

Gass Apartment

Project Number: 20-172

4471 Tolt Ave Carnation, WA 98014

Reviewed For Code Compliance

David Spencer, CBO 09/28/2023

Structural Calculations

Calculations.....S1 – S84

Reviewed by: Nabil Kausal-Hayes, PE 206-601-9728 www.nkhengineering.com

> Prepared By: Allen Rishel, EIT

September 27th, 2023

PROJECT: Gass Apartments DESIGNER: NKH & AKR DATE: January 25th, 2021 JOB #: 20-172

PROJECT SUMMARY & DESIGN CRITERIA

Background

Project Summary:

This is a new two story, wood framed apartment for the Gass Family in Carnation, WA. The structure consists of wood roof & floor trusses/joists bearing on wood framed walls, posts, & beams. The building is supported by new concrete stem walls & shallow spread footings. This project is designed in accordance with the 2015 International Building Code along with the codes listed below and corresponding state & city/county amendments.

Notes:

All input variables are highlighted in yellow, resources bolded, and links to resources bolded and underlined. Areas highlighted in blue are code/design checks and green - unity checks.

Resources:

- American Wood Council (AWC). (2015). "National Design Specifications for Wood Construction (NDS)."
- American Wood Council (AWC). (2015). "Special Design Provisions for Wind and Seismic (SDWS)."
- American Concrete Institute (ACI). (2014). "Building Code Requirements for Structural Concrete (ACI 318-14)."
- American Institute of Steel Construction (AISC). (2011). "Steel Construction Manual." 14th Ed.
- American Society of Civil Engineers (ASCE). (2010). "Minimum Design Loads for Buildings and Other Structures."
- State of Washington (2015). "International Building Code (IBC)."
- Applied Technology Council (ATC). (2018). "Hazards by Location" https://hazards.atcouncil.org

Material Properties

Soil:	1500 0
-Soil Bearing Pressure (min per IBC1806.2)	p _{brg} := 1500psf
-Frost Depth	FD := 12in
- Active & Passive Soil Pressure	$q_a := 35 \cdot pcf$ $q_p := 250 \cdot pcf$
Concrete:	$f \sim 2500 \text{nsi}$
-Compressive Strength	
-Density, Normal Weight	$\gamma_{\rm conc} := 150 \rm pcf$
-Density, Light Weight	$f_c := 2500psi$ $\gamma_{conc} := 150pcf$ $\gamma_{conc}LW := 115pcf$
-Reinforcing Steel, ASTM A615	$f_{vr} := 60ksi$
Steel:	lyr ooksi
- Modulus of Elasticity	$E_{c} := 29000 \text{ksi}$
-Anchor Rods/Bolts, ASTM A307 Shear & Tension Yield Strength	$F_{nv} \coloneqq 24ksi$ $F_{nt} \coloneqq 45ksi$
Wood:	

-Solid Sawn Joists, Beams, Headers, & Studs -Glulam Beams

DF-L #1 6x & Larger, DF-L #2 All Other (UNO) 24F-V4 (Simple Span), 24F-V8 (Cont/Cantilever)

<u>Gravity Loading</u>

<u>Oluvicy Bouung</u>			
Roof Dead Load			
Roofing	$\mathbf{R} := 1.5 \cdot \mathbf{psf}$		
Insulation	$\mathbf{I} := 2.0 \cdot \mathbf{psf}$		
Ceiling	$C := 2 \cdot psf$		
Sheathing t := 0.5in	$SH := \left(\frac{t}{.125in}\right) \cdot 0.4 \cdot psf = 1.6 \cdot$	psf	
Structural Members	$S := 2.5 \cdot psf$		
Lights	$L := 1 \cdot psf$		
Mechanical	$\mathbf{M} := 1.5 \cdot \mathbf{psf}$		
Misc.	MISC := 2.9 psf		
$DL_{rf} := R + I + C + SH + S + L + N$ Seismic Roof Dead Load	M + MISC	$DL_{rf} = 15 \cdot psf$	$DL_{pv} := 0psf$
$SDL_{rf} := DL_{rf} - MISC = 12.1 \text{ psf}$		$SDL_{rf} = 12 psf$	
Floor Dead Load			
Flooring	$\mathbf{F} := 1.5 \cdot \mathbf{psf}$		
Insulation	$\mathbf{I} := 2.0 \cdot \mathbf{psf}$		
Ceiling	$C := 0 \cdot psf$		
Sheathing t := 0.75in	$SH := \left(\frac{t}{.125in}\right) \cdot 0.4 \cdot psf = 2.4 \cdot c$	psf	
Structural Members	$S := 3.4 \cdot psf$		
Lights	$L := 1 \cdot psf$		
Mechanical	$\mathbf{M} := 1.5 \cdot \mathbf{psf}$		
Misc.	MISC := 3.2 psf		
$DL_{flr} := R + I + C + SH + S + L + N$ Seismic Roof Dead Load	M + MISC	$DL_{flr} = 15 \cdot psf$	
$SDL_{flr} := DL_{flr} = 15 \text{ psf}$		$SDL_{flr} = 15 \cdot psf$	
		SDD flr = 10 por	
Wall Dead Loads	$p_{ext_w} := 10psf$		
Exterior Wood			
Interior Wood Live Loads	p _{int} := 9psf		
Roof		Roof Snow Load	SI - 25 f
Floor Live Load (Office)	$LL_{rf} := 20 \cdot psf$	Root Show Load	SL := 25psf
Deck Live Load	$LL_{flr} := 50 \text{ psf}$		
	$LL_{deck} := 1.5 \cdot LL_{flr} = 60 \text{ psf}$		
Deflection Criteria	L	L	
$\Delta_{\mathrm{rf}_\mathrm{TL}} \coloneqq \frac{\mathrm{L}}{240} \Delta_{\mathrm{rf}_\mathrm{LL}} \coloneqq \frac{\mathrm{L}}{360} \Delta$	$\Delta_{\text{flr}_\text{TL}} \coloneqq \frac{\Sigma}{360} \qquad \Delta_{\text{flr}_\text{LL}} \coloneqq \frac{1}{4}$	<u></u>	

PROJECT: Gass Apartment DESIGNER: NKH & AKR DATE: January 25th, 2021 JOB #: 20-172

Lateral Analysis

▶ References			
✓ Lateral Summary			
<u>General</u>			LRFD
Risk Cat.: IV (ref. 1.5-1)			
L := 54 ft	Building Length	$SDL_{rf} = 12 \cdot psf$	Seismic Roof Dead Load
$\mathbf{B} := 25 \mathrm{ft}$	Building Width	$SDL_{flr} = 15 \cdot psf$	Seismic Floor Dead Load
$h_{rf} := 24ft$	Avg Roof Height	$p_{ext_w} = 10 \cdot psf$	Exterior Stud Wal Load
$h_p := 0ft$	Parapet Height	$p_{int} = 9 \cdot psf$	Interior Stud Wal Load
h _{wall} := 10ft	Wa l Height	$a := \min(10\% \cdot B, 0.4h_{rf})$	= 2.5 ft Width of Pressure Coefficient Zone

MWFRS (per ASCE 7-10, Chapter 26 & 27)

$$\theta := \operatorname{atan}\left(\frac{\operatorname{0in}}{12\operatorname{in}}\right) = 0 \cdot \operatorname{deg}$$
Roof Slope

Design Velocity Pressure - Enclosed/Partially Enlosed Buildings

$V_{W} := 110$ mph	Basic Wind Speed (ref. figure 26.5-1A)	
$K_{d} := 0.85$	Directionality Factor (ref. section 26.6)	
exp := "B"	Exposure Category (ref. section 26.7)	
$K_{zt} := 1.0$	Topographic Factor (ref. section 26.8)	
$K_{Z} = 0.66$	Velocity Pressure Exposure Coefficient (ref. table 27.3-1)	
$q_z := 0.00256 \cdot K_z \cdot K_z \cdot K_d \cdot V_w^2 \cdot (ps)$	$_{ m sf)}$ Velocity pressure (eq 27.3-1)	$q_z = 17.4 \cdot psf$

Design Wind Pressure

$p_{w_{min}} \approx 16 psf$	Minimum Design Pressure
G _e := 0.85	Gust Effect Factor (ref. section 26.9)

Walls
$$GC_{pi} := \begin{pmatrix} -0.85\\ 0.85 \end{pmatrix}$$

Veolcity Pressure Evaluated at Mean Roof Height, h

$$q_h := q_z = 17.38 \cdot psf$$

External Pressure Coefficients for Walls (ref. figure 27.4-1)

$$\frac{L}{B} = 2.16$$
 $C_{pww} := 0.8$ Windward Wall $C_{plw} = -0.3$ Leeward Wall

Design MWFRS Wind Pressures (eq 27.4-1)

$$\mathbf{p}_{\mathbf{w}} := \max \left[\mathbf{p}_{\mathbf{w}_\min}, \max \left[\mathbf{q}_{\mathbf{h}} \cdot \left[\mathbf{G}_{\mathbf{e}} \cdot \left(\mathbf{C}_{\mathbf{p}\mathbf{w}\mathbf{w}} + \mathbf{C}_{\mathbf{p}\mathbf{l}\mathbf{w}} \right) - \mathbf{G}\mathbf{C}_{\mathbf{p}\mathbf{i}} \right] \right] = 22.2 \cdot \mathbf{psf}$$

Parapet (ref. section 27.4.5)

GC _{pnw} := 1.5 Wind	ward Combined Net Pressure Coefficient	
GC _{pnL} := -1.0 Leew	ard Combined Net Pressure Coefficient	
$p_p := if[h_p \le 0,0psf,q_Z \cdot (GC_{pnW} - GC_p)]$	onL) Combined Net Pressure on Parapet	$p_p = 0 \cdot psf$

Design Wind Pressure (cont'd)

Roof (fig. 27.4-1)

$$\frac{h_{rf}}{L} = 0.44$$

$$GC_{pi} = \begin{pmatrix} -0.85\\ 0.85 \end{pmatrix}$$

Internal pressure coefficient (ref. table 26.11-1)

External pressure coefficients for roofs (ref. figure 27.4-1)

$$\frac{h_{rf}}{L} = 0.44$$

$$C_{prf} := \begin{pmatrix} -0.9 \\ -0.18 \end{pmatrix}$$

Windward & leeward coefficients

Veolcity pressure evaluated at mean roof height, h

$$q_h := q_z = 17.4 \cdot psf$$

Design MWFRS wind pressure (ref. eq 27.4-1)

$$p_{rf1} \coloneqq q_h \cdot \left(G_e \cdot \min(C_{prf}) - GC_{pi}\right) = \begin{pmatrix} 1.5 \\ -28.1 \end{pmatrix} \cdot psf$$
$$p_{rf} \coloneqq \max\left(\left|\min(p_{rf1})\right|, \left|\max(p_{rf2})\right|\right) = 28.06 \cdot psf$$

$$p_{W_up} := 0.6DL_{rf} + 0.6 \cdot (min(p_{rf1}, p_{rf2}))$$

$$p_{rf2} \coloneqq q_h \cdot \left(G_e \cdot \max(C_{prf}) - GC_{pi} \right) = \begin{pmatrix} 12.1 \\ -17.4 \end{pmatrix} \cdot psf$$
$$p_{rf_horiz} \coloneqq p_{rf} \cdot \sin(\theta) = 0 \cdot psf$$

Net uplift pressure (ASD)

 $p_{w up} = -7.8 \cdot psf$

Roof Overhangs

 $C_{poh} := -0.8$

External pressure coefficients for roof overhangs (ref. 27.4.4)

$$p_{oh} \coloneqq q_{z} \cdot (G_{e} \cdot C_{poh}) + \min(p_{rf1}, p_{rf2})$$
 Overhang pressure
$$p_{oh} = -39.9 \cdot psf$$

$$OH_{net} \coloneqq 0.6DL_{rf} + 0.6 \cdot p_{oh}$$
 Net uplift pressure (ASD)
$$OH_{net} = -15 \cdot psf$$

C&C (per ASCE 7-10, Chapter 30)

Walls (ref. eq. 30.4-1 & figure 30.4-1) $GC_{pw4} := \begin{pmatrix} 1.0 \\ -1.1 \end{pmatrix}$ exterior pressure coefficients $GC_{pw5} := \begin{pmatrix} 1.0 \\ -1.4 \end{pmatrix}$ exterior pressure coefficients (corner zone) $p_{cc_w4pos} \coloneqq q_h \cdot (max(GC_{pw4}) - GC_{pi}) = {32.1 \choose 2.6} \cdot psf$ Positive design wind pressure (ref. eq. 30.4-1) $p_{cc_w4neg} \coloneqq q_h \cdot (min(GC_{pw4}) - GC_{pi}) = \begin{pmatrix} -4.3 \\ -33.9 \end{pmatrix} \cdot psf$ Negative design wind pressure $p_{cc_w5pos} \coloneqq q_h \cdot (max(GC_{pw5}) - GC_{pi}) = \begin{pmatrix} 32.1 \\ 2.6 \end{pmatrix} \cdot psf$ Corner zone positive design wind pressure $p_{cc_w5pos} \coloneqq q_h \cdot (min(GC_{pw5}) - GC_{pi}) = \begin{pmatrix} -9.6 \\ -39.1 \end{pmatrix} \cdot psf$ Corner zone negative design wind pressure

Roofs (ref. eq. 30.4-1 & figure 30.4-2B)

Negative design wind pressure
$$GC_{pr1} := -0.9$$
 $GC_{pr2} := -1.7$ $GC_{pr3} := -2.6$
 $p_{cc_r1} := q_h \cdot (GC_{pr1} - GC_{pi}) = \begin{pmatrix} -0.9 \\ -30.4 \end{pmatrix} \cdot psf$
 $p_{cc_r2} := q_h \cdot (GC_{pr3} - GC_{pi}) = \begin{pmatrix} -30.4 \\ -60 \end{pmatrix} \cdot psf$
 $p_{cc_r2} := q_h \cdot (GC_{pr3} - GC_{pi}) = \begin{pmatrix} -30.4 \\ -60 \end{pmatrix} \cdot psf$

 $GC_{pr pos} := 0.5$

Positive design wind pressure

$$p_{cc_rpos} := q_h \cdot (GC_{pr_pos} - GC_{pi}) = \begin{pmatrix} 23.5 \\ -6.1 \end{pmatrix} \cdot psf$$

Wind Base Shear

$$A_{wall_L} := 1172 ft^2$$
 $A_{roof_L} := 0 ft^2$ $A_{wall_T} := 646 ft^2$ $A_{roof_T} := 0 ft^2$ $V_{wu_L} := p_w \cdot A_{wall_L} + A_{roof_L} p_{rf_horiz}$ $V_{wu_L} = 26 \cdot kip$ Longitudinal diaphragm
shear $V_{wu_T} := p_w \cdot A_{wall_T} + A_{roof_T} p_{rf_horiz}$ $V_{wu_T} = 14.3 \cdot kip$ Transverse diaphragm
shear

Seismic Main Floor - Roof (per ASCE 7-10, 12.8)

LRFD

Basic Parameters

- Equivalent Lateral Force Procedure (ELFP)
- Site class: D
- Seismic design category: D
- Light Framed Wood Walls Sheathed w/ Wood Panels

$$\label{eq:spectral acceleration parameter (ref. table 1.5-2) \\ S_{DS} := 0.804 \\ R := 6.5 \\ Response modification factor - (ref. table 12.2-1) \\ \Omega_{o} := 2.5 \\ System overstrength factor (ref. table 12.2-1) \\ C_{d} := 3.25 \\ Deflection amp. factor (ref. table 12.2-1) \\ p := 1.0 \\ Redundancy factor (ref section 12.3.4) \\ C_{s} := \frac{S_{DS}}{\left(\frac{R}{l_{s}}\right)} = 0.12 \\ Seismic response coefficient \\ S_{D1} := 0.46 \\ S_{1} := 0.443 \\ S_{D1} := 0.46 \\ S_{1} := 0.443 \\ S_{1} := 0.443 \\ C_{t} := 0.02 \\ x := 0.75 \\ Table 12.8-2 \\ T_{a} := C_{t} \left(\frac{h_{n}}{f_{t}}\right)^{x} = 0.22 \\ EQ 12.8-7 \\ C_{smax} := \frac{S_{D1}}{T_{a} \left(\frac{R}{l_{s}}\right)} \\ C_{s} := max(min(C_{s}, C_{smax}), 0.01) \\ C_{s} = 0.12 \\ C_{s} := max(min(C_{s}, C_{smax}), 0.01) \\ C_{s} = 0.12 \\ C_{s_wood} := \rho \cdot C_{s} \\ C_{s_wood} := \rho \cdot C_{s} \\ C_{s_wood} := \rho \cdot C_{s} \\ C_{s_wood} = 0.124 \\ \end{array}$$

Building Weights Contributing to Seismic Forces		
Diaphragms		
$W_{diaphragm} := 1266 ft^2 \cdot SDL_{rf} + (1331 ft^2) \cdot SDL_{flr}$		W _{diaphragm} = 35·kip
Wals		
$W_{walls_T} := (p_{ext_w} + p_{int})A_{wall_T} \cdot 2$		$W_{walls_T} = 25 \cdot kip$
$W_{walls_L} := (p_{ext_w} + p_{int})A_{wall_L} \cdot 2$		$W_{walls_L} = 45 \cdot kip$
Shear Loads		
$V_{su_T} := C_{s_wood} \cdot (W_{diaphragm} + W_{walls_T})$		$V_{su_T} = 7.4 \cdot kip$
$V_{su_L} := C_{s_wood} \cdot (W_{diaphragm} + W_{walls_L})$		$V_{su_L} = 9.87 \cdot kip$
<u>Lateral Summary (ASD)</u>		
Seismic/Wind Shearwall Capacity Factor (ref. NDS Shearwall Capacities)	$C_{sw_cap} \coloneqq \frac{310psf}{435psf} = 0.71$	
Wind	Seismic	
Transverse $V = 0.6V = 0.6V$	$12 \cdot \text{kip}$ V ₂ $\tau := 0.7 \text{V}_{22}$ $\tau =$	5.18·kip

$$V_{w_T} := 0.6V_{wu_T} \cdot C_{sw_cap} = 6.12 \cdot kip$$
 $V_{s_T} := 0.7V_{su_T} = 5.18 \cdot kip$

 $V_{T} := if \left(V_{w_{T}} > V_{s_{T}}, "WIND \ CONTROLS", "SEISMIC \ CONTROLS" \right) = "WIND \ CONTROLS"$

Longitudinal $V_{w_L} := 0.6V_{wu_L} \cdot C_{sw_cap} = 11.1 \cdot kip$ $V_{s_L} := 0.7V_{su_L} = 6.91 \cdot kip$ $V_L := if(V_{w_L} > V_{s_L}, "WIND CONTROLS", "SEISMIC CONTROLS") = "WIND CONTROLS"$

Lateral Forces - Roof

$h_{wall} = 10 ft$	Average Wall Height
h _{rf_proj} := 0ft	Roof Projection Above Wall
$p_W = 22.2 \cdot psf$	Design Wall Wind Pressure (ref. Wind Loading)
$p_{rf_horiz} = 0 \cdot psf$	Design Roof Wind Pressure (ref. Wind Loading)

Longitudinal Wall Line Reactions (Ref. Shear Wall Diagram)

Reaction 1trib1 :=
$$\frac{23.25 \text{ft}}{2}$$
 = 11.63 ft $R_{Lrf_1} := \left[p_w \cdot \left(\frac{h_{wall}}{2} \right) + p_{rf_horiz} \cdot h_{rf_proj} \right] \cdot \text{trib1}$ $R_{Lrf_1} = 1.29 \cdot \text{kip}$ Reaction 2trib2 := $\frac{27.75 \text{ft}}{2}$ = 13.87 ft $R_{Lrf_2} := \left[p_w \cdot \left(\frac{h_{wall}}{2} \right) + p_{rf_horiz} \cdot h_{rf_proj} \right] \cdot (\text{trib1} + \text{trib2})$ $R_{Lrf_2} = 2.82 \cdot \text{kip}$ Reaction 3trib3 := trib2 = 13.87 ft

$$R_{Lrf_3} := \left[p_{W} \cdot \left(\frac{h_{wall}}{2} \right) + p_{rf_{horiz}} \cdot h_{rf_{proj}} \right] \cdot (trib3)$$

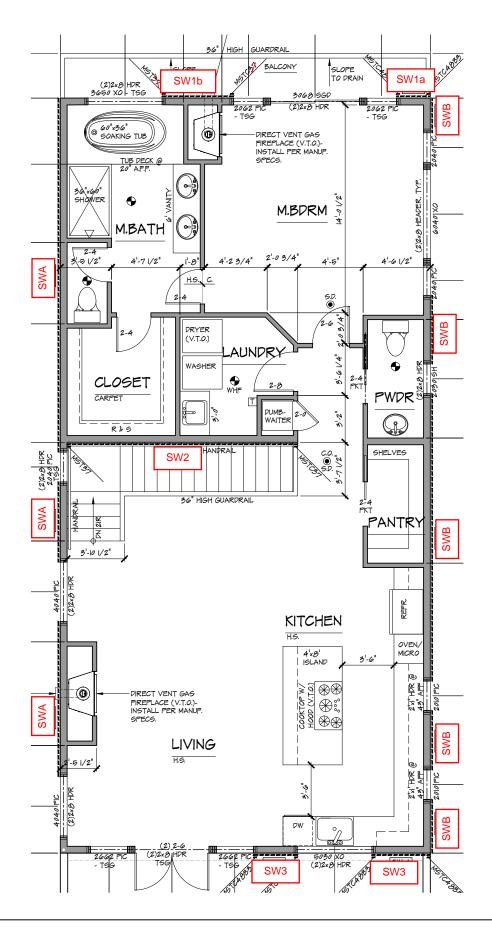
$$R_{Lrf_3} = 1.54 \cdot kip$$

Transverse Wall Line Reactions (Ref. Shear Wall Diagram)

