

GREEN INFRASTRUCTURE PLAN

TOWN OF COLMA 1198 El Camino Real, Colma, CA 94014 • 650.997.8300

JUNE 2019

ACKNOWLEDGEMENTS

The Town of Colma gratefully acknowledges those who contributed to the preparation of this document, which was developed to comply with the requirements in Provision C.3.j.i of the Municipal Regional Stormwater NPDES Permit (MRP), Order R2-2015-0049, in collaboration with the San Mateo Countywide Water Pollution Prevention Program (SMCWPPP) and with use, in part, of the Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP) Green Infrastructure Plan template. The comments, guidance, suggestions, and content provided by those referenced below were instrumental to the development of the Green Infrastructure Plan.

Department of Engineering and Public Works

Brad Donohue, Public Works Director Muneer Ahmed, Associate Engineer Louis Gotelli, Public Works Maintenance Supervisor

Planning Department

Michael Laughlin, City Planner Jonathan Kwan, Associate Planner Brandon DeLucas, Assistant Planner

City Manager's Office

Brian Dossey, City Manager

San Mateo Countywide Water Pollution Prevention Program (SMCWPPP)

Matt Fabry, Program Coordinator, SMCWPPP Reid Bogert, Stormwater Program Specialist, SMCWPPP Members of the Green Infrastructure Technical Advisory Committee

Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP)

Jill Bicknell, Managing Engineer, EOA, SCVURPPP Members of the C.3 Provision Oversight Ad Hoc Task Group

CSG Consultants, Inc.

Catherine Chan, Associate Engineer Greg Sheehan, Environmental Program Analyst Jeff Lee, Assistant Engineer Katherine Sheehan, PE, Senior Engineer (Team Lead) Kelly Carroll, PE, QSD, Sr. Project Manager Mark Lander, PE, Principal Engineer Peniel Ng, Engineering Intern Suzanne Avila, Principal Planner

PREFACE

Green Infrastructure (GI) is a cost-effective, resilient approach to managing water quality. GI encompasses many different types of stormwater measures that mimic natural hydrologic processes including filtration, infiltration, detention, and evapotranspiration. It uses plants, soils, and other elements to mimic the natural water cycle and capture rainwater. Examples of GI include a variety of stormwater measures, such as stormwater planters or bioretention areas, infiltration systems, permeable pavement, green roofs, green walls, green gutters, and stormwater trees.

Gl provides multiple community benefits such as improving water quality before discharging it to the bay or ocean by removing pollutants like sediment and trash from stormwater, reducing the effect of urbanization on local creeks and waterways, mitigating the heat island, effect, providing climate change resilience, reducing localized flooding, promoting natural ground infiltration and groundwater recharge, increasing biodiversity and habitat for native plants and animals, and enhancing property and neighborhood economic vitality and aesthetics.

The San Francisco Bay Regional Water Quality Control Board (SFRWQCB)'s Municipal Regional Stormwater NPDES Permit (MRP), Order No. R2-2015-0049, regulates pollutants in stormwater runoff from municipal storm drain systems throughout San Mateo, Santa Clara, Alameda, and Contra Costa Counties, as well as the Cities of Fairfield, Suisun, and Vallejo, and the Vallejo Sanitation and Flood Control District. The Town of Colma is obligated to follow the mandates of the MRP to control stormwater discharge within Town limits. The Town of Colma, as one of the 76 municipalities that are Permittees of the MRP, developed this document, the Green Infrastructure Plan (GI Plan), in order to comply with the MRP's Green Infrastructure Planning and Implementation requirements.

This GI Plan describes how the Town will, over time, transition its existing "gray" (i.e., traditional) infrastructure to "green" infrastructure. This local planning document determines, defines, and supports local GI goals and policies. This document also provides guidance to meet stormwater pollutant load reduction goals and creates a process for prioritizing the integration of GI into Capital Improvement Program projects. This plan is intended to be a "living document" and may change and adjust over time as regulatory requirements change, new information is gathered and analyzed, and GI technologies advance.

ii

CEQA EXEMPTION

Development and approval of this Green Infrastructure (GI) Plan will likely result in the construction or installation of GI improvements such as landscaping, irrigation, bioretention areas, stormwater capture devices, and pervious paving which will improve the water quality of stormwater on private property and/or in Town rights-of-way and facilities, via operation, repair and maintenance, replacement or reconstruction, and/or construction or conversion of small structures.

Preparation and implementation of this GI Plan qualifies as a California Environmental Quality Act (CEQA) Class 1 categorical exemption (CEQA Guidelines Section 15301) for minor alteration of existing public or private facilities and structures such as highways, streets, sidewalks, gutters, and bicycle and pedestrian trails through addition of GI that would involve no or negligible expansion of existing use.

The policies contained herein also qualify as a Class 2 categorical exemption (CEQA Guidelines Section 15302), as they would involve replacement of existing storm drainage or facilities with GI that would have substantially the same purpose and capacity as the structures replaced.

The policies in this GI Plan further qualify as a Class 3 categorical exemption (CEQA Guidelines Section 1530) to the extent that new GI is incorporated into new construction or in the conversion of, and/or minor modifications to, existing small structures and facilities.

Lastly, the GI Plan qualifies as a Class 8 categorical exemption (CEQA Guidelines Section 15308), as the plan promotes the construction or installation of GI which will "assure the maintenance, restoration, enhancement, or protection of the environment" through improvement to water quality, provision of flood protection, and enhancement of community aesthetics. The City Council will provide final approval for adoption of this GI Plan, and a Notice of Exemption will be filed.

TABLE OF CONTENTS

ACK	NOW	LEDGEMENTS	I
PREF	ACE.		. 11
CEQ	A EXI	EMPTION	.111
TABL	e of	CONTENTS	IV
LIST	of ta	BLES	VI
LIST	OF FIG	GURES	VI
GREI	EN IN	FRASTRUCTURE PLAN APPENDICES	VII
ABB	REVIA	TIONS	/111
1.0	INTR	ODUCTION	. 1
	1.1	What is Green Infrastructure?	1
	1.2	Purpose, Goals, and Benefits of the Green Infrastructure Plan	4
	1.3	Overview of Green Infrastructure Plan Development Process	7
2.0	AGE	NCY DESCRIPTION AND BACKGROUND	11
	2.1	Background and Land Use	11
	2.2	Water Resources	12
	2.3	Transportation	12
	2.4	Population and Growth Forecasts	14
	2.5	Characteristics that Impact GI Implementation	14
3.0	GRE	EN INFRASTRUCTURE MILESTONES	16
	3.1	Regulatory Background	16
	3.2	Determining Load Reduction Milestones	16
	3.3	Approach to Load Reduction Milestones	22
	3.4	Town-Specific Water Quality Milestones	25
4.0	0 PROJECT IDENTIFICATION AND PRIORITIZATION		31
	4.1	Introduction	31
	4.2	Identifying Existing Projects and Future Opportunities	32
	4.3	Determining GI Priorities	35
	4.4	Potential Collaborations with Outside Agencies	38
5.0	PRO.	JECT TRACKING	39
	5.1	Introduction	39
	5.2	Town Internal Project Tracking System	39
	5.3	Town Public-Facing Project Tracking System	41

	5.4	O&M Tracking Systems and Procedures	. 42
	5.5	Countywide Project Tracking Tool	. 42
	5.6	Adaptive Management	. 43
6.0	GUIDELINES AND SPECIFICATIONS		.45
	6.1	Introduction	. 45
	6.2	Countywide GI Guidelines and Standards	. 45
	6.3	GI Measure Sizing Approaches	. 49
7.0	INTE	GRATION WITH OTHER PLANNING DOCUMENTS	.53
	7.1	Introduction	. 53
	7.2	Evaluation of Planning Documents	. 53
	7.3	Existing Planning Documents Which Support GI Implementation	. 53
	7.4	Planning Document Updates Schedule	. 56
	7.5	Maintenance and Engineering Standards	. 57
8.0	FUN	DING OPTIONS	.58
	8.1	Introduction	. 58
	8.2	GI Program Elements and Funding Needs	. 58
	8.3	Funding Strategies	. 62
	8.4	Economic Vitality Benefits and Public-Private Cooperation	. 66
	8.5	Integration of GI with the Capital Improvement Program	. 67
	8.6	Integration of GI with Adopted Budget	. 69
9.0	OUT	REACH AND EDUCATION	.71
	9.1	Introduction	. 71
	9.2	Public Outreach	. 72
	9.3	Train Appropriate Staff	. 74
	9.4	Education of Elected Officials	. 74
	9.5	Next Steps	. 75
10.0	IMPI	EMENTATION APPROACH	.76
	10.1	Overview	. 76
	10.2	Private Development Program and Policies	. 78
	10.3	Maintenance Programs and Policies	. 80
	10.4	Implementation of Public Green Infrastructure	. 81
	10.5	Plan Updates Process	. 83
BIBL	IOGR	APHY AND DOCUMENT REFERENCE LIST	.85

LIST OF TABLES

Table 1. Water Quality Improvement Measures.	4
Table 2. Green Infrastructure Benefits	3
Table 3. Green Infrastructure Plan Goals and Objectives.	5
Table 4. Colma Sediment Reduction Goal (With Regional Projects).	27
Table 5. Implementation Milestones: Colma	30
Table 6. SRP Parcel and Right-of-Way Project Screening Methodology	36
Table 7. SRP Parcel and Right-of-Way Project Prioritization Methodology	38
Table 8. Existing planning documents which support GI implementation.	54
Table 9. Schedule for update of planning documents.	57
Table 10. Sample Integration of Potential GI Measures with Adopted Budget	70
Table 11. Outreach and Education Goals, Objectives, and Audiences	71
Table 12. Green Infrastructure Plan Update Schedule.	84

LIST OF FIGURES

Figure 1. Pre-Urban Development Water Cycle	2
Figure 2. Post-Urban Development Water Cycle	2
Figure 3. Balanced Development Water Cycle	3
Figure 4. Visual Guide of Green Infrastructure Measures (SMCWPPP 2019b).	5
Figure 5. SMCWPPP Green Infrastructure Technical Advisory Committee Deliverables Timeline	8
Figure 6. Town of Colma in Regional Context	11
Figure 7. Town of Colma Existing Land Uses (2014).	13
Figure 8. Town of Colma Population Growth (ABAG)	14
Figure 9. Reasonable Assurance Analysis Process	18
Figure 10. Reasonable Assurance Analysis Modeling	19
Figure 11. Model scenarios objectives and cost-benefit evaluation (SMCWPPP 2018a)	21
Figure 12. Example Implementation Recipe Showing General Sequencing of GI Projects	24
Figure 13. Optimization summary for Colma, sediment goal (by jurisdiction).	25
Figure 14. Colma sediment reduction goal	26
Figure 15. Summary GI capacity for interim and final implementation milestones	29
Figure 16. Factors Impacting Selection of Optimal GI Projects.	34
Figure 17. Screenshots of the Town's GI Map (2019).	41
Figure 18. Adaptive Management Process	44
Figure 19. Key Content and Organization of the San Mateo County GreenSuite.	46
Figure 20. Estimated Relative Costs of GI Program Elements	61
Figure 21. Integration of GI with other types of Improvements	68
Figure 22. SMCWPPP "Flows to Bay" Webpage, featuring the Green Infrastructure Design Guide	73
Figure 23. Town's starting Green Infrastructure Implementation Toolbox	77

