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LAN LUO*

Product line design for consumer durables often relies on close
coordination between marketing and engineering domains. Product lines
that evolve as optimal from marketers’ perspective may not be optimal
from an engineering viewpoint, and vice versa. Although extant research
has proposed sophisticated techniques to handle problems that
characterize each individual domain, the majority of these developments
have not addressed the interdependent issues across marketing and
engineering. The author presents a product line optimization method that
enables managers to simultaneously consider factors deemed important
from both marketing and engineering domains. One major advantage of
this method is that it takes into account the strategic reactions from the
incumbent manufacturers and the retailer in the design of the product
line. The author demonstrates in a simulation study that this method is
applicable to problems with a reasonably large scale. Using data
collected in a power tool development project undertaken by a major
U.S. manufacturer, the study illustrates that the proposed method leads
to a more profitable product line than alternative approaches that
consider requirements from these two domains separately.
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Product line design is a critical decision that determines
many firms’ successes (Hauser, Tellis, and Griffin 2006). In
a product line design project, close coordination between
the marketing and the engineering domains is essential. For
example, when designing a power tool product line, the
product designer must take into account not only con-
sumers’ preferences for the product’s features and prices but
also other important engineering issues such as whether the

products are safe and robust in a variety of usage environ-
ments. Similar arguments can be applied to many consumer
durable products, such as toys, appliances, trucks, airplanes,
and laptops.

In a product line design problem, such marketing and
engineering considerations are often highly interdependent.
For example, a consumer may think about a power tool in
terms of attributes such as power amp and product life,
whereas an engineering designer may think of these same
concepts in terms of technical variables such as housing,
gear ratio, and gearbox type. Such highly interconnected
relationships between the two domains imply that any
required action in one domain can potentially influence the
outcomes in the other domain. Therefore, in the design of
an optimal or near-optimal product line, the marketing and
engineering requirements often cannot be pursued sepa-
rately or even sequentially.

Despite the compelling need for a unified framework that
integrates design considerations from both disciplines con-
currently, the vast majority of extant research has empha-
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sized issues from the perspective of each individual disci-
pline. This discipline-centric focus is largely determined by
the complexity of the overall product line design problem.
When designing a line of consumer durable products, firms
need to account for not only the interrelationships between
consumer preferences and engineering feasibility/restrictions
in the design of each product but also the revenue and cost
interactions across the products in the product line. Further-
more, to forecast the revenue from a product line accurately,
it is critical for firms to account for the strategic reactions
from competing manufacturers and the retailer when the new
product line enters the market. In this context, simultane-
ously considering all these essential issues across both disci-
plines is challenging both conceptually and computationally.

The primary goal of this research is to propose a product
line optimization method to take on this combinatorial chal-
lenge. In particular, this research proposes a procedure in
which the marketing and engineering criteria are considered
concurrently in the search for a profit-maximizing product
line. A simulation study demonstrates that this method is
applicable to problems with a reasonably large scale. Using
data collected in a power tool development project under-
taken by a major U.S. manufacturer, the study illustrates
that the proposed method leads to a more profitable product
line than alternative approaches that consider requirements
from these two domains separately.

The rest of the article is organized as follows: First, the
relationship of this study to extant literature and the contri-
bution of this research are discussed. Second, the details of
the product line optimization are presented. The third sec-
tion discusses a simulation study in which the computa-
tional characteristics of the proposed method are described.
Next, the empirical application is described. The article con-
cludes with a summary of contributions and a discussion of
limitations and further research.

RELATIONSHIP TO EXISTING RESEARCH

Four streams of research are related to this study. The first
stream investigates product line design from a marketing
perspective (e.g., Balakrishnan, Gupta, and Jacob 2004,
2006; Belloni et al. 2008; Chen and Hausman 2000; Dob-
son and Kalish 1988, 1993; Green and Krieger 1985; Kan-
nan, Pope, and Jain 2009; McBride and Zufryden 1988;
Moore, Louviere, and Verma 1999; Nair, Thakur, and Wen
1995; Selove and Hauser 2010; Steiner and Hruschka
2003). This research stream employs conjoint data and
searches for an optimal or near-optimal product line by
selecting levels of consumer attributes. The second research
stream examines the product line design problem with an
engineering focus (e.g., Farrell and Simpson 2003; Rai and
Allada 2003; Simpson, Seeperad, and Mistree 2001). In
general, this line of research focuses on platform manage-
ment in which researchers strive for balance between the
commonality of the product platform and the individual
product’s engineering performance. The third stream con-
sists of studies that investigate how to integrate engineering
and marketing considerations into the design of a single
product (e.g., Besharati et al. 2004, 2006; Griffin and
Hauser 1993; Hauser and Clausing 1988; Li and Azarm
2000; Luo et al. 2005; Luo, Kannan, and Ratchford 2008;
Michalek, Feinberg, and Papalambros 2005; Srinivasan,
Lovejoy, and Beach 1997; Tarasewich and McMullen 2001;

Tarasewich and Nair 2001). Finally, the fourth stream con-
sists of studies that aim to incorporate marketing and engi-
neering considerations in a product line design (e.g.,
D’Souza and Simpson 2003; Farrell and Simpson 2009;
Heese and Swaminathan 2006; Jiao and Zhang 2005;
Kumar, Chen, and Simpson 2009; Li and Azarm 2002;
Michalek et al. 2006; Michalek et al. 2010).

In the following, I discuss how this study extends the four
streams of research. From a substantive perspective, the cur-
rent study contributes to the literature by providing an effec-
tive coordination of several essential issues across both mar-
keting and engineering. Specifically, on the marketing side,
the product line’s market potential is evaluated by (1) mod-
eling consumers’ heterogeneous product preferences and (2)
estimating how the competing manufacturers and the
retailer will respond to the launch of the new product line.
On the engineering side, the focus is on (1) ensuring the
engineering feasibility and robustness of the products and
(2) maximizing the cost synergy across the products in the
product line.