Reaction AtribA :=
$$\frac{25 \text{ft}}{2}$$
 = 12.5 ft $R_{\text{Trf}_A} := \left[p_w \cdot \left(\frac{h_{wall}}{2} \right) + p_{\text{rf}_horiz} \cdot h_{\text{rf}_proj} \right] \cdot \text{tribA}$ $R_{\text{Trf}_A} = 1.38 \cdot \text{kip}$

Lateral Forces - Upper Floor Roof

$h_{wall} = 10 ft$	Average Wall Height	
$p_w = 22.2 \cdot psf$	Design Wall Wind Pressure (ref. Wind Loading)	
Longitudinal Wall Line	Reactions (Ref. Shear Wall Diagram)	
Reaction 1	trib1 := $\frac{23.25 \text{ft}}{2}$ = 11.63 ft	
$\mathbf{R}_{Lup_1} := \left[\mathbf{p}_{\mathbf{W}} \cdot \left(\mathbf{h}_{\mathbf{W}}\right)\right]$	$rall$ ·trib1 + R_{Lrf_1}	$R_{Lup_1} = 3.86 \cdot kip$
Reaction 2	trib2 := $\frac{22 \text{ft}}{2} = 11 \text{ ft}$	
$R_{Lup_2} := \left[p_w \cdot \left(h_w \right) \right]$	rall $\left(\operatorname{trib1} + \operatorname{trib2}\right) + \operatorname{R}_{\operatorname{Lrf}_2}$	$R_{Lup_2} = 7.84 \cdot kip$
Reaction 3	trib3 := trib2 = 11 ft	
$R_{Lup_3} := [p_w \cdot (h_w)]$	$\left[\operatorname{rall}\right] \cdot \operatorname{trib} 3 + p_{W} \cdot \frac{h_{Wall}}{2} 6ft + R_{Lrf_3}$	$R_{Lup_3} = 4.64 \cdot kip$
Transverse Wall Line R	Reactions (Ref. Shear Wall Diagram)	
Reaction A	tribA := $\frac{21.5 \text{ft}}{2} = 10.75 \text{ ft}$	
$\mathbf{R}_{Tup} A := \left[\mathbf{p}_{\mathbf{W}} \cdot \left(\mathbf{h}_{\mathbf{V}} \right) \right]$	$vall$ $$ $tribA + R_{Trf}A$	$R_{Tup_A} = 3.77 \cdot kip$
Reaction B	tribB := tribA = 10.75 ft	
$\mathbf{R}_{\mathbf{Tup}}\mathbf{B} := \left[\mathbf{p}_{\mathbf{W}} \cdot \left(\mathbf{h}_{\mathbf{W}}\right)\right]$	vall]·tribB + $\left(p_{W} \cdot \frac{h_{wall}}{2}\right)$ 3.5ft + $R_{\text{Trf}}A$	$R_{Tup_B} = 4.15 \cdot kip$


Lateral Summary

Diaphragm Check (ref. ANSI/AF&PA SDPWS-2015)

Aspect Ratio

$$\begin{aligned} \mathbf{L}_{\mathbf{T}} &:= 21\mathbf{i} & \mathbf{L}_{\mathbf{L}} &:= 51\mathbf{i} & \text{Legth & width of diaphragm} \\ elbeck_{\mathbf{D}} &:= it \left(\frac{L_{\mathbf{L}}}{L_{\mathbf{T}}} > 4, "NG", "OK"\right) & \text{ratio} &:= \frac{L_{\mathbf{L}}}{L_{\mathbf{T}}} = 2.43 & \text{eleck}_{\mathbf{D}} = "OK" \end{aligned}$$

Diaphragm Check

PROJECT: Gass Apartment

DESCRIPTION: Upper Floor Shearwall Keyplan

BY: AKR DATE: 1/25/2021 JOB #: 20-172

✓ Upper Floor Shear Walls

Shear Wall Check - Upper Floor to Roof (ref. ANSI/AF&PA SDPWS-2015)SW1a IN - PLANE SHEARWe

		**s .
$\mathbf{h}_{\mathbf{t}} := 8 \cdot \mathbf{ft}$	Wall height	
$L_{s} := 4.75 ft + 2.5 ft$	Total shear wall length	†
$DL_{rf} = 15 \cdot psf$	Dead load of roof	
$R := R_{Lrf_1} = 1.29 \cdot kip$	Reaction at wall line	ի
$w_{rf} := \frac{2ft}{2}$	Tributary width of roof on wall	
$p_{ext_w} = 10 \cdot psf$	Dead load of exterior walls	<u>↓</u> ▼
$w_s := 2.5 ft$	Shear wall length T	l C
Aspect Ratio (Blocked She	ear Wall)	
$\frac{h_t}{w_s} = 3.2$	$\text{check}_{\text{ratio}} := \text{if}\left(\frac{h_t}{w_s} > 3.5, "NG", "OK"\right)$	check _{ratio} = "OK"
(WSP) := if $\left(\frac{h_t}{w_s} < 2.0, 1.0, 1\right)$	$.25 - 0.125 \cdot \frac{h_t}{w_s} $ Aspect ratio factor	(WSP) = 0.9
Overturning Forces		
$V_{rf} := \left(R \cdot \frac{w_s}{L_s}\right) 0.6$	Shear load at top of wall (ASD)	$V_{rf} = 0.27 \cdot kip$
$M_{ot} := V_{rf} \cdot h_t$	Overturning moment (ASD)	$M_{ot} = 2.1 \cdot kip \cdot ft$
Resisting Forces		
$P_{rf} := DL_{rf} \cdot w_{rf} \cdot (w_s)$	Roof load	$P_{rf} = 0.04 \cdot kip$
$\mathbf{P}_{\mathbf{w}} \coloneqq \mathbf{p}_{ext}\mathbf{w} \cdot (\mathbf{h}_{t}) \cdot (\mathbf{w}_{s})$	Wal load	$P_{W} = 0.2 \cdot kip$
[w _a]		

$$M_{res} := \left[\left(P_{rf} + P_{w} \right) \cdot \frac{w_{s}}{2} \right] \cdot 0.6 \text{ Resisting moment (ASD)} \qquad M_{res} = 0.18 \cdot \text{kip} \cdot \text{ft}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS) $\Omega_{c} := 2.0$ (ref. section 4.3.3)

$$w_{v} := \frac{V_{rf}}{w_{s}} = 107 \cdot plf$$

$$w_{all} := \frac{(WSP) \cdot v_{w6} \cdot n}{\Omega_{s}} = 369.8 \cdot plf \quad check_{wv} := if \left(\frac{w_{v}}{w_{all}} > 1.0, "NG", "OK"\right) \quad check_{wv} = "OK"$$

$$\underbrace{Single Sided 15/32" sheathing w/ 10d @ 6" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)$$
Bottom Plate Nailing $C_{D} := 1.6$

$$t_{sp} := 1.5in \quad Bottom plate thickness \quad dia_{a} := 16d \quad Fastener Type/Size \quad sp_{a} := 6in \quad Fastener spacing$$

$$Z_{II} := v_{n} \cdot C_{D} = 0.23 \cdot kip \quad Allowable load parallel to grain (ref. NDS table 12)$$

$$V_{sp} := w_{v} \cdot sp_{a} = 0.053 \cdot kip \quad Shear load to each anchor$$

$$Check_{a} := if (V_{sp} > Z_{II}, "NG", "OK") \quad ratio_{a} := \frac{V_{sp}}{Z_{II}} = 0.24 \quad Check_{a} = "OK"$$
Holdown

 $T := \frac{M_{ot} - M_{res}}{w_{o}} = 0.78 \cdot kip \quad check_{T} := if(T > 150lbf, "HD REQ'D", "NOT REQ'D") \quad check_{T} = "HD REQ'D"$ $T_{all} := MSTC48B3 = 3.975 \cdot kip$ Allowable tension load (Simpson MSTC48B3) $\operatorname{check}_{\operatorname{HD}} := \operatorname{if}\left(\frac{\mathrm{T}}{\mathrm{T}_{\operatorname{all}}} > 1.0, "\mathrm{NG"}, "\mathrm{OK"}\right) \qquad \operatorname{ratio} := \frac{\mathrm{T}}{\mathrm{T}_{\operatorname{all}}} = 0.2$ check_{HD} = "OK" Use MSTC48B3 w/ (14) 10d to face of beam, (4) 10d to bottom of beam, & (38) into (2) 2x min post stitch nailed

SW1b IN - PLANE SHEAR

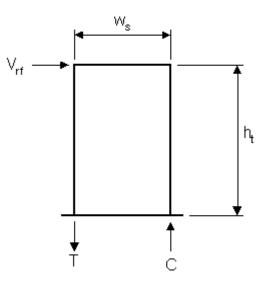
5 $\overline{10}$ $\overline{10}$ $\overline{10}$ $\overline{11}$ -1 LANE $\overline{511}$. W _s		
$h_t := 8 \cdot ft$	Wal height		 ←	•	
$L_s := 4.75 ft + 2.5 ft$	Total shear wall length	∨ _{rf}		j,	Ī
$DL_{rf} = 15 \cdot psf$	Dead load of roof				
$R := R_{Lrf_1} = 1.29 \cdot kip$	Reaction at wall line				h
$w_{rf} \coloneqq \frac{2ft}{2}$	Tributary width of roof on wall				
$p_{ext_w} = 10 \cdot psf$	Dead load of exterior walls	-	<u> </u>	⊥ ↑	Ł
$w_s := 4.75 ft$	Shear wall length		Ť	C	
A supert Datie (Dissigned Chaser Mall)					

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 1.68 \qquad \text{check}_{ratio} \coloneqq \text{if}\left(\frac{h_t}{w_s} > 3.5, \text{"NG"}, \text{"OK"}\right) \qquad \text{check}_{ratio} \equiv \text{"OK"}$$
$$(\text{WSP}) \coloneqq \text{if}\left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right) \text{ Aspect ratio factor} \qquad (\text{WSP}) = 1.0$$

Overturning Forces

 $V_{rf} := \begin{pmatrix} W_s \\ L_s \end{pmatrix} 0.6$ Shear load at top of wall (ASD) $V_{rf} = 0.51 \cdot kip$ $M_{ot} := V_{rf} \cdot h_t$ Overturning moment (ASD) $M_{ot} = 4.1 \cdot kip \cdot ft$


$$\begin{array}{ll} P_{rf} \coloneqq DL_{rf} \cdot w_{rf} \cdot \begin{pmatrix} w_{s} \end{pmatrix} & \text{Roof load} & P_{rf} = 0.07 \cdot \text{kip} \\ P_{w} \coloneqq p_{ext_w} \cdot \begin{pmatrix} h_{t} \end{pmatrix} \cdot \begin{pmatrix} w_{s} \end{pmatrix} & \text{Wal load} & P_{w} = 0.38 \cdot \text{kip} \\ M_{res} \coloneqq \left[\begin{pmatrix} P_{rf} + P_{w} \end{pmatrix} \cdot \frac{w_{s}}{2} \right] \cdot 0.6 & \text{Resisting moment (ASD)} & M_{res} = 0.64 \cdot \text{kip} \cdot f_{w} + f_{w} \cdot f_{w}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS) $\Omega_{s} := 2.0$ (ref. section 4.3.3) n := 1sides $w_{v} := \frac{V_{rf}}{w_{c}} = 107 \cdot plf$ $\mathbf{w_{all}} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v_{w6}} \cdot \mathbf{n}}{\Omega_{s}} = 435 \cdot \text{plf} \qquad \text{check}_{WV} \coloneqq \text{if}\left(\frac{\mathbf{w_{V}}}{\mathbf{w_{all}}} > 1.0, \text{"NG"}, \text{"OK"}\right)$ check_{wv} = "OK" Single Sided 15/32" sheathing w/ 10d @ 6" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A) Bottom Plate Nailing $C_{D} := 1.6$ t_{sp} := <u>1.5in</u> Bottom plate thickness dia_a := <u>16d</u> Fastener Type/Size $sp_a := 6in$ Fastener spacing $Z_{11} := v_n \cdot C_D = 0.23 \cdot kip$ Allowable load parallel to grain (ref. NDS table 12) $V_{sp} := w_V \cdot sp_a = 0.053 \cdot kip$ Shear load to each anchor Check_a := if $(V_{sp} > Z_{ll}, "NG", "OK")$ ratio_a := $\frac{V_{sp}}{Z_{ll}} = 0.24$ $Check_a = "OK"$ Use 16d Nail at 6"o.c. Staggered Holdown $T := \frac{M_{ot} - M_{res}}{w} = 0.72 \cdot kip \quad check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D") \quad check_T = "HD REQ'D"$ $T_{all} := MST37 = 2.71 \cdot kip$ Allowable tension load (Simpson MST37) $\operatorname{check}_{\operatorname{HD}} := \operatorname{if}\left(\frac{\mathrm{T}}{\mathrm{T}_{\operatorname{all}}} > 1.0, "\mathrm{NG"}, "\mathrm{OK"}\right) \qquad \operatorname{ratio} := \frac{\mathrm{T}}{\mathrm{T}_{\operatorname{all}}} = 0.26$ $check_{HD} = "OK"$

Use Simpson MST37 w/ (22) 16d Nails into (2) 2x min Post Stitch Nailed

SW2 IN - PLANE SHEAR

$h_t := 8 \cdot ft$	Wall height
L _s := 15.58ft	Total shear wall length
$DL_{rf} = 15 \cdot psf$	Dead load of roof
$R := R_{Lrf_2} = 2.82 \cdot kip$	Reaction at wall line
$w_{rf} := 2ft$	Tributary width of roof on wall
$p_{ext_w} = 10 \cdot psf$	Dead load of exterior walls
w _s := 15.58ft	Shear wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_{t}}{w_{s}} = 0.51 \qquad \text{check}_{ratio} \coloneqq \text{if}\left(\frac{h_{t}}{w_{s}} > 3.5, \text{"NG"}, \text{"OK"}\right) \qquad \text{check}_{ratio} \equiv \text{"OK"}$$
$$(\text{WSP}) \coloneqq \text{if}\left(\frac{h_{t}}{w_{s}} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_{t}}{w_{s}}\right) \text{ Aspect ratio factor} \qquad (\text{WSP}) = 1.0$$

Overturning Forces

$$V_{rf} := \left(R \cdot \frac{W_s}{L_s} \right) 0.6$$
Shear load at top of wall (ASD)
$$V_{rf} = 1.69 \cdot kip$$

$$M_{ot} := V_{rf} \cdot h_t$$
Overturning moment (ASD)
$$M_{ot} = 13.6 \cdot kip \cdot ft$$

$$P_{rf} \coloneqq DL_{rf} \cdot w_{rf} \cdot (w_s)$$
Roof load $P_{rf} = 0.47 \cdot kip$ $P_w \coloneqq p_{ext_w} \cdot (h_t) \cdot (w_s)$ Wal load $P_w = 1.25 \cdot kip$ $M_{res} \coloneqq \left[\left(P_{rf} + P_w \right) \cdot \frac{w_s}{2} \right] \cdot 0.6$ Resisting moment (ASD) $M_{res} = 8.01 \cdot kip \cdot frac{10}{2}$

Plywood Shear (ref. ANSI/AF&PA SDPWS) $\Omega_{s} := 2.0$ (ref. section 4.3.3) n := 1sides $w_{v} := \frac{V_{rf}}{w_{c}} = 109 \cdot plf$ $\mathbf{w_{all}} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v_{w6}} \cdot \mathbf{n}}{\Omega_{s}} = 435 \cdot \text{plf} \qquad \text{check}_{WV} \coloneqq \text{if}\left(\frac{\mathbf{w_{V}}}{\mathbf{w_{all}}} > 1.0, \text{"NG"}, \text{"OK"}\right)$ check_{wv} = "OK" Single Sided 15/32" sheathing w/ 10d @ 6" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A) Bottom Plate Nailing $C_{D} := 1.6$ t_{sp} := <u>1.5in</u> Bottom plate thickness dia_a := <u>16d</u> Fastener Type/Size $sp_a := 6in$ Fastener spacing $Z_{11} := v_n \cdot C_D = 0.23 \cdot kip$ Allowable load parallel to grain (ref. NDS table 12) $V_{sp} := w_V \cdot sp_a = 0.054 \cdot kip$ Shear load to each anchor Check_a := if $(V_{sp} > Z_{ll}, "NG", "OK")$ ratio_a := $\frac{V_{sp}}{Z_{ll}} = 0.24$ $Check_a = "OK"$ Use 16d Nail at 6"o.c. Staggered Holdown $T := \frac{M_{ot} - M_{res}}{w} = 0.36 \cdot kip \quad check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D") \quad check_T = "HD REQ'D"$ $T_{all} := MST37 = 2.71 \cdot kip$ Allowable tension load (Simpson MST37) $\operatorname{check}_{\operatorname{HD}} := \operatorname{if}\left(\frac{\mathrm{T}}{\mathrm{T}_{\operatorname{all}}} > 1.0, "\mathrm{NG"}, "\mathrm{OK"}\right) \qquad \operatorname{ratio} := \frac{\mathrm{T}}{\mathrm{T}_{\operatorname{all}}} = 0.13$ $check_{HD} = "OK"$

Use Simpson MST37 w/ (22) 16d Nails into (2) 2x min Post Stitch Nailed

SW3 IN - PLANE SHEAR

W 3 IN - FLANE SHEA			. W _s		
$h_t := 8 \cdot ft$	Wal height		↓		
$L_s := 3ft + 4ft$	Total shear wall length	V _{rf} —►		1	Ē
$DL_{rf} = 15 \cdot psf$	Dead load of roof				
$R := R_{Lrf_3} = 1.54 \cdot kip$	Reaction at wall line				h,
$w_{rf} := \frac{2ft}{2}$	Tributary width of roof on wall				
$p_{ext_w} = 10 \cdot psf$	Dead load of exterior walls	-	<u> </u>	¥	Ľ
$w_s := 3 ft$	Shear wall length	-	ŧ Ι Γ (2	

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 2.67 \qquad \text{check}_{ratio} \coloneqq \text{if}\left(\frac{h_t}{w_s} > 3.5, \text{"NG"}, \text{"OK"}\right) \qquad \text{check}_{ratio} \equiv \text{"OK"}$$
$$(\text{WSP}) \coloneqq \text{if}\left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right) \text{ Aspect ratio factor} \qquad (\text{WSP}) = 0.9$$

Overturning Forces

$$V_{rf} := \left(R \cdot \frac{w_s}{L_s} \right) 0.6 \qquad \text{Shear load at top of wall (ASD)} \qquad V_{rf} = 0.4 \cdot \text{kip}$$
$$M_{ot} := V_{rf} \cdot h_t \qquad \text{Overturning moment (ASD)} \qquad M_{ot} = 3.2 \cdot \text{kip} \cdot \text{ft}$$

$$\begin{array}{ll} P_{rf} \coloneqq DL_{rf} \cdot w_{rf} \cdot \left(w_{s}\right) & \text{Roof load} & P_{rf} \equiv 0.05 \cdot \text{kip} \\ P_{w} \coloneqq p_{ext_w} \cdot \left(h_{t}\right) \cdot \left(w_{s}\right) & \text{Wal load} & P_{w} \equiv 0.24 \cdot \text{kip} \\ \\ M_{res} \coloneqq \left[\left(P_{rf} + P_{w}\right) \cdot \frac{w_{s}}{2} \right] \cdot 0.6 & \text{Resisting moment (ASD)} & M_{res} \equiv 0.26 \cdot \text{kip} \cdot \text{ft} \end{array}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS) $\Omega_c := 2.0$ (ref. section 4.3.3)

$$w_{v} := \frac{V_{rf}}{w_{s}} = 132 \cdot plf$$

$$w_{all} := \frac{(WSP) \cdot v_{w6} \cdot n}{\Omega_{s}} = 398.8 \cdot plf \quad check_{wv} := if \left(\frac{w_{v}}{w_{all}} > 1.0, "NG", "OK"\right) \quad check_{wv} = "OK"$$

$$\underbrace{Single Sided 15/32" sheathing w/ 10d @ 6" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)$$
Bottom Plate Nailing $C_{D} := 1.6$

$$t_{sp} := 1.5in \quad Bottom plate thickness \quad dia_{a} := 16d \quad Fastener Type/Size \qquad sp_{a} := 6in \quad Fastener spacing$$

$$Z_{II} := v_{n} \cdot C_{D} = 0.23 \cdot kip \quad Allowable load parallel to grain (ref. NDS table 12)$$

$$V_{sp} := w_{v} \cdot sp_{a} = 0.066 \cdot kip \quad Shear load to each anchor$$

$$Check_{a} := if (V_{sp} > Z_{II}, "NG", "OK") \quad ratio_{a} := \frac{V_{sp}}{Z_{II}} = 0.29 \quad Check_{a} = "OK"$$
Holdown
$$T := \frac{M_{ot} - M_{res}}{w_{s}} = 0.97 \cdot kip \quad check_{T} := if (T > 150 lbf, "HD REQ'D", "NOT REQ'D") \quad check_{T} = "HD REQ'D"$$

 $T_{all} := MSTC48B3 = 3.975 \cdot kip$ Allowable tension load (Simpson MST48B3)

check_{HD} := if
$$\left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right)$$
 ratio := $\frac{T}{T_{all}} = 0.24$ check_{HD} = "OK"

(2) 2x min post stitch nailed

SWA IN - PLANE SHEAR

5 w A IN - I LANE SI	LAN		. W _s	
$\mathbf{h}_{\mathbf{t}} := 8 \cdot \mathbf{ft}$	Wal height	.,	↓	
$L_s := 10.5ft + 5.33ft + 24ft$	Total shear wall length	V _{rf}		Ť
$DL_{rf} = 15 \cdot psf$	Dead load of roof			
$\mathbf{R} := \mathbf{R}_{\mathrm{Trf}} = 1.38 \cdot \mathrm{kip}$	Reaction at wall line			իլ
$w_{rf} := \frac{25ft}{2}$	Tributary width of roof on wal			
$p_{ext_w} = 10 \cdot psf$	Dead load of exterior walls			¥
w _s := 5.33ft	Shear wall length		Ť C	
Aspect Ratio (Blocked She	ear Wall)			
h	(h			

$$\frac{h_{t}}{w_{s}} = 1.5 \qquad \text{check}_{\text{ratio}} \coloneqq \text{if}\left(\frac{h_{t}}{w_{s}} > 3.5, \text{"NG"}, \text{"OK"}\right) \qquad \text{check}_{\text{ratio}} \equiv \text{"OK"}$$

$$(\text{WSP}) \coloneqq \text{if}\left(\frac{h_{t}}{w_{s}} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_{t}}{w_{s}}\right) \text{ Aspect ratio factor} \qquad (\text{WSP}) = 1.0$$

