Progress towards Deep Learning Genome Assembly: de novo ML-based
Read-Overlap Graphs and Partial Layout

Anonymous Authors'

Abstract

Although deep learning has proven effective on a
wide range of problems in computational biology,
the influence of deep learning on the central task
of genome assembly has been mostly around the
edges, mostly in pre- and post-processing. A re-
cent result used graph convolutional networks for
finding paths through the assembly graph on HiFi
reads, but there is to date no deep learning tool for
building an assembly graph de novo without any
external information. In this extended abstract, we
train from scratch a neural network embedding
of synthetic short-reads from the SARS-CoV-2
genome into 3D Euclidean space that locally re-
capitulates the linear sequence distance of the
read origins. With respect to the Overlap-Layout-
Consensus (OLC) model of assembly, this embed-
ding resolves fully the Overlap stage and part of
the Layout stage of OLC, demonstrating for the
first time that these tasks are potentially amenable
to deep learning methods, though much future
work remains in scaling this prototype approach
to larger genomes and usable tools.!

1. Introduction

There are a wide range of bioinformatics tasks, and choos-
ing the right analysis methodology for each requires care-
fully navigating the trade-offs (Berger & Yu, 2022). Deep
learning has proven effective at a number of these tasks.
Downstream prediction and annotation tasks have seen sto-
ried successes (e.g. AlphaFold (Jumper et al., 2021)). On
the genomic sequencing front, ML has helped improve ev-
erything from base calling in sequencers (Wan et al., 2022),
to variant calling after alignment (Poplin et al., 2018). Even

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email @domain.com>.

Preliminary work. Under review by the 2023 ICML Workshop on
Computational Biology. Do not distribute.

!Code and models available at: https://storage.googleapis.com/
progress-towards-assembly/colab.html

the tasks of read alignment (Gupta & Saini, 2020; Jung &
Han, 2022) or whole sequence alignment (Lall & Tallur,
2023) have seen substantial activity. However, one notable
absence on these lists is the genome assembly task (Bon-
field et al., 1995; Pevzner et al., 2001; Kececioglu & Myers,
1995; Myers, 1995), which is one of the central problems in
genomics. To our knowledge, there exist no deep learning
assemblers—a few studies apply deep learning to consensus-
sequence determination (Vrcek et al., 2022; Padovani de
Souza et al., 2019), but nothing for generation of the assem-
bly graph itself—which would seem to suggest that these
problems are not amenable to ML. This manuscript explores
these difficulties and points out a potential way forward for
ML-based assembly.

What is the assembly problem? Our sequencing technology
is generally unable to read entire genomes, so instead shot-
gun sequencing is performed, whereby the genome is ran-
domly fragmented into smaller substrings known as ‘reads’.
In a task known as assembly, these reads are pieced back
together into long superstrings representing in some cases
a putative genome or chromosome. Read lengths depends
heavily on the sequencing technology. At present, the most
popular technology used in practice are Illumina short-reads,
which range in length from 200-300 base pairs (so-called
2nd-generation sequencing). More recent third-generation
sequencing enables ‘long reads’ on the order of many kilo-
bases, but they are currently still expensive—although many
cutting-edge academic studies make use of long reads, the
bulk of data generated is still short-reads (Segerman, 2020).

In this manuscript, we focus on de novo assembly of short
reads, whereby we do not use any outside information—
this is in contrast to reference-based mapping/alignment,
which assumes we have already sequenced another individ-
ual from that species and simply need to locate each read as
a substring of the reference, or reference-guided assembly,
which uses the reference genome of a related species as
side-channel information in the assembly process.

The two main approaches to assembly are the Overlap-
Layout-Census (OLC) and de Bruijn Graph (DBG)-based
methods (Li et al., 2012). DBG methods first break reads
into even smaller k-mers before finding overlaps, whereas
OLC operates by finding overlaps on the original reads.

https://storage.googleapis.com/progress-towards-assembly/colab.html
https://storage.googleapis.com/progress-towards-assembly/colab.html

Progress towards deep learning genome assembly

®
S

06

Position
1

0.8

0.6

0.4

0.2

angle

Figure 1. Euclidean embedding of synthetic short-reads (length [= 256) from the SARS-CoV-2 genome as a pseudo-read-overlap
assembly graph. (left) Actual embedding was into 3D, attempting to preserve local distances along the sequence. (right) For ease of
visualization, we further transformed the data onto a plane to better show the trajectories. Note that the embedding was not given any of
the positional (color) information, but instead managed to recover that information implicitly from just the raw reads.

