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Product Line Design for Consumer Durables:  
An Integrated Marketing and Engineering Approach 

Lan Luo 

Web Appendix A: Mapping from Design Variables to Consumer Attributes  

In this appendix, we discuss the general steps that guide the mapping from design 

variables to consumer attributes. Let us denote the sets of design variables as y = (y1, y2, …, ym) 

and consumer attributes as x = (x1, x2, …, xn). First, we examine how each element of the 

consumer attribute vector corresponds to the respective elements in the design variable vector. 

For example, we may find that x1=f (y1,y2), x2=f (y1,y3,y5), x3= f(y4), and etc.  

Next, we proceed to investigate the specifics of these mapping functions. There are two 

basic types of mapping relationships. In the first type, the relationship between the design 

variable and the consumer attribute can be specified in a simple look-up table and such 

specification does not require the construction of an engineering simulation. For example, in a 

power tool design, given the selection of the design variable housing type (A or B), the product 

designer can easily determine the value of the consumer attribute product girth (small or large). 

In the second type, an engineering simulation is needed to calculate the value of the 

consumer attribute as a function of the corresponding design variables. Using the same power 

tool example, the product designer needs to use an engineering simulation to determine the value 

of the consumer attribute product life as a joint function of the values of the design variables 

motor type, gearbox type, and gear ratio. The general guidelines of how to build such simulations 

have been well established in the literature (e.g. Doebelin 1998; Papalambros and Wilde 2000; 

Ulrich and Eppinger 2004). In the following, we briefly explain the basic steps involved in the 

development of such a simulation. 
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Step one: Determine the inputs and the outputs of the simulation. The inputs are a set of 

design variables (e.g. motor types, gear types, and gear ratio). The outputs include: 1) a set of 

consumer attributes (e.g. power amp, product life) and 2) some measures of the product’s 

engineering performance metrics (e.g. motor output speed, armature temperature). The former 

directly influence consumers’ purchase decisions. The latter are typically used to assess whether 

the product satisfies the engineering constraints imposed by the product designer. 

Step two: Identify the set of engineering parameters (pa) that characterize the 

uncontrollable variations in the product’s usage environment (e.g. power voltage). For each 

engineering parameter, proceed to specify its nominal value pa0 (i.e. the most likely value) and 

the typical range of its value (i.e. the lower bound paU and the upper bound paL). For example, 

the nominal source voltage is 110V and the actual source voltage typically varies between 95V 

and 125V, depending on the product’s usage environment.  

Step three: Simulate product performance under various usage situations. A finite 

element method is typically used to perform this task. This method discretizes all the continuous 

variables and parameters into sets of discrete sub-domains and simulates how different product 

configurations will perform under different environmental conditions (see Schenk and Schueller 

(2005) for a detailed discussion on finite element methods). Finally, the product designer 

documents the nominal, the upper, and the lower bound values of each output variable, as a 

function of the design variable configuration. The mapping relationships between the design 

variables (i.e. the ys) and the consumer attributes (i.e. the xs) are established accordingly. 

Web Appendix B: Implementation Details of Proposed Model 

CONSUMER PREFERENCE MODEL 

The probability of consumer i’s sequence of choices δi can be written as follows: 
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The priors are specified as follows: ),(~ sss MVN Ξψξ  with 0sψ and ),(~1 RWs Ξ

with ρ = 10 and R = 10I; and ),(~ Φγ MVNs with 0  and ),(~1 ΘΦ ςW with ς = 10 and Θ = 

10I. 

For identification purpose, we set the hyper-parameter of the “no-choice” option in 

segment 1 to be zero. Additionally, we would like to point out that, although Bayesian estimation 

of a finite mixture model is subject to the well-known label switching problem, the introduction 

of the covariates zi provides additional information that improves identification and alleviates 

this issue (Congdon 2003). 

Our MCMC procedure is carried out by sequentially generating draws from the following 

distributions: 

1. Generate iξ  
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MARKET RESPONSES FROM INCUMBENT MANUFACTURERS AND RETAILER 

First-Order-Conditions of Retailer’s Profit Maximization 

Given the retailer’s profit maximization function in Equation (6), we obtain the first-

order-conditions (Equation (A9)). As discussed in Luo et al. (2007), the optimal retail prices can 

be estimated after we express klm and 
kl

lk

p

m


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 
KKLKL pppp ,...,,...,,..., 1111 1

. 

