Dentsply Sirona Tulsa Dental

Chemwatch: 5568-18 Version No: 2.1

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: 06/10/2022 Print Date: 07/10/2022 S.GHS.AUS.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier	
Product name	ProRoot MTA
Chemical Name	Not Applicable
Synonyms	Not Available
Chemical formula	Not Applicable
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Root canal repair material.
--------------------------	-----------------------------

Details of the manufacturer or supplier of the safety data sheet

Registered company name	Dentsply Sirona Tulsa Dental
Address	608 Rolling Hill Dr., Johnson City Tennessee 37604 United States
Telephone	(800) 924-7393
Fax	Not Available
Website	http://www.dentsplysirona.com
Email	chemtrec@chemtrec.com

Emergency telephone number

Association / Organisation	Dentsply Sirona Tulsa Dental
Emergency telephone numbers	1-800-262-8200
Other emergency telephone numbers	Not Available

SECTION 2 Hazards identification

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Chemwatch Hazard Ratings

-	_		
	Min	Max	
Flammability	0		
Toxicity	1		0 = Minimum
Body Contact	3	- :	1 = Low
Reactivity	0		2 = Moderate
Chronic	3		3 = High

Poisons Schedule	Not Applicable
Classification [1]	Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 1, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Specific Target Organ Toxicity - Repeated Exposure Category 2, Hazardous to the Aquatic Environment Acute Hazard Category 2
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Signal word Danger

Chemwatch: 5568-18 Version No: 2.1

Page 2 of 11 **ProRoot MTA** Issue Date: 06/10/2022 Print Date: 07/10/2022

H315	Causes skin irritation.
H317	May cause an allergic skin reaction.
H318	Causes serious eye damage.
H335	May cause respiratory irritation.
H373	May cause damage to organs through prolonged or repeated exposure.
H401	Toxic to aquatic life.

Precautionary statement(s) Prevention

P260	Do not breathe dust/fume.	
P271	Use only outdoors or in a well-ventilated area.	
P280	Wear protective gloves, protective clothing, eye protection and face protection.	
P273	Avoid release to the environment.	
P264	Wash all exposed external body areas thoroughly after handling.	
P272	Contaminated work clothing should not be allowed out of the workplace.	

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.		
P310	Immediately call a POISON CENTER/doctor/physician/first aider.		
P302+P352	IF ON SKIN: Wash with plenty of water.		
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.		
P362+P364	Take off contaminated clothing and wash it before reuse.		
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.		

Precautionary statement(s) Storage

P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name	
65997-15-1	60-90	portland cement	
1304-76-3	10-40	bismuth(III) oxide	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available		

SECTION 4 First aid measures

Description	of first	aid	measures

Ingestion

Description of first aid measur	res
Eye Contact	If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
	If swallowed do NOT induce vomiting. If womiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

▶ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. • Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.

Page 3 of 11

ProRoot MTA

Issue Date: **06/10/2022**Print Date: **07/10/2022**

Seek medical advice.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

For acute or short term repeated exposures to iron and its derivatives:

- Always treat symptoms rather than history
- In general, however, toxic doses exceed 20 mg/kg of ingested material (as elemental iron) with lethal doses exceeding 180 mg/kg.
- Control of iron stores depend on variation in absorption rather than excretion. Absorption occurs through aspiration, ingestion and burned skin.
- Hepatic damage may progress to failure with hypoprothrombinaemia and hypoglycaemia. Hepatorenal syndrome may occur.
- Filtron intoxication may also result in decreased cardiac output and increased cardiac pooling which subsequently produces hypotension.
- Serum iron should be analysed in symptomatic patients. Serum iron levels (2-4 hrs post-ingestion) greater that 100 ug/dL indicate poisoning with levels, in excess of 350 ug/dL, being potentially serious. Emesis or lavage (for obtunded patients with no gag reflex) are the usual means of decontamination.
- Activated charcoal does not effectively bind iron.
- Catharsis (using sodium sulfate or magnesium sulfate) may only be used if the patient already has diarrhoea.
- ▶ Deferoxamine is a specific chelator of ferric (3+) iron and is currently the antidote of choice. It should be administered parenterally. [Ellenhorn and Barceloux: Medical Toxicology]

For acute or short term repeated exposures to dichromates and chromates:

