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ABSTRACT: While the application of cryogenic electron microscopy (cryo-EM) to
polymers in biology has a long history, due to the huge number of helical macro
assemblies in viruses, bacteria, archaea, and eukaryotes, the use of cryo-EM to stu
soft matter noncovalent polymers has been much more limited. This has mainly be
the lack of familiarity with cryo-EM in the materials science and chemistry commu
contrast to the fact that cryo-EM was developed as a biological technique. Neverthg
relatively few structures of self-assembled peptide nanotubes and ribbons solved at
resolution by cryo-EM have demonstrated that cryo-EM should be the method of chq
structural analysis of synthetic helieahents. In addition, cryo-EM has also demonst
that the self-assembly of soft matter polymers has enormous potential for poly
something that may be obscured by techniques such as scattering and spectroscg
cryo-EM structures have revealed how far we currently are from being able to p
structure of these polymers due to their chaotic self-assembly behavior.

CONTENTS actin and tubulin homolog(iée.g., MreB, ParM, FtsZ, etc.),
agellin, and pililn agellated bacteriaagellin can be the

%' lsrgrf??\xgttt'grn AC\: single most abundant protein.. In response to Iargg amounts of
3' Polymorphism £ DNA damage, the RecA protein, which forms a hgllg:al polymer
4 Symmetry Determination F o on DNA, can be the single most abundant protein in bacterial
5 Chaos G cells’ In eukaryotes, in addition to actin (the single most
6. Conclusion G abundant protein) and tubulin there are the_ intermediate
Author Information H laments, c_ollggen, etc., and we are still learning about other
Corresponding Author H polymers within ce_IIs._For examplg, we now undgr_s}and that
Authors H nucleated polymerlzatlon of the hellcairr_rrnasome_mltlates
Notes | a pathway Iea_dlng to pyropt6§T$1e rst virus ever isolated, _
Biographies | tobacco mosaic virus (TMV), is a helical polymer of a protein
Acknowledgments | bound to single-stranded RRfAThe early structural
References | characterization of viruses led to the realization that the two

simplest ways that multiple copies of a single protein could be

assembled into a capsid involved either a helix or an
1. INTRODUCTION icqsahedro?ﬂll The frequently overlooked reason for the

o ] ubiquity of helical polymers in biology is that a helical

There has been a revolution in structural biology due to recegksembly is the most likely consequence of any arbitrary
great advances in cryogenic electron microscopy (Crypyyorable interaction between two copies of the same molecule
EM).” = We will not discuss in this brief review the impactynhen this interaction is extended to multiple sub@nits.
of this revolution and how cryo-EM has now become the ; js ng coincidence, therefore, that thet application of
method of choice for determining the atomic structuré ofiyree-dimensional reconstruction from electron microscopic

macromolecular complexes. Rather, this review will tiﬁlages to a biological system was for the helical tail of an
narrowly focused on introducing chemists and materials

scientists to why cryo-EM should be the method of choice — ]
for determining the atomic structure of helical polymersPecial IssueCryo-EM in Biology and Materials
formed from peptides and small molecules. Bytsome  Research
introduction from structural biology is helpful. Received: August 31, 2021

It is probably fair to say that most protein (by mass) in both
prokaryotic and eukaryotic cells is found in the form of helical
polymers. In prokaryotes some well-known examples are the
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Figure 1.Helical symmetry is best understood in terms of the helical net. (a) An illustration of a helix without point group symmetry (rise: 4 A
twist: 58, C,). The asymmetric units (ASU) are represented by spheres. The right-handed 1-start helix that passes through every subunit is sh
as a dashed line. (b) The helical net of (a), using the convention that the surface is unrolled and we are viewing it from the outside. The h
crosses the horizontal red line once, so the helix is called a 1-start. The helical rise and helical twist along the right-handed 1isthrt helix are |z
(c) An illustration of a helix with point group symmetry (rise: 4 A, twWisE5Because of the rotational point group symmetry, any rotation of

this structure by multiples of°12 an identity operation. The asymmetric units are represented by spheres. The subunits along a single 5-ste
strand are shown in red, and the dashed lines show the 5-start helices. (d) The helical net of (c), using the convention above. The right-hand
start helices cross the horizontal red lmeetimes, hence the name 5-start.