Overturning Forces

 $V_{rf} := \left(R \cdot \frac{w_s}{L_s}\right) 0.6$ Shear load at top of wall (ASD) $V_{rf} = 0.11 \cdot kip$ $M_{ot} := V_{rf} \cdot h_t$ Overturning moment (ASD) $M_{ot} = 0.9 \cdot kip \cdot ft$

$$P_{rf} := DL_{rf} \cdot w_{rf} \cdot (w_s)$$
Roof load $P_{rf} = 1 \cdot kip$ $P_w := p_{ext_w} \cdot (h_t) \cdot (w_s)$ Wal load $P_w = 0.43 \cdot kip$ $M_{res} := \left[\left(P_{rf} + P_w \right) \cdot \frac{w_s}{2} \right] \cdot 0.6$ Resisting moment (ASD) $M_{res} = 2.28 \cdot kip \cdot fr$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

$$\Omega_{\rm s} := 2.0$$
 (ref. section 4.3.3) $n := 1$ sides

$$w_{v} := \frac{V_{rf}}{w_{s}} = 21 \cdot plf$$

$$w_{all} := \frac{(WSP) \cdot v_{w6} \cdot n}{\Omega_{s}} = 435 \cdot plf \qquad check_{wv} := if \left(\frac{w_{v}}{w_{all}} > 1.0, "NG", "OK"\right) \qquad check_{wv} = "OK"$$
Single Sided 15/32" sheathing w/ 10d @ 6" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)
Bottom Plate Nailing $C_{D} := 1.6$

$$t_{sp} := 1.5in \qquad Bottom plate thickness \qquad dia_{a} := 16d \qquad Fastener Type/Size \qquad sp_{a} := 6in \qquad Fastener spacing$$

$$Z_{II} := v_{n} \cdot C_{D} = 0.23 \cdot kip \qquad Allowable load parallel to grain (ref. NDS table 12)$$

$$V_{sp} := w_{v} \cdot sp_{a} = 0.01 \cdot kip \qquad Shear load to each anchor$$

$$Check_{a} := if \left(V_{sp} > Z_{II}, "NG", "OK"\right) \qquad ratio_{a} := \frac{V_{sp}}{Z_{II}} = 0.05 \qquad Check_{a} = "OK"$$

Holdown

$$T := \frac{M_{ot} - M_{res}}{w_s} = -0.26 \cdot kip \ check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D") \ check_T = "NOT REQ'D"$$

SWB IN - PLANE SHEAR

5 W D IN - F LANE 5	IILAN		W _s	
$\mathbf{h}_{\mathbf{t}} := 8 \cdot \mathbf{ft}$	Wal height	- J		
$L_s := 3.67 ft + 4 ft + 19.42 ft + 4 ft$	4.5ft + 2.5ft Total shear wall length	V _{rf} —		1
$DL_{rf} = 15 \cdot psf$	Dead load of roof			
$R := R_{Trf_A} = 1.38 \cdot kip$	Reaction at wall line			h
$w_{rf} := \frac{25ft}{2}$	Tributary width of roof on wal			
$p_{ext_w} = 10 \cdot psf$	Dead load of exterior walls			
w _s := 2.5ft	Shear wall length	Ť	C I	
Aspect Ratio (Blocked S	Shear Wall)			
$\frac{h_t}{w_c} = 3.2$	check _{ratio} := if $\left(\frac{h_t}{w_c} > 3.5, "NG", "C$	DK"	check _{ratio} = "OK"	

$$(WSP) := if \left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right)$$
Aspect ratio factor
$$(WSP) = 0.9$$

Overturning Forces

 $V_{rf} := \begin{pmatrix} R \cdot \frac{w_s}{L_s} \end{pmatrix} 0.6$ Shear load at top of wall (ASD) $V_{rf} = 0.06 \cdot kip$ $M_{ot} := V_{rf} \cdot h_t$ Overturning moment (ASD) $M_{ot} = 0.5 \cdot kip \cdot ft$

$$P_{rf} := DL_{rf} \cdot w_{rf} \cdot (w_s)$$
Roof load $P_{rf} = 0.47 \cdot kip$ $P_w := p_{ext_w} \cdot (h_t) \cdot (w_s)$ Wal load $P_w = 0.2 \cdot kip$ $M_{res} := \left[(P_{rf} + P_w) \cdot \frac{w_s}{2} \right] \cdot 0.6$ Resisting moment (ASD) $M_{res} = 0.5 \cdot kip \cdot ft$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

$$\Omega_{\rm s} := 2.0$$
 (ref. section 4.3.3) $n := 1$ sides

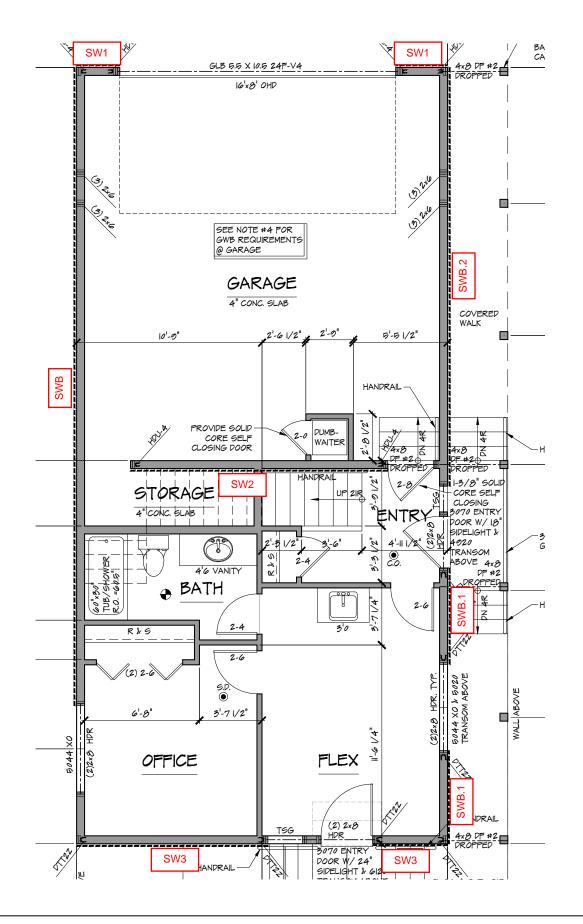
$$w_{v} := \frac{V_{rf}}{w_{s}} = 24 \text{ plf}$$

$$w_{all} := \frac{(WSP) \cdot v_{w6} \cdot n}{\Omega_{s}} = 369.8 \text{ plf} \quad \text{check}_{wv} := \text{if} \left(\frac{w_{v}}{w_{all}} > 1.0, "NG", "OK"\right) \quad \text{check}_{wv} = "OK"$$

$$\underbrace{\text{Single Sided 15/32" sheathing w/ 10d @ 6" O.C. Panel Edges @ 12" O.C. \\ \text{Interior Supports (ref. table 4.3A)}$$
Bottom Plate Nailing $C_{D} := 1.6$

$$t_{sp} := 1.5 \text{in} \quad \text{Bottom plate thickness} \quad \text{dia}_{a} := 16d \quad \text{Fastener Type/Size} \quad \text{sp}_{a} := 6 \text{in} \quad \text{Fastener spacing}$$

$$Z_{II} := v_{n} \cdot C_{D} = 0.23 \cdot \text{kip} \quad \text{Allowable load parallel to grain (ref. NDS table 12)}$$

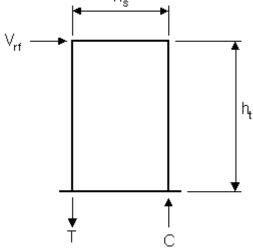

$$v_{sp} := w_{v} \cdot \text{sp}_{a} = 0.012 \cdot \text{kip} \quad \text{Shear load to each anchor}$$

$$\text{Check}_{a} := \text{if} \left(V_{sp} > Z_{II}, "NG", "OK"\right) \quad \text{ratio}_{a} := \frac{V_{sp}}{Z_{II}} = 0.05 \quad \text{Check}_{a} = "OK"$$

Holdown

$$T := \frac{M_{ot} - M_{res}}{w_s} = -5.64 \times 1(\text{ check}_T := \text{ if } (T > 150 \text{ lbf }, "HD \text{ REQ'D"}, "NOT \text{ REQ'D"}) \text{ check}_T = "NOT \text{ REQ'D"}$$

Use 16d Nail at 6"o.c. Staggered



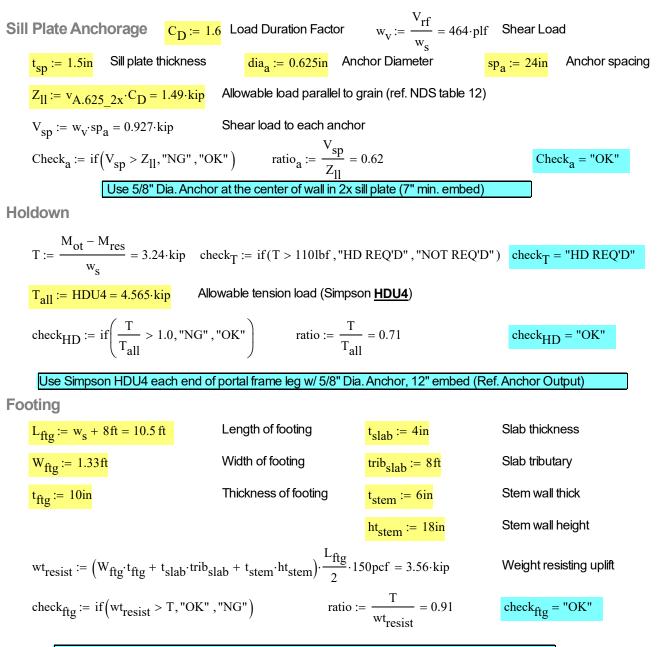
PROJECT: Gass	Apartment		
DESCRIPTION: N	lain Floor Shearwall Keypla	an	
BY: AKR	DATE: 1/25/2021	JOB #: 20-172	S25

Shear Wall Check - Main to Upper Floor (ref. ANSI/AF&PA SDPWS-2015)SW1 IN - PLANE SHEAR (PFH per IBC 2308.6.5.2) $h_t := 13 \cdot ft$ Wal height

nt 15 h	
$h_{t_pfh} := 8.5ft$	Portal Frame Height
$L_{pfh} := 16ft$	Clear Span of Header
$L_{s} := 30in + 30in$	Total shear wall length
$DL_{rf} = 15 \cdot psf$	Dead load of roof
$R := R_{Lup_1} = 3.9 \cdot kip$	Reaction at wall line
$w_{rf} \coloneqq \frac{2ft + 5.5ft}{2} + 3ft$	Tributary width of framing on wall
$p_{ext_w} = 10 \cdot psf$	Dead load of exterior walls
w _s := 30in	Shear wall length

Dimensional Checks (PFH)

$check_{height} := if(h_{t_pfh} \le 10ft, "OK", "NG")$	$check_{height} = "OK"$
$check_{width} := if(w_s \ge 16in, "OK", "NG")$	check _{width} = "OK"


$$check_{span} := if(6ft \le L_{pfh} \le 18ft, "OK", "NG")$$
 $check_{span} = "OK"$

Overturning Forces

$V_{rf} := \left(R \cdot \frac{w_s}{L_s}\right) 0.6$	Shear load at top of wall (ASD Wind)	V _{rf} = 1.16·kip
$M_{ot} := V_{rf} \cdot h_{t_pfh}$	Overturning moment (ASD)	$M_{ot} = 9.9 \cdot kip \cdot ft$

Resisting Forces

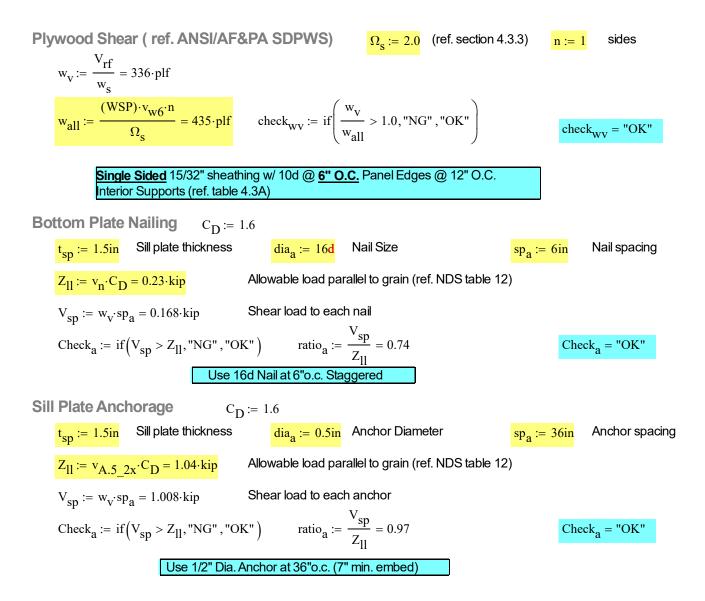
$$\begin{split} P_{rf} &\coloneqq DL_{rf} \cdot w_{rf} \cdot \left(w_{s} + 4 \mathrm{ft}\right) & \text{Roof load} & P_{rf} = 0.66 \cdot \mathrm{kip} \\ P_{w} &\coloneqq p_{ext_w} \cdot \left(2 \mathrm{h}_{t}\right) \cdot \left(w_{s} + 4 \mathrm{ft}\right) & \text{Wal load} & P_{w} = 1.69 \cdot \mathrm{kip} \\ M_{res} &\coloneqq \left[\left(P_{rf} + P_{w}\right) \cdot \frac{w_{s}}{2} \right] \cdot 0.6 & \text{Resisting moment (ASD)} & M_{res} = 1.76 \cdot \mathrm{kip} \cdot \mathrm{ft} \end{split}$$

Use 1'-4"" Wide x 10" Deep footing w/ (2) #4 Longitudinal & #4 @ 10" o.c. Transverse

SW2 IN - PLANE SHEAR

)	vv 2 IIN - I LAINE SIIEA	<u>11</u>		Ws		
	$h_t := 12 \cdot ft$	Wal height		← 		
	L _s := 14ft	Total shear wall length	V _{rf} —•			- L
	$DL_{rf} = 15 \cdot psf$	Dead load of roof				
	$R := R_{Lup_2} = 7.84 \cdot kip$	Reaction at wall line				հ
	$w_{rf} := \frac{15.5ft + 4ft}{2}$	Tributary width of framing on wall				
	$p_{ext_w} = 10 \cdot psf$	Dead load of exterior walls	-		└_ <u> </u> ♥	<u>'</u>
	$w_s := 14ft$	Shear wall length	-	T (
	Associate Datia (Dissigned Chaser)	A/~!!\				

Aspect Ratio (Blocked Shear Wall)


$$\frac{h_t}{w_s} = 0.86 \qquad \text{check}_{ratio} \coloneqq \text{if}\left(\frac{h_t}{w_s} > 3.5, \text{"NG"}, \text{"OK"}\right) \qquad \text{check}_{ratio} \equiv \text{"OK"}$$
$$(\text{WSP}) \coloneqq \text{if}\left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right) \text{ Aspect ratio factor} \qquad (\text{WSP}) = 1.0$$

Overturning Forces

$$V_{rf} := \left(R \cdot \frac{w_s}{L_s} \right) 0.6$$
Shear load at top of wall (ASD)
$$V_{rf} = 4.7 \cdot kip$$

$$M_{ot} := V_{rf} \cdot h_t$$
Overturning moment (ASD)
$$M_{ot} = 56.4 \cdot kip \cdot ft$$

$$\begin{array}{ll} P_{rf} \coloneqq \left(DL_{rf} \right) \cdot w_{rf} \cdot \left(w_{s} \right) & \text{Roof load} & P_{rf} = 2.05 \cdot \text{kip} \\ P_{w} \coloneqq p_{ext_w} \cdot \left(h_{t} \right) \cdot \left(w_{s} \right) & \text{Wal load} & P_{w} = 1.68 \cdot \text{kip} \\ M_{res} \coloneqq \left[\left(P_{rf} + P_{w} \right) \cdot \frac{w_{s}}{2} \right] \cdot 0.6 & \text{Resisting moment (ASD)} & M_{res} = 15.66 \cdot \text{kip} \cdot \text{ft} \end{array}$$

Holdown

$$T := \frac{M_{ot} - M_{res}}{w_s} = 2.91 \cdot kip \quad check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D") \quad check_T = "HD REQ'D"$$

$$T_{all} := HDU4 = 4.565 \cdot kip \quad Allowable tension load (Simpson HDU4)$$

$$check_{HD} := if\left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right) \quad ratio := \frac{T}{T_{all}} = 0.64 \quad check_{HD} = "OK"$$
Anchor
$$T_{LRFD} := \frac{M_{ot}}{0.6} - M_{res'} \frac{0.9}{0.6} \quad Tension in anchor bolt (LRFD) \quad T_{LRFD} = 5.04 \cdot kip$$

$$Use Simpson HDU4 w/5/8" Dia. Anchor, 12" min. embed (Ref. Anchor Output)$$
Footing Uplift
$$L_{fig} := w_s + 6ft = 20 \text{ ft} \quad Length of footing \quad t_{slab} := 4in \quad Slab thickness$$

$$W_{fig} := 1.33 \text{ ft} \quad Width of footing \quad t_{slab} := 6ft \quad Slab thickness$$

$$trib_{fir} := 0ft \quad Floor/deck tributary \quad h_{tsem} := 18in \quad Stem wall height$$

$$wt_{resist} := \left[(W_{fig} \cdot t_{fig} + t_{slab} \cdot trib_{slab} + t_{stem} \cdot h_{tsem}) \cdot 150pcf + trib_{fir} DL_{fir} \right] \frac{L_{fig}}{2} = 6.16 \cdot kip \quad Weight resisting uplift$$

$$check_{fig} := if(wt_{resist} > T, "OK", "NG") \quad ratio := \frac{T}{wt_{resist}}} = 0.47 \quad check_{fig} = "OK"$$

SW3 IN - PLANE SHEAR

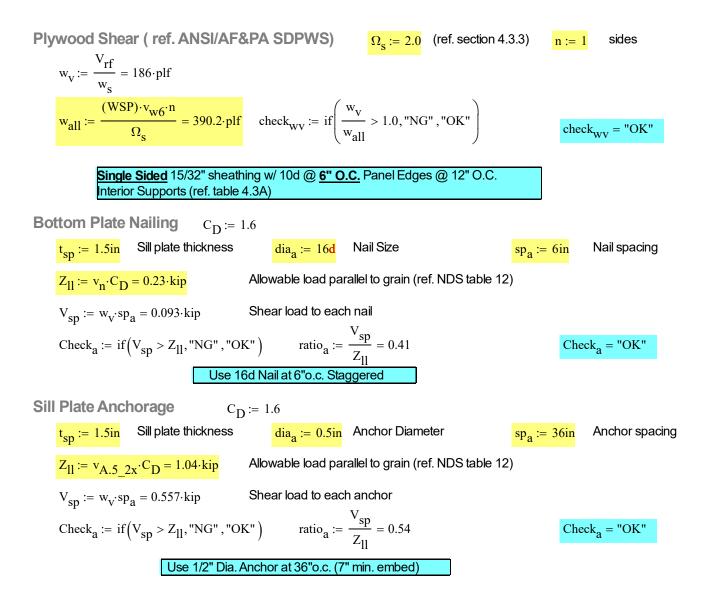
5 W 3 IN - PLANE SHE	An	Ws
$h_t := 12 \cdot ft$	Wal height	
$L_{s} := 10.75 ft + 4.25 ft$	Total shear wall length	V _{rf}
$DL_{rf} = 15 \cdot psf$	Dead load of roof	
$\mathbf{R} := \mathbf{R}_{\mathrm{Lup}_{3}} = 4.64 \cdot \mathrm{kip}$	Reaction at wall line	
$w_{rf} := \frac{17.5ft + 2ft}{2} + 6ft$	Tributary width of framing on wall	
$p_{ext_w} = 10 \cdot psf$	Dead load of exterior walls	
w _s := 4.25ft	Shear wall length	T C

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 2.82 \qquad \text{check}_{ratio} \coloneqq \text{if}\left(\frac{h_t}{w_s} > 3.5, \text{"NG"}, \text{"OK"}\right) \qquad \text{check}_{ratio} \equiv \text{"OK"}$$
$$(\text{WSP}) \coloneqq \text{if}\left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right) \text{ Aspect ratio factor} \qquad (\text{WSP}) = 0.9$$

Overturning Forces

$$V_{rf} := \left(R \cdot \frac{w_s}{L_s} \right) 0.6 \qquad \text{Shear load at top of wall (ASD)} \qquad V_{rf} = 0.79 \cdot \text{kip}$$
$$M_{ot} := V_{rf} \cdot h_t \qquad \text{Overturning moment (ASD)} \qquad M_{ot} = 9.5 \cdot \text{kip} \cdot \text{ft}$$


Resisting Forces

$$\begin{array}{ll} P_{rf} \coloneqq \left(DL_{rf} \right) \cdot w_{rf} \cdot \left(w_{s} \right) & \text{Roof load} & P_{rf} = 1 \cdot \text{kip} \\ P_{w} \coloneqq p_{ext_w} \cdot \left(h_{t} \right) \cdot \left(w_{s} \right) & \text{Wal load} & P_{w} = 0.51 \cdot \text{kip} \\ M_{res} \coloneqq \left[\left(P_{rf} + P_{w} \right) \cdot \frac{w_{s}}{2} \right] \cdot 0.6 & \text{Resisting moment (ASD)} & M_{res} = 1.93 \cdot \text{kip} \cdot 1 \\ \end{array}$$