Given the complex nature of product line design, the pro-
posed optimization method by no means exclusively accounts
for all the marketing and engineering criteria currently
being considered in the design of a product line. I focus on
the preceding issues because of their considerable signifi-
cance in the product design literature. Because any of these
issues can have a substantial impact on the profitability of
the final product line, the current study contributes to the lit-
erature by taking on the combinatorial challenge of integrat-
ing them across both disciplines of marketing and engineer-
ing. In particular, one major advantage of the proposed
model is that it directly accounts for the strategic responses
from the competing manufacturers and the retailer. Though
recognized as important challenges in product line design
problems (Belloni et al. 2008), these issues have not been
addressed in previous work.

From a methodological perspective, this study contributes
to the literature by searching for an optimal product line in a
large design space with a mix of discrete and continuous
design variables. Because of the complexity of the product
line design problem, previous researchers have limited the
composition of a product line to a fairly small set of initial
products (e.g., Kumar, Chen, and Simpson 2009; Morgan,
Daniels, and Kouvelis 2001; Ramdas and Sawhney 2001).
However, in practice, the product design space for a con-
sumer durable product can be very large, even virtually infi-
nite. In an attempt to address this issue, Michalek and col-
leagues (2006, 2010) propose an analytical target cascading
(ATC) method that enables the search of an optimal product
line in a complex design space. Although the ATC method
is highly efficient in coordinating marketing and engineer-
ing considerations (as the simulation study in the current
article demonstrates), it is not directly applicable in a prod-
uct design space with discrete product attributes. Therefore,
a major advantage of the proposed method is its ability to
accommodate both discrete and continuous variables in a
large design space. However, the approach taken here comes
with the cost of combinatorial complexity. The ability of
this method to scale up to a large problem is discussed sub-
sequently.



PROPOSED METHOD

In line with Kaul and Rao (1995) and Michalek and col-
leagues (2010), a set of consumer attributes and design
variables constitutes the starting point of the proposed
model. The vector of consumer attributes (denoted as x) rep-
resents all the attributes consumers directly consider in a
product purchase decision (e.g., power amp, product life).
The identification of these attributes follows the typical pro-
cedure used to determine which product attributes will be
included in a conjoint experiment. The design variables
(denoted as y) are those the product designer needs to
decide on in the design of a product (e.g., gear ratio, hous-
ing type). These variables determine the values of the con-
sumer attribute vector (excluding brand and price) and are
collectively needed for proper functioning of the product.
Next, an engineering response function r[y] calculates the
values of x as a function of y (i.e., x = r[y]). As Michalek
and colleagues (2010) discuss, although the specification of
the response function r[y] should be determined on a case-
by-case basis, the general principles of such mapping are well
established in the literature (for additional implementation
details, see Web Appendix A at http://www.marketingpower.
com/jmrfeb11). Given the set of design variables (y), con-
sumer attributes (x), and their interrelationships (x = r[y]),
the focal problem of product line optimization is to deter-
mine the design variable configuration and the wholesale
price of each product in the product line under a set of mar-
keting and engineering criteria. The following section
describes the specifics of the marketing and engineering
considerations. I then demonstrate how these considerations
are merged into a product line optimization procedure.

Marketing Considerations

From the marketing side, I take into account (1) how con-
sumers form their preferences toward each product and (2)
how the competitors and the retailer respond to the launch
of the new product line.

Consumer preference model. A choice-based finite mix-
ture conjoint model is used to elicit consumers’ preferences
for different levels of consumer attributes. In this model, the
utility of consumer i for profile d in choice set k is defined
as follows:

(1) Uidk = xdkbix + pdkbip + eidk,

where (bix, bip) is the vector of the conjoint partworths for
consumer i, (xdk, pdk) is a vector representing the consumer
attributes and the price of product alternative d in choice set
k, and eidk is a random component.

Assuming that the random component eidk follows an
i.i.d. double exponential distribution, the probability of con-
sumer i choosing product d from choice set k is as follows:

where ai denotes the utility of the “no-choice” option.
Let xi = (bix, bip, ai); then, xi is defined using a mixture

of multivariate normal distributions (Rossi and Allenby
2003):
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where qis represents the probability that consumer i belongs
to segment s and Ws is a full variance–covariance matrix.

Furthermore, qis is defined as follows:

where zi is a vector of covariates (e.g., the respondents’
height and weight) and gs is the coefficient vector associated
with zi.

The Gibbs sampler and Metropolis–Hastings algorithm
are used to obtain the distributions of the posterior estimates
(for more estimation details, see Web Appendix B at http://
www.marketingpower.com/jmrfeb11). The deviance infor-
mation criterion measure is used to determine the optimal
number of market segments. Thus, the proposed consumer
preference model provides the number of segments and the
posterior estimates for segment sizes (qs = SN

i = 1qs for s = 1,
…, S), segment-level conjoint partworths (x1, x2, ..., xs), and
the variance–covariance matrices (W1, W2, …, Ws). These
posterior estimates can then be used to derive the utility esti-
mate for each product under consideration.1

In general, previous research has assumed that the utility
of each product is a constant. In reality, this assumption may
not hold, because a product might perform differently under
different usage situations (e.g., a power tool’s power amp
may vary from 9 to 10.7 depending on the weather and the
application type). The expected utility theory (Quiggin
1982) is adopted to address these inherent variations in each
product’s utility. Specifically, if the value of a particular
consumer attribute (e.g., power amp, product life) varies
when the product is used under different usage situations, I
obtain the nominal (i.e., the most likely) (v0), the upper-
(vU), and the lower- (vL) bound values of the attribute from
the engineering simulation (see Web Appendix A at http://
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1It is worth noting that either the posterior individual- (xi) or segment-
(xs) level conjoint partworths could be considered inputs to the proposed
product line optimization. The choice between the two depends on the
trade-off between a better representation of consumer heterogeneity and
computation time. In the empirical application, when the inputs of the
product line optimization changed from xs to xi, the average computational
time increased 8.59 times when there were one to three products in the
product line and 740 respondents in the conjoint experiment. I further
examined the impact of ignoring the within-segment heterogeneity when
the posteriors of xs rather than xi were used in the optimization. Specifi-
cally, the individual-level estimates were used to recalibrate the profitabil-
ity of the final product lines obtained from the segment-level partworths (I
thank an anonymous reviewer for suggesting this). It was found that the
recalibrated earnings deviated within 3% from the final earnings obtained
directly from the individual-level estimates. Given the result of this robust-
ness check, the findings are reported according to the segment-level esti-
mates in the empirical section. I acknowledge that this finding is based
only on a single comparison and might not be applicable in different prob-
lem settings. In general, segment- (individual-) level estimates can be con-
sidered for large- (small-) scale problems. Furthermore, individual-level
estimates should be favored when there is a great deal of within-segment
heterogeneity. To simplify the notation, the subscript s is used throughout the
study to represent the heterogeneous consumer preferences. If the individual-
level estimates are used as inputs of the optimization, the subscript s should
be replaced with i.