(A9)                        0])[(
1' 1'

''
''''

'







 

 

K

k

L

l kl

lk
lklkkl

kl

r k

p

m
wpm

p


        k=1,…, K; l=1,…,Lk       

First-Order-Conditions of Each Manufacturer’s Profit Maximization 

The first-order-conditions of Equation (8) are given in Equation (A10). Note that, 

different from Luo et al. (2007), the manufacturer will choose a set of wholesale prices rather 

than a single price to maximize its product line profit. 
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Let j denote the thkl product and g denote the thlk
~~

product in the marketplace. The jgth 

element of the matrix G can be expressed as: 
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Substituting above expressions into Equation A10, we are able to calculate the profit-

maximizing wholesale prices  
kkLkk www ,...,, 21  for each manufacturer. 

Iterative Algorithm of Solving Equilibrium Prices 

Similar to Luo et al. (2007), our procedure for estimating the wholesale and retail prices 

includes using gradient methods to solve the retailer’s profit maximization problem and the 

manufacturers’ profit maximization problem iteratively. The basic idea of the algorithm is below. 

First, given the initial wholesale prices of the products in the new product line and the current 

wholesale prices of the incumbent products, the retailer chooses the retail prices for the products 

in its assortment to maximize its category profit. All the manufacturers (including the focal and 

the competing manufacturers) then adjust their wholesale prices to maximize their own profits. 

Next, the retailer re-adjusts the retail prices given the adjusted wholesale prices, and the 

manufacturers re-adjust the wholesale prices based on the adjusted retail prices. This cycling 

process continues until the generated prices converge.  

COST MODEL 

In Equation (11), the discount factor rwl is defined as follows: 
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When there is no sharing of component r among the products in the product line, the 

discount factor is zero. When there is component sharing, rw represents the degree of cost saving 
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by sharing the thw type of component r in the product line. As discussed by Morgan et al. (2001) 

and Ramdas and Sawhney (2001), rw is generally evaluated from historical data on a case-by-

case basis. When all the products in the product line adopt the same type of component, the 

discount factor rwl  is equal to rw . Otherwise, the discount factor rwl is a proportion of rw

depending on the degree of component sharing in the product line. In the current model, this 

proportion is defined as the number of products sharing the thw type of component r (denoted as

shrwl ) divided by the product line breadth. In practice, the definition of this proportion may vary 

in different applications. A detailed comparison of several commonly used proportion measures 

can be found in Thevenot and Simpson (2004). As evident, when the degree of component 

sharing increases, the variable cost of producing each product reduces and the manufacturing 

process becomes more efficient.  

The unit cost of assembling the components into the final product l  (denoted as alc ) is 

determined by the specific selection of the component type and the combination of the 

components. A look-up table can be used to obtain the assembly cost. The assembly cost may 

also decrease when the products share the same components in the product line. In such cases, a 

discount factor can also be incorporated into the look-up table to reflect the cost saving of the 

assembly. 

The maintenance cost of product l  (denoted as mlc ) is negatively related to the lower 

bound estimate of product life (Equation A13), which is obtained as an output of the design 

simulation. In this equation, the values of cmkcm ,...,1  and the cutoff points of EEE ,...,1 can be 

estimated through an examination of the historical data on servicing the products after sales. 
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Finally, the salvage cost slc can be obtained from a look-up table. 

Web Appendix C: Implementation Details of Simulation Study 

PROBLEM SETUP 

We first describe the implementation details of our simulation study when we compared 

the performances of GA, SA and ATC for the focal manufacturer’s design variable configuration 

problem (first block of Figure 1). When the design space includes both discrete and continuous 

design variables, the vector of design variables was defined as follows: y1 is a discrete variable 

with 15 levels, y2 is a discrete variable with 10 levels, y3 is a continuous variable ranging from 

3.0 to 10.0, and y4 is a continuous variable ranging from 50.0 to 150.0. The vector of the 

consumer attributes were obtained from the following responses functions: x1= f1 (y1, y2); x2 = f2 

(y1, y3); x3 = f3 (y3); and x4= f 4(y4). We specify the mapping relationships of the first two 

functions via a set of conditional formulae, which intends to simulate the engineering simulation 

described in Web Appendix A. The inputs of the formulae were design variables y1, y2, and y3. 