à

h

¥

Holdown

$$T := \frac{M_{ol} - M_{res}}{w_s} = 1.77 \cdot kip \quad check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D") \quad check_T = "HD REQ'D"$$

$$T_{all} := DTT2Z = 2.145 \cdot kip \quad Allowable tension load (Smpson DTT2Z)$$

$$check_{HD} := if\left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right) \quad ratio := \frac{T}{T_{all}} = 0.83 \quad check_{HD} = "OK"$$

$$Anchor$$

$$T_{LRFD} := \frac{M_{of}}{0.6} - M_{res} \frac{0.9}{0.6} \quad Tension in anchor bolt (LRFD) \quad T_{LRFD} = 3.03 \cdot kip$$

$$Use Simpson DTT2Z w/ 1/2" Dia. Anchor, 10" min. embed (Ref. Anchor Output)$$

$$Footing Uplift$$

$$L_{frg} := w_s + 6ft = 10.25 ft \quad Length of footing \quad t_{slab} := 4in \quad Slab thickness$$

$$W_{frg} := 1.33 ft \quad Width of footing \quad t_{slab} := 6ft \quad Slab tributary$$

$$t_{frg} := 10in \quad Thickness of footing \quad t_{stem} := 6in \quad Stem wall thick$$

$$trib_{fr} := 0ft \quad Floor/deck tributary \quad ht_{stem} := 18in \quad Stem wall height$$

$$wt_{resist} := \left[(W_{frg}'t_{frg} + t_{slab}'trib_{slab} + t_{stem}'ht_{stem}) \cdot 150pcf + trib_{fr} DL_{frt} \right] \cdot \frac{L_{frg}}{2} = 2.97 \cdot kip \quad Weight resisting uplift$$

$$check_{frg} := if(wt_{resist} > T, "OK", "NG") \quad ratio := \frac{T}{wt_{resist}}} = 0.6 \quad check_{frg} = "OK"$$

SWA IN - PLANE SHEAR

WAIN - FLANE SHE	An		Ws		
$h_t := 12 \cdot ft$	Wal height		↓		
L _s := 37ft	Total shear wall length	V _{rf} —•			F
$DL_{rf} = 15 \cdot psf$	Dead load of roof				
$R := R_{Tup_A} = 3.77 \cdot kip$	Reaction at wall line				h _t
$w_{rf} \coloneqq \frac{25ft + 2ft}{2}$	Tributary width of framing on wall				
$p_{ext_w} = 10 \cdot psf$	Dead load of exterior walls	-		<u>∟ </u>	Ł
$w_s := 37ft$	Shear wall length		♥ T (
Aspect Ratio (Blocked Shear	· Wall)				

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 0.32 \qquad \text{check}_{ratio} \coloneqq \text{if}\left(\frac{h_t}{w_s} > 3.5, \text{"NG"}, \text{"OK"}\right) \qquad \text{check}_{ratio} \equiv \text{"OK"}$$
$$(\text{WSP}) \coloneqq \text{if}\left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right) \text{ Aspect ratio factor} \qquad (\text{WSP}) = 1.0$$

Overturning Forces

$$V_{rf} := \left(R \cdot \frac{w_s}{L_s} \right) 0.6$$
Shear load at top of wall (ASD)
$$V_{rf} = 2.26 \cdot kip$$

$$M_{ot} := V_{rf} \cdot h_t$$
Overturning moment (ASD)
$$M_{ot} = 27.1 \cdot kip \cdot ft$$

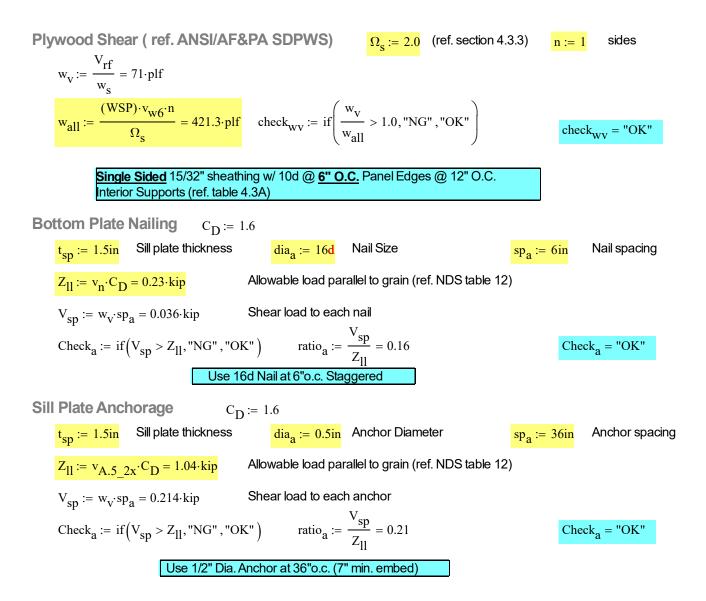
$$P_{rf} := (DL_{rf}) \cdot w_{rf} \cdot (w_s)$$
Roof load $P_{rf} = 7.49 \cdot kip$ $P_w := p_{ext_w} \cdot (h_t) \cdot (w_s)$ Wal load $P_w = 4.44 \cdot kip$ $M_{res} := \left[(P_{rf} + P_w) \cdot \frac{w_s}{2} \right] \cdot 0.6$ Resisting moment (ASD) $M_{res} = 132.45 \cdot kip \cdot ft$

Holdown

$$T := \frac{M_{ot} - M_{res}}{w_s} = -2.85 \cdot kip \ check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D") \ check_T = "NOT REQ'D"$$

SWB.1 IN - PLANE SHEAR

5 VV D.1 119 -	I LANE SIII			. W _s		
$h_t := 12 \cdot ft$		Wal height		★ *		
$L_{s} := 5.33 ft + 5.$	<mark>67ft + 24ft</mark>	Total shear wall length	V _{rf} —•			F
$DL_{rf} = 15 \cdot psf$		Dead load of roof				
$R := R_{Tup_B} = $	4.15·kip	Reaction at wall line				ի
$w_{rf} := \frac{25ft + 4f}{2}$	<u>t</u>	Tributary width of framing on wall				
$p_{ext_w} = 10 \cdot psf$		Dead load of exterior walls	-	4	¶	Ł
$w_s := 5.33 ft$		Shear wall length		Ť (
Aspect Ratio	(Blocked Shear	Wall)				
		/				


$$\frac{h_{t}}{w_{s}} = 2.25 \qquad \text{check}_{\text{ratio}} \coloneqq \text{if}\left(\frac{h_{t}}{w_{s}} > 3.5, \text{"NG"}, \text{"OK"}\right) \qquad \text{check}_{\text{ratio}} \equiv \text{"OK"}$$
$$(\text{WSP}) \coloneqq \text{if}\left(\frac{h_{t}}{w_{s}} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_{t}}{w_{s}}\right) \text{ Aspect ratio factor} \qquad (\text{WSP}) = 1.0$$

Overturning Forces

$$V_{rf} := \left(R \cdot \frac{w_s}{L_s} \right) 0.6 \qquad \text{Shear load at top of wall (ASD)} \qquad V_{rf} = 0.38 \cdot \text{kip}$$
$$M_{ot} := V_{rf} \cdot h_t \qquad \text{Overturning moment (ASD)} \qquad M_{ot} = 4.6 \cdot \text{kip} \cdot \text{ft}$$

Resisting Forces

$$\begin{array}{ll} P_{rf} \coloneqq \left(DL_{rf} \right) \cdot w_{rf} \cdot \left(w_{s} \right) & \text{Roof load} & P_{rf} = 1.16 \cdot \text{kip} \\ P_{w} \coloneqq p_{ext_w} \cdot \left(h_{t} \right) \cdot \left(w_{s} \right) & \text{Wal load} & P_{w} = 0.64 \cdot \text{kip} \\ \\ M_{res} \coloneqq \left[\left(P_{rf} + P_{w} \right) \cdot \frac{w_{s}}{2} \right] \cdot 0.6 & \text{Resisting moment (ASD)} & M_{res} = 2.88 \cdot \text{kip} \cdot \text{ft} \end{array}$$

Holdown

$$T := \frac{M_{ot} - M_{res}}{w_s} = 0.31 \cdot kip \quad check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D") \quad check_T = "HD REQ'D"$$

$$T_{all} := DTT2Z = 2.145 \cdot kip \quad Allowable tension load (Simpson DTT2Z)$$

$$check_{HD} := if\left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right) \quad ratio := \frac{T}{T_{all}} = 0.15 \quad check_{HD} = "OK"$$
Anchor
$$T_{LRFD} := \frac{M_{ot}}{0.6} - M_{res'} \frac{0.9}{0.6} \quad Tension in anchor bolt (LRFD) \quad T_{LRFD} = 0.61 \cdot kip$$

$$Use Simpson DTT2Z w/ 1/2" Dia. Anchor, 10" min. embed (Ref. Anchor Output)$$
Footing Uplift
$$L_{frg} := w_s + 6ft = 11.33 ft \quad Length of footing \quad t_{slab} := 0in \quad Slab thickness$$

$$W_{frg} := 1.33 ft \quad Width of footing \quad t_{slab} := 6ft \quad Slab tributary$$

$$t_{frg} := 10in \quad Thickness of footing \quad t_{stem} := 6in \quad Stem wall thick$$

$$trib_{fr} := 2ft \quad Floor/deck tributary \quad ht_{stem} := 18in \quad Stem wall height$$

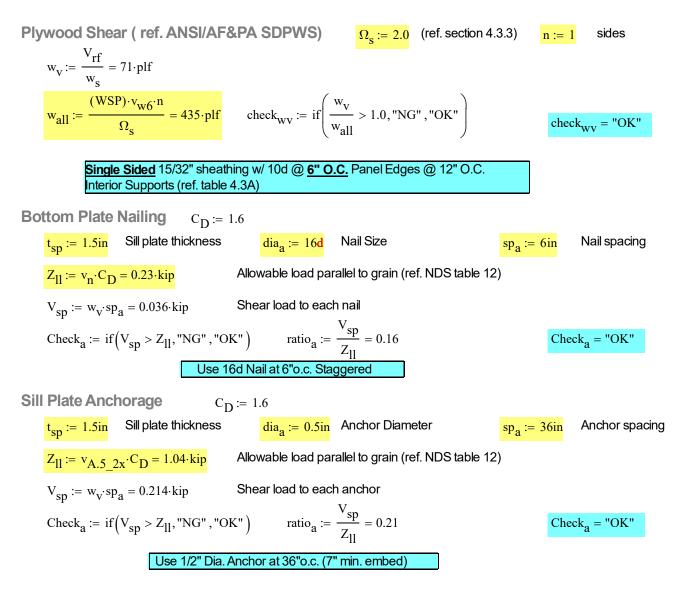
$$wt_{resist} := \left[(W_{frg}'t_{frg} + t_{slab}'trib_{slab} + t_{stem}'ht_{stem}) \cdot 150pcf + trib_{flr} DL_{flr} \right] \cdot \frac{L_{frg}}{2} = 1.75 \cdot kip \quad Weight resisting uplift$$

$$check_{frg} := if(wt_{resist} > T, "OK", "NG") \quad ratio := \frac{T}{wt_{resist}}} = 0.18 \quad check_{frg} = "OK"$$

SWB.2 IN - PLANE SHEAR

)	W B.2 IN - PLANE SHE			Ws		
	$h_t := 12 \cdot ft$	Wal height		↓ *		
	$L_s := 5.33 \text{ft} + 5.67 \text{ft} + 24 \text{ft}$	Total shear wall length	V _{rf} —•			Ē
	$DL_{rf} = 15 \cdot psf$	Dead load of roof				
	$R := R_{Tup_B} = 4.15 \cdot kip$	Reaction at wall line				h,
	$w_{rf} := \frac{25ft + 4ft}{2}$	Tributary width of framing on wall				
	$p_{ext_w} = 10 \cdot psf$	Dead load of exterior walls	-			Ľ
	$w_s := 24ft$	Shear wall length	-	T C	2	
	Aspect Ratio (Blocked Shear \	Wall)				
	h.	(h.				

$$\frac{h_{t}}{w_{s}} = 0.5 \qquad \text{check}_{\text{ratio}} \coloneqq \text{if}\left(\frac{h_{t}}{w_{s}} > 3.5, \text{"NG"}, \text{"OK"}\right) \qquad \text{check}_{\text{ratio}} \equiv \text{"OK"}$$
$$(\text{WSP}) \coloneqq \text{if}\left(\frac{h_{t}}{w_{s}} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_{t}}{w_{s}}\right) \text{ Aspect ratio factor} \qquad (\text{WSP}) = 1.0$$


Overturning Forces

$$V_{rf} := \left(R \cdot \frac{w_s}{L_s} \right) 0.6$$
Shear load at top of wall (ASD)
$$V_{rf} = 1.71 \cdot kip$$

$$M_{ot} := V_{rf} \cdot h_t$$
Overturning moment (ASD)
$$M_{ot} = 20.5 \cdot kip \cdot ft$$

Resisting Forces

$$P_{rf} := (DL_{rf}) \cdot w_{rf} \cdot (w_s)$$
Roof load $P_{rf} = 5.22 \cdot kip$ $P_w := p_{ext_w} \cdot (h_t) \cdot (w_s)$ Wal load $P_w = 2.88 \cdot kip$ $M_{res} := \left[(P_{rf} + P_w) \cdot \frac{w_s}{2} \right] \cdot 0.6$ Resisting moment (ASD) $M_{res} = 58.32 \cdot kip \cdot ft$

Holdown

$$T := \frac{M_{ot} - M_{res}}{w_s} = -1.58 \cdot kip \ check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D") \ check_T = "NOT REQ'D"$$

HRS/ST/HTP/LSTA/LSTI/MST/MSTA/MSTC/MSTI

Strap Ties

Straps are designed to transfer tension loads in a wide variety of applications.

HRS — Heavy strap designed for installation on the edge of 2x members. The HRS416Z installs with Strong-Drive® SDS Heavy-Duty Connector screws.

 $\ensuremath{\mathsf{HTP}}$ — Heavy tie plate designed for installation on the side of 2x4 or larger members.

LSTA and MSTA — Designed for use on the edge of 2x members, with a nailing pattern that reduces the potential for splitting.

LSTI and MSTI — Light and medium straps that are suitable where pneumatic-nailing is necessary through diaphragm decking and wood chord open-web trusses.

MST — High-capacity strap that can be installed with either nails or bolts. Suitable for double 2x member connections or greater.

MSTC — High-capacity strap that utilizes a staggered nail pattern to help minimize wood splitting. Nail slots have been countersunk to provide a lower nail head profile.

Finish: Galvanized. Some products are available in stainless steel, ZMAX[®] coating or black powder coat (add PC to sku); contact Simpson Strong-Tie. See Corrosion Information, pp. 13–15.

Installation: Use all specified fasteners; see General Notes

Options: Special sizes can be made to order; contact Simpson Strong-Tie

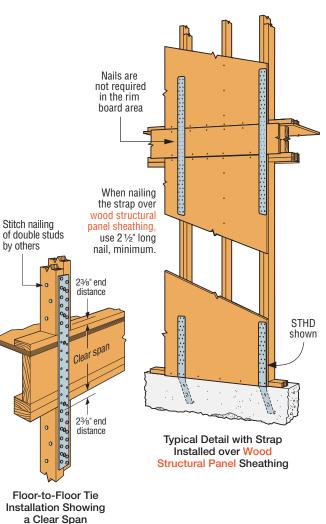
Codes: See p. 12 for Code Reference Key Chart

MSTC and RPS meet code requirements for reinforcing cut members (16 gauge) at top plate and RPS at sill plate. International Residential Code[®] - 2012/2015/2018 R602.6.1 International Building Code[®] - 2012/2015/2018 2308.9.8

(For RPS, refer to p. 303.)

Straps and Ties

MST/MSTA/MSTC


Strap Ties (cont.)

Codes: See p. 12 for Code Reference Key Chart

- These products are available with additional corrosion protection. For more information, see p. 15.
- Many of these products are approved for installation with Strong-Drive® SD SD Connector screws. See pp. 335–337 for more information.

Floor to Floor Span Table

Model No.	Clear Span	Fasteners (Total)	Allowable Tension Loads (DF/SP)	Allowable Tension Loads (SPF/HF)
NU.	(in.)	(in.)	(160)	(160)
MSTA49	18	(26) 0.148 x 21⁄2	2,020	2,020
IVI51A49	16	(26) 0.148 x 21⁄2	2,020	2,020
MSTC28	18	(12) 0.148 x 31⁄4	1,150	995
10101020	16	(16) 0.148 x 31⁄4	1,535	1,330
	24	(20) 0.148 x 31⁄4	1,920	1,660
MSTC40	18	(28) 0.148 x 31⁄4	2,690	2,325
	16	(32) 0.148 x 31⁄4	3,070	2,655
	24	(36) 0.148 x 31⁄4	3,455	2,990
MSTC52	18	(44) 0.148 x 31⁄4	4,225	3,650
	16	(48) 0.148 x 31⁄4	4,610	3,985
	30	(48) 0.148 x 31⁄4	4,775	4,130
MSTC66	24	(54) 0.148 x 31⁄4	5,375	4,645
10131000	18	(64) 0.148 x 31⁄4	5,850	5,505
	16	(68) 0.148 x 31⁄4	5,850	5,850
	30	(64) 0.148 x 31⁄4	5,850	5,505
MSTC78	24	(72) 0.148 x 31⁄4	5,850	5,850
	18	(76) 0.148 x 31⁄4	5,850	5,850
	24	(14) 0.162 x 2½	1,720	1,500
MST37	18	(20) 0.162 x 2½	2,460	2,140
	16	(22) 0.162 x 2½	2,705	2,355
	24	(26) 0.162 x 2½	3,210	2,780
MST48	18	(32) 0.162 x 2½	3,950	3,425
	16	(34) 0.162 x 2½	4,200	3,640
	30	(34) 0.162 x 2½	4,605	3,995
MST60	24	(40) 0.162 x 21⁄2	5,240	4,700
	18	(46) 0.162 x 2½	6,235	5,405
	30	(48) 0.162 x 21⁄2	6,505	5,640
MST72	24	(54) 0.162 x 2½	6,730	6,345
	18	(62) 0.162 x 2½	6,730	6,475

See footnotes below.

Model	0	Dimer (ir	nsions 1.)	Faster (Tot			Allowable Tension Loads (DF/SP) (SPF/HF)				Code
No.	Ga.	w		Noile (in)	Bo	lts	Nails	Bolts	Nails	Bolts	Ref.
		vv	L	Nails (in.) Qty.		Dia.	(160)	(160)	(160)	(160)	
MST27		21⁄16	27	(30) 0.162 x 2½	4	1⁄2	3,700	2,165	3,210	2,000	
MST37	12	21⁄16	371⁄2	(42) 0.162 x 2½	6	1/2	5,070	3,030	4,495	2,800	
MST48		21⁄16	48	(50) 0.162 x 2½	8	1⁄2	5,310	3,675	5,190	3,395	IBC, FL, LA
MST60	10	21⁄16	60	(68) 0.162 x 2½	10	1/2	6,730	4,490	6,475	4,150	, _, .
MST72	10	21⁄16	72	(68) 0.162 x 2½	10	1⁄2	6,730	4,490	6,475	4,150	

1. See pp. 260–261 for Straps and Ties General Notes.

2. Install bolts or nails as specified by Designer. Bolt and nail values may not be combined.

3. Allowable bolt loads are based on parallel-to-grain loading and minimum member thickness: MST - 21/2".

4. Splitting may be a problem with installations on lumber smaller than 3½"; either fill every nail hole with 0.148" x 1½" nails or fill every other hole with 0.162" x 21/2" nails. Reduce the allowable load based on the size and quantity of fasteners used.

5. Fasteners: Nail dimensions in the table are listed diameter by length. See pp. 21–22 for fastener information.

Straps and Ties

MSTC48B3/MSTC66B3Z

Pre-Bent Straps

The MSTC48B3 and MSTC66B3Z are pre-bent straps designed to transfer tension load from an upper-story shearwall to a beam on the story below.

Material: 14 gauge

Finish: Galvanized; contact Simpson Strong-Tie

Codes: See p. 12 for Code Reference Key Chart

These products are available with additional corrosion protection. For more information, see p. 15.

Min. Wood Beam		F	asteners (in	Allow				
Model No.		Dimension (in.) Beam		<i>(</i>	Tensior	Code		
	Width	Depth	Faaa	Pottom	Studs/ Post	DF/SP	SPF/HF	Ref.
	(min.)	(min.)	Face	Face Bottom		(160)	(160)	
MSTC48B3	3	91⁄4	(12) 0.148 x 3	(4)	(38)	3,975	3,900	IBC,
MSTC66B3Z	31⁄2	111⁄4	(14) 0.148 x 3	0.148 x 3	0.148 x 3	4,490	4,490	FL, LA

1. Using fewer than 38 nails in the studs/post will reduce the allowable load of the connection. To calculate a reduced allowable load, use 199 lb. per nail for DF/SP or 172 lb. per nail for HF/SPF. Minimum length of extent of reduced nails may not be less than 21" as is shown in graphic.

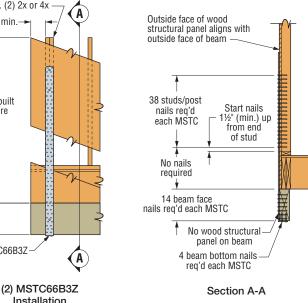
- 2. Nails in studs/post shall be installed symmetrically. Nails may be installed over the entire length of the strap in the studs/post.
- 3. The minimum 3"-wide beam may be made up of two 2x members.
- 4. MSTC48B3 and MSTC66B3Z installed over wood structural panel sheathing up to 1/2" thick achieve 0.85 of table loads.
- 5. PSL beam may be used in lieu of a standard-dimension lumber beam with no load reductions.
- 6. Multiply allowable loads by 1.85 to attain an allowable load for installations where two straps have been installed with a 11/2" clear space between straps.
- 7. Structural composite lumber columns have sides that show either the wide face or the edges of the lumber strands/veneers known as the narrow face. Values in the tables reflect installation into the wide face. See technical bulletin T-C-SCLCLM at strongtie.com for load reductions resulting from narrow-face installations.
- 8. Fasteners: Nail dimensions in the table are listed diameter by length. See pp. 21-22 for fastener information.