Here, we choose to completely eschew preprocessing of
reads to demonstrate as proof-of-concept the extent to which
neural networks can (and cannot) replace algorithmic design,
so we follow the OLC approach in spirit. OLC methods
first find overlaps in the prefix of one read with the suffix of
another read; based on those overlaps, stretches of reads are
bundled into contigs; finally, the most likely consensus se-
quence is chosen for each contig. In this paper, we show that
a deep neural network embedding can perform the Overlap
step, as well as part of the Layout step.

2. Methods

The input into an assembly algorithm is a corpus of reads
{R;} C %!, where ¥ = {0,1,2,3} (or alternately, A, C, G,
T) and length [(which in our synthetic data will be [= 256,
but is typically between 150 and 300). Each read R; is
assumed to come from some unknown true position p; on
the genome, which is a string of length L. Our strategy is to
learn an embedding ¢ into R™ (n = 3 in this paper) of those
reads such that ||¢p(R;) — ¢(R;)|| = |p; — p;| for small
distances. If we were performing reference-based align-
ment/mapping, this would be easy—we could simply train
a location prediction network directly outputting a predic-
tion for p;. We would have to take into account sequencing
errors in the training distribution, but that is straightforward.
However, the difficulty with assembly graphs is that we do
not know the underlying locations of reads on the genome,
but still need to approximate pairwise distances.

One approach would be to directly use edit distances. Given
a mapping ¢ that approximately preserves edit distances

for all possible reads in X!, we could immediately use that
embedding to create an assembly graph. There is work on
neural edit distance embeddings for faster nearest neighbor
search (Zhang et al., 2019), but the distortion rate is high
when n is small (e.g. n = 3). Luckily, we can do better if
we only care about embedding only reads that are similar to
the reads in our corpus.

However, computing edit distances takes quadratic time
(Backurs & Indyk, 2015), which is an expensive operation
to use within a training loop. Thus, instead, for each read R;,
we will generate an ‘adjacent’ read R; with known distance
d0;, where §; < [. The adjacent read will be constructed by
first shifting R; either to the right or left by d; positions,
filling in the empty positions randomly, and then applying
random substitutions at a rate & = 0.01 (corresponding
roughly to Illumina error rates, though the astute reader
will note that this simplified adjacent read model ignores
indels). We can then train our embedding ¢ on these pairs
(R;, Rz), which now have a known label §;. For the loss
function, we will start with a Huber loss comparing §; to
|¢(R;) — ¢(R;)||2. However, note that delta; € [0, 1], but
Ipi — pj| € [0,L] and I < L. Thus, we modify the Huber
loss by a reversed sigmoid multiplicative factor S(z) =
1— 1+617m, mln(51,||¢(Rlz/)16¢(Rz)H) Y2 oo that

the optimization focuses on distances < /2.

where m =

2.1. Architecture

There have been several recent papers connecting convolu-
tional filters with both edit distance (Dai et al., 2020) and
minimizers (Yu, 2021), two primitives used in modern as-

Progress towards deep learning genome assembly

2NN W oW b
o o u © u o
S © ©o © o o

=
o
S3

Embedding space Euclidean distance

0 5000 10000 15000
Distance along sequence

- 80000

pixel

- 60000 -

- 40000

Number of points per

- 20000

20000 25000 30000

Figure 2. Heat map of embedding space Euclidean distance versus actual distance along the sequence. A perfect global embedding would
depict a diagonal line here, but we of course only trained a local embedding. To visualize the local embedding properties, we need to

zoom into the low-distance regime (Figure 3).

sembly algorithms. As such, we designed our architecture
with a single convolutional layer with max-pooling to focus
the model on k-mer features of interest, roughly correspond-
ing to the use of minimizers in standard assembly algorithms.
We chose filters to pick k-mers for k& € {1,...,10}, with
a total of 8218 total convolutional filters, with increasing
numbers of filter for larger k. After max-pooling (with win-
dows and strides proportional to k), this resulted in 253824
neurons after max-pooling. We then followed up with eight
fully-connected layers (size 512, 256, 128, 64, 32, 16, 8, and
then 3) with GELU activations between fully-connected lay-
ers to reduce the dimensionality down to 3. The total number
of trainable parameters of the network was 130,437,175. We
chose an embedding dimension of 3 for two reasons: (1) to
visually inspect the results, and (2) because assembly graphs
are known to be non-planar. A practical deep learning as-
sembler would likely use bigger embedding dimension.

2.2. Training

In each epoch, we randomly generate one adjacent read (as
defined in Methods) for each read in our corpus. Thus, the
network learns embeddings for pairs of reads similar to our
reads, without the danger of overfitting on any particular
pairs. Indeed, because we are interested in finding the best
embedding for a given set of reads, overfitting is no more a
danger than it would be for an autoencoder, as the very point
is to find the best low-dimensional embedding/compression
of the original data with respect.