icosahedral bacterioph&gaVhile the resolution obtained information from collecting the projections as a source and
from negatively stained samples in this pioneering work @etector are rotated around a single axis. In practice, the high
1968 was 35 A, it nevertheless opened up the possibility thalegree of noise present in cryo-EM images (with a signal-to-
two-dimensional (2D) electron microscopy (EM) imageshoise ratio 1) due to electron shot statistics, resulting from
might be routinely used to generate three-dimensional (30he low dose needed to minimize radiation damage, requires
reconstructions of biological assemblies. A simple measurdhatt extensive averaging must be used, so one may need to
progress is that the same bacteriophage T4 tail tube has nosllect images from hundreds or thousands of polymers to
been reconstructed at 3.4 A resolution using crydshith reach a near-atomic level of resolution. Further, the idealization
is an increase in information content b900 from the work  that a single projection contains all of the information needed
done in 1968. In fact, this comparison illustrates the genemaky only be true in the absence of what is called in Fourier
progress in cryo-EM, where a near-atomic level of resolutispace*Bessel-overlgpwhich may arise at a relatively low
has now become the standard and not the exception. To prgsolution when there are a limited number of subunits in a
this in perspective, a search of the Electron Microscopy Datae repeat. Thus, if one has a helix with exactly seven subunits
Bank shows 440 helical structures deposited with better thpar turn, then a projection image of a sirigfaent will only
5.0 A resolution, and the number of such deposits per yeashow seven dirent projection angles for the component
shows the exponential growtterting the overdResolution subunit. This would be equivalent to a single-axis tilt series
Revolutiohin the eld™**® with tilt increments of 5F4yielding a very low-resolution

In addition to their ubiquity, helical polymers have thereconstruction. For example, if tlienent had a diameter of
attractive feature that, in principle, a single helical polym&00 A, then the resolution obtainable would only98eA,
provides all the information in a single projection image tasing the relationship titht D , wheread is the resolution,
reconstruct in three dimensions. This is due to the fact that tH2is the diameter, and is the tilt increment in radians. Since
helical symmetry is generating whatéstiwely a single-axis there is no reason why any polymer, outside of a crystal, should
tilt series showing all of the elient projections of a single have an integer number of subunits per*fuconsider a
subunit as it is rotated about the helical axis. One thus has nlament with 7.1 subunits per turn. A sinienent would
need for other views, such as down the helical axis, in the sageaerate 71 dérent projections of the component subunit,
way that medical tomography of an asymmetric volume (e.gequivalent to a single-axis tilt series with Bi&ements. For
skull or a chest) can obtain all the needed three-dimensiortak 100 A diametedament, the resolution obtainable would
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Figure 2.Cryo-EM has become the method of choice for helical polymers. Cryo-EM maps better than 4 A resolution, now routinely attainab
clearly resolve some side chains of the peptide or peptide-like compounds, and one has the ability to build atomic models de novo. (a) Cryc
reconstruction of a crossranotube at 3.8 A resolutibriThe -helices form stacks, and the three stacks forming the tube are each shown in a
di erent color. The ASU is a singleelical peptide containing 36 residues. The density from a single subunit is shown on the right as a gray mes|
and a ribbon diagram of the atomic model has béen this density. (b) Cryo-EM reconstruction of a crosstotube at 3.5 A resolutitn.