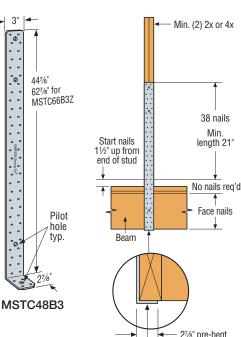
Min. (2) 2x or 4x

•

51/2" min.-

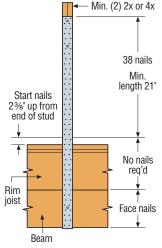
Factory-built


structure


Beam

MSTC66B3Z

Installation



Bottom nails

MSTC48B3 Installation with No Rim Board

MSTC66B3Z Installation with Rim Board

27/8" pre-bent

SIMPSON Strong-1

HDU/DTT

Holdowns SINEERED

This product is preferable to similar connectors because of (a) easier installation, (b) higher loads, (c) lower installed cost, or a combination of these features.

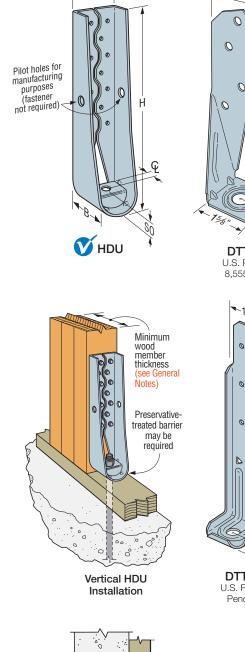
HDU holdowns are pre-deflected during the manufacturing process, virtually eliminating deflection under load due to material stretch. They use Strong-Drive® SDS Heavy-Duty Connector screws which install easily, reduce fastener slip and provide a greater net section when compared to bolts.

The DTT tension ties are designed for lighter-duty holdown applications on single 2x posts. The DTT1Z is installed with nails or Strong-Drive SD Connector screws and the DTT2Z installs easily with the Strong-Drive SDS Heavy-Duty Connector screws (included). The DTT1Z holdowns have been tested for use in designed shearwalls and prescriptive braced wall panels as well as prescriptive wood-deck applications (see p. 289 for deck applications).

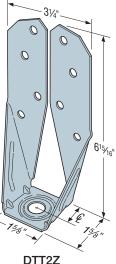
For more information on holdown options, contact Simpson Strong-Tie.

HDU Features:

- Uses Strong-Drive SDS Heavy-Duty Connector screws which install easily, reduce fastener slip and provide a greater net section area of the post compared to bolts
- Strong-Drive SDS Heavy-Duty Connector screws are supplied with the holdowns to ensure proper fasteners are used
- No stud bolts to countersink at openings

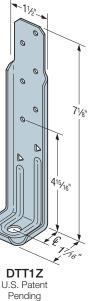

Material: See table

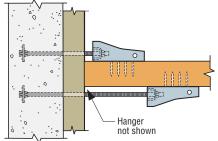
Finish: HDU - galvanized; DTT1Z and DTT2Z - ZMAX® coating; DTT2SS - stainless steel


Installation:

- See Holdown and Tension Tie General Notes on pp. 49-50.
- The HDU requires no additional washer; the DTT requires a standard-cut washer (included with DTT2Z) be installed between the nut and the seat.
- Strong-Drive SDS Heavy-Duty Connector screws install best with a low-speed high-torque drill with a 3%" hex-head driver.
- · Fasteners and crescent washer are included with the holdowns. For replacements, order part no. SDS25212-HDU_. (Fill in the size needed, e.g. HDU2.)

Codes: See p. 12 for Code Reference Key Chart


٠Ŵ



SIMPSON

Strong-Tie

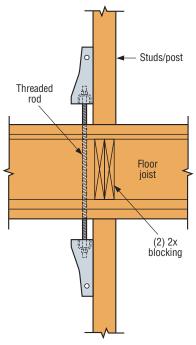
U.S. Patent 8,555,580

Horizontal HDU Offset Installation (plan view) See Holdown and Tension Tie General Notes.

HDU/DTT

Holdowns (cont.)

These products are available with additional corrosion protection. For more information, see p. 15.



SD Many of these products are approved for installation with Strong-Drive[®] SD Connector screws. See pp. 335-337 for more information.

	Model			Di	mensio (in.)	ns			Fasteners (in.)	Minimum Wood	All	owable Tensio (160)	1 Loads	Code
	No.	Ga.	w	Н	В	CL	S0	Anchor Bolt Dia. (in.)	Wood Fasteners	Member Size (in.)	DF/SP	SPF/HF	Deflection at Allowable Load (in.)	Ref.
									(6) SD #9 x 11/2		840	840	0.17	
	DTT1Z	14	1½	71⁄8	17⁄16	3⁄4	3⁄16	3⁄8	(6) 0.148 x 1 ½	1½ x 5½	910	640	0.167	
									(8) 0.148 x 1 ½		910	850	0.167	
SS	DTT2Z								(8) 1⁄4 x 1 1⁄2 SDS	1½ x 3½	1,825	1,800	0.105	
	DITZZ	14	31⁄4	6 ¹⁵ /16	1 5⁄8	¹³ ⁄16	3⁄16	1⁄2	(8) ¼ x 1 ½ SDS	3 x 3½	2,145	1,835	0.128	
SS	DTT2Z-SDS2.5								(8) 1⁄4 x 21⁄2 SDS	3 x 3½	2,145	2,105	0.128	
	HDU2-SDS2.5	14	3	811/16	3¼	1 5⁄16	1%	5⁄8	(6) ¼ x 2½ SDS	3 x 3½	3,075	2,215	0.088	IBC,
	HDU4-SDS2.5	14	3	1015/16	31⁄4	1 5⁄16	1%	5⁄8	(10) ¼ x 2½ SDS	3 x 3½	4,565	3,285	0.114	FL, LA
	HDU5-SDS2.5	14	3	13¾6	3¼	1 5⁄16	1%	5⁄8	(14) ¼ x 2½ SDS	3 x 3½	5,645	4,340	0.115	
										3 x 3½	6,765	5,820	0.11	
	HDU8-SDS2.5	10	3	16%	3½	1 3⁄8	1½	7⁄8	(20) ¼ x 2½ SDS	3½ x 3½	6,970	5,995	0.116	
										31⁄2 x 41⁄2	7,870	6,580	0.113	
	HDU11-SDS2.5	10	3	221/4	3½	13/8	1½	1	(30) ¼ x 2½ SDS	3½ x 5½	9,335	8,030	0.137	
	10011-3032.3	10	5	2274	5 72	178	1 72	I	(30) 74 X Z 72 3D3	31⁄2 x 71⁄4	11,175	9,610	0.137	
										3½ x 5½	10,770	9,260	0.122	—
	HDU14-SDS2.5	7	3	2511/16	3½	1 %16	1 %16	1	(36) ¼ x 2½ SDS	31∕₂x71⁄₄	14,390	12,375	0.177	IBC,
										5½ x 5½	14,445	12,425	0.172	FL, LA

1. HDU14 requires heavy-hex anchor nut to achieve tabulated loads (supplied with holdown).

2. HDU14 loads on 4x6 post are applicable to installation on either the narrow or the wide face of the post.

Typical HDU Tie Between Floors

SIMPSON

Strong-T

SIMPSON

Strong-T

Anchor Designer™ Software Version 2.9.7376.0

Company:	NKH Engineering	Date:	1/25/2021
Engineer:	A.Rishel	Page:	1/5
Project:	Gass Apartment		-
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

 $\begin{array}{l} \mbox{Anchor type: Cast-in-place} \\ \mbox{Material: AB} \\ \mbox{Diameter (inch): 0.500} \\ \mbox{Effective Embedment depth, } h_{ef} (inch): 10.000 \\ \mbox{Anchor category: -} \\ \mbox{Anchor ductility: Yes} \\ \mbox{hmin (inch): 11.88} \\ \mbox{Cmin (inch): 3.00} \\ \mbox{Smin (inch): 3.00} \end{array}$

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB4 (1/2"Ø)

Project description: DTT2Z Anchor Location: Fastening description:

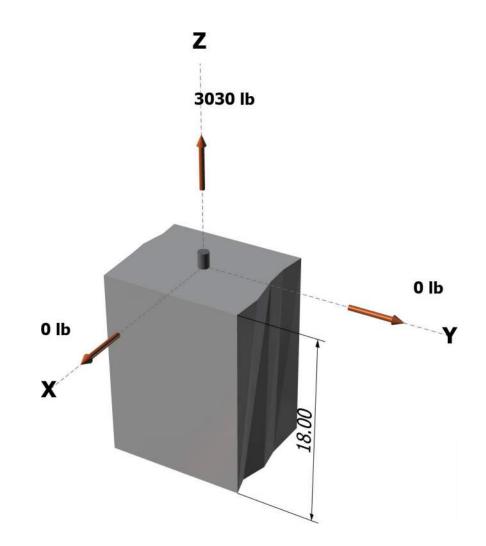
Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f'c (psi): 3500 $\Psi_{c,V}$: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: No Build-up grout pad: No

SIMPSON

Strong-Tie

Anchor Designer™ Software Version 2.9.7376.0

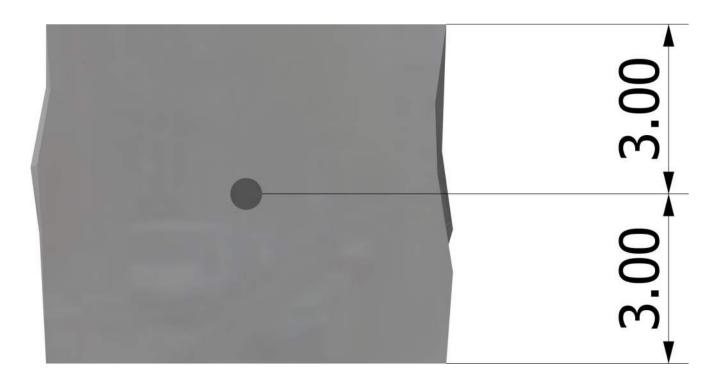

Company:	NKH Engineering	Date:	1/25/2021			
Engineer:	A.Rishel	Page:	2/5			
Project:	Gass Apartment	•				
Address:						
Phone:						
E-mail:						

Load and Geometry Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: No Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Strength level loads:

N_{ua} [lb]: 3030 V_{uax} [lb]: 0 V_{uay} [lb]: 0

<Figure 1>



Anchor Designer™ Software Version 2.9.7376.0

Company:	NKH Engineering	Date:	1/25/2021
Engineer:	A.Rishel	Page:	3/5
Project:	Gass Apartment		
Address:			
Phone:			
E-mail:			

<Figure 2>

SON	Anchor Designer™	Company:	NKH Engineering	Date:	1/25/2021
		Engineer:	A.Rishel	Page:	4/5
ig-Tie	Software	Project:	Gass Apartment		
R	Version 2.9.7376.0	Address:			
0	8	Phone:			
		E-mail:			

3. Resulting Anchor Forces

Stro

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	3030.0	0.0	0.0	0.0
Sum	3030.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 3030

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8235	0.75	6176

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

$N_b = k_c \lambda_a \sqrt{f'_c}$	h _{ef} ^{1.5} (Eq. 17.4.2	2.2a)						
Kc	λa	f′c (psi)	<i>h</i> ef (in)	N₂ (lb)				
24.0	1.00	3500	10.000	44900				
$\phi N_{cb} = \phi \left(A_N \right)$	lc / A _{Nco}) $\Psi_{ed,N} \Psi_{c,l}$	<i>NΨcp,NNb</i> (Sec. 1	7.3.1 & Eq. 17.	4.2.1a)				
A_{Nc} (in ²)	A_{Nco} (in ²)	c _{a,min} (in)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	ϕ	ϕN_{cb} (lb)
189.00	900.00	3.00	0.760	1.00	1.000	44900	0.70	5016

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

$\phi N_{pn} = \phi \Psi_{o}$	$c_{,P}N_{p} = \phi \Psi_{c,P} 8A_{brg} f$	" _c (Sec. 17.3.1,	Eq. 17.4.3.1 8	. 17.4.3.4)
$\Psi_{c,P}$	A_{brg} (in ²)	f′₀ (psi)	ϕ	ϕN_{pn} (lb)
1.0	1.57	3500	0.70	30792

MPSON Anchor Designer™	Company:	NKH Engineering	Date:	1/25/2021
	Engineer:	A.Rishel	Page:	5/5
rong-Tie Software	Project:	Gass Apartment	•	•
Version 2.9.7376.0	Address:			
w.	Phone:			
	E-mail:			

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

$\phi N_{sb} = \phi\{(1 + \phi)\}$	+ <i>c</i> _{a2} / <i>c</i> _{a1})/4}(160 <i>c</i> a	a1√Abrg)λ√f'c (Se	ec. 17.3.1 & E	. 17.4.4.1)			
<i>c</i> a1 (in)	c _{a2} (in)	A _{brg} (in ²)	λa	<i>f'c</i> (psi)	ϕ	ϕN_{sb} (lb)	
3.00	99999.00	1.57	1.00	3500	0.70	24915	

11. Results

S

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (lb)	Design Strength, øNո (lb)	Ratio	Status
Steel	3030	6176	0.49	Pass
Concrete breakout	3030	5016	0.60	Pass (Governs)
Pullout	3030	30792	0.10	Pass
Side-face blowout	3030	24915	0.12	Pass

PAB4 (1/2"Ø) with hef = 10.000 inch meets the selected design criteria.

12. Warnings

- Designer must exercise own judgement to determine if this design is suitable.

SIMPSON

Strong-T

Anchor Designer™ Software Version 2.9.7376.0

Company:	NKH Engineering	Date:	1/25/2021
Engineer:	A.Rishel	Page:	1/5
Project:	Gass Apartment	•	
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place Material: AB Diameter (inch): 0.625 Effective Embedment depth, h_{ef} (inch): 12.000 Anchor category: -Anchor ductility: Yes h_{min} (inch): 14.13 C_{min} (inch): 3.75 S_{min} (inch): 3.75

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB5 (5/8"Ø)

Project description: HDU4 Anchor Location: Fastening description:

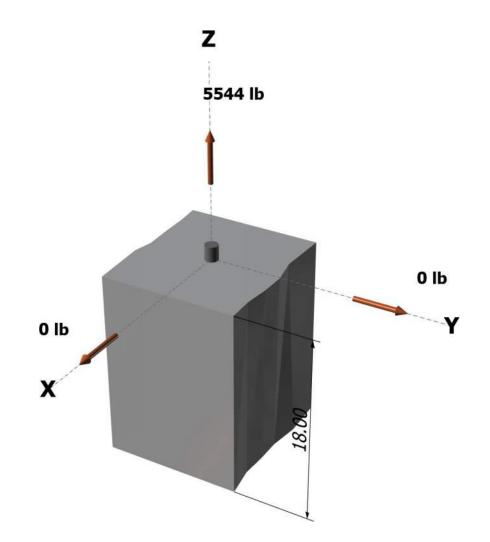
Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f'c (psi): 3500 $\Psi_{c,V}$: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: No Build-up grout pad: No

SIMPSON

Strong-Tie

Anchor Designer™ Software Version 2.9.7376.0

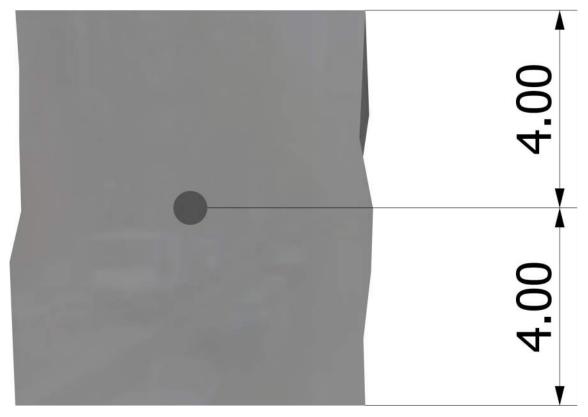

Company:	NKH Engineering	Date:	1/25/2021
Engineer:	A.Rishel	Page:	2/5
Project:	Gass Apartment		
Address:			
Phone:			
E-mail:			

Load and Geometry Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: No Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Strength level loads:

N_{ua} [lb]: 5544 V_{uax} [lb]: 0 V_{uay} [lb]: 0

<Figure 1>



Anchor Designer™ Software Version 2.9.7376.0

Company:	NKH Engineering	Date:	1/25/2021
Engineer:	A.Rishel	Page:	3/5
Project:	Gass Apartment		
Address:			
Phone:			
E-mail:			

<Figure 2>

SON Anchor Designer™	Company:	NKH Engineering	Date:	1/25/2021
	Engineer:	A.Rishel	Page:	4/5
gTie Software	Project:	Gass Apartment	•	•
Version 2.9.7376.0	Address:			
ø	Phone:			
	E-mail:			

3. Resulting Anchor Forces

Stro

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	5544.0	0.0	0.0	0.0
Sum	5544.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 5544

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
13100	0.75	9825	

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

λa	<i>f'c</i> (psi)	h _{ef} (in)	<i>N</i> (lb)					
1.00	3500	12.000	59537					
$\phi N_{cb} = \phi \left(A_N \right)$	c / A _{Nco}) Ψ _{ed,N} Ψ _{c,N}	$\Psi_{cp,N}N_b$ (Sec. 1	7.3.1 & Eq. 17	4.2.1a)				
• (1 2)	A_{Nco} (in ²)	c _{a.min} (in)	$\Psi_{ed.N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	ϕ	ϕN_{cb} (lb)
A _{Nc} (in²)			00,11					

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3) ... AW - 94 F (Soc 1731 Eg 17431817434)

$\varphi N_{pn} = \varphi \Psi_{c,P} N_p = \varphi \Psi_{c,P} \otimes A_{brg} r_c (\text{Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4})$									
$\Psi_{c,P}$	A _{brg} (in ²)	f′₀ (psi)	ϕ	ϕN_{pn} (lb)					
1.0	2.10	3500	0.70	41121	_				

MPSON	Anchor Docignor TM	Company:	NKH Engineering	Date:	1/25/2021
	Anchor Designer™ Software	Engineer:	A.Rishel	Page:	5/5
trong-Tie		Project:	Gass Apartment		•
R	Version 2.9.7376.0	Address:			
0		Phone:			
		E-mail:			

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

$\phi N_{sb} = \phi \{ (1 + c_{a2}/c_{a1})/4 \} (160c_{a1}\sqrt{A_{brg}}) \lambda \sqrt{f_c} \text{ (Sec. 17.3.1 \& Eq. 17.4.4.1)}$								
<i>c</i> a1 (in)	c _{a2} (in)	A_{brg} (in ²)	λa	<i>f'c</i> (psi)	ϕ	ϕN_{sb} (lb)		
4.00	99999.00	2.10	1.00	3500	0.70	38390		

11. Results

S

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

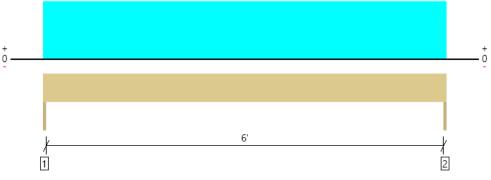
Tension	Factored Load, Nua (lb)	Design Strength, øNո (lb)	Ratio	Status
Steel	5544	9825	0.56	Pass
Concrete breakout	5544	7446	0.74	Pass (Governs)
Pullout	5544	41121	0.13	Pass
Side-face blowout	5544	38390	0.14	Pass

PAB5 (5/8"Ø) with hef = 12.000 inch meets the selected design criteria.

12. Warnings

- Designer must exercise own judgement to determine if this design is suitable.

20-172 Gass Apartment


Roof				
Member Name	Results	Current Solution	Comments	
Typ Header	Passed	2 piece(s) 2 x 8 DF No.2		
Upper Floor				
Member Name	Results	Current Solution	Comments	
Dropped Beam at Walkway	Passed	1 piece(s) 4 x 8 DF No.2		
Garage Header	Passed	1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam		
Typ Header	Passed	2 piece(s) 2 x 8 DF No.2		
Existing Roof Joist @ New Deck	Passed	1 piece(s) 2 x 12 DF No.2 @ 16" OC		
Cantilevered Floor Edge Girders	Passed	1 piece(s) 5 1/2" x 18" 24F-V4 DF Glulam		
Cantilevered Floor Center Girder	Failed	1 piece(s) 5 1/2" x 18" 24F-V4 DF Glulam The CCQ66SDS2.5 along with the MSTI72 strap over the beam to the post resist the uplift at the support approved by EOR	An excessive uplift of -10194 lbs at support located at 14' 8" failed this product.	
Cantilevered Floor Beam @ Deck	Passed	1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam		
Main Floor	C			
Member Name	Results	Current Solution	Comments	
Typ Joist	Passed	1 piece(s) 2 x 10 DF No.2 @ 16" OC		
Typ Drop Beam	Passed	1 piece(s) 6 x 10 DF No.2		

Roof, Typ Header 2 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1580 @ 0	2813 (1.50")	Passed (56%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1211 @ 8 3/4"	3002	Passed (40%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	2468 @ 3' 1 1/2"	2720	Passed (91%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.070 @ 3' 1 1/2"	0.208	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.114 @ 3' 1 1/2"	0.313	Passed (L/659)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	603	781	977	1580	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	603	781	977	1580	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 3" o/c	
Bottom Edge (Lu)	6' 3" o/c	

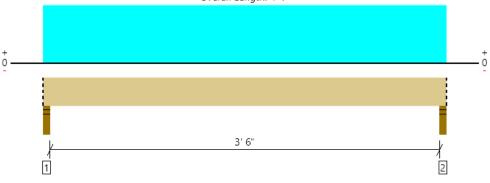
•Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	5.5			
1 - Uniform (PSF)	0 to 6' 3"	12' 6"	15.0	20.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Upper Floor, Dropped Beam at Walkway 1 piece(s) 4 x 8 DF No.2

Overall Length: 4' 1"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2484 @ 2"	7656 (3.50")	Passed (32%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1394 @ 10 3/4"	3045	Passed (46%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2138 @ 2' 1/2"	2989	Passed (72%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.022 @ 2' 1/2"	0.094	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.030 @ 2' 1/2"	0.188	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports					
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories			
1 - Stud wall - DF	3.50"	3.50"	1.50"	687	1797	2484	Blocking			
2 - Stud wall - DF	3.50"	3.50"	1.50"	687	1797	2484	Blocking			
 Blocking Panels are assumed to carry no load 	Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.									