- Absorption occurs from the alimentary tract and lungs.
- F The kidney excretes about 60% of absorbed chromate within 8 hours of ingestion. Urinary excretion may take up to 14 days.
- Establish airway, breathing and circulation. Assist ventilation.
- Induce emesis with Ipecac Syrup if patient is not convulsing, in coma or obtunded and if the gag reflex is present.
- ▶ Otherwise use gastric lavage with endotracheal intubation.
- Fluid balance is critical. Peritoneal dialysis, haemodialysis or exchange transfusion may be effective although available data is limited.
- British Anti-Lewisite, ascorbic acid, folic acid and EDTA are probably not effective.
- There are no antidotes.
- Primary irritation, including chrome ulceration, may be treated with ointments comprising calcium-sodium-EDTA. This, together with the use of frequently renewed dressings, will ensure rapid healing of any ulcer which may develop.

The mechanism of action involves the reduction of Cr (VI) to Cr(III) and subsequent chelation; the irritant effect of Cr(III)/ protein complexes is thus avoided. [ILO Encyclopedia]

[Ellenhorn and Barceloux: Medical Toxicology]

Severe bismuth intoxication may be treated with dimercaptol (BAL in oil). Induction of acidosis by administration of ammonium chloride has been claimed to promote mobilisation of bismuth from tissue depots and increase the rate of urinary excretion.

[Martindale:The Extra Pharmacopoeia]

In mouse models D-penicillamine (Cuprimine M.S. & D) is a useful chelating agent. [Ellenhorn & Barceloux: Medical Toxicology]

- Manifestation of aluminium toxicity include hypercalcaemia, anaemia, Vitamin D refractory osteodystrophy and a progressive encephalopathy (mixed dysarthria-apraxia of speech, asterixis, tremulousness, myoclonus, dementia, focal seizures). Bone pain, pathological fractures and proximal myopathy can occur.
- ▶ Symptoms usually develop insidiously over months to years (in chronic renal failure patients) unless dietary aluminium loads are excessive.
- Serum aluminium levels above 60 ug/ml indicate increased absorption. Potential toxicity occurs above 100 ug/ml and clinical symptoms are present when levels exceed 200 ug/ml.
- Deferoxamine has been used to treat dialysis encephalopathy and osteomalacia. CaNa2EDTA is less effective in chelating aluminium.

[Ellenhorn and Barceloux: Medical Toxicology]

For acute or short-term repeated exposures to highly alkaline materials:

- ▶ Respiratory stress is uncommon but present occasionally because of soft tissue edema.
- Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary.
- Oxygen is given as indicated.
- The presence of shock suggests perforation and mandates an intravenous line and fluid administration.
- ▶ Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue.

Alkalis continue to cause damage after exposure.

INGESTION:

- ▶ Milk and water are the preferred diluents
- No more than 2 glasses of water should be given to an adult.
 - ▶ Neutralising agents should never be given since exothermic heat reaction may compound injury.
- * Catharsis and emesis are absolutely contra-indicated.
- * Activated charcoal does not absorb alkali
- * Gastric lavage should not be used.

Supportive care involves the following:

- Withhold oral feedings initially.
- ▶ If endoscopy confirms transmucosal injury start steroids only within the first 48 hours.
- Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention
- Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia).

SKIN AND EYE

Injury should be irrigated for 20-30 minutes.

Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology]

SECTION 5 Firefighting measures

Extinguishing media

- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility

None known

Advice for firefighters

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water courses.
- Fire Fighting

 Use fire fighting procedures suitable for surrounding area.
 - DO NOT approach containers suspected to be hot.
 - Cool fire exposed containers with water spray from a protected location.
 - If safe to do so, remove containers from path of fire.

Chemwatch: 5568-18 Page 4 of 11 Issue Date: 06/10/2022 Print Date: 07/10/2022 Version No: 2.1

 Equipment should be thoroughly decontaminated after use. Under certain conditions the material may become combustible because of the ease of ignition which occurs after the material reaches a high specific area ratio (thin sections, fine particles, or molten states). However, the same material in massive solid form is comparatively difficult to ignite. Nearly all metals will burn in air under certain conditions. Some are oxidised rapidly in the presence of air or moisture, generating sufficient heat to reach their ignition temperatures. Others oxidise so slowly that heat generated during oxidation is dissipated before the metal becomes hot enough to ignite. Particle size, shape, quantity, and alloy are important factors to be considered when evaluating metal combustibility. Combustibility of metallic alloys may differ and vary widely from the combustibility characteristics of the alloys' constituent elements. Fire/Explosion Hazard Decomposition may produce toxic fumes of: silicon dioxide (SiO2) metal oxides When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain

hazardous substances from the fire absorbed on the alumina particles.