http://www.marketingpower.com/jmrfeb11
http://www.marketingpower.com/jmrfeb11
http://www.marketingpower.com/jmrfeb11
http://www.marketingpower.com/jmrfeb11
http://www.marketingpower.com/jmrfeb11
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www.marketingpower.com/jmrfeb11). Consequently, the
expected utility from the attribute can be computed as follows:

where us(v) denotes the attribute’s conjoint utility as a func-
tion of the value of v and f(v) is the density function of a tri-
angular distribution with lower limit vL, mode v0, and upper
limit vU.2 The use of triangular distribution is commonly
adopted in business practice when researchers know only
the minimum, maximum, and most likely outcomes (e.g.,
Koller 2005; Li and Azarm 2002). Given Equations 1–5, the
expected utility of each product can be obtained as the sum
of its respective attribute-level utilities. This utility is used
to represent consumers’ product preferences and forecast
market demand.

Market responses from competitors and retailer. In what
follows, I discuss how the strategic reactions from the
incumbent manufacturers and the retailer to the launch of
the product line are addressed.3 Because it is typically diffi-
cult to adjust the nonprice attributes in the short run, the
reactions from the incumbent manufacturers and the retailer
are modeled by changes in prices only (see Hauser 1988;
Luo, Kanna, and Ratchford 2007). The rationale is that with
the introduction of the new product line, the competing
manufacturers and the retailer have incentives to adjust their
wholesale and retail prices to maximize own profits. Within
this context, after the focal manufacturer configures the
design variables of its product line, all the manufacturers
and the retailer can reset their wholesale and retail prices.
Given the adjusted prices, the focal manufacturer can then
reconfigure its design variables to obtain further profit
improvement. This cycling process is repeated until no
improvement in the profit of the final product line results
(for more details of this process, see Figure 1 and the sub-
section titled “Optimization Procedure”). This approach
extends that of Luo, Kannan, and Ratchford (2007) by
accommodating a larger-scale product design space in the
context of product line design. A major advantage of this
method is that the focal manufacturer accounts for the
strategic responses from the retailer and the competing
manufacturers before the new product line introduction.
Extant research in product line design has neglected this
aspect.

The price adjustments of the retailer and the manufactur-
ers are modeled as follows: Assume that there are K manu-
facturers, with the kth (k = 1, …, K) manufacturer selling Lk
products. Given the vector of wholesale prices (w11, w12, …,
w1L1

; w21, w22, …, w2L2
; wK1, wK2, …, wKLK

), the retailer
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chooses the retail price of each product in its assortment to
maximize own profit. The retailer’s profit maximization can
be written as follows:

where pr is the category profit of the retailer, mkl represents
the market share of the lth product from the kth manufac-
turer, pkl and wkl denote this product’s retail and wholesale
prices, Dt is the overall market demand in year t, r is a dis-
count rate, and sc is the marginal shelf cost. In line with
Gordon (2009), it is assumed that Dt is observed and deter-
mined exogenously (e.g., as a function of the products’
replacement cycles and overall economic condition). The
parameters {qs, bsx, bsp, as} in Equation 7 correspond to
posterior conjoint partworth estimates obtained from the
finite mixture Bayesian estimation.

Given the vector of new retail prices (p11, …, p1L1
, …

pK1, …, PKLK
), each manufacturer (k = 1, …, K) adjusts the

wholesale prices of the Lk products in its product line to
maximize profit. Note that this differs from Luo, Kanna, and
Ratchford (2007) in that the manufacturer chooses a set of
wholesale prices rather than a single price.

where ckl is the variable cost of the lth product from manu-
facturer k and Fk is the fixed cost of this manufacturer.

Similar to Luo, Kannan, and Ratchford (2007), the new
wholesale and retail prices are estimated by solving Equa-
tions 6 and 8 iteratively (see details in Web Appendix B at
http://www.marketingpower.com/jmrfeb11). A major chal-
lenge faced by all existing research in product line design is
that multiproduct firms with logit demand do not have log-
supermodular profit functions (Hanson and Martin 1996).
Therefore, the current model faces the possibility of multiple
price equilibriums in the proposed solutions. To alleviate
this issue, researchers can empirically investigate the shapes
of the profit functions and run the algorithm with different
initial prices in attempts to move from a local optimum to a
better solution. It is also worth noting that because only the
retailer and the incumbents’ potential reactions in price
adjustments are accounted for, this method does not apply
in situations in which the incumbents change their nonprice
attributes in response to the entry of the new product line.

Engineering Considerations

From the engineering side, I take into account (1) the fea-
sibility and robustness of each product in the product line and
(2) the cost synergy across the products in the product line.
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2Within this context, the consumer attribute is continuous and the prod-
uct designer must decide whether to discretize the attribute. If he or she
believes there is a linear relationship between the value of the attribute and
consumer preference, a linear function can be used to represent us(v). Oth-
erwise, the standard pairwise linear interpolation can be used to calculate
us(v) when v varies from vL to vU (Sawtooth Software 2001).