The outputs of the formulae were the corresponding consumer attributes x1 and x2 and four 

engineering performance metrics. For each output variable, the formulae provide its nominal 

value along with its range of variations. Regarding the last two response functions, a simple 

look-up table was used to establish the mapping relations. 

From the marketing side, we assume that the number of segments in the marketplace is 

the same as the number of products in the product line. The segment sizes were generated from a 

Dirichlet distribution. Assuming that there were three levels associated with each consumer 
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attribute, we generated the conjoint part-worths and the utility of “no-choice” for each market 

segment using i.i.d. normal (0, 1) distributions. Individuals within the same segment are assumed 

to have identical preferences. Among the four consumer attributes, we assume that x1 and x2 are 

varying attributes with their variations mapped from the set of conditional formulae described 

above. The initial wholesale prices, the retail markups, and the conjoint part-worths associated 

with retail prices were randomly selected from truncated normal distributions. When the 

numbers of products in the product line increased from 1 - 3, to 4 - 5, to 6 – 8, the number of 

incumbent products in the marketplace were assumed to be 3, 6, and 9 respectively. We 

randomly selected different incumbent products for each simulation problem. 

From the engineering side, we included two feasibility criteria and two robustness criteria. 

Feasibility criterion #1 required that the upper bound of the product’s engineering metric #1 is 

less than 125. Feasibility criterion #2 required that the lower bound of product’s engineering 

metric #2 is greater than 50. Among the two robustness criteria, robustness criterion #1 required 

that the range of variation in the product’s engineering metric #3 is less than 10, and robustness 

criterion #2 required that the range of variation in the product’s engineering metric #4 is less than 

400. In the cost model, design variables y1 and y2 comprised the major components of the product. 

The corresponding cost and the discount factors associated with component sharing were 

obtained from a look-up table. The maintenance cost was a function of the lower bound of 

consumer attribute x2 (we consider this attribute as “product life”). The product’s assembly and 

salvage costs were obtained from look-up tables. 

The discounted long-term profit is calculated over a 5-year horizon with 3% discount rate. 

The market size in each year is randomly generated from a truncated normal distribution. As the 

length of the product line increases from one to eight, the corresponding fixed cost was randomly 
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selected in an ascending order and each product’s production capacity constraint was randomly 

selected with a descending order. The current category profit of the retailer was randomly 

generated from a truncated normal distribution. The units of the profit and the market size were 

in millions. 

Under this problem setup, we solved the focal manufacturer’s design variable 

configuration problem using both GA and SA. For each violated constraint, we added a penalty 

value of 1,000,000,000 to the raw objective value (i.e. estimated product line profit). Note that, 

as long as the magnitude of this penalty value is large enough to ensure that product lines with 

violated constraints will always be worse than those without violated constraints, the choice of 

its specific value is not important. 

When we included the ATC method into the comparison, the definition of the design 

variable vector was revised so that y1 and y2 were also continuous. The mapping relationships 

from these design variables to consumer attributes were also revised accordingly. In the cost 

model, we discretize the values of y1 and y2 to obtain look-up tables of component costs, the 

discount factors, and assembly costs. The other parts of the simulation remain the same as before. 

When we investigated the computation time needed for our overall procedure (the entire 

Figure 1) under different problem sizes, the vector of the design variables was extended to 

include more design variables into the design space (with a mix of discrete and continuous 

variables). The vector of the consumer attributes, the mapping relationships, the cost model, and 

the configuration of the incumbent products were also extended to reflect these changes in the 

design space. When applying the gradient method to search for the new prices (the second block 

of Figure 1), we evaluated the gradient vector after each iteration. If the sum of the absolute 

values of all the elements in the gradient vector was less than or equal to 0.01, we considered the 
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iteration process to be converged. When the focal manufacturer re-searches a set of design 

variables to maximize the product line profit based on the adjusted prices, we evaluated the 

earning of the product line. If the change in the earning levels was less than or equal to $0.01 

million, we considered the cycling process to be converged. We also used tighter convergence 

criteria and found the criteria used here led to essentially the same results while greatly 

improving the computation efficiency. Table A1 presents a summary of the results across 

different problem sizes.  