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 1" o/c	
Bottom Edge (Lu)	4' 1" o/c	

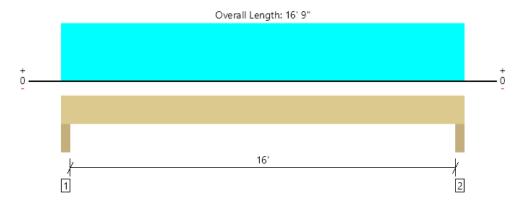
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 4' 1"	N/A	6.4		
1 - Uniform (PSF)	0 to 4' 1" (Front)	22'	15.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Upper Floor, Garage Header

1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4179 @ 3"	16088 (4.50")	Passed (26%)		1.0 D + 1.0 L (All Spans)
Shear (Ibs)	3556 @ 1' 3"	10203	Passed (35%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	16472 @ 8' 4 1/2"	20213	Passed (81%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.493 @ 8' 4 1/2"	0.542	Passed (L/396)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.820 @ 8' 4 1/2"	0.813	Passed (L/238)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 16' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Snow	Factored	Accessories
1 - Trimmer - DF	4.50"	4.50"	1.50"	1667	2513	168	209	4179	None
2 - Trimmer - DF	4.50"	4.50"	1.50"	1667	2513	168	209	4179	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	16' 9" o/c	
Bottom Edge (Lu)	16' 9" o/c	

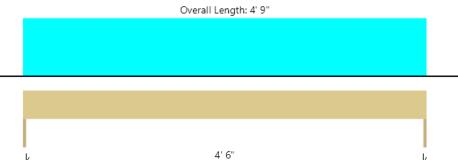
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 16' 9"	N/A	14.0				
1 - Uniform (PSF)	0 to 16' 9"	3'	15.0	40.0	-	-	Floor
2 - Uniform (PSF)	0 to 16' 9"	3'	15.0	60.0	-	-	Balcony
3 - Uniform (PSF)	0 to 16' 9"	1'	15.0	-	20.0	25.0	Roof
4 - Uniform (PSF)	0 to 16' 9"	8'	10.0	-	-	-	Wall

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

9/1/2023 4:08:18 PM UTC ForteWEB v3.6, Engine: V8.3.1.5, Data: V8.1.4.1 File Name: 20-172 Gass Apartment Page 4 / 11

Upper Floor, Typ Header 2 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	
Member Reaction (lbs)	1509 @ 0	2813 (1.50")	Passed (54%)		1.0 D + 1.0 S (All Spans)	
Shear (lbs)	1046 @ 8 3/4"	3002	Passed (35%)	1.15	1.0 D + 1.0 S (All Spans)]
Moment (Ft-lbs)	1792 @ 2' 4 1/2"	2720	Passed (66%)	1.15	1.0 D + 1.0 S (All Spans)]
Live Load Defl. (in)	0.023 @ 2' 4 1/2"	0.158	Passed (L/999+)		1.0 D + 1.0 S (All Spans)	1
Total Load Defl. (in)	0.048 @ 2' 4 1/2"	0.237	Passed (L/999+)		1.0 D + 1.0 S (All Spans)	1

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

0

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

0

1

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Snow	Factored	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	767	190	594	742	1509	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	767	190	594	742	1509	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 9" o/c	
Bottom Edge (Lu)	4' 9" o/c	

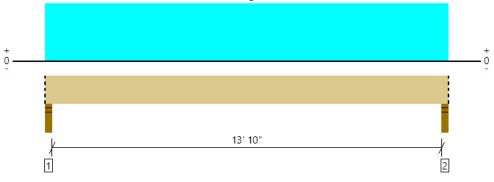
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 4' 9"	N/A	5.5				
1 - Uniform (PSF)	0 to 4' 9"	12' 6"	15.0	-	20.0	25.0	Roof
2 - Uniform (PSF)	0 to 4' 9"	2'	15.0	40.0	-	-	Floor
3 - Uniform (PSF)	0 to 4' 9"	10'	10.0	-	-	-	Wall

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Upper Floor, Existing Roof Joist @ New Deck 1 piece(s) 2 x 12 DF No.2 @ 16" OC

Overall Length: 14' 5"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	721 @ 2 1/2"	3281 (3.50")	Passed (22%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	598 @ 1' 2 3/4"	2025	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2450 @ 7' 2 1/2"	2729	Passed (90%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.243 @ 7' 2 1/2"	0.350	Passed (L/692)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.304 @ 7' 2 1/2"	0.700	Passed (L/553)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.50"	144	577	721	Blocking
2 - Stud wall - DF	3.50"	3.50"	1.50"	144	577	721	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	4' 3" o/c						
Bottom Edge (Lu)	14' 5" o/c						

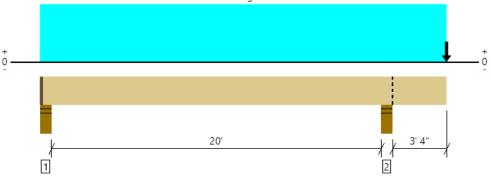
Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 14' 5"	16"	15.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Upper Floor, Cantilevered Floor Edge Girders 1 piece(s) 5 1/2" x 18" 24F-V4 DF Glulam

Overall Length: 24' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	13636 @ 20' 8 1/4"	18906 (5.50")	Passed (72%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	6370 @ 18' 11 1/2"	17490	Passed (36%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	31073 @ 9' 10 3/8"	57189	Passed (54%)	1.00	1.0 D + 1.0 L (Alt Spans)
Neg Moment (Ft-Ibs)	-21815 @ 20' 8 1/4"	52260	Passed (42%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.385 @ 10' 6 1/8"	0.509	Passed (L/634)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.466 @ 10' 3 1/4"	1.018	Passed (L/524)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

Upward deflection on right cantilever exceeds overhang deflection criteria.

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 0.96 that was calculated using length L = 19' 3/4".

• Critical negative moment adjusted by a volume/size factor of 0.99 that was calculated using length L = 14' 13/16".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length				Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - DF	5.50"	4.00"	1.94"	1700	5045/-90	-630	6745	1 1/2" Rim Board
2 - Stud wall - DF	5.50"	5.50"	3.97"	5405	6745	4230	13636	Blocking
Rim Board is assumed to carry all loads applie	ed directly abo	ove it, bypassi	ng the memb	er being desig	aned.			

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	24' 2" o/c	
Bottom Edge (Lu)	24' 2" o/c	
	L	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	1 1/2" to 24' 3"	N/A	24.1			
1 - Uniform (PSF)	0 to 24' 3" (Front)	12'	15.0	40.0	-	Floor Load
2 - Point (lb)	24' 3" (Front)	N/A	2160	-	3600	

Weyerhaeuser Notes

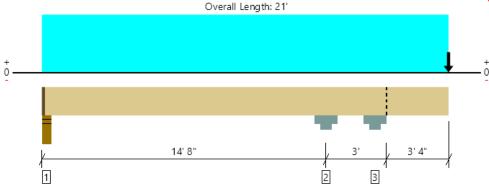
Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Nabil Kausal-Hayes
 NKH Engineering

 (206) 601-9728
 nabil@nkhengineering.com


9/1/2023 4:08:18 PM UTC ForteWEB v3.6, Engine: V8.3.1.5, Data: V8.1.4.1 File Name: 20-172 Gass Apartment Page 7 / 11

Upper Floor, Cantilevered Floor Center Girder 1 piece(s) 5 1/2" x 18" 24F-V4 DF Glulam

An excessive uplift of -10194 lbs at support located at 14' 8" failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	24198 @ 17' 2 1/2"	39325 (11.00")	Passed (62%)		1.0 D + 0.75 L + 0.75 S (Adj Spans)
Shear (lbs)	13152 @ 16' 7 1/2"	20114	Passed (65%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	16926 @ 6' 5/16"	59400	Passed (28%)	1.00	1.0 D + 1.0 L (Alt Spans)
Neg Moment (Ft-Ibs)	-36694 @ 17' 2 1/2"	52656	Passed (70%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.062 @ 21'	0.200	Passed (2L/999+)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
Total Load Defl. (in)	0.107 @ 21'	0.379	Passed (2L/848)		1.0 D + 0.75 L + 0.75 S (Alt Spans)

Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (0.2") and TL (2L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 11' 6 11/16".

• Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 1 3/8".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length				Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - DF	4.50"	3.00"	1.74"	1816	4294	112	6110	1 1/2" Rim Board
2 - Column Cap - steel	11.00"	11.00"	3.51"	-941	13505/- 1260	-9253	12564/- 10194	None
3 - Column Cap - steel	11.00"	11.00"	6.77"	8718	5800/-5376	14841	24198	Blocking

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	20' 11" o/c				
Bottom Edge (Lu)	20' 11" o/c				

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	1 1/2" to 21'	N/A	24.1			
1 - Uniform (PSF)	0 to 21' (Front)	18'	15.0	40.0	-	Floor Load
2 - Point (lb)	21' (Top)	N/A	3420	-	5700	

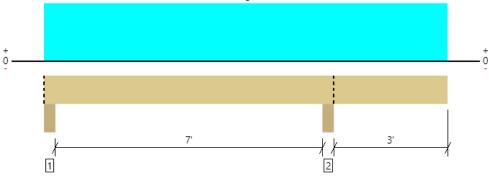
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

9/1/2023 4:08:18 PM UTC ForteWEB v3.6, Engine: V8.3.1.5, Data: V8.1.4.1 File Name: 20-172 Gass Apartment Page 8 / 11


System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

PASSED

4 Upper Floor, Captilevered Floor Beam @ Deck (1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

Overall Length: 10' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2091 @ 7' 8 1/4"	19663 (5.50")	Passed (11%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	935 @ 6' 8 1/2"	8745	Passed (11%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	1618 @ 3' 9 3/16"	14850	Passed (11%)	1.00	1.0 D + 1.0 L (Alt Spans)
Neg Moment (Ft-Ibs)	-1431 @ 7' 8 1/4"	11447	Passed (13%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.028 @ 10' 11"	0.215	Passed (2L/999+)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.029 @ 10' 11"	0.323	Passed (2L/999+)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 6' 10 3/8".

• Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 4° 7 3/4".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Column - DF	5.50"	5.50"	1.50"	312	722/-128	91	1034	Blocking
2 - Column - DF	5.50"	5.50"	1.50"	720	1371	190	2091	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	10' 11" o/c				
Bottom Edge (Lu)	10' 11" o/c				
Maximum allowable bracing intervals based on applied load.					

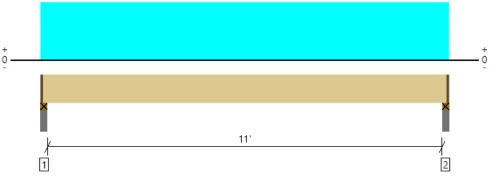
			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 10' 11"	N/A	12.0			
1 - Uniform (PSF)	0 to 10' 11" (Front)	1'	15.0	-	25.0	Roof Load
2 - Uniform (PSF)	0 to 10' 11" (Front)	4' 6"	15.0	40.0	-	Floor Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Job Notes Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com


Weyerhaeuser

9/27/2023 1:04:34 AM UTC ForteWEB v3.6, Engine: V8.3.1.5, Data: V8.1.4.1 File Name: 20-172 Gass Apartment Page 9 / 11

Main Floor, Typ Joist 1 piece(s) 2 x 10 DF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	493 @ 2 1/2"	2109 (2.25")	Passed (23%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	410 @ 1' 3/4"	1665	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	1351 @ 5' 9 1/2"	2029	Passed (67%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.147 @ 5' 9 1/2"	0.279	Passed (L/909)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.192 @ 5' 9 1/2"	0.558	Passed (L/700)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Plate on concrete - DF	3.50"	2.25"	1.50"	116	386	502	1 1/4" Rim Board
2 - Plate on concrete - DF	3.50"	2.25"	1.50"	116	386	502	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	9' o/c				
Bottom Edge (Lu)	11' 5" o/c				
Maximum allowable bracing intervals based on applied load					

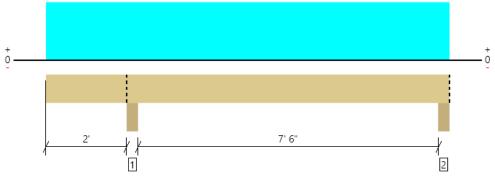
Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 11' 7"	16"	15.0	50.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Main Floor, Typ Drop Beam 1 piece(s) 6 x 10 DF No.2

Overall Length: 10' 5"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4714 @ 2' 2 3/4"	18906 (5.50")	Passed (25%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2347 @ 3' 3"	5922	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	5396 @ 6' 2 13/16"	6032	Passed (89%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.092 @ 6' 1 7/8"	0.262	Passed (L/999+)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.116 @ 6' 2 3/16"	0.393	Passed (L/810)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.

Applicable calculations are based on NDS.

					. ,	j .
Total	Available	Required	Dead	Floor Live	Factored	Accessories
5.50"	5.50"	1.50"	1154	3560	4714	Blocking
5.50"	5.50"	1.50"	703	2343/-174	3046	Blocking
É	5.50" 5.50"	5.50" 5.50" 5.50" 5.50"	5.50" 5.50" 1.50" 5.50" 5.50" 1.50"	5.50" 5.50" 1.50" 1154 5.50" 5.50" 1.50" 703	5.50" 5.50" 1.50" 1154 3560 5.50" 5.50" 1.50" 703 2343/-174	5.50" 5.50" 1.50" 1154 3560 4714

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	10' 5" o/c	
Bottom Edge (Lu)	10' 5" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 10' 5"	N/A	13.2		
1 - Uniform (PSF)	0 to 10' 5" (Top)	11'	15.0	50.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes	
NKH Engineering (206) 601-9728	
nabil@nkhengineering.com	

Printed: 29 DEC 2020, 11:51AN File: Posts & Footings.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17

Wood Column

Lic. # : KW-06012717

DESCRIPTION: Walk Way Posts

Code References

Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : ASCE 7-10

General Information

General Inform	aliun						
Analysis Method End Fixities Overall Column H	Top & Bo leight	e Stress Des ottom Pinned	•	Wood Section Name Wood Grading/Manuf. Wood Member Type	6x6 Graded Sawn	Lumber	
(Used for Wood Species Wood Grade Fb + Fb - Fc - Prll Fc - Perp	non-slender cal Douglas Fir No.2 900 psi 1350 psi	-	180 psi 575 psi 31.21 pcf	Exact Width Exact Depth Area Ix Iy	5.50 in A 5.50 in 30.250 in ² 76.255 in ⁴ 76.255 in ⁴	llow Stress Modification Factor Cf or Cv for Bending Cf or Cv for Compression Cf or Cv for Tension Cm : Wet Use Factor Ct : Temperature Factor	rs 1.0 1.0 1.0 1.0 1.0
E : Modulus of Ela	625 psi asticity Basic Minimum	x-x Bending 1600 580	y-y Bending 1600 580	Axial 1600 ksi Brace condition for de X-X (width) axis :	· · ·	Cfu : Flat Use Factor Kf : Built-up columns Use Cr : Repetitive ?) along columns : ngth for buckling ABOUT Y-Y Axi	1.0 1.0 NDS 15.3 No s = 10 ft, K = 1.0
Applied Loads Column self we AXIAL LOADS		78.675 lbs * [Dead Load Factor		: Unbraced Le	ngth for buckling ABOUT X-X Axi ad Factors will be applied fo	s = 10 ft, K = 1.0

Axial Load at 12.0 ft, D = 2.40, L = 2.320, S = 3.330 k

DESIGN SUMMARY

Bending & Shear Check Results

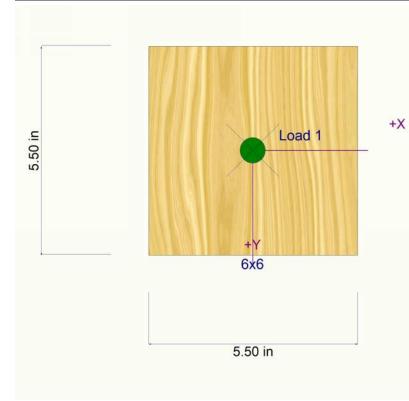
Denuing & Onear Oneok Results					
PASS Max. Axial+Bending Stress Ratio =	0.2712 : 1	Maximum SERVIC	E Lateral Load	Reactions	
Load Combination	+D+0.750L+0.750S	Top along Y-Y	0.0 k	Bottom along Y-Y	0.0 k
Governing NDS Forumla	Comp Only, fc/Fc'	Top along X-X	0.0 k	Bottom along X-X	0.0 k
Location of max.above base At maximum location values are	0.0 ft	Maximum SERVICE Lo	oad Lateral Deflecti	ons	
	0.740.6	Along Y-Y	0.0 in at	0.0 ft above base	
Applied Axial	6.716 k	for load com			
Applied Mx Applied My	0.0 k-ft 0.0 k-ft	Along X-X	0.0 in at	0.0 ft above base	
Fc : Allowable	818.78 psi	for load com			
	010.70 ps	Other Factors used to	calculate allowable	e stresses	
PASS Maximum Shear Stress Ratio =	0.0 : 1			Bending Compression	Tension
Load Combination	+0.60D				
Location of max.above base	12.0 ft				
Applied Design Shear	0.0 psi				
Allowable Shear	288.0 psi				

Load Combination Results

<u>Maximum Axial + Bend</u>						ing Stress Ratios Maximum Shear Ratios				
Load Combination	С _D	СР		Stress Ratio	Status	Location	Stress Ratio) St	atus I	Location
D Only	0.900	0.621		0.1086	PASS	0.0 ft	0.0	P.	ASS	12.0 ft
+D+L	1.000	0.581		0.2023	PASS	0.0 ft	0.0	P.	ASS	12.0 ft
+D+S	1.150	0.527		0.2345	PASS	0.0 ft	0.0	P.	ASS	12.0 ft
+D+0.750L	1.250	0.496		0.1666	PASS	0.0 ft	0.0	P.	ASS	12.0 ft
+D+0.750L+0.750S	1.150	0.527		0.2712	PASS	0.0 ft	0.0	P.	ASS	12.0 ft
+0.60D	1.600	0.408		0.05584	PASS	0.0 ft	0.0	P	ASS	12.0 ft
Maximum Reactions							Note: Only no	n-zero	reaction	ns are listed
	X-X Axis R	eaction	k Y-Y Axis Reaction Axial Reaction			My - End Moments	k-ft	Mx - Ei	nd Moments	
Load Combination	@ Base	@ Top		@ Base @ T	Гор	@ Base	@ Base @ To	р	@ Base	e @ Top
D Only						2.479				

Wood Column

Printed: 29 DEC 2020, 11:51Alv File: Posts & Footings.ecć Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17


Lic. # : KW-06012717

DESCRIPTION: Walk Way Posts

	X-X Axis Reaction	k	Y-Y Axis	Reaction	Axial Read	tion	My - End M	loments	k-ft	Mx - End	Moments
Load Combination	@ Base @ To	р	@ Base	@ Top	@ Base	e	@ Base	@ To	р	@ Base	@ Top
+D+L					4.7	'99					
+D+S					5.8	809					
+D+0.750L					4.2	19					
+D+0.750L+0.750S					6.7	'16					
+0.60D					1.4	87					
L Only					2.3	320					
S Only					3.3	30					
Maximum Deflections for I	Load Combinations										
Load Combination	Max. X-X Deflection	Distan	се	Max. Y-Y	Deflection	Distance	<u>;</u>				
D Only	0.0000 in	0.0	00 ft	C	.0000 in	0.00) ft				
	0.0000 1										

DOIlly	0.0000		0.000	п	0.0000	111	0.000	п
+D+L	0.0000	in	0.000	ft	0.0000	in	0.000	ft
+D+S	0.0000	in	0.000	ft	0.0000	in	0.000	ft
+D+0.750L	0.0000	in	0.000	ft	0.0000	in	0.000	ft
+D+0.750L+0.750S	0.0000	in	0.000	ft	0.0000	in	0.000	ft
+0.60D	0.0000	in	0.000	ft	0.0000	in	0.000	ft
L Only	0.0000	in	0.000	ft	0.0000	in	0.000	ft
S Only	0.0000	in	0.000	ft	0.0000	in	0.000	ft

Sketches

Project Title: Gass Apartment Engineer: NKH Project ID: 20-172 Project Descr:

Wood Column

Printed: 25 JAN 2021, 5:56PM File: Posts & Footings.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17

Lic. # : KW-06012717 DESCRIPTION: Typ Stud

Code References

Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : ASCE 7-10

General Information

Analysis Method End Fixities	: Allowable Top & Bo	e Stress Des ottom Pinned	Ĩ	Wood Section Name Wood Grading/Manuf.	2x6 Graded	Lumber	
Overall Column H	0		14 ft	Wood Member Type	Sawn		
Wood Species Wood Grade Fb + Fb - Fc - Prll Fc - Perp E : Modulus of Ela	non-slender calo Douglas Fir No.2 900 psi 1350 psi 625 psi asticity Basic	- Larch Fv Ft Density x-x Bending	180 psi 575 psi 31.21 pcf y-y Bending	ly Axial	1.50 in A 5.50 in 8.250 in ² 20.797 in ⁴ 1.547 in ⁴	Ilow Stress Modification Fact Cf or Cv for Bending Cf or Cv for Compression Cf or Cv for Tension Cm : Wet Use Factor Ct : Temperature Factor Cfu : Flat Use Factor Kf : Built-up columns	1.30 1.10 1.30 1.0 1.0 1.0 1.0 NDS 15.
	Minimum	1600 580	1600 580	1600 ksi Brace condition for def X-X (width) axis : Y-Y (depth) axis :	Fully braced	Use Cr : Repetitive ? along columns : against buckling ABOUT Y-Y A: against buckling ABOUT X-X A:	
Applied Loads				Service load	ls entered. Load	d Factors will be applied fo	r calculations.
AXIAL LOADS Axial Load BENDING LOA	at 14.0 ft, D = 0 ADS Jniform Load cr	.40, Lr = 0.332	Dead Load Factor 20, L = 0.0530, S N = 0.0530 k/ft				
	al+Bending Stress mbination	s Ratio =	0.6608 +D+0.60W , NDS Eq. 3.9-3	Top along Y-Y	Lateral Load F 0.3710 k 0.0 k).3710 k 0.0 k
Location At maxin	num location values ied Axial ied Mx	9	0.4250 0.7791	ft Maximum SERVICE Load Along Y-Y k for load combin	d Lateral Deflection 1.392 in at	0	