3I decided to focus on one retailer because the distribution channel of
consumer durables is often characterized by one powerful retailer (Luo,
Kannan, and Ratchford 2007). This also makes the proposed computation
tractable. The competitive offerings were defined by the current assortment
of the dominant retailer in the focal product category. These products typi-
cally represent the major players in the market.

http://www.marketingpower.com/jmrfeb11
http://www.marketingpower.com/jmrfeb11
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figure 1
COMPUTATIONAL ALgOrIThM Of ThE PrODUCT LINE OPTIMIzATION
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Engineering feasibility and robustness. It is well estab-
lished in the engineering literature (e.g., Kouvelis and Yu
1997; Ulrich and Eppinger 2004) that one essential goal of
product design in many product categories (e.g., power
tools, cars, appliances) is to ensure that products will remain
feasible and robust under a variety of usage situations (e.g.,
different weather conditions, different application types).
Therefore, the primary engineering consideration is to evalu-
ate whether each product under consideration satisfies the
feasibility and robustness criteria imposed by the engineer-
ing designer. A common approach to assess whether a prod-
uct will satisfy these criteria is to examine the lower and
upper bounds of its engineering performance metrics (e.g.,
motor temperature, motor output speed), which are created
as an output of the design simulation (see Web Appendix A
at http://www.marketingpower.com/jmrfeb11).

In particular, the goal of the feasibility criteria is to
ensure that all the products in the product line do not break
down under any known usage situation. Let (y11, y12, …,
y1L1

) denote the design variable configurations of the L1
products in the focal manufacturer’s product line (i.e., k = 1
for the focal manufacturer). Adopted from Besharati and
colleagues (2004, 2006), the feasibility criteria associated
with each product can be expressed as follows (h is the
index for the hth feasibility criterion):

with paLW £ pa £ paUP; l = 1, …, L1,

where y1l denotes the design variable vector, pa represents
the vector of the engineering parameters ranging from the
lower bound paLW to the upper bound paUP, and g is a
dummy variable indicating whether the product violates the
feasibility criterion (g = 1 if violated, and g = 0 if otherwise).

In line with Besharati and colleagues (2004, 2006) and
Ulrich and Eppinger (2004), the vector of engineering
parameters pa characterizes the uncontrollable variations in
the product’s usage environment. A product line will be
penalized in the optimization if it contains any product vio-
lating any of the H constraints.

The robustness criteria ensure that undesirable variations
in the product’s engineering performance are limited to a
reasonably small amount. A product satisfies the robustness
criteria if the undesirable variations of its engineering per-
formance metrics are bounded within the limits specified by
the product designer. In line with Besharati and colleagues
(2004, 2006), the mathematical representation of the robust-
ness criteria is given in Equation 10:

with b =1, …, B; paLW £ pa £ paUP; l = 1, …, L1,

where the index b (b = 1, …, B) denotes the bth robustness
constraint, {max[|fb(y1l, pa) – fb(y1l, pa0)|]} is the observed
maximum variation in the product’s engineering perform-
ance when the engineering parameters deviate from the
nominal value pa0, and DfJ

b denotes the maximum accept-
able variation specified by the engineering designer. A prod-
uct line will be penalized in the optimization if it contains
any product violating any of the B constraints.
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Cost synergy. Given the increasing popularity of platform
production (Morgan, Daniels, and Kouvelis 2001), the pro-
posed cost model is constructed for platform-based product
categories. Within this context, the manufacturer purchases
the components from outside vendors, assembles the com-
ponents into the final products, provides after-sale mainte-
nance support, and salvages the product at the end of its life
cycle. Accordingly, the variable cost of product l is com-
puted as follows:

In Equation 11, the variable cost vc1l is jointly determined
by the component cost crwl (r is the index for the compo-
nent—e.g., motor type; w is the index for the type of the
component—e.g., motor #1), a discount factor lrwl associ-
ated with component sharing, the assembly cost cal, the
maintenance cost cml, and the salvage cost csl.

In general, in the platform-management literature,
researchers refer to the parts firms use to build the product
as components. For example, some major components
related to a power tool are the motor, gearbox, and housing.
Because they define the product from the designer’s per-
spective, within this context, these components are essen-
tially a part of the product’s design variables. When differ-
ent products within a product line share the same types of
components, the cost associated with acquiring each unit of
the shared component is scaled down because of economy
of scale. The proposed method uses a discount factor lrwl to
capture this effect (for more details on how to define lrwl
and the other cost elements in Equation 11, see Web Appen-
dix B at http://www.marketingpower.com/jmrfeb11).

Optimization Procedure

Figure 1 provides the overall procedure of the product line
optimization. As shown, the proposed product line optimiza-
tion includes two inner loop optimizations (denoted as the
focal manufacturer’s design variable configuration problem
and the retailer and manufacturers’ price adjustment problem)
and an outer loop optimization (i.e., the procedure that solves
the two inner optimizations iteratively until convergence). 

This optimization begins with initializing the vectors of
wholesale prices (w0

11, w0
12, ..., w0

1L1
) and retail prices (p0

11,
p0

12, ..., p0
1L1

) for the focal manufacturer (denoted as the first
manufacturer; i.e., k = 1). Given these initial wholesale
prices, the focal manufacturer searches for vectors of design
variables (y11, y12, …, y1L1

) to maximize its product line
profit, subject to a set of constraints (i.e., the first panel of
Figure 1). The first two constraints ensure that each product
in the product line satisfies the engineering feasibility and
robustness criteria. The third constraint is the capacity con-
straint. Note that the assembly of platform products typi-
cally requires different machine setup for each product.
Therefore, the capacity constraint is set according to the
production of each product (i.e., W1l) rather than the sum of
production across all the products in the product line. When
a product’s market demand exceeds the capacity constraint,
the product’s production volume will be set at the level of
the capacity constraint. The fourth constraint sets the maxi-
mum length of the product line (i.e., L1), which typically the
focal manufacturer prespecifies. Several previous studies
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have assumed a fixed number of products in the product line
(e.g., Balakrishnan, Gupta, and Jacob 2004; Belloni et al.
2008). The proposed method relaxes this assumption by
allowing an upper limit of product line length. Finally, the
channel acceptance criterion is determined by comparing
the retailer’s new category profit with its current category
profit (denoted as p̆r).

