maps are paired with a fasta sequence. In Figure 5, e and
f, macromolecules involved in DNA replication had good results.
These structures are usually dsDNA on the outside with multiple
protein chains coupled on the inside (Figure 5).

The amino acid U-Net was capable of performing its prediction
as the separated macromolecular densities were tracked well.
Notable examples are EMD-6777, EMD-12900 and EMD-31963,
which show low RMSD values and great metrics, shown in Figure
6 [32–34]. These results indicate the capability of DeepTracer’s
pipeline to segment the density from the maps and accurately
predict the portion of amino acids. Additionally, the nucleotide U-
Net was capable of getting a majority of the phosphates required
to place the nucleotides in a double-helix structure. EMD-12900
demonstrates a segmented density sample and prediction result
with great results. Structures that were nucleosomes, amino acids
at the center and nucleotides that surrounded its outside, also
have good metrics. In EMD-31963, there are structures that can
improve with regards to RNA and single stranded nucleotides.
Our training model performs better for DNA and nucleosome
structures, likely because they have many more high-resolution
datasets available for training. In addition to the separation of
densities at the first step, the model did not pick up the RNA and
instead mistakenly predicted the density as protein (Figure 6).
After more high-resolution cryo-EM maps containing RNA are
released in the future, we expect the overall DeepTracer-2.0

performance on the RNA region will significantly improve. These
reasons caused some of Phenix’s individual results to be better
when compared with DeepTracer-2.0’s results.

Figure 7 shows the overall runtime of the pipeline process.
DeepTracer’s pipeline was exponentially faster when compared
with Phenix’s pipeline in giving a prediction of the complex struc-
ture. The smallest structure EMD-25198 took 5 min to gener-
ate for DeepTracer’s Pipeline, whereas Phenix’s pipeline required
6 h. For the longer macromolecular complexes, EMD-6941 and
EMD-24428, DeepTracer was quickly able to predict both macro-
molecules taking a bit over 6 min, while Phenix required over a
day to predict the overall structure (Figure 7).

The summary of comparison between DeepTracer and Phenix
is provided in Table 1 and details of the comparison can be found
in the Supplementary Tables. The amino acid and nucleotide
density that is used for each method comes from the original
density map, with each map resolution in the range of 2.0–4.0 Å.
Each program uses its methods of using the density to perform its
evaluation of the macromolecule. Each pipeline lists the average
values for the total 20 maps tested. The 2nd to 6th columns of the
table shows amino acids metrics and the last two columns show
nucleotide metrics. The results for each individual density map
can be found on the supplementary page (Table 1).

Ribosomes are difficult targets because the mixture of protein
and DNA/RNA densities make it difficult to distinguish the sec-
ondary structures of each macromolecule. The Phenix’s run with
EMD-32801, and other large ribosome samples end up crashing
due to the large size of the macromolecule. DeepTracer’s pipeline
progress slows down when the Cryo-EM map exceeds around 1000
nucleotides or more. However, DeepTracer’s model managed to
obtain a prediction with EMD-32801 by modifying the nucleotide
Cryo-EM density into smaller portions (Figure 8).

Discussion
With the new implementation of the macromolecular density
segmentation and nucleic acid modeling, DeepTracer-2.0 pipeline
is capable of predicting protein-DNA/RNA macromolecular com-
plexes from the cryo-EM maps. The concept of accurate density
segmentation allows the researchers to submit cryo-EM maps
that can contain different macromolecules in order to identify
the types of macromolecules involved in each voxel. As shown
by previous results, the amino acids were able to have low RMSD
and DNA/RNA contained a high phosphate precision. It is also
observed that low map quality could lead to suboptimal segmen-
tation and modeling results.

Our search from the EMDB database did include larger samples,
but since these were difficult it was hard to create a large bench-
mark of macromolecular molecules. Additionally, DNA and RNA
samples frequently fall within a lower resolution, which limited
the number of high-resolution datasets that contained both pro-
teins and nucleotides. These EMD samples should become more
accessible in the future.

For challenges to address, DeepTracer-2.0 needs to aim for more
efficient postprocessing techniques that will mitigate the amount
of falsely predicted phosphates, and aim for a more reasonable
amount of phosphate atoms when predicted by the U-Net. This
can be addressed by improving the logic within the postprocessing
steps and utilizing more training data to begin to include more
Protein-DNA/RNA Cryo-EM maps, also including ribosome data.

