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Abstract 

 

The recent revolution in cryo-electron microscopy has made it possible to determine macromolecular 

structures directly from cell extracts. However, identifying the correct protein from the cryo-EM map is still 

challenging and often needs additional sequence information from other techniques, such as tandem mass 

spectrometry and/or bioinformatics. Here, we present DeepTracer-ID, a server-based approach to identify the 

candidate protein in a user-provided organism de novo from a cryo-EM map, without the need for additional 

information. Our method first uses DeepTracer to generate a protein backbone model that best represents 

the cryo-EM map, and this model is then searched against the library of AlphaFold2 predictions for all proteins 

in the given organism. This method is highly accurate and robust: in all 13 experimental maps tested blindly,  

DeepTracer-ID identified the correct proteins as the top candidates. Eight of the maps were of known 

structures, while the other five unpublished maps were validated by prior protein annotation and careful 

inspection of the model refined into the map. The program also showed promising results for both homomeric 

and heteromeric protein complexes. This platform is possible because of the recent breakthroughs in large-

scale protein 3D structure prediction. 

 

  



 

 

Statement of Significance 

 

While it has now become routine for cryo-EM maps of proteins to reach a near-atomic resolution, potentially 

allowing for reliable atomic models to be built, there are a growing number of instances where the protein 

identity may not be known. Without knowing the protein sequence, it is impossible to build an atomic model. 

DeepTracer-ID is a server-based approach to surmount this problem by identifying the proteins in a given 

organism that are found in the cryo-EM map. A free web service for global academic access is provided.  

  



 

 

Introduction 

Over the past nine years, there has been a resolution revolution in cryo-electron microscopy (cryo-EM), with 

exponential growth in the number of determined atomic structures per year1-3. Unlike X-ray crystallography or 

NMR which often require a large amount of sample, a high concentration and a high degree of sample purity, 

using cryo-EM it is possible to capture structures of macromolecular complexes under conditions closer to the 

in situ environments with fewer restraints on volume, sample purity and concentration4-6. With recent 

software developments7,8, cryo-EM can routinely sort out different conformational states of single 

macromolecules9, and even unrelated complexes within the same dataset10,11. When a cryo-EM map of 

unknown components reaches ~4.2 Å resolution or better where β-sheets are well resolved, one can typically 

trace the Cα backbone directly from the map. The remaining challenge is identifying the correct protein 

sequence from the organism’s genome.  

 

A typical workflow that has been used to address this problem is first to detect what proteins are present in 

the sample by tandem mass spectrometry, then threading the sequences of detected proteins into the cryo-

EM map to identify the best match12-14. However, this approach relies on the target protein being detected by 

MS/MS, which is often not the case due to the lack of digestion sites15, a high degree of post-translational 

modifications16, etc. Or on the contrast, thousands of proteins can be detected if the target of interest was 

purified directly from cell extracts. Under such circumstances, possible sequence targets have to be selected 

based on the structural features of the map. Then each sequence must be built into the map to identify the 

best match by trial and error. 

 

A second approach is using model building tools, such as DeepTracer17, to perform protein sequence 

prediction based on an input cryo-EM map. Then, the predicted sequence is used for BLAST analysis to identify 

potential hits in the selected organism18. This approach is greatly limited by the accuracy of the backbone 

trace and the quality of side chain densities of the input cryo-EM map, and the results may not be 

straightforward to interpret.  

 

Another approach to identifying unknown proteins is to trace the backbone from the cryo-EM map, and then 

find the best matches against the experimentally determined structures in the Protein Data Bank. One 

example of this approach is FindMySequence19. However, this method is likely to be limited to detecting 

proteins with known structure or those closely similar to structurally characterized proteins. Fortunately, with 



 

 

recent breakthroughs in protein 3D structure prediction by AlphaFold2, it is possible to obtain accurate 

protein structure predictions even when no homologous structure is available20.  

 

Here, we describe a de novo protein identification approach, DeepTracer-ID, for cryo-EM maps with better 

than 4.2 Å resolution. Our program first automatically generates a backbone tracing of the cryo-EM map using 

DeepTracer. Then, the AlphaFold2 predicted models are aligned to the DeepTracer backbone using three 

different algorithms, PyMOL-align21, PyMOL-cealign22 and FATCAT23. On a benchmark set of 11 experimental 

segmented cryo-EM maps, including three previously unsolved structures, we show that our program, 

DeepTracer-ID, can identify the correct protein and their closely related homologs in a pool of AlphaFold2 

predicted models. Furthermore, we show that DeepTracer-ID can detect the correct protein from 

unsegmented maps made of homopolymers, and also identify large components from maps of massive 

complexes.  