Fc : Allowable 2,376.0 psi PASS Maximum Shear Stress Ratio = 0.1405 : 1 Load Combination +D+0.60W Location of max.above base 14.0 ft Applied Design Shear 40.473 psi Allowable Shear 288.0 psi

Maximum SERVICE	Load Lateral Def	lectio	ns			
Along Y-Y	1.392 in	at	7.047	ft	above base	
for load co	mbination : W Or	ıly				
Along X-X	0.0 in	at	0.0	ft	above base	
for load co	mbination : n/a					
Other Factors used	to calculate allov	vable	stresses			
			<u>Bending</u>	<u>C</u> (ompression	Tension

Load Combination Results

			Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios				
Load Combination	С _D	СР	Stress Ratio	Status	Location	Stress Ratio	Status	Location		
D Only	0.900	1.000	0.03855	PASS	0.0 ft	0.0	PASS	14.0 ft		
+D+L	1.000	1.000	0.03902	PASS	0.0 ft	0.0	PASS	14.0 ft		
+D+Lr	1.250	1.000	0.04943	PASS	0.0 ft	0.0	PASS	14.0 ft		
+D+S	1.150	1.000	0.05970	PASS	0.0 ft	0.0	PASS	14.0 ft		
+D+0.750Lr+0.750L	1.250	1.000	0.04661	PASS	0.0 ft	0.0	PASS	14.0 ft		
+D+0.750L+0.750S	1.150	1.000	0.05513	PASS	0.0 ft	0.0	PASS	14.0 ft		
+D+0.60W	1.600	1.000	0.6608	PASS	6.953 ft	0.1405	PASS	14.0 ft		
+D+0.750Lr+0.750L+0.450W	1.600	1.000	0.4966	PASS	6.953 ft	0.1054	PASS	14.0 ft		
+D+0.750L+0.750S+0.450W	1.600	1.000	0.4968	PASS	6.953 ft	0.1054	PASS	14.0 ft		

Wood Column

Printed: 25 JAN 2021, 5:56PM File: Posts & Footings.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17

Lic. # : KW-06012717 DESCRIPTION: Typ Stud

Load Combination Results

Load Combination	C _D	С _Р		aximum Ax Stress Rati	<u>ial + Bendin</u> o Status			Stre	<u>Maxim</u> ss Ratio	<u>um She</u> Sta		<u>ios</u> Location
+0.60D+0.60W +0.60D	1.600 1.600	1.000		0.6605 0.01301			53 ft).0 ft	0.	1405 0.0		ISS ISS	14.0 ft 14.0 ft
Maximum Reactions								Note: O	nly non-	zero re	action	s are listed.
	X-X Axis R	eaction	k Y	/-Y Axis Re	action A	xial Reactior	۱	My - End Mo	oments	k-ft	Mx - E	nd Moments
Load Combination	@ Base	@ Top	6	Base @	@ Top	@ Base		@ Base	@ Top		@ Base	e @Top
D Only						0.425						
+D+L						0.478						
+D+Lr						0.757						
+D+S						0.841						
+D+0.750Lr+0.750L						0.714						
+D+0.750L+0.750S						0.777						
+D+0.60W				0.223	0.223	0.425						
+D+0.750Lr+0.750L+0.450W				0.167	0.167	0.714						
+D+0.750L+0.750S+0.450W				0.167	0.167	0.777						
+0.60D+0.60W				0.223	0.223	0.255						
+0.60D						0.255						
Lr Only						0.332						
L Only						0.053						
S Only						0.416						
W Only				0.371	0.371							
Maximum Deflections for Load Com	binations											
	/lax. X-X Defle	ection	Distance		Max. Y-Y Def	ection	Distance	!				
D Only	0.0000	in	0.000	ft	0.000) in	0.000	ft				
+D+L	0.0000	in	0.000	ft	0.000) in	0.000					
+D+Lr	0.0000	in	0.000	ft	0.000) in	0.000	ft				
+D+S	0.0000	in	0.000	ft	0.000) in	0.000	ft				
+D+0.750Lr+0.750L	0.0000	in	0.000	ft	0.000) in	0.000	ft				
+D+0.750L+0.750S	0.0000	in	0.000		0.000		0.000					
+D+0.60W	0.0000	in	0.000		0.8350		7.047					
+D+0.750Lr+0.750L+0.450W		in	0.000		0.6262		7.047	ft				
+D+0.750L+0.750S+0.450W	0.0000	in	0.000		0.6262		7.047					
	0.0000							0				
+0.60D+0.60W	0.0000	in	0.000	ft	0.8350) in	7.047	ft				
+0.60D+0.60W +0.60D		in in	0.000 0.000		0.8350		7.047 0.000					
	0.0000			ft) in		ft				
+0.60D Lr Only	0.0000 0.0000	in	0.000	ft ft	0.000) in) in	0.000	ft ft				
+0.60D	0.0000 0.0000 0.0000	in in	0.000 0.000	ft ft	0.000 0.000) in) in) in	0.000 0.000	ft ft ft				

Wood Column

Lic. # : KW-06012717

Printed: 25 JAN 2021, 5:59PM File: Posts & Footings.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17

DESCRIPTION: Trimmer @ Garage Header

Code References

Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : ASCE 7-10

General Information

Analysis Method End Fixities Overall Column H	Top & Bo Height	e Stress Des ottom Pinned	•		Wood Section Name Wood Grading/Manuf. Wood Member Type	3-2x6 Graded Sawn	Lumber	
(Used for Wood Species Wood Grade Fb + Fb - Fc - Prll Fc - Perp E : Modulus of E	Douglas Fir No.2 900.0 psi 900.0 psi 1,350.0 psi 625.0 psi lasticity Basic Minimum		180.0 p 575.0 p 31.210 p y-y Bending 1,600.0 580.0	si	Exact Width Exact Depth Area Ix Iy D ksi Brace condition for de X-X (width) axis : Y-Y (depth) axis :	5.50 in 24.750 in ² 62.391 in ⁴ 41.766 in ⁴	Ilow Stress Modification Fact Cf or Cv for Bending Cf or Cv for Compression Cf or Cv for Tension Cm : Wet Use Factor Ct : Temperature Factor Cfu : Flat Use Factor Kf : Built-up columns Use Cr : Repetitive ? along columns : against buckling ABOUT Y-Y Av against buckling ABOUT X-X Av	1.30 1.10 1.30 1.0 1.0 1.0 NDS 15.3 No
Applied Loads	5				Service load	s entered. Loa	d Factors will be applied for	calculations.
AXIAL LOADS Axial Load BENDING LO	at 10.0 ft, D = 1 ADS Uniform Load cr	.670, Lr = 0.10	580, L = 2.50, S		k			
Load Co Governi Location	ar Check Resu ial+Bending Stress ombination ing NDS Forumla 1 (n of max.above base imum location values	Ratio = Comp + Mxx	0.748 +D+0.60 , NDS Eq. 3.9- 4.96	W -3	Maximum SERVICE Top along Y-Y Top along X-X Maximum SERVICE Loa	1.765 k 0.0 k d Lateral Deflecti	Bottom along Y-Y Bottom along X-X ons	1.765 k 0.0 k
Арр Арр	lied Axial lied Mx lied My			24 k I7 k-ft .0 k-ft	0	0.8042 in at nation : W Only 0.0 in at	5.034 ft above base 0.0 ft above base	

for load combination : n/aOther Factors used to calculate allowable stresses

Bending	Compression	Tension

Load Combination Results

PASS Maximum Shear Stress Ratio =

Applied Design Shear

Location of max.above base

Load Combination

Allowable Shear

			Maximum Axial	+ Bending	Stress Ratios	Maximu	m Shear Ra	atios
Load Combination	С _D	СР	Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	1.000	0.05211	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+L	1.000	1.000	0.1149	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+Lr	1.250	1.000	0.04117	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+S	1.150	1.000	0.04575	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750Lr+0.750L	1.250	1.000	0.08107	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750L+0.750S	1.150	1.000	0.08887	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.60W	1.600	1.000	0.7489	PASS	4.966 ft	0.2229	PASS	10.0 ft
+D+0.750Lr+0.750L+0.450W	1.600	1.000	0.5650	PASS	4.966 ft	0.1671	PASS	10.0 ft
+D+0.750L+0.750S+0.450W	1.600	1.000	0.5651	PASS	4.966 ft	0.1671	PASS	10.0 ft

0.2229:1

10.0 ft

64.182 psi

288.0 psi

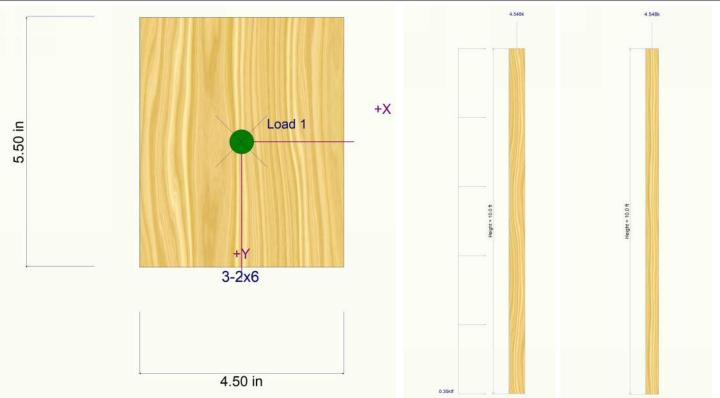
+D+0.60W

Wood Column

Printed: 25 JAN 2021, 5:59PM File: Posts & Footings.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17

Lic. # : KW-06012717

DESCRIPTION: Trimmer @ Garage Header


Load Combination Results

Load Combination	C _D	С _Р		aximum Ax Stress Rat		<u>ling Stress</u> us Loca	<u>Ratios</u> ation	Str	<u>Maxin</u> ess Ratio	<u>num Sh</u> Sta	<u>ear Ra</u> atus	<u>tios</u> Location
+0.60D+0.60W +0.60D	1.600 1.600	1.000 1.000		0.748 0.0175			.966 ft 0.0 ft	0	.2229 0.0		ASS ASS	10.0 ft 10.0 ft
Maximum Reactions								Note: (Only non-	-zero re	eactior	is are listed.
	X-X Axis R	eaction	k '	Y-Y Axis Re	eaction	Axial React	ion	My - End N		k-ft		End Moments
Load Combination	@ Base	@ Top	0	🦻 Base 🛛	@ Top	@ Base		@ Base	@ Top)	@ Bas	е @ Тор
D Only						1.72						
+D+L						4.22	24					
+D+Lr						1.89	92					
+D+S						1.93	34					
+D+0.750Lr+0.750L						3.72	25					
+D+0.750L+0.750S						3.7	56					
+D+0.60W				1.059	1.059	1.72	24					
+D+0.750Lr+0.750L+0.450W				0.794	0.794	3.72	25					
+D+0.750L+0.750S+0.450W				0.794	0.794	3.7	56					
+0.60D+0.60W				1.059	1.059	1.03	34					
+0.60D						1.03	34					
Lr Only						0.10	68					
L Only						2.50	00					
S Only						0.2	10					
W Only				1.765	1.765							
Maximum Deflections for Load Com	binations											
Load Combination	Max. X-X Defle	ction	Distance		Max. Y-Y C	eflection	Distance	!				
D Only	0.0000	in	0.000	ft	0.00	000 in	0.000	ft				
+D+L	0.0000	in	0.000	ft	0.00	000 in	0.000	ft				
+D+Lr	0.0000	in	0.000	ft	0.00	000 in	0.000	ft				
+D+S	0.0000	in	0.000	ft	0.00	000 in	0.000	ft				
+D+0.750Lr+0.750L	0.0000	in	0.000	ft	0.00	000 in	0.000	ft				
	0.0000											
+D+0.750L+0.750S	0.0000	in	0.000		0.00		0.000	ft				
+D+0.750L+0.750S +D+0.60W		in in		ft		000 in						
	0.0000		0.000	ft ft	0.00 0.48	000 in	0.000	ft				
+D+0.60W	0.0000 0.0000	in	0.000 0.000	ft ft ft	0.00 0.48 0.36	000 in 325 in 619 in	0.000 5.034	ft ft				
+D+0.60W +D+0.750Lr+0.750L+0.450W	0.0000 0.0000 0.0000	in in	0.000 0.000 0.000	ft ft ft ft	0.00 0.48 0.36	000 in 325 in 519 in 519 in	0.000 5.034 5.034	ft ft ft				
+D+0.60W +D+0.750Lr+0.750L+0.450W +D+0.750L+0.750S+0.450W	0.0000 0.0000 0.0000 0.0000	in in in	0.000 0.000 0.000 0.000	ft ft ft ft	0.00 0.48 0.30 0.30	000 in 325 in 619 in 619 in 325 in	0.000 5.034 5.034 5.034	ft ft ft ft				
+D+0.60W +D+0.750Lr+0.750L+0.450W +D+0.750L+0.750S+0.450W +0.60D+0.60W	0.0000 0.0000 0.0000 0.0000 0.0000	in in in in	0.000 0.000 0.000 0.000 0.000	ft ft ft ft ft	0.00 0.4{ 0.3{ 0.4{ 0.4{ 0.4{	000 in 325 in 619 in 619 in 325 in	0.000 5.034 5.034 5.034 5.034	ft ft ft ft ft				
+D+0.60W +D+0.750Lr+0.750L+0.450W +D+0.750L+0.750S+0.450W +0.60D+0.60W +0.60D	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	in in in in	0.000 0.000 0.000 0.000 0.000 0.000	ft ft ft ft ft ft ft	0.00 0.44 0.36 0.36 0.44 0.00 0.00	000 in 325 in 519 in 519 in 325 in 000 in	0.000 5.034 5.034 5.034 5.034 0.000	ft ft ft ft ft ft				
+D+0.60W +D+0.750Lr+0.750L+0.450W +D+0.750L+0.750S+0.450W +0.60D+0.60W +0.60D Lr Only	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	in in in in in	0.000 0.000 0.000 0.000 0.000 0.000 0.000	ft ft ft ft ft ft ft	0.00 0.44 0.36 0.36 0.44 0.00 0.00	D00 in 325 in 519 in 519 in 325 in D00 in D00 in D00 in	0.000 5.034 5.034 5.034 5.034 0.000 0.000	ft ft ft ft ft ft ft				

Wood Column

Lic. # : KW-06012717 DESCRIPTION: Trimmer @ Garage Header

Wood Column

Lic. # : KW-06012717

DESCRIPTION: Typ Trimmer

Code References

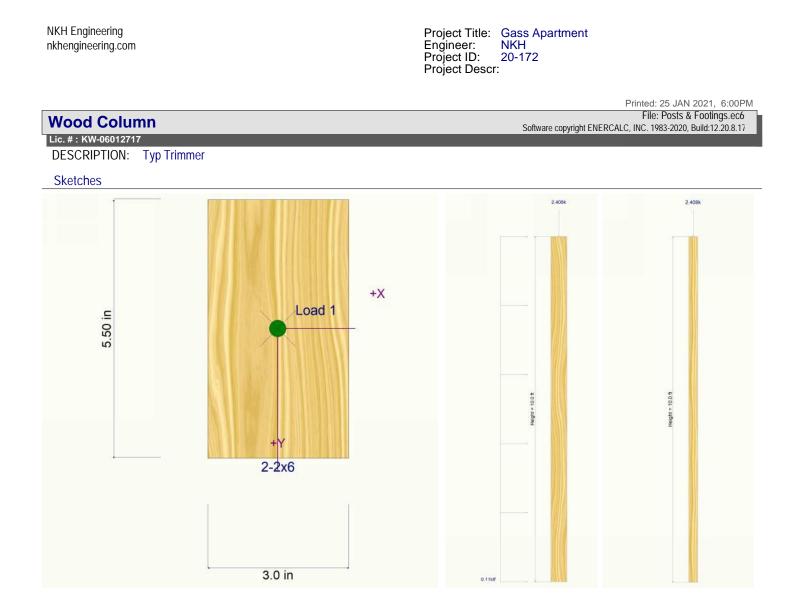
Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : ASCE 7-10

General Information

End Fixities Overall Column He	Top & Bo	e Stress Desi ttom Pinned	gn 10 ft	Wood Section Name Wood Grading/Manuf. Wood Member Type	2-2x6 Graded Sawn	Lumber	
(Used for r Wood Species Wood Grade Fb + Fc - Prll Fc - Perp E : Modulus of Ela	No.2 900.0 psi 900.0 psi 1,350.0 psi 625.0 psi sticity Basic Minimum		180.0 psi 575.0 psi 31.210 pcf y-y Bending Axia 1,600.0 1,60 580.0	0.0 ksi Brace condition for de X-X (width) axis : Y-Y (depth) axis :	5.50 in 16.50 in ² 41.594 in ⁴ 12.375 in ⁴ flection (buckling Fully braced Fully braced	 Allow Stress Modification Fac Cf or Cv for Bending Cf or Cv for Compression Cf or Cv for Tension Cm : Wet Use Factor Ct : Temperature Factor Cfu : Flat Use Factor Kf : Built-up columns Use Cr : Repetitive ? along columns : I against buckling ABOUT Y-Y A I against buckling ABOUT X-X A 	1.30 1.10 1.30 1.0 1.0 1.0 NO ^{NDS 15} No
Column self we AXIAL LOADS		35.761 lbs * D	ead Load Factor				
Axial Load a BENDING LOA	at 10.0 ft, D = 0. DS Iniform Load cre), L = 0.1060, S = 0.83 V = 0.1060 k/ft	320 k			

Load Combination Results

		•	Maximum Axial	+ Bending	Stress Ratios	Maximu	m Shear Ra	<u>atios</u>
Load Combination	С _D	СР	Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	1.000	0.03790	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+L	1.000	1.000	0.03844	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+Lr	1.250	1.000	0.04916	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+S	1.150	1.000	0.05919	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750Lr+0.750L	1.250	1.000	0.04629	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750L+0.750S	1.150	1.000	0.05463	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.60W	1.600	1.000	0.3374	PASS	4.966 ft	0.1004	PASS	10.0 ft
+D+0.750Lr+0.750L+0.450W	1.600	1.000	0.2540	PASS	5.034 ft	0.07528	PASS	10.0 ft
+D+0.750L+0.750S+0.450W	1.600	1.000	0.2542	PASS	5.034 ft	0.07528	PASS	10.0 ft


Wood Column

Printed: 25 JAN 2021, 6:00PM File: Posts & Footings.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17

Lic. # : KW-06012717 DESCRIPTION: Typ Trimmer

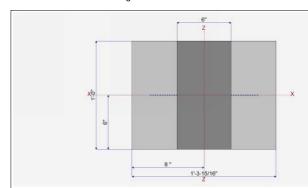
Load Combination Results

+0.60D 1 Maximum Reactions X-	1.600 1.600 X Axis Re	С Р 1.000 1.000 eaction @ Тор	k	0.337		SS SS	4.96 0	6 ft .0 ft	0.	1004	PA		10.0 ft
Χ-			k `							0.0	PA	SS	10.0 ft
			k ۱						Note: C	nly non-	zero re	action	s are listed.
Load Combination	Base	@ Top		Y-Y Axis Re	eaction	Axia	al Reaction		My - End M	oments	k-ft	Mx - E	nd Moments
			6	Base Base	@ Top	(@ Base		@ Base	@ Top		@ Base	e @ Top
D Only							0.836						
+D+L							0.942						
+D+Lr							1.506						
+D+S							1.668						
+D+0.750Lr+0.750L							1.418						
+D+0.750L+0.750S							1.539						
+D+0.60W				0.318	0.318		0.836						
+D+0.750Lr+0.750L+0.450W				0.239	0.239		1.418						
+D+0.750L+0.750S+0.450W				0.239	0.239		1.539						
+0.60D+0.60W				0.318	0.318		0.501						
+0.60D							0.501						
Lr Only							0.670						
L Only							0.106						
S Only							0.832						
W Only				0.530	0.530								
Maximum Deflections for Load Combina	ations												
Load Combination Max. >	K-X Deflee	ction	Distance		Max. Y-Y	Deflec	tion D	istance					
D Only	0.0000	in	0.000	ft	0.	0000	in	0.000	ft				
+D+L	0.0000	in	0.000	ft	0.	0000	in	0.000	ft				
+D+Lr	0.0000	in	0.000	ft	0.	0000	in	0.000	ft				
+D+S	0.0000	in	0.000	ft	0.	0000	in	0.000	ft				
+D+0.750Lr+0.750L	0.0000	in	0.000	ft	0.	0000	in	0.000	ft				
+D+0.750L+0.750S		in	0.000				in	0.000	ft				
+D+0.60W		in	0.000				in	5.034	ft				
+D+0.750Lr+0.750L+0.450W		in	0.000			1630	in	5.034	ft				
+D+0.750L+0.750S+0.450W		in	0.000			1630		5.034					
+0.60D+0.60W		in	0.000				in	5.034	ft				
+0.60D		in	0.000				in	0.000	ft				
Lr Only		in	0.000				in	0.000	ft				
LOnly		in	0.000			0000		0.000					
S Only		in	0.000	ft			in	0.000	ft				
W Only	0.0000		0.000			3622		5.034					