The outputs of this inner loop optimization are the vec-
tors of the design variables (y11, y12, …, y1L1

) and their cor-
responding nonprice consumer attributes (x11, x12, …, x1L1

).
Next, the retailer and the manufacturers (including the focal
and the competing manufacturers) adjust the retail and
wholesale prices in response to the market entry of this
product line (second panel of Figure 1).

Given the adjusted prices, the focal manufacturer researches
vectors of design variables to maximize its product line
profit. This cycling process continues until no improvement
in the profit of the final product line results. The dotted box
in Figure 1 depicts this outer loop optimization.

This procedure is performed for each possible product
line length. The final product line is chosen as the one that
maximizes the firm’s profit as the product line length varies
from 1 to  L1. Note that if product line length is fixed (e.g.,
Balakrishnan. Gupta, and Jacob 2004; Belloni et al. 2008),
the optimization needs to be performed only once. In addi-
tion, if the retailer were to consider only part of the product
line acceptable, the method indirectly accounts for this
because the shorter product line lengths have been consid-
ered under this procedure.

Because the product line design is NP-hard (Kohli and
Sukumar 1990), the primary goal of previous research in
this area has been finding near-optimal solutions in a rea-
sonable amount of time. The current research follows this
line of work by using heuristic methods to solve the focal
manufacturer’s design variable configuration problem (first
panel of Figure 1) and gradient search methods to search for
the adjusted wholesale and retail prices (second panel of
Figure 1). Although prior research has suggested that the
heuristic methods of genetic algorithm and simulated
annealing have the ability to escape from a locally optimal
solution (Balakrishnan, Gupta, and Jacob 2004; Belloni et
al. 2008), the solutions these methods provide do not ensure
global optimality. Similarly, multiple price equilibriums
may exist when the manufacturers and the retailer make
price adjustments. Therefore, a global maximum cannot be
guaranteed in the optimization results. This is a common
limitation shared by all extant research in product line
design. To alleviate this issue, researchers can run the opti-
mization multiple times with different starting values to

assess the overall quality of the final solution. On a related
note, because the focal manufacturer’s ultimate goal is to
maximize its profit and multiple product lines might gener-
ate identical (or highly similar) profits, the quality of the
final solution is evaluated by the earning levels associated
with the product line (Belloni et al. 2008) rather than the
closeness in the configurations of the products. In a similar
spirit, the convergence criterion of the proposed product
optimization is based on the level of the final earning rather
than the closeness of the solutions.

SIMULATION STUDY

In this section, I examine the computational characteris-
tics of the proposed optimization procedure using simulated
data. The primary goals of this simulation study are to
empirically investigate (1) the use of different computa-
tional algorithms in the focal manufacturer’s design variable
configuration problem (the first panel of Figure 1), (2) the
applicability of the overall procedure to large-scale prob-
lems, and (3) the convergence property of this procedure.
All the computations were conducted in Matlab on a Pen-
tium 4 personal computer.

The performance of three algorithms in the focal manu-
facturer’s design variable configuration problem (the first
panel of Figure 1) is compared. Note that because this com-
parison pertains only to the first panel of Figure 1, the
wholesale prices and the retail markups were assumed to be
fixed so that comparison could be confined to this particular
part of the overall problem. Specifically, genetic algorithm
(GA), simulated annealing (SA), and ATC were included in
the comparison because previous research has shown that
these methods perform well in product line design problems
(e.g., Balakrishnan, Gupta, and Jacob 2004; Belloni et al.
2008; Michalek et al. 2010). In this simulation study, the
focal manufacturer designs a product line consisting of one
to eight products, each composed of four design variables.
(I extend this to include more design variables in the second
part of the simulation study.) Because the ATC method only
handles continuous design variables, 16 problem sizes were
investigated (8 with a mix of discrete and continuous
variables and 8 with continuous variables only). For each
problem size, five problem instances were created, which
resulted in 80 simulated problems. (For more details of the
simulation procedure and a brief description of these opti-
mization methods, see Web Appendix C at http://www.mar-
ketingpower.com/jmrfeb11.)

Table 1 provides the result comparisons. When the design
variable vector included both discrete and continuous attri-
butes, the average earnings of the product lines were com-
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Table 1
ALgOrIThM COMPArISONS fOr ThE fOCAL MANUfACTUrEr’S DESIgN VArIAbLE CONfIgUrATION PrObLEM (fIrST PANEL

Of fIgUrE 1)

Mix of Discrete and Continuous Variables Continuous Variables Only

GA SA GA SA ATC

Average Average Average Average Average Average Average Average Average Average
Number of Products Profit CPU Time Profit CPU Time Profit CPU Time Profit CPU Time Profit CPU Time

Small (1–3) 65.5 .9 63.9 29.0 68.8 1.1 68.1 40.8 69.0 .9
Medium (4–5) 105.2 1.2 107.8 78.8 103.2 1.3 105.1 117.5 104.7 2.3
Large (6–8) 92.2 1.8 90.9 195.7 87.4 1.9 88.6 232.9 90.5 3.6

Notes: The average profits are presented in millions of U.S. dollars, and the average CPU time is presented in seconds.
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parable, regardless of whether GA or SA was used to solve
the optimization. However, in terms of CPU time, GA is
much more efficient than SA. These findings are consistent
across different problem sizes. When the design variable
vector included only continuous attributes, the same pattern
resulted between the methods of GA and SA. Note that the
results of the comparison for these two algorithms are also
in line with Belloni and colleagues’ (2008) findings. It is
possible that the computational inefficiency of SA results
from its extensive search process because SA sometimes
accepts product line configurations that reduce earnings in
attempts to escape from a local optimum. With regard to
ATC, this method performs well in terms of both the quality
of the solutions and the computation time. In particular,
ATC seems to generate better solutions than GA and SA as
the problem size increases. It is conjectured that when there
are many products in the product line, the decompositional-
based ATC approach facilitates a more effective and effi-
cient search than the combinatorial-based GA and SA
approaches. Given the previously mentioned findings, I sug-
gest using GA in the focal manufacturer’s design variable
configuration problem when the products contain both dis-
crete and continuous design variables. When the products
consist of only continuous variables, the ATC method may
be superior, particularly when there are a great number of
products in the product line.