 

 

 

Methods 

 

Pipeline inputs of DeepTracer-ID 

Two inputs are needed to use the pipeline: (1) a cryo-EM map, segmented to correspond to a single protein 

subunit is preferred but not necessary; and (2) A pre-calculated AlphaFold2 protein library to search against 

(Fig. 1). The input cryo-EM map is used to generate a 3D model trace by DeepTracer17. In a rare case when the 

cryo-EM map does not contain a single α-helix, there is an ambiguity in the absolute hand of the cryo-EM 

map24. In this case, the users are encouraged to mirror the input map and run DeepTracer-ID again for the 

best results. The proteomes from a number of model organisms and pathogens important to global health, 

such as H. sapiens, E. coli, A. thaliana, C. elegans, C. jejuni, S. pneumoniae, etc., have been already pre-

calculated25, and for those organisms an AlphaFold2 protein library is not required from the user side. For the 

other organisms, the user can either generate their AlphaFold2 library locally or use an online service such as 

ColabFold26.  

 

3D alignment of AlphaFold2 predictions to map-traced model  



 

 

We use three different approaches, PyMOL-align21, PyMOL-cealign22 and FATCAT23, to align the AlphaFold2 

predicted structures to the backbone model traced directly from the cryo-EM map (Fig. 1). The aligned 

AlphaFold2 predictions are saved separately for subsequent RMSD analysis. Three different alignment 

algorithms are used, as we expect they have different advantages and disadvantages depending on the input 

cryo-EM map. PyMOL-align considers both similarities in sequence and structure, and this is the default 

alignment option due to its overall most robust performance (see below). PyMOL-cealign mostly weights on 

structural similarity, so it may be more useful when the protein side chain densities are not well resolved in 

the cryo-EM map. FATCAT has a flexible alignment feature so it may be able to minimize some of the errors 

introduced from the AlphaFold2 prediction, and it may be more useful for smaller proteins, or proteins that 

rely on the local environment to form an ordered 3D structure. 

 

Protein identification scoring matrix 

Each AlphaFold2 prediction is scored with two factors: (1) the RMSD to the DeepTracer model and (2) the 

percentage of residues in the DeepTracer model that can be aligned to the corresponding AlphaFold2 

prediction (Eq. 1). The RMSD calculation between the AlphaFold2 prediction and the DeepTracer model is 

done with the methods previously implemented in DeepTracer17. The length of the DeepTracer model is 𝑙𝐷𝑇 

and the length of matching residues in the superposed AlphaFold2 prediction is 𝑙𝑎𝑙𝑖𝑔𝑛𝑒𝑑 . The AlphaFold2 

predictions are then listed from lowest to highest based on this score, and the correct protein is expected to 

be detected within the AlphaFold2 predictions with lowest score: 

𝐸𝑞. 1         𝑠𝑐𝑜𝑟𝑒 = 𝑅𝑀𝑆𝐷 ×
𝑙𝐷𝑇

𝑙𝑎𝑙𝑖𝑔𝑛𝑒𝑑
 

 

Using this approach, we expect to not only detect the correct protein, but also other isoforms or homologs 

that are structurally similar to the correct protein. Therefore, after scoring all AlphaFold2 predictions, we use 

the DaliLite v527 to perform an all-to-all analysis on the top hits.  

 

 

 

Results 

 

Protein identification from segmented cryo-EM maps 



 

 

We tested our method on a benchmark set of eight segmented cryo-EM maps from proteins that were known. 

Those proteins range in length from 224 to 838 residues and the maps have a resolution ranging from 2.6 to 

3.9 Å. Initially, five cryo-EM maps were selected as test sets to optimize our approach. The selection criteria 

considered the most likely pitfalls for this approach, and we tried to include cases where: (1) the map lacks 

secondary structure and has multiple ligands bound; (2) only a portion of the map reaches high resolution; (3) 

the corresponding protein has multiple domains, and their relative orientation is unlikely to be accurately 

predicted by AlphaFold2. In all five cases, despite these existing possible pitfalls, DeepTracer-ID was able to 

identify the correct protein as the top hit (Fig. 2). We then moved on to test three more EM maps from 

eukaryotes with larger genomes, two from H. sapiens and one from A. thaliana. DeepTracer-ID could also 

identify the correct protein as the top hit, except for one case. In that case, the correct protein was ranked 

3rd, while the top 32 hits are all structurally related homologs (Figs. 2&3).  

 

Among the proteins in the benchmark set, OmcS14 has six hemes as ligands, and TFIIH28 has a bound dsDNA. 