May emit poisonous fumes.

May emit corrosive fumes.

HAZCHEM

Not Applicable

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Michigas and material for conta	annient and oleaning up
Minor Spills	Environmental hazard - contain spillage. Remove all ignition sources. Clean up all spills immediately. Avoid contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Use dry clean up procedures and avoid generating dust. Place in a suitable, labelled container for waste disposal.
Major Spills	Environmental hazard - contain spillage. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by all means available, spillage from entering drains or water courses. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Contain or absorb spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage Precautions for safe handling Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. Safe handling When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Store in original containers. Keep containers securely sealed. Store in a cool, dry area protected from environmental extremes. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Other information Observe manufacturer's storage and handling recommendations contained within this SDS. For major quantities: Consider storage in bunded areas - ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams). Figure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities.

Chemwatch: **5568-18**Version No: **2.1**

ProRoot MTA

Issue Date: **06/10/2022**Print Date: **07/10/2022**

Conditions for safe storage, including any incompatibilities

Suitable container	 Polyethylene or polypropylene container. Check all containers are clearly labelled and free from leaks.
Storage incompatibility	 Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. Avoid contact with copper, aluminium and their alloys.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	portland cement	Portland cement	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.

Emergency Limits

Ingredient	TEEL-1	TEEL-2		TEEL-3
bismuth(III) oxide	15 mg/m3	170 mg/m3		990 mg/m3
In one diam	Onlinia al IDI II		Davids and IDLU	

Ingredient	Original IDLH	Revised IDLH
portland cement	5,000 mg/m3	Not Available
bismuth(III) oxide	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit		
bismuth(III) oxide	≤ 0.01 mg/m³			
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.			

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Chemwatch: 5568-18 Page 6 of 11

ProRoot MTA

Issue Date: 06/10/2022 Print Date: 07/10/2022

Personal protection

Eye and face protection

Version No: 2.1

- ▶ Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are
- material may be under pressure. Chemical goggles.whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted.
- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.
- Alternatively a gas mask may replace splash goggles and face shields.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the

Skin protection

See Hand protection below

► Elbow length PVC gloves

NOTE:

- F The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact.
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

Hands/feet protection

- · Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended

Neoprene rubber gloves

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene.
- nitrile rubber.
- butyl rubber.
- ► fluorocaoutchouc
- ► polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

Body protection

See Other protection below

Other protection

- Overalls.
- P.V.C apron. Barrier cream.
- Skin cleansing cream.
- ▶ Eye wash unit.

Respiratory protection

Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor Half-Face Respira	tor Full-Face Respirator	Powered Air Respirator
--	--------------------------	------------------------

 Chemwatch: 5568-18
 Page 7 of 11
 Issue Date: 06/10/2022

 Version No: 2.1
 ProRoot MTA
 Print Date: 07/10/2022

up to 10 x ES	P1 Air-line*	-	PAPR-P1
up to 50 x ES	Air-line**	P2	PAPR-P2
up to 100 x ES	-	P3	-
		Air-line*	-
100+ x ES	-	Air-line**	PAPR-P3

^{* -} Negative pressure demand ** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- · Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- · Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- · Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)
- · Use approved positive flow mask if significant quantities of dust becomes airborne.
- · Try to avoid creating dust conditions.

Class P2 particulate filters are used for protection against mechanically and thermally generated particulates or both.