GREEN INFRASTRUCTURE PLAN APPENDICES

A. GLOSSARY

B. CAPITAL IMPROVEMENT PROGRAM GI POTENTIAL SCREENING FLOWCHARTS

C. GI PROJECT PRIORITIZATION MAPS

- a. Water Resources
- b. FEMA 100-yr Flood Plain
- c. Sea Level Rise
- d. Prioritized Green Streets Projects
- e. Prioritized LID and Regional Projects
- f. Existing and Potential Green Infrastructure in Colma

D. DEVELOPMENT REVIEW FLOWCHARTS

E. EARLY PROJECT IMPLEMENTATION SCHEDULE AND CONCEPT SHEETS

- a. Draft Schedule for Prioritized Projects
- b. Mission Road Bicycle and Pedestrian Improvement Project
- c. Serramonte Boulevard / Collins Avenue Master Plan
- d. Hillside Boulevard Phase II Project

ABBREVIATIONS

BASMAA	Bay Area Stormwater Management Agencies Association
C/CAG	City/County Association of Governments
CEQA	California Environmental Quality Act
CIP	Capital Improvement Program
CWA	Clean Water Act
FY	Fiscal Year
GI	Green Infrastructure
GI Plan	Green Infrastructure Plan
GI TAC	Green Infrastructure Technical Advisory Committee
GIS	Geographic Information System
LID	Low Impact Development
MRP	Municipal Regional Stormwater NPDES Permit
MS4	Municipal Separate Storm Sewer System
NPDES	National Pollutant Discharge Elimination System
0&M	Operation and Maintenance
PCBs	Polychlorinated Biphenyls
RAA	Reasonable Assurance Analysis
SFRWQCB	San Francisco Bay Regional Water Quality Control Board
SCVURPPP	Santa Clara Valley Urban Runoff Pollution Prevention Program
SMCWPPP	San Mateo County Water Pollution Prevention Program
SRP	San Mateo County Stormwater Resource Plan
SWRCB	State Water Resource Control Board
TMDL	Total Maximum Daily Load
Town	Town of Colma
WDR	Waste Discharge Requirements
WLA	Waste Load Allocation

1.0 INTRODUCTION

1.1 What is Green Infrastructure?

1.1.1 Basics of Green Infrastructure

A traditional stormwater management approach collects excess rainwater (called "runoff") through a series of "gray" infrastructure (curbs, gutters, storm drain structures, and piping) and directs it to the receiving waters quickly and without treatment. As land becomes more developed over time, natural landscapes are converted to impervious areas and soils are compacted, reducing the amount of water which infiltrates into the ground and increasing both the amount of runoff and the speed with which it reaches local creeks and other waterbodies.

As the runoff travels over impervious surfaces, it collects pollutants such as heavy metals, oils, grease, trash, sediment, bacteria, nutrients, pesticides, and toxic chemicals from vehicles, construction sites, animals, landscaping activities, and industrial or commercial businesses. Over time, this leads to the pollution of local waterbodies. In the case of the San Francisco Bay, the water quality is degraded to the point of being "impaired", meaning that it cannot meet at least one of its beneficial uses due to insufficient water quality.¹

In contrast to traditional "gray" infrastructure, Green Infrastructure (GI) is a means of restoring water quality through implementing a range of natural and built approaches to stormwater management that mimic natural systems. GI can reduce the amount of runoff that enters the traditional piped stormwater system below ground, prevent overflows that pollute nearby water bodies, clean stormwater, and allow water to reabsorb back into the ground. GI uses vegetation, soils, filter media, and/or natural processes to create healthier urban environments. At the scale of a city or town, GI refers to the patchwork of natural areas that provide habitat, flood protection, cleaner air, and cleaner water. At the scale of a neighborhood or project site, GI refers to stormwater management systems and features that mimic nature by absorbing and storing stormwater as well as reducing pollutants through filtration, infiltration, detention, and evapotranspiration.

Figures 1 and 2 represent the differences between the hydrologic cycle before and after development, while Figure 3 represents a balanced approach to stormwater management using GI.

¹ The SWRCB has defined the beneficial uses of the San Francisco Bay to be as follows: industrial service supply, industrial process supply, commercial and sport fishing, shellfish harvesting, estuarine habitat, fish migration, preservation of rare and endangered species, fish spawning, wildlife habitat, water contact recreation, noncontact water recreation, and navigation.

40% Infiltration

Figure 1. Pre-Urban Development Water Cycle.²

destroying natural habitat. There is a better approach.

When the natural landscape is urbanized, impervious surface is created that prevents water from being absorbed at the source. Sediments and pollutants from streets, parking lots, homes, yards, and other sources are washed into pipes and water bodies. Stormwater runoff increases as more and more impervious surface is created. The high volume and velocity of stormwater runoff emptying into creeks and streams may cause flooding and erosion,

15% Evapotranspiration 75% Surface Flow to Pipes 5% Interflow 5% Interflow

Figure 2. Post-Urban Development Water Cycle.²

GI measures are used on both public and private lands, such as roads and parking lots, and act as resilient, sustainable systems that retain, detain, filter, harvest, infiltrate, and/or evapotranspire runoff. This limits

² San Mateo County Sustainable Green Streets and Parking Lots Guidebook. (2009). SMCWPPP.

the discharge of pollutants to the storm drain system and promotes the infiltration of stormwater into the groundwater basin. GI also includes best management practices, like discharging impervious areas to landscape and minimizing of impervious surfaces on new developments, which act to remove pollutants and protect natural systems.

Figure 3. Balanced Development Water Cycle.³

GI also provides amenities with many benefits beyond water quality improvement and groundwater replenishment, including the reduction of flooding, creation of attractive streetscapes and habitats, and mitigation of the heat island effect.

Examples of GI include landscape-based stormwater "biotreatment" using soil and plants ranging from grasses to trees, pervious paving systems (e.g., interlocking concrete pavers, porous asphalt, and pervious concrete), rainwater harvesting systems (e.g., cisterns and rain barrels), and other methods to capture and treat stormwater. These practices are also known as Low Impact Development (LID) site design and treatment measures.

In addition to LID measures, non-LID measures such as green walls and mechanical treatment measures (e.g., media filters or high flow-rate tree well filters) can be used in areas where landscape-based approaches are not feasible. Some mechanical devices, such as hydrodynamic separators, offer pollutant removal capability and may offer partial treatment of the stormwater system. These can be used in isolation or can provide additional pollutant removal capability when installed in a "treatment train" with landscape-based systems.

³ San Mateo County Sustainable Green Streets and Parking Lots Guidebook. (2009). SMCWPPP.

Table 1 features the various terminology used to describe water quality improvement measures, ranging from engineered GI facilities, such as bioretention areas, to watershed-based practices which reduce pollutants to receiving waters, such as preservation of open space.

Green Infrastr	ucture Measures	Mechanical Treatment Measures	
These measures provide tr intercept stormwater befo	eatment of stormwater or reit can collect pollutants.	These measures can improve water quality through the mechanical removal of pollutants.	
GI Planters Stormwater Planter (also known as a Bioretention or Biofiltration Area) Rain Garden Stormwater Curb Extension GI Trees Tree Well Stormwater Tree Interceptor Tree GI Pavements Pervious Pavement Pervious Pavers Porous Asphalt Porous Concrete	Underground GI Systems Infiltration System GI for Buildings Rainwater Harvesting Green Roof Green Wall Other GI Vegetative Systems Green Gutter Vegetated Swale (also known as a Bioswale) Self-Treating Areas Self-Retaining Areas	Media Filter (Non-LID) High-Flow Rate Tree Well Filter (Non-LID) Hydrodynamic Separator (Partial Treatment Credit) Natural Systems Preservation of natural systems can help to support anti-degradation policies on a watershed-based scale. Open Space Areas Landscaping Other Best Management Practices These practices do not provide stormwater treatment, but they can help to improve water quality. Street sweeping Water conservation Draining impervious surfaces to landscaping Detention systems	

Table 1. Water Quality Improvement Measures.

Information about various types of GI measures is provided in the San Mateo Countywide Water Pollution Prevention Program (SMCWPPP) Green Infrastructure Design Guide (*Design Guide*)⁶ and *C.3 Regulated Projects Guide*⁷.

The Green Infrastructure *Design Guide* provides photos and renderings of GI projects as well as detailed descriptions of various types of stormwater treatment measures. Figure 4 shows the key stormwater treatment measures featured in the Green Infrastructure *Design Guide*.

⁶ The Design Guide can be found at SMCWPPP's website at <u>https://www.flowstobay.org/gidesignguide</u>.

⁷ C.3 Regulated Projects Guide (formerly known as the C.3 Technical Guidance) can be found on the SMCWPPP "Flows to Bay" website at <u>https://www.flowstobay.org/newdevelopment</u>.

Green Infrastructure Measures and Opport Introduction

A Visual Guide of Green Infrastructure Measures

Stormwater Planters

Stormwater Curb Extensions

Rain Gardens

Tree Wells

Infiltration

2.6

Pervious Pavement

Green Roofs

Rainwater Harvesting

Vegetated Swales

Green G

Stormwater Trees

Interceptor Trees

Green Walls

2-4 GREEN INFRASTRUCTURE DESIGN GUIDE

Figure 4. Visual Guide of Green Infrastructure Measures (SMCWPPP 2019b).

Town of Colma Green Infrastructure Plan

5

Draft – July 2

"Green Streets" are roadway projects which incorporate GI strategies to manage runoff. "Complete Streets" are streets designed with equal consideration to all modes of travel for enhancement of safety and access for cyclists and pedestrians. When combined, Complete Streets and Green Streets are referred to as "Living Streets," "Better Streets," and "Sustainable Streets." This "Living Streets" movement recognizes that environmentally- and holistically-designed streets achieve many benefits, including increased multi-modal travel and safety, cleaner water and air, improved flood and climate change resilience and mitigation, enhanced placemaking and community cohesion, greater energy savings, and habitat retention, in addition to higher property values.

1.1.2 Regulatory Water Quality Requirements

Section 402(p) of the federal Clean Water Act (CWA) requires National Pollutant Discharge Elimination System (NPDES) permits for stormwater discharges from Municipal Separate Storm Sewer Systems (MS4s), which are considered a significant contributor of pollutants to waters of the United States. The US Environmental Protection Agency (USEPA) delegates its authority to regulate MS4s to the State Water Resources Control Board, which, in turn, assigns many regulatory tasks to the Regional Water Quality Control Boards The San Francisco Regional Water Quality Control Board (SFRWQCB) oversees protection of water quality in the San Francisco Bay Area. In accordance with CWA Section 303(d), the SFRWQCB is required to establish Total Maximum Daily Loads (TMDLs) for certain pollutants that may be causing or threatening to cause or contribute to water quality impairment in the waters of the region. These pollutants include mercury, polychlorinated biphenyls (PCBs), pesticides, and sediment. There is not yet a TMDL for trash; however, trash is still considered a pollutant.

California Regional Water Quality Control Board San Francisco Bay Region Municipal Regional Stormwater NPDES Permit

> Order No. R2-2015-0049 NPDES Permit No. CAS612008 November 19, 2015

California Regional Water Quality Control Board San Francisco Bay Region Municipal Regional Stormwater NPDES Permit (MRP).