Table A1: Average Computation Time by Problem Sizes (Entire Figure 1) 

Number of products 
Number of design variables 

Small (4, 8) Medium (12,16) Large (20,24) 
Small (1-3) 2.0 hrs 2.4 hrs 3.7 hrs 

Medium (4-5) 2.2 hrs 6.4 hrs 8.5 hrs 
Large (6-8) 2.8 hrs 7.0 hrs 10.4 hrs 

 

DESCRIPTION OF THE COMPUTATIONAL ALGORITHMS GA, SA, AND ATC  

Genetic Algorithm (GA) 

The biological process of natural selection provided the original inspiration of GA. It 

usually starts with a population of random solutions. The “fittest” members of this initial 

population survive and move on to produce the next generation of solutions. New solutions enter 

the population through a process of reproduction, crossover and mutation. This process continues 

until a given stopping condition is reached. This method has been widely used in product line 

design problems (e.g. Balakrishnan et al. 2004). 

Our GA implementation started with an initial population of 200 randomly chosen 

product lines. The “fitness” of the product line was defined as the expected product line profit 

minus the penalty value(s) if some constraints were violated. The GA parameters for population 

replacement, crossover probability, mutation probability and selection type are set as 5, 90%, 5%, 
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and stochastic universal selection. In our implementation, we consider GA to be converged if 30 

generations passes without improvement in the best net objective value.  

Simulated Annealing (SA) 

The method of SA is derived from the cooling process a material undergoes after being 

removed from a heat source. As the material cools, the stress becomes more and more 

constrained until the material has reached a minimum energy state at a sufficiently low 

temperature. Belloni et al. (2008) first introduced this method to an optimal product line design 

problem.  

The simulated annealing algorithm starts with a randomly chosen solution. If the point 

finds a better net objective value, it moves there. Otherwise, it moves to a new point with a 

probability of T

NVCV

e


, with CV being the current value of the point, NV being the value of the 

new point analyzed, and T being the temperature.  

In our SA implementation, the initial temperature was set to 100. We adopted a 

proportional cooling schedule in which the new temperature equaled to the old temperature times 

0.9. The number of individual points (i.e. product line candidates) analyzed at each temperature 

was set to 50. We kept track of the best solution ever reached in each step. SA would stop if no 

improvement could be found in the net objective value. 

Analytical target cascading (ATC) 

Michalek et al. (2005, 2009) first introduced the ATC-based method into product design 

problems. Essentially, the ATC method decomposes the design of a product line into 1) a 

marketing subsystem that determines the consumer attributes of all the products in the product 

line, and 2) a set of engineering subsystems each searching for a design variable configuration 

that conforms to the engineering requirements and generates a vector of consumer attributes 
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whose values are as close as possible to those required in the marketing subsystem. These 

marketing and engineering subsystems are solved iteratively until the convergence criterion is 

satisfied. Within our context, these subsystems can be expressed as follows: 

Engineering subsystem: for each product l (l= 1, …, L1) in the focal manufacturer’s product line, 

given M
l1x (the values of consumer attributes required by the marketing subsystem), we select y1l 

as follows:  
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We solve the engineering subsystem for each product in the product line in parallel. 

Marketing subsystem: given E
l1x (the values of consumer attributes achievable by the engineering 

subsystem), we solve the following optimization. In Equation (A15), the objective function 

reflects the designer’s tradeoff between maximizing product line profit and minimizing the 

deviation from the values of consumer attributes achievable by engineering requirements.  

(A15)          
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Following Michalek et al. (2009), we define
2

2111111 )()()( E
l

M
l

E
l

M
l

TE
l

M
l xxxxxx   , 

with 
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M
l xxxxxxxx     and “ ” being the Hadamard product.  

The values of the vectors λ and  are updated as follows:  
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1) Set к=0, where к denotes the number of loop iterations. Initialize λ and   (all the 

elements were initialized as 10,000).   