Next, the computation time required to obtain a final
solution based on the overall procedure (the entire Figure 1)
across different problem sizes was further investigated. In
this simulation task, the focal manufacturer designs a prod-
uct line consisting of one to eight products, each composed
of 4, 8, 12, 16, 20, or 24 design variables. This results in 48
simulation problems. In this task, GA was used to solve the
focal manufacturer’s design variable configuration problem
(the first panel of Figure 1). The reason for choosing GA was
that it not only handles both continuous and discrete design
variables but also is computationally desirable. The required
computation time for the overall procedure (the entire Figure
1) varied between 2 and 10.4 hours when the problem sizes
ranged from a small problem with one to three products and
4–8 design variables to a large problem with six to eight
products and 20–24 design variables. (For more details, see
Web Appendix C at http://www.marketingpower.com/ jmr-
feb11.)

Finally, the proposed procedure converged within a rea-
sonable amount of time for all the simulation problems dis-
cussed previously. These results suggest that, by and large,
the overall proposed procedure is applicable to problems
with a reasonably large scale.4

EMPIRICAL APPLICATION

The proposed product line optimization was applied in a
case study using data collected in a power tool product
development project undertaken by a large U.S. manufac-
turer. The industrial partner and I conducted exploratory

research (e.g., field trips, focus group studies) to identify the
set of consumer attributes the end users of this power tool
deemed most critical. The identification of these attributes
follows the typical procedure used in determining which
attributes to include in a conjoint experiment. It was discov-
ered that, in general, consumers take into account the power
tool’s brand, price, power amp, product life, switch type,
and girth type in a purchase decision. (For more details of
the conjoint design, see Web Appendix D at http://www.
marketingpower.com/jmrfeb11.5) Given these consumer
attributes, I proceeded to determine the set of design
variables. The following design variables were identified
because they determine the values of the consumer attribute
vector and are collectively needed for proper functioning of
the product: motor type, speed reduction unit or gearbox
type, gear ratio, switch type, and housing type. (For more
details on the design space defined by these design
variables, see Web Appendix D.)

After the vectors of the consumer attributes and design
variables were identified, the mapping between the two vec-
tors was established. The consumer attributes switch type and
girth type are identical to their corresponding design variables
(with a small girth mapped from a small housing and a large
girth mapped from a large housing). For power amp and
product life, an engineering simulation similar to the one
described in Web Appendix A (http://www.marketingpower.
com/jmrfeb11) was used to establish the mapping relation-
ships. Specifically, the inputs of the simulation are the con-
figuration of the design variables motor type, gearbox type,
and gear ratio. The outputs of the simulation are the values
of the product’s (1) power amp and product life (consumer
attributes) and (2) motor temperature, motor output speed,
and mass material removal per application (engineering per-
formance metrics). The former directly influence con-
sumers’ purchase decisions. The latter were used to evaluate
whether the product satisfies the feasibility and robustness
constraints the product designer specified. The uncontrol-
lable variations in the product’s usage environment were rep-
resented by a set of engineering parameters (for more details,
see Web Appendix D at http://www.marketingpower.com/
jmrfeb11). The outputs of the simulation provided the nomi-
nal, lower-, and upper-bound values of each output variable.
Given the sets of consumer attributes, design variables, and
their mapping relationships, the focal problem of the prod-
uct line optimization is to search for a profit-maximizing
product line.

Marketing Considerations

A choice-based conjoint study was conducted with 740
power tool users across the U.S. market. Each respondent was
given 18 choice sets, with each choice set including two prod-
ucts and a no-choice option (for more details of the conjoint
design, see Web Appendix D at http://www.marketingpower.
com/jmrfeb11). In addition, each respondent provided some
demographic information including trades, glove size,
height, and age. These covariates were used to identify seg-
ment membership and facilitate the estimation of the con-
joint partworths.

4The performance of the proposed product line optimization was also
compared with the global optimum (obtained through complete enumera-
tion) for the case of four design variables with one to two products in the
product line. This comparison was limited to only small-scale problems for
which the global optimum could be obtained in a reasonable amount of
time. The average final earnings from the proposed optimization are at 96%
of the true optimum.

5Some actual attribute names were camouflaged as well as the values of
attribute levels, cost estimates, and capacity constraints to protect the pro-
prietary information of the industrial partner.
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The finite mixture conjoint model was estimated on the
basis of scenarios of one to five market segments. With 
the use of the deviance information criterion measure, the
optimal number of market segments was selected as two.
Table 2 shows the estimation results (for the estimates
related to the covariates, see Web Appendix D at http://
www.marketingpower. com/jmrfeb11). The hyperparameter
of the no-choice option in Segment 1 was fixed to zero for
identification. In each market segment, the sum of the con-
joint partworths across the different levels of a product attri-
bute was fixed to zero for identification. To make the scale
of the conjoint partworths comparable across different attri-
butes, the continuous variable price was also mean centered.

Note that a power tool’s power amp and product life
might differ under various usage situations. Equation 5 was
used to calculate their expected conjoint partworths given
their nominal, lower-, and upper-bound values. The assump-
tion of a total drop-off at the end points was relaxed by
allowing the probabilities at the minimum and maximum
outcomes to be 2.5%.

Before the entry of the new product line, there were three
incumbent manufacturers. Two manufacturers offered prod-
uct lines with two products, and one manufacturer sold one
product (for their consumer attribute specifications, see Web
Appendix D at http://www.marketingpower.com/jmrfeb11).
For each product line under consideration, the algorithm
described in Web Appendix B was used to calculate the
wholesale and retail price adjustments.

Engineering Considerations

The feasibility criterion required that the product’s motor
temperature be less than 125°C under any usage situation.
This constraint was imposed to ensure that the product
would not break down under demanding application condi-
tions. Therefore, for each product under consideration, the

upper bound of its motor temperature (provided as an out-
put variable from the engineering simulation) was checked.
If this upper bound value was greater than 125°C, the prod-
uct line consisting of this product would be penalized in the
optimization.