NPDES Permittees, including the Town of Colma, are

subject to the requirements of the recently reissued Municipal Regional Stormwater NPDES Permit for Phase I municipalities and agencies in the San Francisco Bay Area (Order R2-2015-0049), also known as the Municipal Regional Permit (MRP), which became effective on January 1, 2016. The MRP applies to 76 large, medium, and small municipalities (cities, towns, and counties) and flood control agencies (collectively referred to as Permittees) that discharge stormwater to the San Francisco Bay. Over the last thirteen (13) years, under successive NPDES stormwater permits, new development and redevelopment projects on private and public property which result in the creation or replacement of impervious area exceeding specified size thresholds (referred to as "Regulated Projects") have been required to mitigate impacts on water quality by incorporating site design, pollutant source control, stormwater treatment, and flow control measures as appropriate. LID treatment measures, such as rainwater harvesting and use, infiltration, and biotreatment, have been required on most Regulated Projects since December 2011. Construction of new roads is covered by these requirements, but projects related to existing roads and adjoining sidewalks and bike lanes are not Regulated Projects one or more travel lane(s) is added.

As of 2015, a new section of the MRP requires Permittees to develop and implement long-term GI Plans to address pollutants in stormwater discharges, including polychlorinated biphenyls (PCBs), mercury, trash, and pesticides, to meet Waste Load Allocation (WLA) and TMDL requirements. LID measures incorporated into GI design and retrofit projects can help remove these pollutants from stormwater runoff. For this reason, the MRP establishes a new linkage between public infrastructure retrofits and required reductions in PCBs and mercury. The GI Plan is intended to serve as an implementation guide and reporting tool to provide reasonable assurance that urban runoff Total Maximum Daily Load (TMDL) wasteload allocations are met; the GI Plan also sets goals for reducing, over the long term, adverse water quality impacts of urbanization and urban runoff to receiving waters. Over the next few decades, Permittees must reduce the loads of PCBs and mercury in stormwater discharges through various means, with a portion of these load reductions achieved through the installation of GI systems.

Other pollutants, including trash and pesticides, should also be coordinated with the GI program since, when properly designed, constructed and maintained, biotreatment systems may also be credited toward trash and pesticide reduction goals.

1.1.3 Contributors to Pollution

Numerous human activities generate or otherwise contribute to pollution in stormwater and can cause impairments to the beneficial uses of receiving waterbodies. The following pollutants of concern have resulted in impairments of waters from San Mateo County watersheds⁴:

• **PCBs.** Sources of PCBs are transformers or capacitors with leaking hydraulic fluids, lubricants, plasticizers, building materials, and pesticide extenders. PCBs are released to the environment through spills, leaks, and improper disposal and storage. PCBs have not been produced since 1977, but they can be transported long distances and bind strongly to sediment and are therefore persistent once in the environment. In addition to treatment by GI, PCBs are managed through

⁴ Stormwater Resource Plan for San Mateo County. (2017, February). San Mateo Countywide Water Pollution Prevention Program. City/County Association of Governments of San Mateo County. Prepared by Paradigm Environmental and Larry Walker Associates, Inc.

the Town's PCB Demolition Program, which controls PCB-laden wastes resulting from building demolition, and through referrals of source properties to the SFRWQCB. After referral, the property owner is required to address the pollution.

- Diazinon and Other Pesticides. Pesticides have been used throughout the San Francisco Bay Area to manage pests, and are released into the environment during manufacture, formulation, distribution and retail, landscape maintenance, and through agricultural usage (SFRWQCB 2016). Urban runoff transports these pesticides to local water bodies. In addition to treatment by GI, pesticides are reduced through implementation of a Pesticides Toxicity Control Program, which includes an Integrated Pest Management program aimed at reducing the use of pesticides.
- Mercury. Mercury sources include historic mines, urban runoff, wastewater discharges, resuspension of mercury-laden sediment in the Bay, and atmospheric deposition (SFRWQCB 2016). In addition to treatment by GI, mercury is reduced through implementation of a Mercury Control Program, which includes source control efforts at local mines.
- Trash. Trash accumulates in waterbodies due to littering, dumping, wind, and urban runoff. Plastic represented 60% of the trash accumulated from a 2007 study of six (6) watersheds in the County (SMCWPPP 2007). In addition to treatment by GI, trash is reduced by various trash prevention and control actions, such as the installation and operation of full trash capture devices, street sweeping, storm drain inlet cleaning, and hot spot cleanups.
- Sediment. Sources of sediment include erosion of creek banks and incision of creek streambeds (often caused by increased stormwater flows resulting from development) and excavation and deposition of sediment (such as through construction activities, historic logging, and agriculture). Sediment is controlled via GI and mechanical treatment devices, such as hydrodynamic separators.
- Indicator Bacteria. Sources of indicator bacteria along the shoreline of San Francisco Bay and beaches of the Pacific Ocean and found in other waterbodies of San Mateo County, such as the Marina Lagoon, stem from urbanization as well as from natural background sources. Urban stormwater runoff carries pet waste and litter which contributes to coliform bacteria. Other sources include sanitary sewer leaks and overflows, boat waste, litter from recreation, and direct deposit by wildfowl (SFRWQCB 2013).

1.1.4 Benefits of Green Infrastructure

GI is a long-term solution to reduce the amount of water pollution entering nearby creeks, rivers, and the ocean by utilizing natural systems, such as water retention and the absorption capabilities of vegetation and soil, to treat urban runoff. Increased implementation of GI will ultimately lead to improved quality of urban water discharge.

GI is associated with many environmental and human health benefits, especially in urban areas. For example, a stormwater curb extension in a commercial area provides both improved water quality and traffic calming. The Town will prioritize types and locations of GI measures which provide multiple benefits. Table 2 lists the key benefits of GI.

Table 2. Green Infrastructure Benefits.

Water Quality Improvement Green infrastructure captures and removes pollutants from stormwater before it enters local waterbodies.

Groundwater Recharge Green infrastructure can recharge groundwater through infiltration.

Volume Management

Green infrastructure can reduce the volume of runoff that reaches the storm drain system and local waterbodies through evaporation and infiltration.

Traffic Calming Green infrastructure promotes tra calming and increases bike and

Peak Flow Reduction

Green infrastructure reduces peak flows through detention, retention, filtration, infiltration, and evapotranspiration.

Neighborhood Greening

Green infrastructure improves mental and physical health through shade, beautification, and access to nature.

Habitat Creation

Green infrastructure can increase wildlife habitat in urban areas with the addition of vegetation.

Climate Change Resilience

Green infrastructure can help to provide resiliency in the face of climate change impacts.

Flooding Reduction

Green infrastructure mitigates flood risk by providing localized storage of water and slowing and reducing stormwater discharges.

Sea Level Rise Adaptation Green infrastructure can protect coa

and shoreline areas with living shorelines, buffers, wetlands, and dunes.

Non-Potable Water Supply

Green infrastructure treats rainwater as a resource. It can capture rainwater for use as irrigation or plumbing supply.

Heat Island Mitigation

Green infrastructure can reflect solar radiation and provide shade. By contrast, roofs and paving absorb solar radiation, making the surrounding air hotter.

Improved Air Quality

pollutants and particulates, resulting in healthier local communities.

Waterway Protection

Green infrastructure can reduce the effects of urbanization, like erosion and sedimentation, on local waterways.

1.2 Purpose, Goals, and Benefits of the Green Infrastructure Plan

1.2.1 Statement of Purpose and GI Plan Goals

This GI Plan describes how the Town will shift its impervious surfaces and storm drain infrastructure from "gray" (traditional) to green. In other words, the plan describes how the Town will change processes and practices over time to replace infrastructure which directs runoff directly into storm drains and receiving waters with Green Infrastructure, which slows runoff by dispersing it to vegetated areas, harvests and uses runoff, promotes infiltration and evapotranspiration, and utilizes bioretention and other GI practices to treat stormwater runoff.

The GI Plan also demonstrates the Town's long-term commitment to the implementation of GI to help reduce loads of pollutants conveyed in stormwater and discharged into local waterways. The GI Plan establishes milestones for areas of impervious surface to be retrofitted with GI and serves as an implementation guide and reporting tool to provide reasonable assurance that urban runoff TMDL wasteload allocations are met. It sets goals for reducing the adverse water quality impacts of urbanization and urban runoff on receiving waters over the long term.

Detention system at Cypress Lawn Cemetery, which receives stormwater runoff from landscaping and bioretention areas.

The GI Plan identifies means and methods to prioritize particular areas and projects within the Town's jurisdiction, at appropriate geographic and time scales, for the implementation of GI projects. Furthermore, it will include means and methods to track the area within the Town's jurisdiction that is

Town of Colma Green Infrastructure Plan

treated by GI controls and the amount of directly connected impervious area (i.e., impervious area which drains directly to the storm drain system without first flowing across permeable land area).

The Town will aim to meet the milestones established in the GI Plan by incorporating GI, where feasible, into the Capital Improvement Program (CIP). In addition, the Town will strive to collaborate in regional efforts to improve water quality through multi-jurisdictional projects.

The GI Plan goals and objectives are summarized in Table 3.

GI Plan Goals	Objectives
Protect the Environment	 Improve water quality by using GI to treat stormwater runoff Protect local creeks and waterways through reduction of sediment and peak runoff Raise public awareness about pollution prevention
Reduce Urban Flooding	Reduce peak runoff volumes and velocities using GI
Use Rainwater as a Resource	 Harvest and use runoff for non-potable purposes Promote neighborhood greening and create habitat using landscape-based GI measures
"No Missed Opportunities"	 Establish procedures and practices to require and implement GI practices in public and private projects as part of the Town's regular course of business Set milestones and goals for water quality improvement Identify and prioritize areas and projects within the Town's jurisdiction for the implementation of GI projects Incorporate GI, where feasible, in the CIP projects Coordinate the GI Plan with other local planning documents and promote the multiple benefits of GI Establish a means of tracking potential and completed GI projects

Table 3. Green Infrastructure Plan Goals and Objectives.

1.2.2 Integration of GI Plan with Provision C.3

The MRP requires Permittees to use their planning authorities to include appropriate source control, site design, and stormwater treatment measures in new redevelopment projects, with the aim of addressing stormwater runoff pollutant discharges and preventing increases in runoff flows from new and redevelopment projects. Projects which meet the MRP-established thresholds must include stormwater treatment systems and are called "Regulated Projects".

In the MRP, the SFRWQCB states that the GI Plan's implementation is required, in part, as an alternative to expanding the definition and lowering the threshold of Regulated Projects prescribed in Provision C.3.b.⁵ Regulated Projects are required to treat their site stormwater with LID site design and treatment

⁵ Since 2006, private or public projects that create or replace 10,000 square feet or more of impervious surface have been Regulated Projects under Provision C.3. of the MRP. Effective December 1, 2011, the threshold was reduced

control measures, thus contributing to the Town's overall GI and sustainability goals. Lower thresholds for Regulated Projects would result in more projects being required to incorporate green infrastructure as a condition of new or redevelopment. The SFRWQCB may opt to lower this threshold in a future permit, however, if progress towards GI milestones is deemed insufficient.

The Town is committed to protection of its natural resources, and to that effect will continue to provide oversight of implementation of LID on private projects in accordance with Provision C.3 requirements and will continue to incorporate LID and GI into Capital Projects.