Interestingly, our method detected the correct protein using cryo-EM maps in the presence or absence of 

ligand/DNA densities (supp Fig. 1), suggesting that a small portion of non-protein density does not diminish 

the accuracy of our method. Importantly, although OmcS lacks pronounced secondary structure elements, 

DeepTracer correctly placed Cα atoms into the map, when the resolution was better than 4.2 Å. Therefore, a 

successful identification primarily relies on the accuracy of AlphaFold2 predictions.   

 

Closely related structural homologs of the correct protein 

If the correct protein has structural homologs/isoforms, we expect both the correct protein and its 

homologs/isoforms to be detected using our method. This is inevitable because the correct protein and its 

homologs/isoforms are structurally similar. In addition, model errors should be expected in both Cα tracing in 

DeepTracer and AlphaFold2 prediction. As a result, the correct protein and its homologs cannot be 

distinguished at this step. Therefore, a subsequent full-length model building for all top hits is required to 

determine which protein best fits into the cryo-EM map. This is now a routine protocol for de novo model 

building of an unknown protein14,15,29. To visualize possible structural homologs of the top hits, we 

implemented DALI all-to-all analysis27 into this pipeline. This additional DALI analysis will not only detect 

potential sequence ambiguity, but also reveal possible biologically interesting similarities that were not 

noticed. As expected, in several cases, our method detected a number of structural homologs of the correct 



 

 

protein (Fig. 3). These can be confidently reconciled by subsequent full-length modeling, without the need for 

additional data. 

 

De novo protein identification of unknown cryo-EM maps 

As a proof of principle, we then applied our method to three segmented cryo-EM maps with moderate 

resolutions from 3.4-3.9 Å of unknown proteins. The first protein is an archaeal flagellin from Aeropyrum 

pernix, with a long N-terminal helix and a C-terminal globular domain30. Without additional information on 

how this flagellin packs into a filament, it is challenging for AlphaFold2 to accurately predict how the two 

domains are oriented with respect to each other. The other two proteins are the two major capsid proteins 

(MCP) of Acidianus filamentous virus 6 (AFV6), a virus infecting a hyperthermophilic and acidophilic 

archaeon31. Similar to SIFV32, the two capsid proteins wrap around A-form DNA. Without the information 

about both the helical packing and protein-DNA interactions, AlphaFold2 will not be able to predict the entire 

structure accurately. Also, archaeal and archaeal virus genomes are generally much more sparsely sampled 

than those from bacteria and eukaryotes and the viruses that infect them. Therefore, fewer homologous 

sequences are available for AlphaFold2 to use in the prediction.  

 

With all those potential pitfalls, our method still successfully determined the correct sequences (Fig. 4). In all 

three cases, only 45%-71% of the AlphaFold2 predicted models could be satisfactorily aligned to the backbone 

traced from the cryo-EM maps. And yet, such coverage is sufficient for our method to detect the correct 

protein. The full-length models were subsequently built by DeepTracer and real-space refined by PHENIX33. 

The statistics of the deposited models are listed in Supp. Table 1. 

 

Structural knowledge mined from large and complicated maps  

The next question was whether the approach could extract useful information from a more complicated map. 

We arbitrarily created two tiers for the maps based on their complexity: the ‘easy’ tier maps contain multiple 

copies of the same protein subunit; the ‘difficult’ tier contains complex maps that are built from multiple 

components. We tested our method with two very different maps in the easy tier: the dimeric map of human 

thyroglobulin with two protein copies and the filament map of an A. pernix flagellum with ~50 flagellin copies. 

Our method successfully determined the correct protein in both cases (Fig. 5). Interestingly, the gap between 

the correct protein and the protein with the 2nd best score is comparable to the results from segmented 

maps. This is presumably because the alignment between AlphaFold2 predictions and DeepTracer models is 



 

 

insensitive to the number of protein copies present in the cryo-EM map. In addition, DeepTracer assigns 

residues to every corner of the map, thus the subsequent alignment is not affected much by whether the 

backbone corresponding to a single subunit is successfully traced or not.  

 

Next, we were curious whether DeepTracer-ID could extract any useful information from complicated cryo-EM 

maps containing multiple components. To this end, we tested two maps (Fig. 5). The first map is that of the 

filamentous virus AFV6, with ~50 copies of MCP1, ~50 copies of MCP2, and ~600 bp of double-stranded A-

form DNA. Interestingly, our method could still detect one of the capsid proteins, MCP2. However, the other 

capsid protein did not rank high using the default PyMOL-align algorithm. It ranked 3rd using PyMOL-cealign, 

suggesting that sequence information may not be helpful in a highly complicated map. The second map tested 

is the tri-snRNP part of the spliceosome complex composed of ~30 different components. Not surprisingly, our 

method detected the largest four proteins in the complex, as they are expected to have a higher 𝑙𝑎𝑙𝑖𝑔𝑛𝑒𝑑  in Eq. 