The -sheets on the inside (yellow) are parallel, and those on the outside (cyan) are antiparallel. The ASU contains four peptides, shown on
right, forming four -strands. Although each eight-residue peptide is chemically identical, each of the four peptides in the AB&hts in a di
environment.

be 8.8 A, still quite far from what is needed for building atomiconvention was used in much of the earlier literature. Since we
models. We expect théments will have a random azimuthal actually look at most helical structures, whether using three-
orientation in cryo-EM images, so multifdenents can thus  dimensional reconstruction, atomic force microscopy (AFM),

be used to nely sample the azimuthal orientation spacegetal-shadowing, or scanning electron microscopy (SEM),

yielding the information needed for high resolution. from the outside, it makes more sense to reverse the original
It is helpful whenever discussing helical polymers toonvention igure b,d).
introduce the'helical nét(Figure ) and some terminology In addition to a point group rotational symmetry, there can

essential for describing the symmetry. Helical symmetry, e a dihedral symmetry such that the polymer has a twofold
screw symmetry, involves a coupled rotatioh gbout a axis perpendicular to the helical axis. For polymers built from
helical axis with a translationz) along the helical axis. In intrinsically asymmetric subunits such as peptides or proteins,
addition, there can beGy rotational point group symmetry this requires that the asymmetric unit in the polymer must be
about the helical axis. In the absence of a rotational symme#@y least a dimer. When such a twofold symmetry exists along
any helical lattice can therefore be completely described by thigh ann-fold rotational symmetry, this can be represented as
parameters of the 1-start helix that passes through evéy overalD, dihedral symmetry. _ _
subunit, where the pitch of the 1-start helizis 360/ . ‘For over 30 years since the introduction of three-
The “start number of the helix is simply how many times adimensional electron microscdjiy 1968 the main approach
horizontal line in the helical net intersects the helical linggsed for the reconstruction of helical polymers was the
(Figure b,d). Fourier-Bessel methBdAn alternative approach, called the

In a three-dimensional crystal the only allowed helicdferative Helical Real Space Reconstruction (IHRSR)
symmetries have 2, 3, 4, or 6 subunits per turn. But outside ofgthod,” has now dominated theld. A number of reviews
crystal there is absolutely no reason why the number §fve discussed the advantages of the IHRSR method and the
subunits per turn (360 ) should be an integer. Formalisms limitations of the Fourier-Bessel approdch:® Since no
that are based upon describing helical symmetry as intet%’e is currently promoting Fourier-Bessel methods as superior
ratiod® have a helical repeat, where one subunit can real-space approache_s, dlscuss_lng this further is unnecessary.
translated along the helical axis by this repeat and be exagé)’vever’ an early misconception was that one of the
superimposed upon another subunit. But such formalisms &@vantages of the real-space approach was that one did not
ill-conditioned due to the fact thatritesimally small changes need to understand Fourier-Bessel analysis. This, as discussed
in the helical twist result in huge changes in the helicQ€l0W, turns out to be wrong, and the greatest challenge in
repeat,’ and it is much better to simply describe the symmetr@PPlications of IHRSR is usually determining the helical
in terms of the two continuously variable real numbesd Symmetry***which is best done through an understanding of

2. When there is a rotational point group symmetry preserif)e Fourier-Bessel formalism.

: hile all of the early applications of IHRSR were made with
there cannot be a 1-start helix that passes through ever .
subunit. For &, point group symmetry, there will onlynbe Wzgt is now legacy software, the SPIDER pétkages

; ; : : IHRSR algorithm has been implemented in comprehensive
start helices and multiplesnofFor example, if there iCa . 28
rotational symmetry={gure }, then the structure will only modern packages such as Rélamd cryoSPART:
have 5-start, 10-start, 15-start, etc., helices. The convention
that exists is that right-handed helices are generated byzaSOFT MATTER
positive rotation, while left-handed helices result from @&here is a vast literature and associated prodigious research
negative rotation. The original conventitor the helical net e ort on supramolecular assemblies of nanotubes from
involved unrolling the surface of a cylinder and looking at thigeptides and small molectfebut there have been only a
two-dimensional lattice from the inside of the cylinder, and thisandful of high-resolution cryo-EM structures from these
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Figure 3.Loss of information about the absolute hand in projection images is best illustrated with a clinical X-ray of the human hand, since sucl
ray images, like cryo-EM images, are projections. From a radiograph on the left, one cannot tell whether this is a right hand, palm down, or
hand, palm up. The image on the right is simply the mirror image of the one on the left, and this could be either a left hand, palm down, or a r
hand, palm up. Radiograph courtesy of Department of Radiology, University of California San Diego.