The Town will plan, analyze, implement, and credit GI systems for pollutant load reductions on a watershed scale. One focus of the GI Plan is the integration of GI systems into Non-Regulated public rightsof-way projects. Another objective of the GI Plan is to provide incentives or opportunities for private property owners to add or contribute GI elements to Non-Regulated Projects. Additionally, the GI Plan provides a mechanism to establish and implement alternative or in-lieu compliance options for Regulated Projects as well as to account for and justify Special Projects in accordance with Provision C.3.e.⁶

1.2.3 Benefits of Developing a GI Plan

Currently, most of the infrastructure constructed within the Town is classified as "gray" infrastructure. The Town is working toward fostering a more sustainable urban community by incorporating GI components in Capital Improvement Projects. This GI Plan can be used to educate Town staff, developers, and the general community on both the nature of GI as well as the environmental, economic, and human health benefits of cultivating a climate in which opportunities for incorporation of GI are identified and pursued. Additionally, the GI plan provides guidelines for implementation of GI in future developments. Benefits of this GI Plan include the following:

- Aids the Town's and County's mission to create sustainable communities
- Facilitates systematic integration of GI into existing practices
- Identifies priority implementation locations
- Supports the Town in meeting current and future permit requirements
- Assists in understanding of compliance costs as well as planning and budgeting for future implementation

from 10,000 to 5,000 square feet for uncovered parking areas, restaurants, auto service facilities, and retail gasoline outlets. Effective 1/1/16, Under MRP 2.0, all projects including single-family dwellings with \geq 2,500ft² and <10,000ft² of impervious surface must install one or more of 6 specified LID site design measures.

⁶ On November 28, 2011, the SFRWQCB amended the MRP to allow LID treatment reduction credits for smart growth, high density, and transit-oriented development projects which meet certain requirements. Special Projects can use non-LID treatment, such as high flow-rate media filters and high flow-rate tree well filters.

1.3 Overview of Green Infrastructure Plan Development Process

1.3.1 Regional and SMCWPPP Guidance and Inter-Agency Collaboration

Since the issuance of MRP 2.0, the Town of Colma has undertaken a substantial effort to develop the GI Plan. In collaboration with the SMCWPPP Green Infrastructure Technical Advisory Committee (GI TAC), which was formed in April 2016 to address the new permit requirements, the Town worked diligently to develop the elements of the GI Plan. Through SMCWPPP, the Town participated in and supported regional (BASMAA) efforts, including the preparation of technical projects, memos, and reports.

A timeline showing the development of the key work products developed through the GI TAC is provided in Figure 5. These and other deliverables include the following:

- **GI TAC.** Formation of a committee to aid coordination among the San Mateo County Permittees to develop the GI Plans.
- **SRP.** Development of the San Mateo Countywide Stormwater Resource Plan (SRP), which established a prioritization protocol for GI projects and a list of prioritized GI projects.
- **CIP Screening**. Training on the BASMAA GI screening process to aid cities in undertaking an annual evaluation of their Capital Improvement Program for GI potential.
- **GI Workplan.** GI Workplan materials development, including the template, sample staff report, and sample resolution.
- **Green Suite.** Development of Countywide GI Guidelines and Specifications, consisting of the GI Design Guide and Regulated Projects Guide, referred to as the "Green Suite".
- **GI Funding Analysis.** Evaluation of GI Funding Options, which was summarized in a Nexus Evaluation report developed by SCI Consulting Group on behalf of SMCWPPP, and with input from the GI TAC.
- **RAA.** Completion of a Reasonable Assurance Analysis (RAA), which sets milestones countywide for the amount of stormwater treatment capacity, impervious surface, and sediment reduction provided by each Permittee in 2020, 2030, and 2040.
- **Planning Updates.** Model Planning Document Language, which was a review of various planning documents completed by CD+A on behalf of SMCWPPP and with input from the GI TAC.
- Alternative Sizing Criteria. BASMAA Guidance for Sizing GI Facilities in Street Projects & GI Facility Sizing for Non-Regulated Street Projects. This serves to address Provision C.3.j.i.(2)(g) of the MRP, which states, "Permittees may collectively propose a single approach with their Green Infrastructure Plans for how to proceed should project constraints preclude full meeting the C.3.d. sizing requirements."

These deliverables make up the key elements and backbone of the GI Plan. Developing these elements at a Countywide level was a significant effort, and required collaboration among the various agencies in San Mateo, all of which have a different local context and perspective. Each GI TAC meeting required a commitment on the part of member agency staff to (1) review discussion items several weeks prior to the meeting, (2) attend meetings a minimum of 2.5 hours in length either remotely or in person, and (3) provide feedback on in-progress or updated versions of deliverables within a few weeks of each meeting.

In order to provide feedback on GI TAC deliverables in a timely manner, an unofficial interdepartmental task force headed by the Public Works Department which consisted of representatives of various other departments was formed. At various stages in the planning process, Public Works coordinated with Planning/Community Development, Parks, the City Attorney, the City Manager's Office, and City Council to discuss the planning requirements and work products.

1.3.2 Workplan Development and Adoption

The MRP required all Permittees to adopt a GI Workplan by June 30, 2017 and submit it to the SFRWQCB by September 30, 2017. The workplan consisted of a framework for completing the GI Plan and included a statement of purpose, tasks, and timeframes to complete the required elements of the GI Plan.

The Town of Colma adopted a GI Workplan on June 5, 2017 through City Council Resolution 2017-37.

1.3.3 Alignment with City Plans, Policies, and Programs

GI implementation aligns with existing Town plans, policies, and programs, such as the General Plan and Climate Action Plan, because it can help to provide multiple benefits to the community, as listed in Section 1.1.4.

Chapter 7, "Integration with Other Planning Documents", describes how existing planning documents coordinate with the GI Plan, and which planning documents will be updated to further support implementation of GI.

Chapter 10, "Implementation Approach", describes how the Town's standard operating procedures, Municipal Code, maintenance program, and internal policies help to support implementation of GI.

1.3.4 Outreach and Education

Chapter 9, "Outreach and Education", describes which outreach and education efforts were conducted at a City- or County-wide level throughout the GI Plan development process. Chapter 9 also describes the education and outreach strategy moving forward to raise awareness about water quality and pollution as well as to help promote the implementation of GI.

1.3.5 Project Oversight

The Town convened interdepartmental meetings with affected department staff, including the Public Works and Planning Departments as well as Management Staff, to discuss and develop the GI Plan.

Additional oversight was provided by the GI TAC, where agency staff received information and feedback about various GI Plan elements. In order to develop a GI Plan that was consistent with others being developed in San Mateo and Santa Clara Counties, this GI Plan was developed from a combination of a GI Plan template provided by SCVURPPP, and the model table of contents provided by SMCWPPP.

Bioretention Area located at Hills of Eternity.

2.0 AGENCY DESCRIPTION AND BACKGROUND

2.1 Background and Land Use

Incorporated in 1924 in northern San Mateo County, the Town of Colma was founded to protect cemeteries as a land use and is therefore primarily comprised of cemeteries. The Town is located between the Pacific Ocean and Daly City to the west and San Bruno Mountain in the east (see Figure 6). The Town also has a vibrant commercial base that includes Colma Auto Row, Serra Center, and 280 Metro Center.

Figure 6. Town of Colma in Regional Context⁷.

⁷ Land Use and Urban Design Strategy. (October 2014). Prepared by Dyett & Bhatia for the Town of Colma. Colma, CA.

The Town has a total area of approximately 1.9 square miles, or 1,222 acres. The Town is primarily made up of open space/cemeteries, with 72 percent of the total land area either used or dedicated for future use as a cemetery or mortuary. Of the remaining developable area, about 132 acres consist of commercial and light industrial uses. Commercial uses consist of automobile dealers, retail centers, warehouses, and a casino and is concentrated along Serramonte Boulevard, El Camino Real, and Mission Road. Most of the residential area is situated in the Sterling Park neighborhood south of Daly City. Residential uses make up a small portion of the Town's area (less than 2%). There are no schools within the Town's jurisdictional limits.

Figure 7 depicts the various land uses in Colma.

2.2 Water Resources

The Town of Colma is within the Colma Creek watershed, which is part of the San Mateo Basin, a major source of groundwater that drains via Colma Creek into the San Francisco Bay in South San Francisco. The headwaters of Colma Creek are on the slopes of San Bruno Mountain. Groundwater is an important water source in Colma, as many of the cemeteries depend on groundwater for irrigation. The main groundwater aquifer which underlies Colma is the San Mateo Basin, and it extends through South San Francisco and northern San Bruno. The trough is estimated to be two miles wide by nine miles long and lies between San Bruno Mountain and the Santa Cruz Mountains.

2.3 Transportation

Regional vehicular access to the Town is provided by Interstate 280 just outside the western Town limits and State Route 82 (El Camino Real) which passes through the heart of the Town. The Town is situated between two Bay Area Rapid Transit (BART) stations, which are located just outside the Town's boundary. The Colma BART station is located at the northern boundary of the Town and the South San Francisco Station is located just outside the southern boundary. San Mateo County Transit District (SamTrans) provides regional bus services throughout the Town.

Town of Colma Green Infrastructure Plan

2.4 Population and Growth Forecasts

Colma is a town of 1,572 residents according to Department of Finance estimates from January 2013. Colma's small population grew from 1,187 in the year 2000 to 1,454 in the year 2010, increasing by 267 residents or 22 percent over the ten-year span.⁹ ABAG predicts Colma will continue to grow over the next 20 years to reach a population of 1,874 in 2030 (see Figure 8).

Figure 8. Town of Colma Population Growth (ABAG).

Colma has a population density of 827.3 people per square mile and average household size of 3.13. Of the 1,572 residents, 21.8% are under the age of 18, 9.9% are between 18 and 24, 29.7% are between 25 and 44, 27.2% are between 45 and 64, and 11.4% are 65 or older. The median household income was \$58,750 in 2010.¹⁰

2.5 Characteristics that Impact GI Implementation

Specific Town characteristics that may restrict GI implementation include the following:

- Limited New Development Opportunities. Most of the Town is built out, with very little vacant land available. This limits the space available for GI through new development.
- Limited Right-of-Way. The Town has limited right-of-way. The amount of GI in roadway projects is restricted by the area of the existing roadways.
- **Cemetery uses.** Most of the Town's area is dedicated to cemetery uses. Since the cemetery use is primarily lawn or landscaped areas, there is a limited need for GI improvements.

Specific Town opportunities that may positively affect GI implementation include the following:

⁹ *Estimates.* State of California. Department of Finance. Accessed 2019. <u>http://www.dof.ca.gov/Forecasting/Demographics/Estimates/</u>.

¹⁰ *American FactFinder*. United States. Census Bureau. Accessed 2019. <u>https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml</u>.

- Improvement Plans. The Town is developing improvement plans for major roadways such as the Serramonte Boulevard/Collins Avenue Master Plan, the Mission Road Improvement Plan, and the El Camino Real Bicycle and Pedestrian Master Plan. The Town will consider adding GI these projects subject to funding availability.
- **Redevelopment.** The Town identified seven possible redevelopment sites. The redevelopment of these sites can include GI improvements.

Bioretention area located at Golden Hills Memorial Park.

3.0 GREEN INFRASTRUCTURE MILESTONES

3.1 Regulatory Background

Provision C.3.j of the MRP specifies that the GI Plan should include the following:

"Targets for the amount of impervious surface, from public and private projects, within the Permittee's jurisdiction to be retrofitted over the following time schedules, which are consistent with the timeframes for assessing load reductions specified in Provisions C.11 and C.12: (i) By 2020; (ii) By 2030; and (iii) By 2040."

This chapter discusses the required load reductions to be achieved via Green Infrastructure (GI) at the Countywide level and includes various approaches that can be taken at the municipality and/or County level to achieve load reductions within specified compliance periods. The load reduction performance criteria are established through Provision C.11.c. (for mercury) and Provision C.12.c. (for PCBs).