P2 is a respiratory filter rating under various international standards, Filters at least 94% of airborne particles Suitable for:

- · Relatively small particles generated by mechanical processes eg. grinding, cutting, sanding, drilling, sawing.
- · Sub-micron thermally generated particles e.g. welding fumes, fertilizer and bushfire smoke.
- · Biologically active airborne particles under specified infection control applications e.g. viruses, bacteria, COVID-19, SARS

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	White solid with no odour; soluble in water.		
Physical state	Divided Solid	Relative density (Water = 1)	4-4.5
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable
pH (as supplied)	Not Applicable	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Applicable
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Applicable	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (Not Available%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled

The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

Chemwatch: **5568-18**Version No: **2.1**

ProRoot MTA

Issue Date: **06/10/2022**Print Date: **07/10/2022**

Inhalation may result in ulcers or sores of the lining of the nose (nasal mucosa), and lung damage. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures Effects on lungs are significantly enhanced in the presence of respirable particles. Chromate salts are corrosive and produce cellular damage to tissue. Ingestion may produce inflammation of the digestive tract, nausea, vomiting and abdominal pain. Owing to limited gastro-intestinal absorption, administration of insoluble bismuth compounds by mouth does not usually give rise to acute toxic effects. They are excreted in the faeces. Stomatitis (ulceration of mouth parts) may result following ingestion Ingestion Absorbed bismuth salts permeate the body fluids and tissues and are excreted mainly in the urine but some bismuth is retained in tissues. It is deposited in the metaphyses of young bones and can pass the placenta into the foetus. Effects of acute bismuth intoxication are gastro-intestinal disturbance, anorexia, headache, malaise, skin reactions, discolouration of mucous membranes and mild jaundice. Albuminuria (albumin in the urine) is an indication of kidney damage. Bismuth may cause a reverse encephalopathy (brain disease) that takes 2 to 10 weeks to reverse spontaneously. This material can cause inflammation of the skin on contact in some persons. Four students received severe hand burns whilst making moulds of their hands with dental plaster substituted for Plaster of Paris. The dental plaster known as "Stone" was a special form of calcium sulfate hemihydrate containing alpha-hemihydrate crystals that provide high compression strength to the moulds. Beta-hemihydrate (normal Plaster of Paris) does not cause skin burns in similar circumstances. Skin contact may result in severe irritation particularly to broken skin. Ulceration known as "chrome ulcers" may develop. Chrome ulcers and skin cancer are significantly related. Skin Contact Handling wet cement can cause dermatitis. Cement when wet is quite alkaline and this alkali action on the skin contributes strongly to cement contact dermatitis since it may cause drying and defatting of the skin which is followed by hardening, cracking, lesions developing, possible infections of lesions and penetration by soluble salts. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. If applied to the eyes, this material causes severe eye damage. Eve Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can Animal testing shows long term exposure to aluminium oxides may cause lung disease and cancer, depending on the size of the particle. The smaller the size, the greater the tendencies of causing harm. Red blood cells and rabbit alveolar macrophages exposed to calcium silicate insulation materials in vitro showed haemolysis in one study but not in another. Both studies showed the substance to be more cytotoxic than titanium dioxide but less toxic than asbestos. In a small cohort mortality study of workers in a wollastonite quarry, the observed number of deaths from all cancers combined and lung cancer were lower than expected. Wollastonite is a calcium inosilicate mineral (CaSiO3). In some cases, small amounts of iron (Fe), and manganese (Mn), and lesser amounts of magnesium (Mg) substitute for calcium (Ca) in the mineral formulae (e.g., rhodonite) In an inhalation study in rats no increase in tumour incidence was observed but the number of fibres with lengths exceeding 5 um and a diameter of less than 3 um was relatively low. Four grades of wollastonite of different fibre size were tested for carcinogenicity in one experiment in rats by intrapleural implantation. There was no information on the purity of the four samples used. A slight increase in the incidence of pleural sarcomas was observed with three grades, all of which contained fibres greater than 4 um in length and less than 0.5 um in diameter In two studies by intraperitoneal injection in rats using wollastonite with median fibre lengths of 8.1 um and 5.6 um respectively, no intraabdominal tumours were found. Evidence from wollastonite miners suggests that occupational exposure can cause impaired respiratory function and pneumoconiosis. However animal studies have demonstrated that wollastonite fibres have low biopersistence and induce a transient inflammatory response compared to various forms of asbestos. A two-year inhalation study in rats at one dose showed no significant inflammation or fibrosis Cement contact dermatitis (CCD) may occur when contact shows an allergic response, which may progress to sensitisation. Sensitisation is due Chronic to soluble chromates (chromate compounds) present in trace amounts in some cements and cement products. Soluble chromates readily penetrate intact skin. Cement dermatitis can be characterised by fissures, eczematous rash, dystrophic nails, and dry skin; acute contact with highly alkaline mixtures may cause localised necrosis. Cement eczema may be due to chromium in feed stocks or contamination from materials of construction used in processing the cement. Sensitisation to chromium may be the leading cause of nickel and cobalt sensitivity and the high alkalinity of cement is an important factor in cement dermatoses [ILO]. Repeated, prolonged severe inhalation exposure may cause pulmonary oedema and rarely, pulmonary fibrosis. Workers may also suffer from dust-induced bronchitis with chronic bronchitis reported in 17% of a group occupationally exposed to high dust levels. Respiratory symptoms and ventilatory function were studied in a group of 591 male Portland cement workers employed in four Taiwanese cement plants, with at least 5 years of exposure (1). This group had a significantly lowered mean forced vital capacity (FCV), forced expiratory volume at 1 s (FEV1) and forced expiratory flows after exhalation of 50% and 75% of the vital capacity (FEF50, FEF75). The data suggests that occupational exposure to Portland cement dust may lead to a higher incidence of chronic respiratory symptoms and a reduction of ventilatory capacity Chun-Yuh et al; Journal of Toxicology and Environmental Health 49: 581-588, 1996 Chronic excessive intake of iron have been associated with damage to the liver and pancreas. People with a genetic disposition to poor control over iron are at an increased risk. Chromium (III) is an essential trace mineral. Chronic exposure to chromium (III) irritates the airways, malnourishes the liver and kidneys, causes fluid in the lungs, and adverse effects on white blood cells, and also increases the risk of developing lung cancer. Chronic bismuth poisoning causes decreased appetite, weakness, rheumatic pain, diarrhoea, fever, foul breath, gum and skin inflammation. Even after exposure ceases there may be a blue line ("bismuth line") on the gums years later. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.