complexes, which we will discuss. One of the reasons thegrception about resolution in chemistry and materials science,
three-dimensional EM arose in the biological sciences asd we will focus on these papers in this review.

opposed to such areas as materials science or metallurgy (boths shown ifrigure 2when one reaches a resolutiondf

areas where EM has also been extensively used) is that nfbsthere is no ambiguity in building atomic models into these
biological specimens can be viewed as weakly scatteringo@ptide maps. The determination of the absolute hand can still
terms of interactions with electrons having an energy of 1000e challenging, however. Since cryo-EM images are projec-
300 kV. Thus, an electron passing through the sample wiPns, information about the hand is lost, as a structure and the
either not interact at all or have a single interaction. Imnirror-image of the structure will both give rise to
contrast, for a strongly scattering material such as a metal,iagistinguishable projections. This can be understood at the
electron will typically have multiple interactions with theahatomical level, where an X-ray of a left hand with the palm
sample before it reaches the detector. This multiple scatteriig IS the same as the X-ray of a right hand with the palm down
(or dynamic scattering) means that the image that is obtaindf'9ure 3. If one knew whether the palm was up or down, one
can be quite complex and not simply related to the samp uld distinguish which was which. But in th(_a absence of that
being examined. However, in the cryo-EM of most macr nowledge there would be an enantiomorphic ambiguity.

molecular complexes it is reasonable to assume that the ima g;cr_ycr)];EhM, (rjecaonstrutﬁtmg a Ieft_;handhed lr:jelyx e:ssummgtthat
ignoring for the moment the Contrast Transfer Functior]® 'S Mgnht-handed, or he opposite, should Just generate a

(CTF), conesponds 1o the projected densiy of the sampid>C2SILEEd o el s e pefect ivcr mage of e
This relatively simple relationship leads to the ability to g i y

from two-dimensional imagdo true atomic resolution is. A cryo-EM papSriooking at the assembly of amyloid

volumed®3 using techni h weiahted b laments formed by a 101-residue fragment of a protein argued
olume using techniques such as weighte aCkt'hat the correct hand could be determined directly, since the
projection, algebraic reconstruction, or Fourier methods.

Perh ¢ this hist th reconstructed volume using a twist 6f68 had a better
erhaps as a consequence of this history, the CUrrglllyy) iion than one generated with a twist of. 7168 result
capabilities of cryo-EM to routinely reach a near-atomic lev

X ) , “cannot possibly be true, since the projections of a right-handed
of resolution for protein polymers are still largely unknown igg1ume will be indistinguishable from the projections of a