3.2 Determining Load Reduction Milestones

3.2.1 Reasonable Assurance Analysis (RAA) Background

Collectively, San Mateo County Permittees (including the Town of Colma) prepared a Reasonable Assurance Analysis (RAA) to demonstrate quantitatively that the proposed control measures will result in sufficient load reductions to meet Total Maximum Daily Load (TMDL) Waste Load Allocations (WLA) and set goals for the amount of GI needed to meet the portion of PCB and mercury load reduction the MRP assigns to GI (SFBRWQCB 2015). The RAA allows the Town to engage in a cooperative effort with other San Mateo County municipalities while also operating under Town-specific stormwater quality goals and the Town's unique implementation strategies, tools, and processes set forth in this GI Plan.

The RAA is a tool for San Mateo County Permittees to use to accomplish the following:

- 1. Determine a quantitative Town-specific 2040 load reduction. If each municipality meets this goal, then San Mateo County will collectively have met the performance criteria of the MRP.
- 2. Establish sample "recipes" for achieving load reduction, through a combination of existing projects, future new and redevelopment, regional projects, and green streets.
- 3. Evaluate the financial resources needed to meet the 2040 goal and determine the feasibility of meeting this goal based on Town context, knowledge, and opportunities.
- 4. Serve as a discussion tool to facilitate conversations about countywide collaboration, such as the pooling of funds to construct regional projects, or the use of a credit trading program.
- 5. Project the amount of GI to be constructed via future new development and redevelopment.
- 6. Assist the Town in forecasting the relative ease or difficulty of green street implementation, based on a prioritization of green street opportunities.

7. Facilitate the creation of a tracking tool for GI implementation by establishing goals that are easily tracked and measured.

The EPA RAA Guide provides an example of three (3) differing perspectives for defining reasonable assurance (USEPA 2017):

- **Regulator Perspective.** Reasonable assurance is a demonstration that the implementation of a GI Plan will result in sufficient pollutant reductions over time to address TMDL WLAs or other targets specified in the MRP.
- **Stakeholder Perspective.** Reasonable assurance is a demonstration that specific management practices are identified with sufficient detail and implemented on a schedule to ensure that necessary improvements in water quality will occur.
- **Permittee Perspective.** Reasonable assurance is based on a detailed analysis of the TMDL WLAs and associated MRP targets themselves, and a determination of the feasibility of those requirements. The RAA may also assist in evaluating the financial resources needed to meet pollutant reductions based on schedules identified in the MRP.

The SMCWPPP RAA was developed by Paradigm Environmental, and consists of two (2) reports:

- **Phase I Baseline Modeling Report.** Provides documentation of the development, calibration, and validation of the baseline hydrology and water quality model, and the determination of PCB and mercury load reductions to be addressed through GI implementation. (SMCWPPP 2018b).
- Phase II Green Infrastructure Modeling Report. Provides documentation of the application of models to determine the most cost-effective GI implementation on a municipality-specific basis, setting stormwater improvement goals for the GI Plan. (SMCWPPP 2019c).

Per the EPA "Developing Reasonable Assurance" guide, stormwater NPDES programs are shifting from ensuring compliance through a modeling- and analytical-based approach to water quality requirements to a focus on the specific stormwater management strategies and processes that are necessary <u>over the long term</u> to achieve water quality goals. The RAA acts as a benchmarking strategy and process for assessment of the Town's progress in implementing GI. The planning process inputs and outputs of a reasonable assurance analysis are summarized in Figure 9.

¹¹ Developing Reasonable Assurance: A Guide to Performing Model-Based Analysis to Support Municipal Stormwater Program Planning. (2017, February). Paradigm Environmental. USEPA.

3.2.2 RAA Modeling Process

Pollutants, like PCBs and mercury, attach to cohesive sediments, like silts and clays, and do not settle out before discharging to the Bay. Using data such as rainfall levels, land use composition, impervious surface area, elevation, slopes, evaporation and infiltration, San Mateo County subwatersheds were modeled by Paradigm Environmental to establish stormwater runoff and total sediment loads. By reducing the amount of cohesive sediment with GI projects, the pollutants are also reduced.

Using the runoff and sediment load as an input, the watersheds were modeled using the System of Urban Stormwater Treatment & Analysis (SUSTAIN), which was developed by the EPA's Office of Research and Development. This software is a cost-benefit optimization model that runs iteratively to evaluate various GI opportunities.

The basic modeling system of the RAA is further described in Figure 10.

Figure 10. Reasonable Assurance Analysis Modeling.¹²

3.2.3 Determination of Water Quality Goals

As discussed in Section 3.2.1, depending on the perspective of the regulators, stakeholders, or Permittees, the purpose and expectations of the RAA can vary in terms of how reasonable assurance is demonstrated. As a result, the output from the RAA must consider multiple perspectives and strike the right balance between detail and specificity while still leaving ample opportunity to allow for future adaptive management.

¹² *Quantitative Relationship Between Green Infrastructure Implementation and PCBs/Mercury Load Reduction.* (2018, June). SMCWPPP 2017-18 MRP Annual Report. Paradigm Environmental.

The following are key considerations for the RAA output:

- Demonstrate PCBs and Mercury Load Reductions. The primary goal of the RAA is to quantitatively
 demonstrate that GI Plans and Control Measure Implementation Plans will result in load
 reductions of PCBs and mercury sufficient to attain their respective TMDL WLAs and the
 component stormwater improvement goals to be achieved with GI. Development of these
 milestones is further described in Section 3.2.1.
- **Develop Metrics to Support Implementation Tracking.** The MRP (Provision C.3.j) also requires tracking methods to provide reasonable assurance that TMDL WLAs are being met. Through C/CAG's current effort preparing a Sustainable Streets Master Plan for San Mateo County, a tracking tool is under development that will enable calculation of metrics consistent with the results of the RAA and additional metrics relevant to sustainable street implementation. The tracking tool is planned for completion in 2020. This is further described in Section 5.5.
- Support Adaptive Management. Given the relatively small scale of most GI projects (e.g., use of LID on an individual parcel or conversion of a single street block converted to a green street), numerous individual GI projects are needed to address pollutant reduction goals. All GI projects will require site investigations to assess feasibility and costs. The RAA provides a preliminary investigation of the amount of GI needed spatially (e.g., by subwatershed and municipal jurisdiction) to achieve the countywide pollutant load reduction goal. The RAA sets the GI Plan "goals" in terms of the amount of GI implementation over time to address pollutant load reductions. As GI Plans are implemented and more comprehensive municipal engineering analyses (such as detailed, site-specific assessments of GI feasibility) are performed, the adaptive management process is key to ensuring that goals are met. In summary, the RAA informs GI implementation goals, but the pathway to meeting those goals is subject to adaptive management. Adaptive management is further discussed in Section 5.6.

The RAA considered multiple alternative scenarios that can inform GI implementation and direct the adaptive management process. These scenarios demonstrate multiple needs, such as the completion of further research, collaboration among multiple Permittees, and incorporation of lessons learned in order to gain efficiencies and maximize the cost-effectiveness of GI to reduce pollutant loads over time.

3.2.4 PCBs and Mercury Load Reduction Milestones

The MRP specifies a PCB and mercury wasteload allocation which is assigned to San Mateo County based on population. The Town of Colma's wasteload allocation of PCBs and mercury was derived through the RAA based on population as well as area draining to the San Francisco Bay relative to other Permittees. From this baseline load, the contribution of PCBs and mercury from open space areas, sites covered under other discharge permits (such as schools and other Phase II permittees, and sites covered under an industrial discharge permit), Caltrans right of way, and areas that drain to the Ocean were removed. The remaining amount of wasteload allocation is what is controlled by the MRP in urban areas.

Based on the baseline hydrology and water quality model, the RAA determined that a 17.6% reduction in PCB loads is needed to meet the GI implementation goals established by the MRP. Zero reduction in mercury loads was determined to be needed from MRP areas because baseline loads were predicted to be below the TMDL WLA for San Mateo County. As a result, a 17.6% reduction in PCB loads compared to existing conditions is established as the primary pollutant reduction goal for the GI Plan.

Figure 11 represents various model scenarios that were considered during the RAA development. Scenarios 1 and 2 are explored further in this chapter. Scenarios 3 and 4 are not recommended, due to the uncertainties involved in terms of how PCB source areas are represented in the model, which will require more monitoring and analysis in the future to gain an improved understanding of PCB source areas and the ability to target these areas with GI. PCBs are difficult to model, track, and sample compared to cohesive sediment.

Load Reduction	Percent of Total GI Cost to Achieve Reduction Objective			
Objective	Jurisdictional	Countywide	Total Savings (Jurisdictional vs. Countywide)	
Cohesive Sediment 17.6% Reduction	Scenario 1	Scenario 2	\rightarrow Savings	
<u>Total PCBs</u> 17.6% Reduction	Scenario 3	Scenario 4	\rightarrow Savings	
Total Savings (Sediment vs. PCBs)	↓ Savings	↓ Savings	↘ OverallSavings	

Figure 11. Model scenarios objectives and cost-benefit evaluation (SMCWPPP 2018a).

• Scenarios 1 and 2. With a cohesive sediment load reduction objective, Scenarios 1 and 2 represent the most conservative approaches. Those scenarios assume that given the uncertainties about PCB source areas, targeting an overall 17.6% load reduction of cohesive sediment in general (silts and clays) achieves the PCB load reduction objective for GI.

Since PCBs are generally understood to be transported with cohesive sediment (e.g., silt and clay), cohesive sediment load can serve as a surrogate on which to base a load reduction target. The RAA considers a 17.6% reduction of cohesive sediment load as a more conservative surrogate until a better understanding is reached in terms of specific PCB source areas within the County. PCB source areas can be targeted for source control measures or GI implementation, likely resulting in greater effectiveness for GI to reduce PCB loads in those areas, and thus reducing the overall amount of GI needed to meet the load reduction target.
Scenarios 3 and 4. These scenarios assume that PCB sources are spatially distributed based on analysis of land use types. The cost-benefit optimization process targets those areas as having the highest likelihood of PCB sources. Scenarios 3 and 4 highlight the potential cost savings (relative to Scenarios 1 and 2) that could be realized if PCB sources are identified and targeted for GI implementation.

By targeting a total sediment load reduction rather than a pollutant-specific load reduction (such as reduction in level of PCBs), GI installed at any site in San Mateo County which drains to the San Francisco Bay can help contribute to the load reduction.

3.3 Approach to Load Reduction Milestones

3.3.1 Jurisdictional vs. Countywide Approach

There are two (2) potential approaches the various municipalities within San Mateo County may consider:

- Jurisdictional Approach. Each municipality would be individually responsible for a 17.6% load reduction that is proportional based on population and the amount of area which drains to the San Francisco Bay.
- **Countywide Approach.** Each municipality agrees to reduce overall PCBs within the County by focusing on municipalities with the potential to implement more efficient and numerous GI opportunities.

The Countywide approach is projected to result in a cost reduction for each municipality and considers implementation of GI throughout San Mateo County. Some agencies will have more capacity to implement GI, while others will have less. A countywide approach is not only more cost effective, but also provides a vehicle for collecting funding for regional project opportunities, the costs of which can be shared by multiple jurisdictions. It also provides a vehicle for credit trading between agencies. Refer to the "Green Infrastructure Funding Nexus Evaluation" (SCI Consulting Group and Larry Walker Associates, January 2019) for more information about credit trading.