3. Results and Discussion

We started with the SARS-CoV-2 genome NC_045512. 2,
which is just under 30 kilobases long. A corpus of synthetic

short-reads of length 256bp were generated to a depth of
coverage of 200. The synthetic reads had an error rate of
1%, evenly divided three-ways among insertions, deletions,
and substitutions. Reads with deletions were padded ran-
domly to ensure constant length; insertions were uniformly
chosen among the four nucleotides, and substitutions were
uniformly chosen among the other three nucleotides.

We implemented the neural embedding architecture and
training described above using Jax, Flax, and Optax. For
this experiment, we trained for 16000 epochs, though the
training and validation loss both started plateauing at around
3000 epochs. All experiments were performed in Google
Colab on an A100 GPU high-RAM instance. Total wall
clock time for 16000 epochs was around 27 hours (around
5 hours for 3000 epochs).

After training, we embedded all the original reads into R?
(Figure 1 left). Observing that the reads clustered near
the surface of a cylinder, we unrolled that cylinder into
2D to allow us to visually observe that nearby reads do
indeed form paths in the embedding that could correspond
to contigs (Figure 1 right).

We then quantified in Figures 2 and 3 how well-aligned
embedding distance is with both distance along the genomic
sequence and the edit distance between reads. We observed
that local distances tracked well when the embedding dis-
tance is below around 50 base pairs. At larger distances,
there is little correspondence between embedding distance
and either distance along sequence or edit distance.

However, most importantly, we are basically guaranteed
that if the actual distances are small, so is the embedding
distance. Additionally, it is relatively rare for embedding
distances to be small but the actual distances large. Thus, the

Progress towards deep learning genome assembly

- 70000
400
- 60000
o 350
(o)
5
B 300 [50000 5
5 =
c o
8 250 g
s - 40000 o
Z k=
5 200 3
9] Y
© o
2 - 30000 O
150 g
o o]
£ £
3 2
£ 100 - 20000
£
w
50
- 10000
0
0 100 200 300 400

Distance along sequence

le6
400 o)

n -1.2
o 350
%}
C
3 l o
v 300 U
° X
c I o
g 250 g
i) -0.8 &
© 2
2 £
g 200 1o}
§ I -0.6 °
& 150 8
c €
3 2
2 100 - 0.4
X y

50 -,.!""r
- - 0.2
0~
0 100 200 300 400
Actual edit distance 0.0

Figure 3. Heat maps comparing embedded distance with distance along sequence and actual edit distance (low distance regime).
(left) Zoomed-in version of Figure 2. The embedding space distance generally increases with distance along sequence, until the reads are
too far apart along the sequence; note that the reads were only trained with a maximum distance of [= 256, so it is not surprising that

distant reads have closer embedded distances.

(right) Actual Levenshtein edit distances between reads of length [= 256 obviously cannot exceed 256, and in practice for synthetic
reads from the SARS-CoV-2 genome do not exceed 150. Note that edit distance corresponds roughly to twice the embedding distance
in the small-distance regime; this is because an overlap distance of 1 requires two edits, an insertion and a deletion. Although it does
occasionally happen that reads far apart in edit distance are close on the embedding, this is relatively rare. More importantly, if the
distance along sequence or edit distance are small, then the the embedding distance is also small.

embedding is a good proxy for an Overlap read-assembly
graph, as visually confirmed in Figure 1. Furthermore, not
only do we have an Overlap graph, but it appears that the
embedding does part of the work of the Layout step of OLC
assemblers, in that we get a number of long paths of reads
that do not intersect with other paths, which can be easily
turned into contigs.

4. Conclusion

We have demonstrated progress towards building a de novo
deep learning genome assembler, by training a neural em-
bedding to R? that maps a corpus of reads to points that can
be connected into a read-overlap assembly graph. This is
to our knowledge the first deep learning approach to build
the assembly graph itself, as opposed to operating on other
parts of the assembly process, such as graph traversal.

However, our prototype method is still very inefficient, re-
quiring many hours of training time on even a small viral
genome to just get the assembly graph when standard as-
semblers like Velvet (Zerbino & Birney, 2008) or SOAP-
denovo2 (Luo et al., 2012) can complete the full assembly

task in a matter of minutes; much future work remains be-
fore a deep learning approach would be competitive with
standard assemblers. One potential for future optimiza-
tion is relaxing the constraint that the embedding should
be human-visualizable in 3D; that may allow for using a
smaller network with fewer parameters while also helping
avoid spurious path intersections. Additionally, there is
some trade-off that can be made by stopping the training
earlier: a more self-intersecting assembly graph will make
finding contigs harder, but at least empirically this network
basically converged within 3000 epochs, though we kept
training until 16000 to be sure. Indeed, analyzing the re-
sulting assembly graph may also lead to a better stopping
criteria, as that is the only critical piece for downstream
layout and consensus.