materials science and chemistry. For example, there has beF‘rﬁr?or—image of this volumEigure }. Therefore, the most
mistaken belief that thenicrobial nanowirésconducting  jikely explanation for their drent resolutions involved the
electrons away from bacteria sudBembacter sulfurreducenssiarting models for the left- and right-handed reconstructions.
are Type IV pili, when it has now been shown by cryo-EM ator example, one might have started both reconstructions with
near-atomic resolution that thedaments are actually a a yolume having a left-handed twist, and it is therefore not
polymer of cytochromé$.Prior to the cytochrome surprising that the reconstruction with the left-handed twist
publication, a 2017 paper in a chemistry journal stated thfhd a better resolution. Right-handed versus left-handed
determining the actual structure of thdaments remains versions of chiral monomers must necessarily be nonidentical,
challenging due to tHw-resolution of electron microscopy just as a right-handeehelix composed of L-amino acids must
techniqués™ There have now been a number of publishecbe di erent from a left-handeehelix composed of D-amino
high-resolution cryo-EM structures of synthetic polymeracids (never found in nature). But the projections of a right-
formed from peptid&s*® that should begin to change this handed -helix composed of L-amino acids would be
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indistinguishable from the projections of a left-hanrbetix large icosahedral virdédsit is unlikely to be very useful for
composed of D-amino acids. A clever approach to see wiiain laments at 3 A resolution or worse. Nevertheless, in the
such true enantiomorphs would look like was done bgbsence of true atomic resolution.8 A or better), directly
mirroring the entire Protein Data Bank (PDB) to create avisualizing the chirality of molecules may still be possible.
library of 2.8 M D-peptidéSThese could then be used to  There have been other a })Iications of cryo-EM to look at
create D-analogues of a given peptide, which would resisigned protein polyn%rg (as opposed to naturally
proteases and could be used pharmacologically. occurring ones), but almost all were at very limited resolutions
For natural proteins or synthetic peptides built from L-with likely questions about whether the correct symmetry had
amino acids, one can thus establish the absolute hand obeen found” The more recent one from Baker and
reconstruction if the structure of the protomer contains @olleagués was done at a near-atomic level of resolution,
single -helix, knowing that this must be right-handed.-But generating codence that the symmetry was correct.
sheets are more problematic, starting with the problem that
one needs to consider whether the twist of a strand is beidg POLYMORPHISM

specied (typically right-handed) or the twist of the sheetmost naturally occurring biological polymers, such as actin
(typically left-handed) is being descriiéd.in any case,  |aments, microtubules, TMV, etc., exist with mede
while most proteins contain left-handed sheets composed §fmmetry, althougtiaments such as actit? and amyloit
strands with a right-handed twist, an analysis of the PDB shoy¢h have a large variability in twist about thatede
the presence of some left-handed twist strasmithe overall  symmetry. The single-particle approach in cryo-EM, which is
twist of the sheet will not be 100% reliable in assigning theow being used to reconstruct helical polyretan
correct hand to a reconstruction. For one amyloid-formingurmount many of the problems caused by such heterogeneity,
protein, atomic force microscopy (AFM) imaging revealed theince long-range order is not required for three-dimensional
presence of both left- and right-handeds’™ AFM has also  reconstruction. While the variable twist of an amydoitent
been used to detect helical hand and heterogeneity in othgfay mean there is no highly regular periodicity of features such
amyloid cross- lament§**® We have found that, if the as that generated by the crossovers of two strands coiling about
resolution of a reconstruction is 3 A or better astieets are  each other, by using short segments for analysis the local order
present, then the pattern of backbone hydrogen bonds in tiigat exists is still captured. The shorter the segment used, the
atomic model built into the map can be used to distinguisfess one is acted by the cumulative disorder. However, the
between the two hands. For the correct hand the hydrogemorter the segment, the less ability one has to align it with
bonds look reasonable, while for the wrong hand thether segments given the extremely poor signal-to-noise ratios
stereochemistry is quitawed. in cryo-EM images. There is thus a tradeith using shorter