The RAA allows for the possibility of credit trading by providing multiple management metrics for GI, such as impervious area to be treated in acreage, and GI capacity in acre-feet. **Refer to Section 3.4.3 for more information about the RAA's management metrics.**

3.3.2 Modeled Green Infrastructure Opportunities

For the purposes of the RAA, GI represents a group of structural control measures that provide similar processes for the capture, infiltration, and/or treatment of urban runoff prior to discharge to receiving waters, such as bioretention areas and permeable pavers. For more information about the methods used to identify and screen potential projects, refer to Chapter 4, "Project Identification and Prioritization". GI opportunities incorporated into the model include the following:

- Existing Projects. Stormwater treatment measures and GI projects that have been implemented since FY -2004/05. This is primarily all the Regulated Projects that were mandated to treat runoff via Provision C.3 of the MRP, but also includes any public green street or other demonstration projects that were not subject to Provision C.3 requirements. For Regulated Projects in the early years of C.3 implementation, stormwater treatment may have been achieved through non-GI means, such as underground vault systems or media filters.
- 2. Future New and Redevelopment (Low Impact Development). Low impact development uses a suite of technologies intended to imitate pre-urbanization (natural) hydrologic conditions. LID captures and treats runoff before it can reach downstream waterbodies. LID projects are located on discrete parcels and sites, and do not include green streets (see below for further information). Examples include green roofs, bioswales, bioretention areas, permeable pavement, and infiltration trenches. These are Regulated projects that are subject to Provision C.3 requirements to treat runoff via GI per the MRP. The RAA modeled these projects based on spatial projections of future new and redevelopment tied to regional models for population and employment growth. For a map of prioritized LID projects, refer to Appendix C.
- 3. **Regional Projects.** Regional stormwater capture projects consist of facilities that capture and treat stormwater from offsite. The primary objective of regional projects is often flood attenuation, but many also contain a water quality treatment or infiltration component. Common examples include detention basins, retention basins, and subsurface infiltration galleries. Ideal locations are large public spaces, such as public parks, sports fields, parking lots, and school grounds (SMCWPPP 2017). The San Mateo County Stormwater Resource Plan (SRP) identifies projects which provide regional capture and infiltration/treatment of stormwater and includes conceptual design to support further planning and designs. This list of regional projects has been further refined since the SRP was developed to update the RAA. For a map of prioritized regional projects, refer to Appendix C.
- 4. Green Streets. Green streets consist of stormwater capture infrastructure that is implemented in public rights-of-way. Green streets projects include installation of permeable pavement, bioretention areas, and stormwater curb extensions. The SRP identifies and prioritizes opportunities throughout San Mateo County for retrofitting existing streets with GI in public rights-of-way. This prioritization was refined with the RAA, using feedback from the GI TAC. The

green streets were further broken up into high, medium, and low priority categories to represent the projects which have the greatest (high priority) or least (low priority) potential for a costeffective installation of a GI measure. **For a map of prioritized green streets projects, refer to Appendix C.**

5. Other GI Projects (to be determined). Other types of GI projects on publicly owned sites, representing a combination of either additional parcel-based GI or other Regional Projects. The SRP screens and prioritizes public parcels for opportunities for onsite LID and Regional Projects. These opportunities need further investigation to determine those with the greatest potential.

Together, modeled GI opportunities listed above present the "recipe" for attaining the water quality milestones. The contribution from each project category is simulated in the RAA, but the actual contribution will depend upon the opportunities which arise through development, through capital projects, and through regional collaboration between now and 2040. Figure 12 represents how the GI opportunities are sequenced to first take advantage of the projects with the lowest implementation cost before incorporating the use of more costly GI opportunities.

Figure 12. Example Implementation Recipe Showing General Sequencing of GI Projects.¹³

¹³ Quantitative Relationship Between GI Implementation and PCBs/Mercury Load Reduction. (2018, June). 2017-18 MRP Annual Report. Paradigm Environmental. SMCWPPP

3.4 Town-Specific Water Quality Milestones

3.4.1 Jurisdictional and Countywide Approach

As a result of the RAA, each municipality is provided a range of options to achieve a 17.6% reduction in sediment. The parameters provided include the (1) volume of annual runoff to be managed, (2) area of impervious surface to be managed, and (3) capacity of GI measures to be constructed. The RAA presents a "recipe" for how much GI might be constructed in each area of the Town, but the actual implementation of GI is dependent upon opportunities and funding. For most municipalities, there is a large divide between sediment reduction goals under the jurisdictional vs. countywide models. For the Town of Colma, however, both models produce the exact same sediment reduction goals. For this reason, this section will not compare the two models.

Figure 13. Optimization summary for Colma, sediment goal (by jurisdiction).

Figure 13 displays the most cost-effective path for the Town to reach the 17.6% sediment reduction goal. The left Y-axis is paired with the colored bars and displays the structural Best Management Practices (BMP) capacity in acre-feet. Structural BMP capacity is defined as the volume of (a) theoretical Green Infrastructure measure(s) necessary to achieve a target load reduction. The X-axis displays the percent reduction in cohesive sediment. The right Y-axis is paired with the black line and displays the percent of the total countywide implementation cost that would be paid by the Town.

To read the graph, follow the black line until you reach the desired point along the X-axis (in the above graph, this is 17.6% sediment reduction). Imagine a vertical line slicing through the entire graph at this

point. The highest part of this line that touches a colored bar represents the structural BMP capacity required to reach the sediment reduction goal (in the above graph, this is 2.8 acre-feet). These 2.8 acre-feet are achieved via existing projects (about 1.4 acre-feet), future new developments and redevelopments (about 0.3 acre-feet), regional projects (about 0.3 acre-feet), and high-priority green streets (about 0.8 acre-feet). Now return to the selected point along the black line and imagine a horizontal line slicing through the entire graph at this point. Follow this line to the right Y-axis to find the percent of the total countywide cost that would be paid by the Town under the proposed plan (in the above graph, this would be 1.60%).

As the percent reduction in sediment increases, the acre-feet of structural BMP capacity as well as the percent of total implementation cost also increase. The most efficient methods are used first up to their capacity and then less efficient methods follow. For example, in the above graph, high priority green street projects have reached maximum capacity before any low priority green street projects are introduced, and these in turn are at near-capacity before any other GI projects are introduced.

Figure 14. Colma sediment reduction goal.

The above map (Figure 14) shows the various subwatersheds located within the Town, along with the planned structural BMP capacity of each area to be utilized within the Town under both jurisdictional and countywide approaches.

₽	Management Metrics for Gl			GI Capacity to Achieve 17.6% Reduction Target (Capacity expressed in units of acre-feet)									
hed	Ę				σ	Exi	sting/Plan	ned		Green Stre	eets	o v	ity
Subwatersh	% Load Reductic PCBs (Annual)	Annual Volume Managed (acre-ft)	Impervious Area Treated (acres)	Existing Projects	Future New & Redevelopment	Regional Projects (Identified)	High	Medium	Low	Other GI Project (TBD)	Total BMP Capac (acre-ft)		
240205	38%	0.66	0.04		0.00	0.00			0.00		0.0		
240405	16%	22.76	4.36	0.10	0.09	0.08	0.28				0.5		
240505	27%	4.37	0.35	0.01	0.01	0.01		0.00			0.0		
240605	17%	33.26	50.95	0.70	0.09		0.12		0.54	0.16	1.6		
240705	19%	55.48	13.27	0.58	0.12	0.16	0.40				1.3		
Total	18.1%	116.5	69.0	1.4	0.3	0.3	0.8	0.0	0.5	0.2	3.5		

Table 4. Colma Sediment Reduction Goal (With Regional Projects).

Table 4 shows several points of data for each subwatershed as well as the overall total for the Town. Using this table, one can determine which subwatersheds will contribute the most toward the Town's overall PCB reduction, green street construction, and many other parameters. This table's data apply under both the jurisdictional and countywide approaches.

3.4.2 Management Metrics

The RAA presents a "recipe" for GI implementation using various management metrics. Progress towards GI milestones is tracked using one or more of these management metrics.

- % Load Reduction PCBs (Annual). This is the load reduction necessary in each subwatershed to achieve the overall targeted load reduction.
- Annual Volume Managed (acre-ft). This is the volume of water that is captured, infiltrated, and/or treated within each subwatershed in order to achieve the overall targeted load reduction, given the theoretical combination of projects modeled by the RAA.
- Impervious Area Treated (acres). This is the impervious area that needs to be treated in order to achieve the overall targeted load reduction, given the theoretical combination of projects modeled by the RAA.
- Total Best Management Practices (BMP) Capacity (acre-ft). Also known as Total Green Infrastructure Capacity, this represents the theoretical capacity of GI projects modeled. Use of this metric as a focus for stormwater improvement goals for the GI Plan is not recommended, due

to its sensitivity to the dimensions, locations, and upstream drainage area of the combination of GI projects that are installed.

Actual locations, dimensions, and upstream drainage areas of projects constructed will depend upon sitespecific constraints, feasibility, and availability of funding. Therefore, the number of projects constructed in various subwatersheds may vary significantly from the RAA results, which may affect their effectiveness. Use of management metrics allows the Town to alter its "recipe" for GI implementation without needing to re-run the RAA model. This enables the Town to adapt to the changing needs and opportunities in its community. **For more information about the Town's adaptive management approach to GI implementation, refer to Section 5.6.**

3.4.3 Green Infrastructure Interim Milestones

The MRP requires reporting of goals for implementation of GI for interim milestones 2020 and 2030, in addition to the final milestone of 2040. Interim milestones for 2020 and 2030 aimed at reaching the 2040 goals were selected in order to assist municipalities with maintaining a sufficient pace throughout the more than 20-year period. In order to estimate the amount of GI to be implemented at these milestones, various assumptions were made in terms of the pace of implementation for various GI project types.

- Interim Milestone Assumption for Future New & Redevelopment. An analysis¹⁴ separate from the RAA determined the projected amount of LID associated with new development and redevelopment by 2020, 2030, and 2040. That analysis was completed by Community Design + Architecture, using a C/CAG and MTC demographic dataset. It was found that growth varied significantly between communities and land use types. The data were validated by Town staff.
- Interim Milestone Assumption for Regional Projects. In the case of regional projects in the County (such as the Orange Memorial Park project, which will treat a portion of runoff from Colma Creek), assumptions were made as to when the regional projects modeled would be built and operational. Generally, regional projects were assumed to be complete by 2030. Regional projects help to reduce the amount of GI which needs to be installed through other means, such as green streets.
- Interim Milestone Assumption for Green Streets. Thirty-three (33) percent of green streets required by 2040 are assumed to be implemented by 2030.

The resulting schedule presented in Figure 15 demonstrates anticipated interim and final milestones for GI implementation in terms of structural capacity. These interim and final GI capacities are subject to adaptive management; however, the 2040 Management Metrics for GI (left side of Table 4, as discussed in Section 3.4.1) set the ultimate goal for GI planning efforts and tracking.

¹⁴ Community Design + Architecture, 2019.

The reason the RAA model calls for an 18.1% reduction rather than a 17.6% reduction is that the model applies potential GI projects in order of efficiency from best to worst, slowly building the sediment reduction until a particular project causes the sediment reduction to move past the 17.6% threshold. The Town is free to utilize adaptive management strategies to, for example, construct less efficient but smaller projects to achieve a reduction closer to the 17.6% minimum.

Implementation Milestones

Figure 15. Summary GI capacity for interim and final implementation milestones.

Figure 15 displays the Town's projected growth in structural BMP capacity via the 2020 and 2030 interim milestones under the jurisdictional approach as well as the 2040 goals under both the jurisdictional and countywide approaches.

Table 5. Implementation Milestones: Colma.