Ultimately, this paper is at its core a feasibility study. Al-
though there may be very reasonable doubt (including
among the authors) that deep learning assemblers will ever
become competitive with state-of-the-art heuristics and soft-
ware, we here show that it is at least possible.

Progress towards deep learning genome assembly

References

Backurs, A. and Indyk, P. Edit distance cannot be computed
in strongly subquadratic time (unless seth is false). In
Proceedings of the forty-seventh annual ACM symposium
on Theory of computing, pp. 51-58, 2015.

Berger, B. and Yu, Y. W. Navigating bottlenecks and trade-
offs in genomic data analysis. Nature Reviews Genetics,
pp. 1-16, 2022.

Bonfield, J. K., Smith, K. F., and Staden, R. A new dna
sequence assembly program. Nucleic acids research, 23
(24):4992-4999, 1995.

Dai, X., Yan, X., Zhou, K., Wang, Y., Yang, H., and Cheng,
J. Convolutional embedding for edit distance. In proceed-
ings of the 43rd international ACM SIGIR conference on
Research and Development in information retrieval, pp.
599-608, 2020.

Gupta, G. and Saini, S. Davi: Deep learning-based tool
for alignment and single nucleotide variant identification.
Machine Learning: Science and Technology, 1(2):025013,
2020.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zl’dek,
A., Potapenko, A., et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583-589,
2021.

Jung, Y. and Han, D. Bwa-meme: Bwa-mem emulated
with a machine learning approach. Bioinformatics, 38(9):
2404-2413, 2022.

Kececioglu, J. D. and Myers, E. W. Combinatorial algo-
rithms for dna sequence assembly. Algorithmica, 13(1-2):
7, 1995.

Lall, A. and Tallur, S. Deep reinforcement learning-based
pairwise dna sequence alignment method compatible with
embedded edge devices. Scientific Reports, 13(1):2773,
2023.

Li, Z., Chen, Y., Mu, D., Yuan, J., Shi, Y., Zhang, H., Gan,
J., Li, N, Hu, X., Liu, B., et al. Comparison of the two
major classes of assembly algorithms: overlap—layout—
consensus and de-bruijn-graph. Briefings in functional

genomics, 11(1):25-37, 2012.

Luo, R,, Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He,
G., Chen, Y., Pan, Q., Liu, Y., et al. Soapdenovo2: an em-
pirically improved memory-efficient short-read de novo
assembler. Gigascience, 1(1):2047-217X, 2012.

Myers, E. W. Toward simplifying and accurately formu-
lating fragment assembly. Journal of Computational
Biology, 2(2):275-290, 1995.

Padovani de Souza, K., Setubal, J. C., Ponce de Leon F. de
Carvalho, A. C., Oliveira, G., Chateau, A., and Alves, R.
Machine learning meets genome assembly. Briefings in
Bioinformatics, 20(6):2116-2129, 2019.

Pevzner, P. A., Tang, H., and Waterman, M. S. An eulerian
path approach to dna fragment assembly. Proceedings
of the national academy of sciences, 98(17):9748-9753,
2001.

Poplin, R., Chang, P.-C., Alexander, D., Schwartz, S.,
Colthurst, T., Ku, A., Newburger, D., Dijamco, J.,
Nguyen, N., Afshar, P. T., et al. A universal snp and
small-indel variant caller using deep neural networks.
Nature biotechnology, 36(10):983-987, 2018.

Segerman, B. The most frequently used sequencing tech-
nologies and assembly methods in different time seg-
ments of the bacterial surveillance and refseq genome
databases. Frontiers in cellular and infection microbiol-
0gy, 10:527102, 2020.

Vréek, L., Bresson, X., Laurent, T., Schmitz, M., and
Siki¢, M. Learning to untangle genome assembly
with graph convolutional networks. arXiv preprint
arXiv:2206.00668, 2022.

Wan, Y. K., Hendra, C., Pratanwanich, P. N., and Goke,
J. Beyond sequencing: machine learning algorithms ex-
tract biology hidden in nanopore signal data. Trends in
Genetics, 38(3):246-257, 2022.

Yu, Y. W. On minimizers and convolutional filters: a par-
tial justification for the unreasonable effectiveness of
cnns in categorical sequence analysis. arXiv preprint
arXiv:2111.08452, 2021.

Zerbino, D. R. and Birney, E. Velvet: algorithms for de
novo short read assembly using de bruijn graphs. Genome
research, 18(5):821-829, 2008.

Zhang, X., Yuan, Y., and Indyk, P. Neural embeddings for
nearest neighbor search under edit distance. 2019.