In general when-helices are not present, or whateets  segments, and the optimal length of a segment may change
are present but the resolution is worse tlaf, determining  with every sample. Ultimately, however, one of the main
the absolute hand may be quite problematic, and one m@phitations on resolution when working with heliasients is
need to use other techniques such as AFM or cryo-electretis internal structural heterogeneity.
tomography to establish the hand. However, the simplestBut heterogeneity of the helical symmetry itself is quite
applications of both of these techniques are fairly lowossible and frequently observed. When microtubules are
resolution, and for relatively thin and smooth nanotubes thsolymerized in vitro they can have a large variability in the
helical hand may not be easily seen. AFM image dhagsis  number of protdament§X with the number of prottaments
subtomogram averadihmay need to be employed in these varying within the same microtubule. Similarly, amyloid
cases. A study of chirality in ndess self-assembled from laments polymerized in vitro have been shown to be highly
short amphiphilic peptidessed transmission electron polymorphi® and have raised questions about the validity of
microscopy (TEM), SEM, AFM, molecular dynamics simuthese in vitro polymers for understanding spewuro-
lations (MD), and circular dichroism spectroscopy (€D). degenerative diseases. When one works with the in vitro self-
The hand was quite clear from AFM for some oflihie  assembly of synthetic peptides, the potential for polymorphism
forms (but not for the thinnest ones), but it did not appearis huge. A recent paper on the assembly of an octapeptide
clear from SEM for any of thkers. Since the TEM images showed that tubes could form with either four \&
were from a negative stain, they (like cryo-EM images) will nproto laments, in addition to ribbons corresponding to a
show the hantf. The CD signals appeared to be determinedsingle protdament Figure 4,b). Within the context of
by the chirality of isoleucine residues and, thus, have limiteidsigned peptide assemblies, this relatively limited degree of
generalizability to other peptide assemblies either in terms gdlymorphism can actually be seen as relatively well-behaved.
molecular chirality or supramolecular handedness. While weThe potential polymorphism often manifests itself as
discuss below how symmetry determination may be a vedly erent lamentous morphologies present within a sample
challenging problem when reconstructing polymers, that correspond to dirent helical symmetrieBiqure 2.
determination of the absolute hand may actually be motdowever, it is also observed that closely related peptides can
challenging in some cases in the absencédices, as is form nanotubes with similar morphologies buerelnt
certainly the case for most synthetic soft matter nanotubes sfmmetries. Despite the fact that the symmetryeiseil,
very recent paper on helical polymers formed from ththe interfaces between protomers has been found to be well-
octapeptide Lanreotide was able to show at 2.5 A resoluticonservedRigure %. Of course, to show this one mustt
that a C carbonyl t much better into one map than the determine the helical symmetry for each classnoénts. A
mirrored map’ establishing the correct hand. Another similar phenomenon was also observed with proteins. For
approach possible at high, but less than atomic resolutic’kample, when greemorescent protein (GFP) tags were
involves the curvature of the Ewald sphere, which can be ugettied to pyrin domains (PYDs), the PYDs assembled into
to determine the absolute hahdhis has been applied to helical polymers with a drent helical symmetry from those
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is imposed, reproducibigetail can be present at seemingly

hi

gh resolution that is actually a complete artifact. One can also

show that the wrong symmetry will generate a reasonable map
in some cases, but the resolution is limited. For example, a
reconstruction of a bacterial conjugation pilus reached 5.0 A
using the wrong symmetfyHowever, with the correct
symmetry the resolution obtained was 3.9 A. A comparison of
the two maps at 5.0 A resolution showed that they were
extremely similar, so if higher resolution had not been reached

on

e would have been unable to decide which was the correct

symmetry. How is this ambiguity possible? A comparison of
the two helical néfsshows that the local packing for these
two di erent symmetries is not thatatient. Thus, one can

al

ign images locally using the incorrect symmetry without

doing too much damage to the resolution. However, the
further one is from the center of the image the greater the
mismatch will be between the actual symmetry and the
incorrectly assumed symmetry, which is ultimately what is
limiting the resolution. There are some helical structures where

on

e might never reach high resolution due to disorder,

heterogeneity, etc., and one thus must be concerned in these
cases that the correct symmetry cannot be established with

hi

gh condence. What the mating pilus example illustrates is

that one must explore all possible choices of symmetry before
concluding that the correct one has been found.

Figure 4.Polymorphism is the norm rather than the exception withT

many peptide assemblies, and cryo-EM can sort out heterogeneit
polymers. (a, c) Representative cryo-EMs of KFE8 nanda)be
and 1-KMg nanotub& (c). Scale bar is 50 nm. (b, d) After
automatic particle picking and reference-free 2Dcatasss, helical
polymers are grouped into efient classes. The eliences are

So how does one go about determining possible symmetries?
he best approach involves starting with an averaged power