Implementation Matrics		Implementation Milestones: Colma						
		Incremental		Cumulative		Final 2040		
	implementation metrics	2020-	2030-					
		2030	2040	2020	2030	Jurisdictional	Countywide	
×	% Load Reduction	2.7%	8.7%	6.7%	9.4%	18.1%	18.1%	
Jude	Volume Managed (acre-ft/yr.)	16.5	53.6	46.4	62.9	116.5	116.5	
_	Treated Impervious (acres)	5.7	52.8	10.5	16.2	69.0	69.0	
	Existing Projects	0.0	0.0	1.4	1.4	1.4	1.4	
	Future New &							
-ft)	Redevelopment	0.1	0.1	0.1	0.2	0.3	0.3	
acre	Regional Projects (Identified)		0.0		0.3	0.3	0.3	
es (a	Green Streets (High)		0.1		0.7	0.8	0.8	
aciti	Green Streets (Medium)		0.0		0.0	0.0	0.0	
Capa	Green Streets (Low)					0.5	0.5	
	Other GI Projects (TBD)					0.2	0.2	
	Total	0.1	0.2	1.5	2.5	3.5	3.5	

Table 5 displays both the incremental and cumulative growth recommended from 2020 through 2040 to reach the 2040 goals.

For a visual depiction of the Town's existing GI projects and future GI opportunities, please see the maps in Appendix C.

4.0 PROJECT IDENTIFICATION AND PRIORITIZATION

4.1 Introduction

Provision C.3.j. states that each Permittee shall develop the following:

"A mechanism...to prioritize and map areas for potential and planned projects, both public and private, on a drainage-area-specific basis, for implementation over the following time schedules, which are consistent with the timeframes for assessing load reductions specified in Provisions C.11. and C.12 (i) By 2020; (ii) By 2030; and (iii) By 2040.

The mechanism shall include criteria for prioritization...and outputs (e.g., maps, project lists) that can be incorporated into the Permittee's long-term planning and capital improvement processes."

This chapter summarizes the Town's project identification and prioritization process, which consists of the following elements:

- 1. Identification and Prioritization of Project Opportunities through the San Mateo County Stormwater Resources Plan (SRP). In addition to identification of projects in the Capital Improvement Program (CIP), the Town has integrated the prioritization results of the San Mateo County Stormwater Resource Plan (SRP), which was developed by SMCWPPP with participation from the GI TAC and member agencies. The SRP establishes a region-level, watershed-based planning and implementation guide for stormwater and dry weather runoff capture and reuse projects on publicly-owned land and rights-of-way. The SRP produced a list of prioritized project locations eligible for future State implementation grant funds.
- 2. Identification and Prioritization of Project Opportunities through the Capital Improvement Program (CIP). Starting in 2016 with the adoption of the new MRP, the Town prepared a list of projects that have the potential to incorporate GI. This list is updated each year to reflect the project status, additional findings, and new additions to the CIP. The focus of this list is on public projects listed in the CIP rather than private projects, because private projects are typically tracked separately as regulated project opportunities. This chapter formalizes the process developed to promote early implementation of GI projects for the identification and prioritization of project opportunities.
- 3. Identification and Prioritization of Project Opportunities on Private Property. Identification and prioritization of opportunities on private property is not the focus of this chapter, but the Town does intend to collaborate where possible with other agencies and private landowners. At the end of this chapter the Town identifies possible partners with whom the Town can collaborate to achieve the water quality goals outside the Town rights-of-way.

4. Future Identification and Prioritization of Project Opportunities through the San Mateo County Sustainable Streets Master Plan. Further prioritization of the Town's streets, sidewalks, Townowned properties, and other land resources will be conducted in the future through the San Mateo County Sustainable Streets Master Plan in 2021.

The Town is intentionally spring-boarding off existing processes in order to (1) maintain consistency with the SRP and BASMAA GI screening process, (2) take advantage of training conducted to familiarize staff with the SRP and screening process, and (3) make the identification and prioritization process simple, so as to spend more time focusing on how to implement GI on projects that have GI potential.

Porous pavement located at Golden Hills Memorial Park.

4.2 Identifying Existing Projects and Future Opportunities

4.2.1 Participation in Developing San Mateo Countywide Stormwater Resource Plan

SMCWPPP developed an SRP, which, in addition to characterizing San Mateo County water resources, established both a quantitative prioritization protocol for GI opportunities and an initial list of prioritized local and regional GI projects. It also served the purpose of allowing municipalities access to funding for

stormwater and dry weather runoff capture projects. Senate Bill 985, which went into effect on January 1, 2015, requires the development of an SRP as a condition of receiving voter-approved bond funds for stormwater and dry weather runoff capture projects. The final draft of the San Mateo County SRP was approved under Resolution 17-04 by the C/CAG Board of Directors on February 9, 2017.

The SRP is intended to be a living document and will be periodically revised, once every five (5) years, to update the project implementation plan and reflect lessons learned through wide-scale integration of LID, green streets, and regional stormwater capture projects.

The Town contributed proposed projects to the SRP during the development of the SRP and may consider opportunities to pursue grant funding for those projects identified as part of the GI Plan Implementation Process.

4.2.2 Identification and Screening of Project Opportunities through the Capital Improvement Program

The Town's primary means of identifying and screening project opportunities is the Capital Improvement Program (CIP). Projects that are listed in the CIP are likely to be constructed and operated, as they address specific Town needs and provide benefits consistent with Town goals, policies, and priorities. Projects are typically added to the CIP based, in part, on needs assessments performed in association with the development of master plans, such as a Parks Master Plan or Storm Drain Master Plan. With the development of this GI Plan, the Town is both formalizing and documenting its procedure for screening CIP for GI potential as well as reinforcing the link between GI and the Town's various local planning documents and master plans.

As required by the MRP, the Town will continue to prepare and maintain a list of projects with potential for inclusion of GI measures that are planned for implementation during the permit term. The Town also plans to annually update the map of the Town's existing and potential GI projects in Appendix C to reflect current progress towards the GI plan implementation as well as future project opportunities.

Figure 16 summarizes the key factors that are taken into consideration when integrating GI into the CIP.

Figure 16. Factors Impacting Selection of Optimal GI Projects.¹⁵

¹⁵ Green Infrastructure Implementation. Adapted from Figure 10.1, Decision process for selection of GI Types. Water Environment Federation, 2014.

The Town screens its CIP using an adjusted version of the BASMAA Screening Process (BASMAA, 2016). This process consists of three parts:

- Part 1 Initial Screening. Projects move on to the Part 2 Screening process unless they are one of the following categories: No Potential, Too Late to Change, Too Early to Assess, or Maintenance / Minor Construction. Projects without GI potential are removed from the Town's tracking list.
- Part 2 Assessment of GI Potential. Projects are assessed for their ease of integration of GI according to project types. C.3 Regulated project status is assessed. Projects without GI potential are removed from the Town's tracking list, and the reasons for infeasibility of incorporating GI are documented.
- Part 3 Preliminary Design. Information is collected, preliminary GI sizing takes place, barriers and conflicts are assessed, budget and schedule considerations are noted, and the results of the GI assessment are documented. Projects without GI potential are removed from the Town's tracking list, and the reasons for infeasibility of incorporating GI are documented.

This screening process is provided in Appendix B.

4.2.3 Identification of Opportunities on Private Property

The GI Plan focuses on public rights-of-way as well as identification and screening of projects that are within the jurisdiction and control of the Town. However, GI can be implemented on private properties which are under development through the project entitlement process. For more detail about how the Town enforces GI on private properties, refer to Section 10.2, "Private Development Program and Policies".

4.3 Determining GI Priorities

4.3.1 Countywide GI Project Screening

The SRP includes an evaluation of project benefits addressing several key metrics: Water Quality, Water Supply, Flood Management, Environmental, and Community benefits. Based on these metrics, watershed characteristics and processes (including land use, impervious cover, hydrologic soil group, percent slope, rainfall, and pollutant wasteload), the SRP identifies and prioritizes projects to address water quality impairment, reduce flooding, and provide more natural groundwater recharge¹⁶.

Three basic categories of project opportunities have been screened (for more information about these project opportunities, refer to Section 3.3.2, Modeled GI Opportunities):

¹⁶ Stormwater Resource Plan for San Mateo County. (2017, February). San Mateo Countywide Water Pollution Prevention Program. City/County Association of Governments of San Mateo County. Prepared by Paradigm Environmental and Larry Walker Associates, Inc.

- Future New and Redevelopment
- Regional Projects
- Green Streets

Table 6 summarizes the screening methodology for parcels and rights-of-way.

Screening Factor	Characteristic	Criteria	Reason			
PARCEL						
Public	Ownership	City, County, or Town	Identify all public parcels for regional storm and dry weather			
Parcels	Land Use	Park, School, Other (e.g., Golf Course)	runoff capture projects or onsite LID retrofits			
	Parcel Size	>0.25 acres	Adequate space for regional stormwater and dry weather runoff capture project			
Suitability		<0.25 acres	Opportunity for onsite Green Infrastructure retrofit			
	Average Parcel Slope	<10%	Steeper grades present additional design challenges			
		RIGHT	T-OF-WAY			
		S1200	Town street, arterial			
Selection	Functional Class	S1400	Local neighborhood road, rural road			
Selection		S1730	Alley			
		S1780	Parking lot roads			
Suitability	Ownership	Public	Potential projects are focused on public and right-of-way opportunities			
Suitability	Road Slope	<5%	Steep grades present additional design challenges; reduce capture opportunity due to increased runoff velocity			

 Table 6. SRP Parcel and Right-of-Way Project Screening Methodology.

4.3.2 Countywide GI Project Prioritization

After the identification of feasible project locations, screened parcels and rights-of-way were prioritized to aid in the selection of potential project locations that would be most effective and provide the greatest number of benefits.

This was a two-step ranking process:

- 1. First, all potential project locations were ranked on the basis of which sites offer the greatest opportunity for stormwater capture and other multiple benefits. Opportunities to combine stormwater capture projects with the CIP can be considered now, and in the future.
- The highest-ranked opportunities were further analyzed to provide a detailed quantification of project benefits and develop preliminary conceptual designs and project costs. Though this analysis was focused on a select number of opportunities, the concepts developed can be used on a wide variety of similar projects.

Specifically, projects were prioritized using the following categories, through a quantitative scoring system:

• **Physical Characteristics.** For parcels, physical conditions include land use or, for green streets, street type (for green streets). Physical characteristics also include impervious area, parcel size,

hydrologic soil group, and/or slope. Prioritization based on these factors varies slightly depending on whether the project was a regional project, green street, or LID retrofit. In general, the highest prioritization is given to sites that consisted of high imperviousness, have the potential to infiltrate, and have mild slopes.

- Flood-Prone Streams. Projects placed within the subwatersheds of flood-prone streams and areas subject to flooding can help to mitigate flood risks and reduce flood and hydromodification impacts by limiting the volume of runoff that reaches the impacted streams. Therefore, high priority was given to sites closest to the flood-prone streams.
- **PCB Interest Areas.** PCBs are one of the primary pollutants of concern within the Bay Area; therefore, siting stormwater capture projects in PCB interest areas can potentially address water quality issues.
- Co-Located Planned Projects. Consideration of other potential or planned Town projects opens opportunities for cost-sharing and maximizes multiple benefits achieved by a single project. Higher priority scores were given to project opportunities that may be implemented in parallel with new development and redevelopment projects or other municipal CIP projects.
- **Drains to TMDL Waters.** Projects that are located in watersheds that drain to Bay TMDL waters were given higher scores. Stormwater capture in these areas will aid in the removal of pollutants from runoff downstream.
- **Multiple Benefits.** While the reduction of pollutant loads is one of the primary objectives of green stormwater infrastructure, several other benefits can be achieved to improve cost effectiveness and increase buy-in. Potential benefits of GI are listed in Section 1.1.4.