With regard to robustness requirements, the following
two criteria were considered: (1) the variation between the
actual and nominal motor output speeds must be less than
4000 revolutions per minute, and (2) the variation between
the actual and nominal mass material removals per applica-
tion must be less than 5 grams. Consequently, for each prod-
uct under consideration, the maximum variation associated
with each of the preceding engineering performance metric
was calculated (e.g., if a product’s nominal, lower, and
upper bounds of mass material removal rates are 12, 5, and
16 grams, respectively, the maximum variation is calculated
as max[|5 – 12|, |12 – 16|] = 7). In the proposed optimiza-
tion, a product line will be penalized if it consists of prod-
ucts violating any of these robustness requirements.

The variable cost of each product in the product line was
calculated using Equation 11. The major components of this
product are motor, gearbox, product switch, and housing
type. The unit cost of each component type and the associ-
ated discount factor were obtained from a lookup table. The
specific combination of these components determined the
assembly cost, which was also obtained from a lookup
table. The maintenance cost was calculated using the lower
bound of product life, and the salvage cost for each product
was estimated to be $3. The fixed cost estimates were given
by the industrial partner. For product lines consisting of one,
two, and three products, the fixed costs were estimated to be
$15 million, $18 million, and $25 million, respectively.

Product Line Optimization Results

Given the specifics of the engineering and marketing con-
siderations, a profit-maximizing product line was searched
for using the procedure described in Figure 1. Brand was
fixed at the level of own brand. The GA was used to solve
the focal manufacturer’s design variable configuration prob-
lem (first panel in Figure 1). The initial population of prod-
uct lines was randomly chosen. Given the products’ initial
wholesale and retail prices, the focal manufacturer first
searched for the design variable configurations of a profit-
maximizing product line. Next, the retailer and the manufac-
turers reset prices to maximize own profit. On the basis of the
adjusted prices, the focal manufacturer re-searched a set of
design variables to maximize its profit. This cycling process
continues until no improvement in the profit of the final
product line results (for more estimation details, see Web
Appendix D at http://www.marketingpower.com/jmrfeb11).6

Because the dominant retailer rarely accepts more than
three products from the same manufacturer in the focal
product category, the maximum length of the product line
was set at three. As a result, the proposed optimization pro-
cedure was repeated when there were one, two, and three
products in the product line. The product line with the fol-
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Table 2
bAyESIAN fINITE MIXTUrE CONJOINT PArTWOrTh

ESTIMATES

Segment 1 Segment 2
(Size = .147) (Size = .853)

M SDa M SD

Own brand .859 .857 .164 .205
Brand 1 1.077 .533 –.299 .270
Brand 2 2.233 1.139 .298 .268
Brand 3 –4.169 1.885 –.163 .362
Price (mean centered) –.342 .181 –.044 .517
Power amp: 6 –1.630 .577 –.318 .412
Power amp: 9 .240 .376 .090 .427
Power amp: 12 1.390 .434 .228 .603
Product life: 80 hours –3.682 1.636 –.334 .476
Product life: 110 hours –1.346 1.602 .028 .525
Product life: 150 hours 5.028 1.436 .306 .584
Switch type 1: paddle –1.503 .661 –.333 .588
Switch type 2: top slider 1.966 .676 .320 .485
Switch type 3: side slider .593 .565 .517 .305
Switch type 4: trigger –1.056 .608 –.504 .414
Girth type 1: small 1.173 1.006 –.035 .180
Girth type 2: large –1.173 1.006 .035 .180
No choice — — .477 .211

aThese entries are the posterior estimates of the square roots of the diag-
onal terms in the variance–covariance matrix (i.e., Ws). They represent the
degree of heterogeneity within each consumer segment.

6The GA parameters used here are the same as those used in the simula-
tion study. The GA parameters were varied several times to evaluate how
sensitive the final earning level was to the GA parameters. The quality of
the solution was assessed by using different starting values. No major dif-
ferences were found in the final earnings.
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lowing specifications provided the highest earning (see
Table 3). It was evident that the high earning level of this
product line benefited a great deal from component sharing.
(The first two products shared the same gearbox type, the
last two products used the same switch type, and all three
products consisted of the same girth type.) Meanwhile, the
product line also exploits the heterogeneous consumer pref-
erences in the marketplace (see the different power amps,
product life, and prices of these products). Over a five-year
horizon, the discounted long-term profit is estimated to be
$52.8 million. Some robustness checks were also conducted
and indicated that this final earning level was not overly
sensitive to the parameter specifications of the model (see
details in Web Appendix D at http://www.marketingpower.
com/jmrfeb11).

Comparison with Benchmark Approaches

Next, this study compares the empirical results obtained
from the proposed procedure with two benchmark approaches
in which the marketing and engineering considerations are
addressed in a sequential order. Both approaches comprise
two stages. In the marketing-first approach, the marketing
team’s primary goal in the first stage is to search for vectors
of consumer attributes that maximize the product line prof-
itability. The key differences between the optimization at
this stage and the one described in Figure 1 are that (1) the
decision variables {y11, y12, …, y1L1

} are replaced by {x11,
x12, …, x1L1

} and (2) the five constraints in the first block
of the figure are reduced to constraints 3–5. Because a prod-
uct’s variable cost is an inherent function of a product’s
design variable configuration and its cost interactions with
the other products in the product line, the product’s cost
based needed to be approximated using a weighted sum of
its attribute levels (excluding brand and price).7 The other

aspects of this optimization are identical to the ones Figure
1 describes. In the second stage, given the consumer attri-
bute specification of each product in the final product line,
the engineering team searches for a combination of design
variables that best match the required values of consumer
attributes at the nominal operation condition. In addition,
the engineering team evaluates whether these design variable
configurations satisfy the engineering feasibility and robust-
ness criteria (the first two constraints in the first panel of
Figure 1). If the product violates one or more engineering
requirements, the engineering team will move on to a design
variable configuration that produces the second smallest
deviation from the required consumer attribute values. This
process continues until all products satisfy the engineering
requirements.