%chtrum from the imageBigure 8,h andFigure @).
n

derstanding and interpreting the power spectrum does

involve the Fourier-Bessel formalféth,and there are a
nu
point out that the averaged power spectrum esethit from

mber of reviews where this formalism is explaifiatle

obvious by looking at the aages, and helical symmetry the power spectrum of an averaged image. The averaged power
determination and high-resolution reconstructions can subsequenilyectrum is an incoherent average that is invariant under the
be done for each class. In (b) class 1 corresponds to tubeswith shifts of images that are needed to generate a coherent real-

sheets, class 2 corresponds to tubes formed from four sheets, and

3 is a ribbon containing two sheets. (d) Class 1 corresponds to
lament with seven peptides per plane, and class 2 corresponds
lament with six peptides per plane.

¢

(e,

?§%e average. But the process of generating a coherent real-

gpgce average can introduce artifacts. For example, if one
averages together images using a picture of Albert Einstein as a
template, then the average will look like EitfStaimd the

power spectrum of this average will look like the power
formed without the tags, but the local environment for thepectrum of Einstein. However, the averaged power spectrum

PYDs was quite conserved between bethent form$s>

will show no such artifact and will actually represent the

information in the raw images. Similarly, an average may be

4. SYMMETRY DETERMINATION

ba

sed upon the alignment of one very strong feature (such as a

One of the greatest challenges in reconstructing helidaing-pitch helix), but other helices in the image are blurred
polymers, whether they are native biological assemblies aut. The power spectrum of the averaged image will then only
synthetic in vitro constructs, is determining the correct helicahow this long-pitch helix, while an averaged power spectrum

symmetry>?° 2354 We now understand that there is no fr

om the raw images will show features arising from all of the

simple metric that allows one to decide whether they havelices.

chosen the correct symmetry. For example, it would be nice toln rare cases, the averaged power spectrum, combined with a
be able to say that, if the resolution as determined by tHenowledge about the diameter of thenents;-*>’° may lead
Fourier Shell Correlation (FSC) reaches 4.0 A or better, theto an unambiguous determination of the helical symmetry. In
one knows that they have the correct symmetry. But this is niite more likely case, there will be ambiguities. For example, a
the case, and we have seen many examples where the FS®@lisal virus had at least 10 possible symmiétibde 1-

4.0 A or better, but the map is uninterpretable, a consequeni
of using the wrong symmetry. We shieiyufe $ how four
di erent helical symmetries (only one of which is correctp
generate‘gold standatdFSC values that are all virtually d

Me; nanotube had more than 30 possible symniétries.

What can be seen kigure 6 is that metrics, such as the

utative resolution determined by the FSC, may not correctly
istinguish the correct symmetry from the incorrect one. Using

identical ( 3.5 A). This gets to one of the problems with the atomic models built into the maps, one can only exclude one of
use of the FSC, as it is not really a measure of true resolutitdre symmetries based upon a poor map/model F§Qr¢
but rather a measure of reproducibility. This is discussed @g). But in this test, onest must build an atomic model into

some detail in an earlier revidsp we will not dwell on this

the map. These problems make fully automated searches

here. But what becomes obvious is that, if the wrong symmeimpossible at the moment, and one still needs the active

F
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Figure 5.Helical polymers made from small subunits can easily adopntdhelical symmetries while maintaining relatively conserved
interactions. Two peptide examples are shown hetgnémotube 2920 2 compared with AS2; (k) nanotube Form | compared with F1

N2. (a, €) The amino acid sequences of the peptides. The dots between the sequences indicate the residues that are nonidentical in each
pairs. (b, f) The determined helical symmetry and atomic models of the nanotubes (PDB 7RX4 for AS2 and NRX5(&orgfFThe

interface comparison between two nanotubes shows that relatively conserved contacts are maintained, even though the helical symmet
changed. (d, h) The averaged power spectrum (only showing one of two, as they look similar) of the nanotubes and the helical indexing.

involvement of an observer who knows what a protein dhousands of years, this allele has remained in human

peptide map should look like atestent resolutions. population$?
Similarly, while it is known that pH can determine whether a
5. CHAOS peptide forms parallel or antiparaleheets’ and that certain