1, leading to a better score. This suggests that DeepTracer-ID can identify the major components from large 

complex maps, thereby rendering the subsequent map segmentation and smaller protein identification much 

easier. 

 

 

 

Discussion 

We present here a Cryo-EM pipeline, DeepTracer-ID, that can robustly identify the protein components 

directly from cryo-EM maps of a given organism, without the need for other experimental data. Furthermore, 

this approach does not require very high accuracy from AlphaFold2 predicted libraries. As long as ~45% of the 

AlphaFold2 prediction reasonably matches the cryo-EM structure, this pipeline can identify the correct 

protein. As a proof of principle, we successfully identified three proteins within large filamentous complexes 

directly isolated from natural sources using this pipeline.  

 

The remaining challenge for this pipeline is working with a map of tiny protein. Due to the extremely high 

signal-to-noise level in cryo-EM, it is currently almost impossible to reach a near-atomic resolution for a small 

monomeric protein (<100 amino acids). However, such small proteins frequently exist in larger complexes, 

such as conjugation pili34,35 and ciliary doublets29. In such cases, the DeepTracer model can probably be 

structurally aligned to many different AlphaFold2 predictions reasonably well. At the same time, sequence 



 

 

information may no longer be beneficial due to the limited length. For example, we tested a virus capsid 

protein with only ~90 amino acids in a segmented cryo-EM map (Wang et al. Cell 2022 in press, supp Fig. 2). 

The protein has the N-terminal ~60 residues cleaved, a helix-turn-helix structure, glycosylation in the middle, 

and no cleavage site for trypsin. As a result, we found that this set of features rendered the initial sequence-

based alignment method unreliable, while the structure-based PyMOL-cealign remained valid. FATCAT can 

increase the score of the correct protein by enabling flexible fitting, but it improves the scores for all other 

proteins at the same time. We will consider introducing other initial alignment methods in the future, such as 

Chimera matchmaker36 or different flexible fitting algorithms.   

 

This approach could be broadly applicable to many scenarios other than identifying an unknown protein in a 

cryo-EM map resulting from contaminants. Using this method, it is possible to investigate large complexes 

enriched in a cell extract. The protein of interest can be directly identified when the resolution is better than 

4.2 Å, regardless of post-translational modifications and the lack of proteomics data. It may also be utilized to 

do a cryo-EM ‘pull-down’ assay, where instead of a long list of candidates from mass spectrometry, the 

outputs now are protein 3D structures fitted to the maps.     

 

 

  



 

 

Data availability 

The DeepTracer-ID described here is free for academic use, available at https://deeptracer.uw.edu/home. The 

atomic models and cryo-EM volumes have been deposited in the Protein Data Bank and the Electron 

Microscopy Data Bank (A. pernix flagellum, 7TXI and EMD-26158; AFV6, 7TXJ and EMD-26159). Other data are 

available from the corresponding authors upon reasonable request. 
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Fig. 1 DeepTracer-ID: de novo protein identification from cryo-EM density maps 
Starting with a cryo-EM map and a given organism, DeepTracer-ID identifies the protein in 
three steps: (1) Initial model is generated from the cryo-EM map using deep learning based 
DeepTracer; (2) Align the AlphaFold2 prediction library (user provided or server pre-calculated) 
to the initial model; (3) Score each aligned AlphaFold2 prediction and subsequent analysis of 
the top hits.  
 
 
 
  



 
 
Fig. 2 Protein identification from eight benchmark cryo-EM maps 
Top, cryo-EM maps used for de novo protein identification. Their reported resolution is labeled. 
Middle, the Cα backbone of the model generated by DeepTracer, according to the maps on top. 
Bottom, the scores of corresponding AF2 predictions are displayed in scatter plots. The results 
from all three different alignment algorithms are shown. The correct protein is shown in red 
dot, the proteins with significant structural similarity to the correct protein are labeled in blue 
dot, and the rest of AF2 predictions are shown in grey dots. The size of AF2 library and the 
corresponding organism for the eight benchmark datasets are: OmcS (G. sulfurreducens PCA, 
N=226), MsbA (E. coli BL21-DE3, N=65), TRPV1 (R. norvegicus, N=3679), CRP (H. sapiens, 
N=1419), GroEL (E. coli K12, N=413), SULTR (A. thaliana, N=3850), α7 nAChR (H. sapiens, 
N=2847), and TFIIH (H. sapiens, N=1347). 
 