Under this approach, the final product line consisted of
three products with the specifications listed in Table 4. The
cost and market share estimates in this table are recalibrated
using each product’s actual design variable configurations.
As a result of separating marketing and engineering consid-
erations, this sequential approach led to a suboptimal prod-
uct line. In particular, because this benchmark approach did
not capitalize on the cost synergy among the products in the
product line, the final product line had a lower degree of
component sharing than the product line Table 3 shows. As
a result, although this product line was predicted to capture
a larger market share (34.08% versus 29.63% in the pro-
posed approach), the average markup between the whole-
sale prices and variable costs was lower ($6.10 versus $7.93
in the approach). Consequently, this product line was not as
profitable as the one obtained from the proposed approach
(long-term profit: $46.5 million versus $52.8 million).

In the second alternative approach (i.e., engineering first),
the engineering team first prunes the product design space
using the engineering feasibility and robustness criteria. In
the second stage, the marketing team composes a profit-
maximizing product line among all the products satisfying
the engineering constraints. The key differences between
the second stage optimization and the one Figure 1
describes are that (1) the product line configurations are
limited among the pool of product candidates retained from
the first stage (rather than the entire design space) and (2)
the five constraints in the first block of the figure are
reduced to constraints 3–5. The other aspects of this opti-

7The weights were obtained from a multiple regression using the cost
estimates of current products and some hypothetical products (I thank two
anonymous reviewers for this suggestion). In addition, if the marketing
team was able to incorporate cost synergy into the variable cost estimation,
the primary advantage of the proposed approach versus the marketing-first
approach hinges on the rigidity of the engineering criteria. If there is a sub-
stantial number of engineering requirements, the marketing-first approach
may result in a local search in a suboptimal space. In contrast, if the vast
majority of product candidates satisfy the engineering requirements, the
results may not differ substantially between the proposed and the marketing-
first approaches.

Table 3
SPECIfICATIONS Of ThE fINAL PrODUCT LINE: CUrrENT APPrOACh

Gear Power Amp Product Life Wholesale Retail Variable Market
Motor Ratio Gearbox (Nominal) (Nominal) Switch Girth Price Price Cost Share (%)

Product 1 4 4.11 3 8.7 123 2 1 $79.22 $109.22 $70.00 7.65
Product 2 10 4.72 3 9.9 117 3 1 $74.03 $100.04 $67.00 14.35
Product 3 9 3.60 2 12.5 125 3 1 $89.55 $118.49 $82.00 7.63

Table 4
SPECIfICATIONS Of ThE fINAL PrODUCT LINE: MArkETINg-fIrST APPrOACh

Gear Power Amp Product Life Wholesale Retail Variable Market
Motor Ratio Gearbox (Nominal) (Nominal) Switch Girth Price Price Cost Share (%)

Product 1 2 3.91 3 6.7 107 2 1 $74.03 $90.02 $70.00 10.98
Product 2 4 4.05 2 9.2 129 3 2 $78.79 $99.77 $71.00 12.70
Product 3 8 4.28 6 10.5 149 3 2 $89.47 $111.03 $83.00 10.40
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mization procedure were identical to those Figure 1
describes.

Given that the design space for a consumer durable prod-
uct is usually large (particularly with the presence of contin-
uous design variables), an exhaustive search is often infeasi-
ble in the first stage to identify the complete pool of product
candidates that satisfy the engineering criteria. Therefore,
heuristic methods are often used to preselect a set of prod-
uct candidates for the composition of the final product line.
To demonstrate the drawback of the engineering-first
approach (if the product designer cannot identify the com-
plete pool of product candidates satisfying the engineering
criteria in the first stage), the design space was randomly
sampled until 1000 products were obtained that satisfied the
engineering criteria. Next, an exhaustive search was con-
ducted to obtain the profit-maximizing product line when
there were one to three products in the product line. Table 5
provides the specifications of the most profitable product
line. Because the composition of the final product line was
limited to the set of 1000 products, some promising product
candidates from the marketing perspective may be neg-
lected. Therefore, although this product line included some
degree of component sharing, it was not as profitable as the
one obtained using the proposed approach ($48.3 million
versus $52.8 million).8

CONCLUSIONS

In this study, I introduce a procedure of product line opti-
mization in which the marketing and engineering criteria are
considered concurrently in the search for a profit-maximiz-
ing product line. It is proposed that the product designer
should take into account both marketing and engineering
considerations concurrently in a product line design. In par-
ticular, the proposed method extends beyond extant meth-
ods in product line design by accounting for the strategic
reactions from the competing manufacturers and the retailer
in response to the entry of the new product line. Through a
simulation study and an empirical application, I demon-
strate that the proposed optimization procedure provides an
effective solution to this challenging problem.

The study also contributes to the literature by proposing
an optimization method that works in relatively large-scale
design problems consisting of both discrete and continuous
design variables. In particular, it is suggested that GA pro-
vides an efficient and effective solution to the focal manu-
facturer’s design variable configuration problem in a variety
of problem settings. In contrast, despite their comparable

performance in finding profit-maximizing product lines, the
heuristic method of SA is only suitable for small-scale prob-
lems (given its computational inefficiency) and the decom-
positional method of ATC is applicable to problems with
only continuous design variables.

This research is not without limitations. First, the pro-
posed method is built on the assumption that the product
designer has complete knowledge about the various inputs
needed for the optimization. Therefore, exploratory research
when some inputs are unknown is needed. Second, because
the product line design problem is NP-hard, the proposed
optimization procedure might recover a local maximum
rather than a global maximum. Further research could inves-
tigate optimization methods that can guarantee a global
optimality. Third, although it accounts for the retailer’s and
the incumbent’s strategic price reactions, the proposed
method is limited in addressing the incumbents’ strategic
responses in nonprice attributes. Finally, because the pro-
posed optimization method is combinatorial, firms facing
extremely large problems might encounter computational
difficulty. Further research could develop a decompositional
approach that handles both discrete and continuous design
variables. In time, as both the algorithm and the computa-
tional power improve, further research might extend this
work by guaranteeing global optimality in a considerably
large-scale product line design problem.
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