2) Solve the engineering subsystem and the marketing subsystem above iteratively.  

3) If      ,
1

1,
1

,
1

1,
1 ,max E

l
E
l

M
l

M
l xxxx (set as 0.1 in our implementation), then stop. 

Otherwise, update λ and by setting )( ,
1

,
1

1   E
l

M
l xx   ,   1  (with η =1) 

and go to step 2). 

Web Appendix D: Implementation Details of the Empirical Application 

The design space is defined as follows: motor type (a discrete variable between 1 and 10), 

gear box type (a discrete variable between 1 and 6), gear ratio (a continuous variable between 3.5 

and 5.0), switch type (a discrete variable between 1 and 4), and housing type (a discrete variable 

with 2 levels).  

Five engineering parameters were identified to represent the uncontrollable variations in 

the product’s usage environment. Table A2 provides their nominal, lower, and upper bound 

values.  

Table A2: Engineering parameters: Nominal, Lower, and Upper Bound Values 
Engineering Parameter Nominal Lower bound Upper bound 
Source Voltage (V) 110 95 125 
Ambient Temperature (C) 25 -10 50 
User Load Bias (lb) 6 3 9 
Fan CFM Degradation (%) 0 0 80 
Application Torque Adjustment (%) 0 -20 20 

 
After identifying the set of consumer attributes and attribute levels, we employed 

orthogonal conjoint design to construct the 18 choice scenarios in the conjoint experiment. Each 

choice occasion included two products and a “no-choice” option. The respondents were asked to 

imagine that he/she is on the market for a new tool and the two products shown in each choice 

occasion were the only products available at the store. We also asked the respondents to assume 
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that the two products were equally equipped for any product features not included in the 

questionnaire. In addition to the conjoint questions, the respondents were also asked to provide 

some demographic information.  

Because the design of our conjoint study follows the standard procedure used in the 

literature, our exploratory research identified a set of consumer attributes deemed as the most 

important at the aggregate level. It is possible that some consumers care about attributes not 

included in our conjoint study. It is also likely that some attributes in our conjoint study are not 

important for some consumers. Future research may include an adaptive framework in which the 

attributes shown to the consumer are personalized to reflect such individual differences. 

A finite mixture Bayesian model was used to estimate the conjoint part-worths. Given 

that we did not have prior belief of whether there is a linear relationship between power amp and 

consumer preference, we decided to estimate its conjoint part-worth at the three discrete levels. 

For the same reason, the conjoint part-worths of product life were also estimated at the three 

discrete levels. The covariate estimates are provided in Table A3. Note that the respondent could 

select more than one trade if he/she participates in multiple trades. It appears that electricians and 

carpenters are more likely to belong to segment 2. Additionally, tall people and people with large 

hands have a higher probability of being members of segment 2, which probably explains the 

fact that consumers in segment 1 prefer a small girth while consumers in segment 2 prefer a large 

girth. Finally, the age group of 46-55 is over-represented in segment 2. Given that this age group 

tends to be the wealthiest among all the age groups, it probably explains why segment 2 

consumers are less price-sensitive.  

 

 



16 
 

Table A3: Covariate Estimates for Finite Mixture Conjoint Estimation 
 Trade 
 Metal 

fabricator 
HVAC Welder Maintenance Concrete Plumber Electrician Carpenter Others 

Segment 1 0.756 0.843 0.873 0.101 0.848 0.651 -0.147 -4.175 -0.046 
Segment 2 -0.756 -0.843 -0.873 -0.101 -0.848 -0.551 0.147 4.1754 0.046 
 Glove size Height 
 Small Medium Large <= 5’7” 5’8” to 5’11” 6’ to 6’3’’ >= 6’4” 
Segment 1 3.275 0.364 -3.639 0.263 0.251 -0.100 -0.413 
Segment 2 -3.275 -0.364 3.639 -0.263 -0.251 0.100 0.413 
 Age 
 18 to 35 36 to 45 46 to 55 56 or older 
Segment 1 0.342 0.180 -0.637 0.116 
Segment 2 -0.342 -0.180 0.637 -0.116 

 
Table A4 gives the consumer attribute specifications of the competitive products. Lab 

testing was used to obtain their estimated costs and the ranges of variations related to each 

product’s power amp and product life. The procedure described in our consumer preference 

model was then used to derive the utility of these products and the market share estimates. In 

order to assess the external validity of our consumer preference model, we compared these 

estimates with the actual market share data provided by our industrial partner. Using the 

minimum discrimination information statistic (MDI) (Kullback, Kupperman, and Ku 1962), we 

could not reject the null hypothesis that the predicted and the observed market shares are 

realizations from the same underlying multinomial distribution (MDI = 7.23, d. f. =4, p-value = 

0.12).  