The mathematician and meteorologist Edward Lorenz Reptide sequences will lead to parali#ieets while other
widely quoted as having described chaos in the tempof@duences will lead to antiparallel sfeeshave shown that
evolution of a system thusiyWhen the present determines the same peptide will assemble into parallel sheets on the
the future, but the approxima‘[e present does not approximatwmje of a nanotube and ant|para”8| Sheets Or_T the outside of
determine the futureChaotic systems are therefore those thathe same tub¥. We have called this an instance of
are incredibly sensitive to small changes. We have sugges@derministic chagsand it is yet another example of how
that many peptide assemblies behave in such a chaotic manft&, quaternary interactions defy predictability with current
as small changes in sequence or assembly conditions KBAwledge and tools.

generate huge changes in the structures that are *foAned.

very striking example of this involves a 29-resitiakcal 6. CONCLUSION

peptide that self-assembles into helical nandtubes. The prior discussion highlights the challenges associated with
semiconservative mutation of a single arginine to a lysiceyo-EM analysis of helical polymers at near-atomic resolution.
resulted in (1) tubes having approximately twice the diametddowever, in order to gain perspective, it is instructive to look
(2) the asymmetric unit changing from a single peptide to twback 10 years to gauge progress. At that point in time, direct
peptides, where the two peptides were now ieredi electron detection cameras for electron microscopes were still
environments from each other; (3) the structure changingeing developed and were not widely available. These cameras
from four stacks of helices to three stacks. While these changeabled image capture at high detective quantaieney,

are not mystical or due to supernatural forces, thest re with a vastly improved signal-to-noise ratio, and rapid
quaternary interactions that are far beyond our current abilitiegquisition times. This development was a necessary
to predict. In biology, chaotic assembly would be typicallgrerequisite for thé€Resolution Revolutibnin cryo-EM.
pathological (such as amyloid), and we expect that there haseviously, few structures of biologically derived helical
been intense selection against it over billions of years. Sicklaments and no structures of desighachents had been

cell disease is an interesting exception. A mutation of a singtdved to near-atomic resolution using cryo-EM helical
residue on the surface of hemoglobin leads to the aberrareconstruction. The ensuing decade has led to an exponential
polymerization of what would otherwise be a compact tetramgrowth in the number of reported high-resolution structures,
into a pathologicalber. But since people carrying the sicklebut it is clear that the growth curve is still at a very early stage.
cell allele have greater resistance to malaria, which has beerCtgently, high-quality cryo-EM data sets can be routinely
main factor in early mortality in many parts of the world foobtained for synthetic soft materials. The availability of these
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Figure 6. Ambiguities frequently exist in helical symmetry determination. (a) The averaged power spectrum of i@ andébd possible

helical symmetries generated from indexing the power spectrum.“gold-standatd=SCs after applying those fouedint symmetries in

helical reconstructions are nearly indistinguishable, despite the fact that three of these symmetries @y@ mgoagofstruction volumes for

those four dierent symmetriestered to resolutions of 8 A (c), 5 A (d), and 3.5 A (e). At 5 A resolution or worse all four symmetries generate
maps that might be considered reasonablehfeical subunits. (f) The density of a single helix is shown from the 3.5 A map. The comparison
between the density and the atomic model shows that symmetry 3 is the correct one. (g) The model/map FSC for those fowerevaps with di
symmetries and corresponding atomic models. The commonly used arbitsa@.5wod 0.38) are shown. Using the FSC = 0.38 criterion
(where 0.38 = 0.143), only one of these (symmetry 1) might be excluded as obviously incorrect.

data sets now allows researchers to address the mdeatures that underlie their technological application and will
challenging technical aspects of cryo-EM analysis, includinbeacritical for materials informatics approaches to optimize
determination of more ective methods to assign the helical function.

hand and determine helical symmetry. Thestseshould

result in greater numbers of near-atomic resolution structur8&) THOR INFORMATION
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