Wall Footing

Lic. # : KW-06012717

DESCRIPTION: Typ Wall Footing


Code References

Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : ASCE 7-10

General Information

Material Properties fc : Concrete 28 day strength fy : Rebar Yield Ec : Concrete Elastic Modulus Concrete Density		= = =	2.50 ksi 60.0 ksi 3,122.0 ksi 145.0 pcf	Soil Passive I		Sliding)	= = =	1.50 ksf No 250.0 pcf 0.30
φ Values Flexure Shear Analysis Settings Min Steel % Bending Reinf. Min Allow % Temp Reinf.		= = =	0.90 0.750 I 0.00180	Allow. Pressu	d on footing epth below Surf are Increase pe e footing is belo	ace r foot of depth	= = =	ft ksf ft
Min Allow % Temp Rein. Min. Overturning Safety Factor Min. Sliding Safety Factor AutoCalc Footing Weight as DL		= =	1.0:1 1.0:1 Yes	when footi	ire Increase pe ng is wider that	r foot of width n	= =	ksf ft
Dimensions		1.33ft		Adjusted Allow	10.0 in	ng Pressure Reinforcing Bars along X-X Axis	=	1.50 ksf

Footing Width	=	1.33 ft	Footing Thickness	=	10.0 in	Bars along X-X Axis		
Wall Thickness	=	6.0 in	Rebar Centerline to Edg	ge of Conc	rete	Bar spacing	=	10.00
Wall center offset from center of footing	=	0 in	at Bottom of footing =	:	3.0 in	Reinforcing Bar Size	=	# 4

Applied Loads

	_	D	Lr	L	S	W	E	Н
P : Column Load OB : Overburden	=	0.440	0.250	0.040	0.3130			k ksf
V-x M-zz	=							k k-ft
Vx ap	plied =	in a	above top of foo	ting				

Wall Foo	tina							File: F	5 JAN 2021, Posts & Footin	gs.ec6
Lic. # : KW-060			_		_	_	Software cop	oyright ENERCALC, INC. 1983	-2020, Build:12	.20.8.17
DESCRIPTIO	ON: Typ Wall	Footing								
DESIGN SU	MMARY							Des	sign OK	
	actor of Safety	Item	1		Applied		Capacity	Governing L		nation
PASS	n/a	Overtu	Irning - Z-Z		0.0	k-ft	0.0 k-ft	No O	verturning	
PASS	n/a	Sliding	•		0.0	k	0.0 k		Sliding	
PASS	n/a	Uplift			0.0	k	0.0 k	No	o Uplift	
l	Jtilization Ratio	Item	1		Applied		Capacity	Governing L	oad Combir	nation
PASS	0.4580	Soil Be	earing		0.6870	ksf	1.50 ksf	+	+D+S	
PASS	0.01108		ure (+X)		0.08037	k-ft	7.255 k-ft	+1.20D+	0.50L+1.60S	S
PASS	0.004823		ure (-X)		0.03499		7.255 k-ft	+	0.90D	
PASS	n/a		Shear (+X)		0.0		75.0 psi		n/a	
PASS Detailed Re	0.0	1-way	Shear (-X)		0.0	psi	0.0 psi		n/a	
Soil Bearing	Suits									
Rotation Axis				G	ross Allowable	Vaca		earing Stress	Actual / All	
, D Only	mbination			0	1.50 ksf	Xecc 0.0 in	-X 0.4517 ksf	+X 0.4517 ksf	Ratio	0.301
, D Only , +D+L					1.50 ksf	0.0 in	0.4317 ksf	0.4817 ksf		0.321
, +D+Lr					1.50 ksf	0.0 in	0.6396 ksf	0.6396 ksf		0.426
, +D+S , +D+0.750Lr+	+0 7501				1.50 ksf 1.50 ksf	0.0 in 0.0 in	0.6870 ksf 0.6152 ksf	0.6870 ksf 0.6152 ksf		0.458 0.410
, +D+0.750L+	0.750S				1.50 ksf	0.0 in	0.6507 ksf	0.6507 ksf		0.434
, +0.60D Overturning	Stability				1.50 ksf	0.0 in	0.2710 ksf	0.2710 ksf	Units : k-f	0.181 t
Rotation Axis				Ove	erturning Moment		Resisting Moment	Stability Ratio	Stat	
	IO Overturning						g			
Force Applica					Sliding Force		Resisting Force	Sliding SafetyRati	o Stati	us
Footing Has N Footing Flex										
Flexure Axi	s & Load Combi	nation	Mu k-ft	Which Side?	Tension @ Bot. or Top ?	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
, +1.40D			0.05444	-X		0.216	Min Temp %	0.24	7.255	OK
, +1.40D	1 = 1.60		0.05444	+X	Bottom	0.216	Min Temp %	0.24	7.255	OK
, +1.20D+0.50 , +1.20D+0.50			0.05889 0.05889	-X +X		0.216 0.216	Min Temp % Min Temp %	0.24 0.24	7.255 7.255	OK OK
, +1.20D+1.60)L+0.50S		0.06093	-X	Bottom	0.216	Min Temp %	0.24	7.255	Ok
, +1.20D+1.60			0.06093			0.216	Min Temp %	0.24	7.255	Ok
, +1.20D+1.60 , +1.20D+1.60			0.07384 0.07384	-X +X		0.216 0.216	Min Temp % Min Temp %	0.24 0.24	7.255 7.255	Ok Ok
, +1.20D+1.60)Lr		0.07255	-X	Bottom	0.216	Min Temp %	0.24	7.255	Ok
, +1.20D+1.60			0.07255			0.216	Min Temp %	0.24	7.255	Ok
, +1.20D+0.50 , +1.20D+0.50)L+1.60S		0.08037 0.08037	-X +X		0.216 0.216	Min Temp % Min Temp %	0.24 0.24	7.255 7.255	Ok Ok
, +1.20D+1.60)S		0.07907	-X	Bottom	0.216	Min Temp %	0.24	7.255	Ok
, +1.20D+1.60			0.07907			0.216	Min Temp %	0.24	7.255	Ok
, +1.20D+0.50 , +1.20D+0.50			0.05604 0.05604	-X +X		0.216 0.216	Min Temp % Min Temp %	0.24 0.24	7.255 7.255	Ok Ok
, +1.20D+0.50)L+0.50S		0.05808	-X	Bottom	0.216	Min Temp %	0.24	7.255	OK
, +1.20D+0.50)L+0.50S		0.05808	+X	Bottom	0.216	Min Temp %	0.24	7.255	OK
, +1.20D+0.50 , +1.20D+0.50			0.05201 0.05201	-X +X		0.216 0.216	Min Temp % Min Temp %	0.24 0.24	7.255 7.255	OK OK
, +0.90D			0.03499	-X	Bottom	0.216	Min Temp %	0.24	7.255	OK
, +0.90D			0.03499	+X	Bottom	0.216	Min Temp %	0.24	7.255	OK

Wall Footing						Software copyrio		JAN 2021, 5:52PM sts & Footings.ec6 020. Build:12.20.8.17
Lic. # : KW-06012717						15 3		
DESCRIPTION: Typ Wall	Footing							
One Way Shear								Units : k
Load Combination	Vu @ -X	Vu @ +	-Х	Vu:Max	Ph	i Vn	Vu / Phi*Vn	Status
+1.40D		0 psi	0 psi	C) psi	75 psi	0	ОК

Wall Footing

Printed: 25 JAN 2021, 5:52PM File: Posts & Footings.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17

Lic. # : KW-06012717

DESCRIPTION: Typ Wall Footing

One Way Shear

_

One Way Shear					l	Jnits : k
Load Combination	Vu@-X Vu@	+X	Vu:Max	Phi Vn	Vu / Phi*Vn	Status
+1.20D+0.50Lr+1.60L +1.20D+1.60L+0.50S +1.20D+1.60Lr+0.50L +1.20D+1.60Lr +1.20D+0.50L+1.60S +1.20D+0.50Lr+0.50L +1.20D+0.50Lr+0.50S +1.20D+0.50L+0.20S +0.90D	0 psi 0 psi	0 psi 0 psi	0 psi 0 psi	75 psi 75 psi 75 psi 75 psi 75 psi 75 psi 75 psi 75 psi 75 psi 75 psi	0 0 0 0 0 0 0 0 0 0	OK OK OK OK OK OK OK OK

> Printed: 29 DEC 2020, 11:53AN File: Posts & Footings.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17

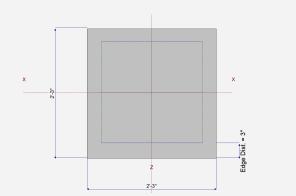
General Footing

Lic. # : KW-06012717

DESCRIPTION: Footing - Walkway Post

Code References

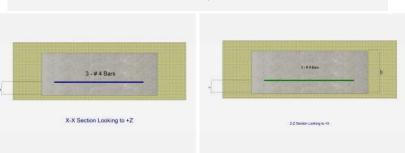
Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : ASCE 7-10


General Information

Material Properties fc : Concrete 28 day strength fy : Rebar Yield Ec : Concrete Elastic Modulus Concrete Density © Values Flexure	= = = =	3.0 ksi 60.0 ksi 3,122.0 ksi 145.0 pcf 0.90	Soil Design Values Allowable Soil Bearing Increase Bearing By Footing Weight Soil Passive Resistance (for Sliding) Soil/Concrete Friction Coeff.	= = =	1.50 ksf No 250.0 pcf 0.30
' Shear Analysis Settings Min Steel % Bending Reinf. Min Allow % Temp Reinf. Min. Overturning Safety Factor	=	0.750 = = 0.00180 = 1.0 : 1	Increases based on footing Depth Footing base depth below soil surface Allow press. increase per foot of depth when footing base is below	= = =	1.0 ft ksf ft
Min. Sliding Safety Factor Add Ftg Wt for Soil Pressure Use ftg wt for stability, moments & shears Add Pedestal Wt for Soil Pressure Use Pedestal wt for stability, mom & shear		= 1.0 :1 : Yes : Yes : No : No	Increases based on footing plan dimension Allowable pressure increase per foot of depth when max. length or width is greater than	=	ksf ft

Dimensions

Width parallel to X-X Axis	=	2.25 ft
Length parallel to Z-Z Axis	=	2.250 ft
Footing Thickness	=	10.0 in


Pedestal dimensions px : parallel to X-X Axis	=	in
pz : parallel to Z-Z Axis Height	= =	in in
Rebar Centerline to Edge of at Bottom of footing	Concrete =	3.0 in

z

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	=	#	3 4
Bars parallel to Z-Z Axis Number of Bars Reinforcing Bar Size Bandwidth Distribution Cher Direction Requiring Closer Se		#	3.0 4
# Bars required within zone # Bars required on each side	of zone		n/a n/a n/a

Applied Loads

		D	Lr	L	S	W	E	Н
P : Column Load	=	2.40		2.320	3.330			k
OB : Overburden	= _							ksf
M-xx	=							k-ft
M-xx M-zz	=							k-ft
V-x	=							k
V-z	=							k

Printed: 29 DEC 2020, 11:53Alv File: Posts & Footings.ecć Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17

General Footing

Lic. # : KW-06012717 DESCRIPTION: Footing - Walkway Post

DESIGN SL	IMMARY				Design OK
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.9667	Soil Bearing	1.450 ksf	1.50 ksf	+D+0.750L+0.750S about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.1448	Z Flexure (+X)	1.171 k-ft/ft	8.086 k-ft/ft	+1.20D+0.50L+1.60S
PASS	0.1448	Z Flexure (-X)	1.171 k-ft/ft	8.086 k-ft/ft	+1.20D+0.50L+1.60S
PASS	0.1448	X Flexure (+Z)	1.171 k-ft/ft	8.086 k-ft/ft	+1.20D+0.50L+1.60S
PASS	0.1448	X Flexure (-Z)	1.171 k-ft/ft	8.086 k-ft/ft	+1.20D+0.50L+1.60S
PASS	0.1448	1-way Shear (+X)	11.896 psi	82.158 psi	+1.20D+0.50L+1.60S
PASS	0.1448	1-way Shear (-X)	11.896 psi	82.158 psi	+1.20D+0.50L+1.60S
PASS	0.1448	1-way Shear (+Z)	11.896 psi	82.158 psi	+1.20D+0.50L+1.60S
PASS	0.1448	1-way Shear (-Z)	11.896 psi	82.158 psi	+1.20D+0.50L+1.60S
PASS	0.2712	2-way Punching	44.565 psi	164.317 psi	+1.20D+0.50L+1.60S
Detailed Re	sults				

Soil Bearing

Soil Bearing								
Rotation Axis &		Xecc	Zecc	ŀ	Actual Soil Bea	ring Stress @ Lo		Actual / Allow
Load Combination	Gross Allowable	;	(in)	Bottom,	-Z Top, ·	+Z Left, -X	K Right, +X	Ratio
X-X, D Only	1.50	n/a	0.0	0.61	32 0.61	32 n/a	n/a	0.409
X-X, +D+L	1.50	n/a	0.0	1.0			n/a	0.715
X-X, +D+S	1.50	n/a		1.2				0.847
X-X, +D+0.750L	1.50	n/a		0.95				0.638
X-X, +D+0.750L+0.750S	1.50	n/a		1.4				0.967
X-X, +0.60D	1.50	n/a		0.36				0.245
Z-Z, D Only	1.50	0.0				n/a 0.6132		0.409
Z-Z, +D+L	1.50	0.0				n/a 1.072		0.715
Z-Z, +D+S	1.50	0.0				n/a 1.271		0.847
Z-Z, +D+0.750L	1.50	0.0				n/a 0.9569		0.638
Z-Z, +D+0.750L+0.750S	1.50	0.0				n/a 1.450		0.967
Z-Z, +0.60D	1.50	0.0	n/a	r	n/a r	n/a 0.3679	0.3679	0.245
Overturning Stability								
Rotation Axis &		Overturni	na Momont		Decisting	Moment 6	Stability Datio	Status
Load Combination		Overturni	ng Moment		Resisting	woment 3	Stability Ratio	Status
Footing Has NO Overturning								
Sliding Stability							, , , , , , , , , , , , , , , , , , ,	All units k
Force Application Axis								
Load Combination		Slidin	g Force		Resistino	g Force S	Stability Ratio	Status
Footing Has NO Sliding Footing Flexure								
0	Mu	Side	ension	As Reg'd	Gvrn. As	Actual As	Phi*Mn	
Flexure Axis & Load Combination	k-ft		Surface	in^2	in^2	in^2	k-ft	Status
X-X, +1.40D	0.420	+Z B	ottom	0.2160	Min Temp %	0.2667	8.086	ОК
X-X, +1.40D	0.420		ottom	0.2160	Min Temp %	0.2667	8.086	OK
X-X, +1.20D+1.60L	0.8240		ottom	0.2160	Min Temp %	0.2667	8.086	OK
X-X, +1.20D+1.60L	0.8240		ottom	0.2160	Min Temp %	0.2667	8.086	OK
X-X, +1.20D+1.60L+0.50S	1.032		ottom	0.2160	Min Temp %	0.2667	8.086	OK
X-X, +1.20D+1.60L+0.50S	1.032		ottom	0.2160	Min Temp %	0.2667	8.086	OK
X-X, +1.20D+0.50L	0.5050		ottom	0.2160	Min Temp %	0.2667	8.086	OK
X-X, +1.20D+0.50L	0.5050		ottom	0.2160	Min Temp %	0.2667	8.086	OK
X-X, +1.20D	0.360		ottom	0.2160	Min Temp %	0.2667	8.086	OK
X-X, +1.20D	0.360		ottom	0.2160	Min Temp %	0.2667	8.086	OK
X-X, +1.20D+0.50L+1.60S	1.171		ottom	0.2160	Min Temp %	0.2667	8.086	OK
X-X, +1.20D+0.50L+1.60S	1.171		ottom	0.2160	Min Temp %	0.2667	8.086	OK

General Footing

Lic. # : KW-06012717

DESCRIPTION: Footing - Walkway Post

Footing Flexure

Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mr k-ft	1	Status
X-X, +1.20D+1.60S X-X, +1.20D+1.60S X-X, +1.20D+0.50L+0.50S	1.026 1.026 0.7131	+Z -Z +Z	Bottom Bottom Bottom	0.2160 0.2160 0.2160	Min Temp % Min Temp % Min Temp %	0.2667 0.2667 0.2667	8.0 8.0 8.0)86)86	OK OK OK
X-X, +1.20D+0.50L+0.50S X-X, +1.20D+0.50L+0.20S X-X, +1.20D+0.50L+0.20S X-X, +0.90D	0.7131 0.5883 0.5883 0.270	-Z +Z -Z +Z	Bottom Bottom Bottom Bottom	0.2160 0.2160 0.2160 0.2160	Min Temp % Min Temp % Min Temp % Min Temp %	0.2667 0.2667 0.2667 0.2667	8.0 8.0 8.0 8.0 8.0)86)86	OK OK OK OK
X-X, +0.90D X-X, +0.90D Z-Z, +1.40D Z-Z, +1.40D	0.270 0.420 0.420	-Z -X +X	Bottom Bottom Bottom	0.2160 0.2160 0.2160	Min Temp % Min Temp % Min Temp %	0.2667 0.2667 0.2667	8.0 8.0 8.0)86)86)86	OK OK OK
Z-Z, +1.20D+1.60L Z-Z, +1.20D+1.60L Z-Z, +1.20D+1.60L+0.50S Z-Z, +1.20D+1.60L+0.50S	0.8240 0.8240 1.032 1.032	-X +X -X +X	Bottom Bottom Bottom Bottom	0.2160 0.2160 0.2160 0.2160	Min Temp % Min Temp % Min Temp % Min Temp %	0.2667 0.2667 0.2667 0.2667	8.0 8.0 8.0 8.0 8.0)86)86	OK OK OK OK
Z-Z, +1.20D+1.00L+0.50L Z-Z, +1.20D+0.50L Z-Z, +1.20D+0.50L Z-Z, +1.20D	0.5050 0.5050 0.360	-X -X +X -X	Bottom Bottom Bottom	0.2160 0.2160 0.2160	Min Temp % Min Temp % Min Temp %	0.2667 0.2667 0.2667	8.0 8.0 8.0)86)86)86	OK OK OK
Z-Z, +1.20D Z-Z, +1.20D+0.50L+1.60S Z-Z, +1.20D+0.50L+1.60S	0.360 1.171 1.171	+X -X +X	Bottom Bottom Bottom	0.2160 0.2160 0.2160	Min Temp % Min Temp % Min Temp %	0.2667 0.2667 0.2667	8.0 8.0 8.0)86)86	OK OK OK
Z-Z, +1.20D+1.60S Z-Z, +1.20D+1.60S Z-Z, +1.20D+0.50L+0.50S Z-Z, +1.20D+0.50L+0.50S Z-Z, +1.20D+0.50L+0.20S	1.026 1.026 0.7131 0.7131 0.5883	-X +X -X +X -X	Bottom Bottom Bottom Bottom Bottom	0.2160 0.2160 0.2160 0.2160 0.2160	Min Temp % Min Temp % Min Temp % Min Temp % Min Temp %	0.2667 0.2667 0.2667 0.2667 0.2667	8.0 8.0 8.0 8.0 8.0 8.0)86)86)86	OK OK OK OK OK
Z-Z, +1.20D+0.50L+0.20S Z-Z, +0.90D Z-Z, +0.90D One Way Shear	0.5883 0.270 0.270	+X -X +X	Bottom Bottom Bottom	0.2160 0.2160 0.2160 0.2160	Min Temp % Min Temp % Min Temp %	0.2667 0.2667 0.2667)86)86	OK OK OK
Load Combination	Vu @ -X	Vu @	+X Vu	@-Z Vu	@ +Z V	u:Max Ph	i Vn Vu /	Phi*Vn	Status
+1.40D +1.20D+1.60L +1.20D+1.60L+0.50S +1.20D+0.50L	4.27 ps 8.37 ps 10.49 ps	i i	4.27 psi 8.37 psi 10.49 psi 5.13 psi	4.27 psi 8.37 psi 10.49 psi 5.13 psi	4.27 psi 8.37 psi 10.49 psi 5.13 psi	4.27 psi 8.37 psi 10.49 psi 5.13 psi	82.16 psi 82.16 psi 82.16 psi 82.16 psi	0.05 0.10 0.13 0.06	OK OK OK OK
+1.20D+0.50L +1.20D +1.20D+0.50L+1.60S +1.20D+1.60S	5.13 ps 3.66 ps 11.90 ps 10.42 ps	i i	3.66 psi 11.90 psi 10.42 psi	3.66 psi 11.90 psi 10.42 psi	3.66 psi 11.90 psi 10.42 psi	3.66 psi 11.90 psi 10.42 psi	82.16 psi 82.16 psi 82.16 psi 82.16 psi	0.00 0.04 0.14 0.13	OK OK OK
+1.20D+0.50L+0.50S +1.20D+0.50L+0.20S +0.90D Two-Way "Punching" Shear	7.24 ps 5.98 ps 2.74 ps	i i	7.24 psi 5.98 psi 2.74 psi	7.24 psi 5.98 psi 2.74 psi	7.24 psi 5.98 psi 2.74 psi	7.24 psi 5.98 psi 2.74 psi	82.16 psi 82.16 psi 82.16 psi	0.09 0.07 0.03 All units	OK OK OK
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D +1.20D+1.60L +1.20D+1.60L+0.50S +1.20D+0.50L +1.20D +1.20D+0.50L+1.60S +1.20D+1.60S		15.9 31.3 39.2 19.2 13.7 44.5 39.0	6 psi 8 psi 2 psi 0 psi 7 psi 5 psi	164.32 164.32 164.32 164.32 164.32 164.32 164.32 164.32	psi psi psi psi psi psi	0.09728 0.1908 0.239 0.117 0.08338 0.2712 0.2376			OK OK OK OK OK OK
+1.20D+0.50L+0.50S +1.20D+0.50L+0.20S +0.90D		27.1 22.3 10.2	9 psi	164.32 164.32 164.32	psi	0.1652 0.1362 0.06253			OK OK OK

Printed: 29 DEC 2020, 11:53Alv File: Posts & Footings.ecć Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17