Table A4 also provides the equilibrium retail and wholesale prices after the entry of the 

final product line. Interestingly, some incumbents chose to increase wholesale prices while 

others chose to decrease wholesale prices. This is consistent with the findings of Hauser and 

Shugan (1983) and Luo et al. (2007). Depending on the distribution of the consumers’ tastes and 

the market segment the new product line is targeting, a price increase could be optimal for some 

incumbents. 

 



17 
 

Table A4: Competitive Products 

brand 
power 
amp 

(nominal) 

product 
life 

(nominal) 
switch  girth 

retail 
price 

(before) 

wholesale 
price 

(before) 

market 
share 

(before) 

retail 
price 
(after) 

wholesale 
price 

(after) 

market 
share 
(after) 

1 9 110 3 2 99.00 79.12 3.66% 127.65 102.35 2.39% 
1 5.5 90 2 1 59.00 49.44 31.82% 72.92 57.59 25.74% 
2 12 150 1 1 129.00 103.87 4.32% 128.18 106.76 2.82% 
2 8.5 105 3 2 89.00 70.50 38.66% 86.00 66.69 25.35% 
3 6 80 1 1 79.00 63.38 8.74% 75.27 57.95 5.71% 

No-choice 12.80%                                     8.36% 

 
In the product line optimization, the production capacity constraint was set as follows: 

when there is a single product in the product line, the production volume constraint is 400,000 

units; when there are two products in the product line, the production volume constraint is 

300,000 units per product; when there are three products in the product line, the production 

volume constraint is 250,000 units per product. Given that new products in this category are 

typically introduced every four or five years, the focal manufacturer’s goal is to maximize its 

discounted long-term profit over a five-year horizon at a discount rate of 3% (this discount rate 

was chosen based on the average consumer price indices published by the Bureau of Labor 

Statistics in the last 5 five years). The discounted long-term category profit of the retailer over a 

five-year horizon before the entry of the new product line was estimated to be $233.6 million. If 

the retailer does not benefit from an increase in its category profit with the introduction of the 

new product line, we will penalize the product line in the optimization. The penalty value and the 

convergence criteria used in the empirical application are the same as the ones used in the 

simulation study. We also tried to use tighter convergence criteria and the final earning levels did 

not change much.  

Some robustness checks could be conducted to evaluate how sensitive the final earning 

level is to the model parameter specifications (such as discount factor, capacity constraints, fixed 

cost estimates etc). Note that because multiple product lines may generate identical (or highly 

similar) profits and the focal manufacturer’s ultimate goal is to maximize its profit, we evaluated 
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the robustness of the final solution by the earning level associated with the product line rather 

than the closeness of the solutions. We performed the following robustness checks as an example. 

Similar checks could be conducted on other parameters. We first ran the optimization multiple 

times when the discount factor related to girth type varied from 0.2 to 0.4 with a step size of 0.04 

(the original discount factor is 0.3). The product lines with 3 products remained to be the most 

profitable. Additionally, the earning of the focal manufacturer remained within the range of 

$51.2 to $53.8 million under such variations. A similar robustness check was conducted on 

capacity constraint. Let the capacity constraint used in the optimization being W, we varied the 

level of the constraint from (W- 200,000) to (W+200,000) with a step size of 8,000 units. The 

product lines with 3 products were still the most profitable. And the earning levels varied from 

$50.7 to $53.5 million. As evident, despite the fact that the earning of the final product line was 

influenced by the specifications of the model parameters, the final earning level obtained in our 

optimization was not overly sensitive to these parameter specifications. 
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