Ribosomes remain difficult targets due to their protein and
DNA/RNA mixed densities. Haruspex and Phenix have some
success in distinguishing secondary structures but can improve.
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Figure 5. Amino acid and Nucleotide modeling comparison of 20 experimental protein-RNA/DNA cryo-EM maps. DeepTracer models are blue and
Phenix models are red. The dotted line represents the trend for each pipeline. (A) RMSD for Cα in amino acid structures. (B) Matching % shows the
proportion of residues that have a matching residue, within 3 Å. (C) Sequence matching % shows if the predicted amino acid has the same type of amino
acid. (D) False positive % predicted from deposited residues. (E) Nucleotide prediction if the phosphate atom is within 1.5 Å. (F) Nucleotide prediction
if the phosphate and C1’ atom are within 1.5 and 1.0 Å, respectively. For subfigure f, EMD-11550 and EMD-24428 shared the same Nucleotide-CC score
(0.4), their phosphate scores were different (0.68 and 0.6).
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Figure 6. A visual comparison of DeepTracer and Phenix models from experimental protein-RNA/DNA cryo-EM maps. There are three cryo-EM
maps that go through each pipeline in order to predict the structure. Each model is colored differently, DeepTracer uses light blue for amino acids and
mauve for nucleotides, Phenix uses red for amino acids and orange for nucleotides, and the deposited model uses blue for amino acids and purple
for nucleotides. (A) Result of DNA model EMD-12900. Both the DNA and amino acids appear more complete in the DeepTracer pipeline. (B) Result of
RNA model EMD-6777. Both maps had issues tracking the single stranded nucleotides. Additionally, Phenix also had a few false positive nucleotides.
(C) Result of RNA model EMD-31963. Phenix had a better prediction for the double helix RNA structure, but DeepTracer did better with the amino acid
structure.

Figure 7. Computational runtime comparison of 20 experimental protein-RNA/DNA maps. The dotted lines represent the trend for each method. The
times are shown on a logarithmic scale and combine the runtime totals of amino acid and nucleotide methods. DeepTracer models are blue and Phenix
models are red.

For DeepTracer-2.0 and later versions, postprocessing steps
involving partitioning the chains of nucleotides could speed
up the analysis of large nucleotides complex. Additionally,
training ribosomes can be one part that could be improved to

make DeepTracer-2.0 more effective in predicting large ribosome
models.

Additionally, our work should move to become less dependent
on 3rd party postprocessing for DNA/RNA. The Brickworx system
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Table 1. Summary of comparison between DeepTracer and Phenix

Pipeline RMSD % matching % Sequence
matching

% False
positives

% False
connections

Phosphate
precision

Nucleotide
precision

DeepTracer 0.638 85.32 81.49 2.467 1.848 0.872 0.793
Phenix 1.017 65.44 49.71 8.416 4.102 0.866 0.752

Figure 8. A visualization of DeepTracer’s ribosome sample and EMD-32801 solved model. The left model is the solved structure, with blue for amino
acids and purple for nucleotides. The right model is the DeepTracer version, with a light blue for amino acid and mauve for nucleotides.

has had success with the nucleosome models but is restricted by
the library of DNA and RNA. As noted by a majority of the runs,
the main time bottleneck comes from brickwork’s postprocessing.
Setting up our nucleotide postprocessing to use our predicted
phosphates and carbon atom placements and sequence data can
lead to a more accurate and efficient macromolecular complex
modeling.

For future work, other deep learning and artificial intelligence
methods could be explored to train on the accumulated amino
acid density map and nucleic acid density map data and target
on single-strand RNA as well as larger complexes. In addition,
refining the sugar phosphate backbone to model the secondary
structure of DNA/RNA could lead to more accurate models.

Key Points

• The DeepTracer team has developed an artificial-
intelligence-based pipeline that builds amino acids and
nucleic acids from a cryo-EM map.

• When compared with other pipelines, our work shows
results of accurate and effective macromolecular mod-
els.

• Our webpage allows users to utilize this pipeline to
perform their own macromolecular modeling from their
cryo-EM maps.

Data availability
Availability of data and materials Software, documentation,
and datasets are available at the DeepTracer website: https://
deeptracer.uw.edu/.

Funding
This material is based upon work supported by the Graduate
Research Award of Computing and Software Systems Division and
the SRCP Seed Grant at University of Washington Bothell to D.S.
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