ProRoot MTA	TOXICITY	IRRITATION	
	Not Available	Not Available	
n anthon d a surrant	TOXICITY	IRRITATION	
portland cement	Not Available	Not Available	
	TOXICITY	IRRITATION	
bismuth(III) oxide	Inhalation(Rat) LC50; >5.07 mg/l4h ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
	Oral (Rat) LD50; 5000 mg/kg $^{[2]}$	Skin: no adverse effect observed (not irritating) $^{[1]}$	
Logondi	1 Value obtained from Europe ECHA Degistered Substances, Agute toxicity 2 Value obtained from manufacturaria SDS, Unless otherwise		

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise

Issue Date: 06/10/2022 Print Date: 07/10/2022

specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

PORTLAND CEMENT

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. No significant acute toxicological data identified in literature search

PORTLAND CEMENT & BISMUTH(III) OXIDE

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	✓
Mutagenicity	×	Aspiration Hazard	×

Leaend:

X - Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)	Species	Value	Source
ProRoot MTA	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
portland cement	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	72h	Algae or other aquatic plants	>1.26mg/l	2
	ErC50	72h	Algae or other aquatic plants	>1.26mg/l	2
bismuth(III) oxide	EC50	48h	Crustacea	>1.26mg/l	2
	NOEC(ECx)	72h	Algae or other aquatic plants	1mg/l	2
	LC50	96h	Fish	>137mg/l	2

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients	No Data available for all ingredients

Bioaccumulative potential

Ingredient	Bioaccumulation
	No Data available for all ingredients

Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 Disposal considerations

Waste treatment methods

Issue Date: **06/10/2022**Print Date: **07/10/2022**

- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- ▶ Consult State Land Waste Management Authority for disposal.
- Bury residue in an authorised landfill.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
portland cement	Not Available
bismuth(III) oxide	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
portland cement	Not Available
bismuth(III) oxide	Not Available

SECTION 15 Regulatory information

 ${\bf Safety, health\ and\ environmental\ regulations\ /\ legislation\ specific\ for\ the\ substance\ or\ mixture}$

portland cement is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

Australian Inventory of Industrial Chemicals (AIIC)

bismuth(III) oxide is found on the following regulatory lists

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (portland cement; bismuth(III) oxide)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (portland cement)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	No (portland cement)
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (bismuth(III) oxide)
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	06/10/2022
Initial Date	06/10/2022

Issue Date: 06/10/2022 Print Date: 07/10/2022

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.