 
 
 
 
 
 
 
 
  



 
Fig. 3 DALI all-to-all analysis of top 40 scoring AF2 predictions   
Top, DALI all-to-all analysis of four representative benchmark datasets shown in Fig. 2. The 
matrix is based on the pairwise Z-score comparisons calculated using the DALI server. The color 
scale on the right indicates the corresponding Z-scores. Bottom, the structures clustered 
(indicated by black line) in the top matrix are shown. The correct protein is colored in red. The 
remaining proteins are colored in transparent cyan and aligned to the correct protein. 
  



 
Fig. 4 Protein identification from A. pernix and archaeal virus AFV6   
Far left, cryo-EM maps used for de novo protein identification. Left, the scores of corresponding 
AF2 predictions are displayed in scatter plots. The correct protein is shown in red dot and the 
remaining AF2 predictions are shown in grey dots. The size of AF2 library and the corresponding 
organism for the three unpublished datasets are: A. pernix flagellin (N=104), AFV6 MCP1 (N=28) 
and AFV6 MCP2 (N=28). Right, the alignment between DeepTracer model (green) and AF2 
prediction of the correct protein (red). The alignment RMSD and percentage of aligned area are 
also labeled. Far right, the final model after DeepTracer full-length modeling and PHENIX real-
space refinement.  
 
 
  



 
Fig. 5 Protein identification from protein complex maps   
Left, cryo-EM maps used for de novo protein identification. Middle, the scores of corresponding 
AF2 predictions are displayed in scatter plots. The correct protein is shown in colored dots and 
the remaining AF2 predictions are shown in grey dots. The size of AF2 library and the 
corresponding organism for the four datasets are: H. sapiens thyroglobulin (N=22742), A. pernix 
flagellin (N=104), and H. sapiens tri-snRNP complex (N=23391). Right, the identified protein(s) 
are colored in the same theme as shown in the middle, the rest of the complex is colored in 
grey.  
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Materials and Methods 

Table S1. Cryo-EM and Refinement Statistics of A. pernix flagellum and AFV6 filaments 

Parameter A. pernix flagellum AFV6 

Data collection and processing 

Voltage (kV) 300 300 

Electron exposure (e− Å−2) 50 50 

Pixel size (Å) 1.08 1.4 

Particle images (n) 59,338 78,141 

Shift (pixel) 8 10 

Helical symmetry 

Point group  C1 C1 

Helical rise (Å) 5.52 5.75 

Helical twist (°) 108.0 38.46 

Map resolution (Å) 

Map:map FSC (0.143) 3.5 3.9 

Model:map FSC (0.38) 3.7 4.2 

d99 3.9 4.1 

Refinement and Model validation 

Ramachandran Favored (%) 93.2 93.1 

Ramachandran Outliers (%) 0.5 0.6 

RSCC 0.82 0.85 

Clashscore 9.6 12.6 

Bonds RMSD, length (Å) 0.004 0.006 

Bonds RMSD, angles (°) 0.732 0.781 

Deposition ID 

PDB (model) 7TXI 7TXJ 

EMDB (map) EMD-26158 EMD-26159 
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Fig. S1 Protein identification is not affected by ligand or nucleic acids densities 

Left, cryo-EM maps used for de novo protein identification with their reported resolution. OmcS has six 

hemes per protein subunit. TFIIH protein shown with and without bound dsDNA. Middle, the Cα 

backbone of the model generated by DeepTracer, from the maps on left. Some extra resides were 

assigned in the heme area by DeepTracer, while the dsDNA densities are recognized as non-protein area 

so very few residues were placed there. Right, the DeepTracer-ID scores of AF2 predictions. The correct 

protein is shown by a red dot, the proteins with significant structural similarity to the correct protein are 

shown as blue dots, and the remaining AF2 predictions are shown as grey dots. The size of AF2 library 

and the corresponding organism for the eight benchmark datasets are: OmcS (G. sulfurreducens PCA, 

N=226), and TFIIH (H. sapiens, N=1347). 
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Fig. S2 Identifying very small proteins relies on the initial 3D alignments  

Far Left, the segmented cryo-EM map of SMV1 major capsid protein with the reported resolution. Left, 

the DeepTracer model (green) and the AF2 model of the correct protein (red). Right, How the AF2 model 

is aligned to the DeepTracer model using three different approaches. Far right, the DeepTracer-ID scores 

of AF2 predictions (SMV1, N=28). 