Through the Town staff's and SMCWPPP's input, the prioritization criteria were weighted to arrive at the final project prioritization methodology. The process resulted in assigned prioritization scores for each identified GI opportunity within each of the three project categories (green streets, LID retrofits, and regional projects). These scores could later be further filtered or sorted to support ongoing prioritization of projects within the Town of Colma. The criteria and weighting are summarized for each project type in Table 7.

Matria	Points						Weight
	0	1	2	3	4	5	Factor
REGIONAL PROJECTS							
Parcel Land Use			Schools/Golf Courses	Public Buildings	Parking Lot	Park / Open Space	
Parcel Size (acres)	0.25 ≤ X < 0.5	$0.5 \le X < 1$	1 ≤ X < 2	2 ≤ X < 3	$3 \le X < 4$	4 ≤ X	
Slope (%)	$5 < X \le 10$	$4 < X \leq 5$	$3 < X \leq 4$	2 < X ≤ 3	1 < X ≤ 2	$0 < X \leq 1$	
		LID R	ETROFIT PROJE	CTS			
Parcel Land Use			Schools/Golf Courses	Park / Open Space	Parking Lot	Public Buildings	
Slope (%)	5 < X ≤ 10	$4 < X \leq 5$	$3 < X \leq 4$	2 < X ≤ 3	1 < X ≤ 2	$0 < X \leq 1$	
		GREE	N STREET PROJE	CTS			
Parcel Land Use	Highway		Arterial	Collector	Alley	Local	
"Safe Routes to School" program	No					Yes	2
Slope (%)		$4 < X \leq 5$	$3 < X \leq 4$	2 < X ≤ 3	1 < X ≤ 2	$0 < X \leq 1$	
			ALL PROJECTS				
Impervious Area (%)	X < 40	40 ≤ X < 50	50 ≤ X < 60	$60 \le X < 70$	70 ≤ X < 80	$80 \le X < 100$	
Hydrologic Soil Group		D	Unknown	С	В	A	
Proximity to Flood- prone Channels (miles)	Not in sub- basin	3 < X		1 < X ≤ 3		$X \leq 1$	2
Contains PCB Risk Areas	None			Moderate		High	2
Currently planned by Town or co-located with other Town project	No					Yes	2
Drains to TMDL water	No					Yes	
Above groundwater basin	No		Yes				
Augments Water Supply	No	Yes					
Water Quality Source Control	No	Yes					
Reestablishes Natural Hydrology	No	Yes					
Creates or Enhances Habitat	No	Yes					
Community Enhancement	No	Yes					

Table 7. SRP Parcel and Right-of-Way Project Prioritization Methodology.

The results of the SRP project prioritization are provided in a webviewer created by C/CAG: <u>http://54.183.214.51/maps/SMC_project_prioritization</u>. Prioritization maps for the Town of Colma are provided in Appendix C.

4.4 Potential Collaborations with Outside Agencies

The Town may seek collaboration opportunities with outside agencies which fall within the Town's limits but are in non-jurisdictional areas (areas not subject to the MRP under the Town's MS4 permit), including San Mateo County, Caltrans, Bay Area Rapid Transit (BART), and SamTrans.

5.0 PROJECT TRACKING

5.1 Introduction

Provision C.3.j of the MRP states that each Permittee shall develop the following:

"A process for tracking and mapping completed projects, public and private, and making the information publicly available."

Tracking and mapping both existing and potential GI projects facilitates the implementation of a Green Infrastructure (GI) program in several ways:

- 1. Keeps the community engaged by providing an ongoing list of existing and potential GI projects.
- 2. Facilitates management of and associated inspections for a GI Operations and Maintenance Program.
- 3. Keeps the focus on potential GI projects in the Town, to encourage a continued effort to transition the Town from "gray" to "green", and ensure these projects continue to make progress.
- 4. Allows the Town to ascertain the treatment area for potential GI projects and continue to refine this area as projects develop.
- 5. Enables tracking of projects in different areas of the Town, which may have different land uses and priorities.
- 6. Helps measures progress towards water quality objectives.

5.2 Town Internal Project Tracking System

As part of the development of the GI Plan, the Town mapped all existing and potential areas treated by GI in a Geographic Information System (GIS), which is a graphical framework for gathering, analyzing, managing, and representing data. In addition, projects are tracked on an internal Excel spreadsheet, which includes additional data, such as the type of treatment measures installed. The Excel spreadsheet is updated on a continuous basis and is also used to manage the Town's GI Operations and Maintenance program.

The Town will aim to update the GIS exhibit which maps existing and potential areas treated by GI (**refer to the last exhibit of Appendix C**) on an annual basis and prior to preparation of the Annual Report to reflect the following:

- 1. Projects which moved from "potential" to "existing" (i.e., were constructed).
- 2. Development projects that come in for planning review (either entitled or in pre-application status if the project is likely to be submitted as a formal application).
- 3. CIP Projects which are newly identified as having GI potential.

The Town's internal tracking system is intended to be used until the Countywide Project Tracking System becomes available. At that time (estimated 2021), the Town may consider reassessing the need for an additional internal project tracking tool. So as not to duplicate efforts, the Town may consider the following options:

- Retire the internal project tracking system and use the Countywide tool instead. This will save on upfront costs and could even save on future costs if the Town has a small number of GI projects.
- Should the Town determine that, in addition to the Countywide tool, a more robust internal tracking tool with greater functionality is needed, transition the Excel spreadsheet and GIS layer into a stormwater compliance database, which would require significant upfront expense but could save future costs if the Town has enough existing GI projects. This would allow Town staff to complete the following:
 - Complete inspection reports electronically.
 - o Match the inspection data more quickly to the project list.

o Facilitate the exporting of data.

Bioretention area located at Town Hall.

5.3 Town Public-Facing Project Tracking System

As part of the development of the GI Plan, the Town created a GI Map using the ArcGIS Online story map tool. This map features selected existing and potential GI projects within the Town. This story map is an interactive, publicly-accessible web map that can be accessed from the Town website at <u>https://www.colma.ca.gov/green-infrastructure/</u>. This allows the public to see locations, descriptions, and photos of existing GI throughout the Town (for screenshots, see Figure 17).

Figure 17. Screenshots of the Town's GI Map (2019).

5.4 O&M Tracking Systems and Procedures

Proper maintenance is essential to maximizing the environmental, social, and economic benefits of GI, as well as ensuring that projects perform as expected. Written plans and procedures ensure proper long-term maintenance and are critical components to the success of any GI measures.

The Town's goal is to ensure that public, private, Regulated, and Non-Regulated GI measures are maintained sufficiently to perform as designed by implementing the Town's Enforcement Response Plan (ERP) and Standard Operating Procedures (SOPs), and by drawing from SMCWPPP resources, such as Chapter 6, Guidelines and Specifications.

5.4.1 O&M Tracking of Provision C.3.h. ("Regulated") Sites

The MRP requires, under Provision C.3.h, that GI installed as part of Regulated projects as well as permeable pavement installations in excess of 3,000 square feet be inspected upon project completion and at least once every five (5) years. Inspection and enforcement procedures are described in the Town's Stormwater NPDES Enforcement Response Plan (ERP).

The Town maintains an electronic database of sites as required by Provision C.3.h, which includes project data, the contact information of the site representative, the site Operations and Maintenance (O&M) Agreement and Plan, past inspection records, and records of any enforcement actions.

5.4.2 O&M Tracking of Non-Regulated Sites

The Town will continue to design, construct, and maintain GI on public properties and rights-of-way. Non-Regulated Project installations of GI are tracked as feasible in the same manner as Regulated projects, except that small measures, such as those installed on single-family homes, will not necessarily be tracked for the purposes of the GI Milestones. The Town may later opt to track these small projects.

5.5 Countywide Project Tracking Tool

The City/County Association of Governments of San Mateo County (C/CAG) received a Caltrans Adaptation Planning Grant, which is being used to partially fund the Sustainable Streets Master Plan (SSMP). The SSMP and associated deliverables will support C/CAG's member agencies in advancing sustainable stormwater management and creating more resilient transportation networks in San Mateo County in the face of a changing climate.¹⁷

¹⁷ Request for Proposals for Technical Support to the City/County Association of Governments of San Mateo County to Develop the San Mateo Countywide Sustainable Streets Master Plan. (2018, August 30).

The SSMP will include the following elements:

- **Community Engagement.** Input will be solicited from local agency staff, community stakeholders, and the public to provide a participatory forum for sharing progress and soliciting input on the Master Plan.
- Climate Adaptation Risk Analysis on Local Transportation Network. Climate change-related precipitation impacts and stormwater capture benefits will be quantified.
- High Resolution Data Analysis and Fine-Scale Drainage Delineation. Data will be collected from member agencies, and then a high-resolution drainage system delineation will be prepared. Sustainable streets opportunities within the public right-of-way will be identified at a street-level scale.
- Prioritization of Sustainable Streets Opportunities. The SSMP will build on the existing green street prioritization system that C/CAG developed as part of the SRP by integrating priorities associated with protecting the multi-modal transportation network, pavement maintenance, and bicycle/pedestrian planning. The prioritization will also be subject to a rigorous stakeholder involvement process.
- **Project Concepts.** Up to ten (10) priority pilot projects will be identified and detailed which demonstrate the integration of bicycle and pedestrian improvements with sustainable streets practices.
- Web-based Sustainable Streets Project Implementation Mapping and Tracking Tool. An online tracking tool will be developed which can be used by member agencies to track GI implementation. It will include dashboards to show the public and interested stakeholders progress over time toward building adaptation to precipitation-based climate change impacts as well as water quality improvement. This tool will be publicly available and will allow users to see locations of implemented projects, project benefits, and progress toward long-term goals.

5.6 Adaptive Management

This GI Plan is intended to act as a "living" document, allowing it to shift and adapt to the changing needs of the Town. Using an adaptive management process, the Town will continue to verify feasible opportunities for GI projects to meet the final load reduction goals for 2040. The process will include the tracking of management metrics as discussed in Chapter 3, and continued re-evaluation of GI project opportunities. Aspects of the GI program are outside of the Town's control—namely, that the development climate is uncertain, and projects that are anticipated to be constructed through future new and redevelopment may not actually come to fruition. Forecasts for development may be higher or lower than what is achieved by the 2040 milestone. If less development occurs over time, more green streets or regional projects on public land may be needed to provide equivalent volume management. Similarly,

there are uncertainties in the implementation of public GI—opportunities and funding for GI are likely to change between now and 2040.

There is also a possibility that the screening and prioritization procedure used to develop the SRP is not as restrictive as it needs to be, meaning that there may be many streets identified as having GI potential where incorporation of GI is not actually feasible. Under such a scenario, additional GI measures may be required to be installed in fewer areas. Alternatively, there may be opportunities not identified through the SRP, but through the CIP, which could result in GI implementation.

By taking an adaptive management approach to GI, the Town can establish a process that is both driven by the goals set forth in the RAA, but that is also flexible, iterative, and allows for continuous improvement. GI is goal-driven, and its effectiveness is measured at a watershed scale. Figure 18 represents the adaptive management process.

Figure 18. Adaptive Management Process.18

¹⁸ Green Infrastructure Implementation. (2014). Water Environment Federation. Page 220.

6.0 GUIDELINES AND SPECIFICATIONS

6.1 Introduction

The MRP states that the adopted Green Infrastructure (GI) Plan shall contain the following elements:

Provision C.3.j.i.(2)(e): "General guidelines for overall streetscape, and project design and construction so that projects have a unified, complete design that implements the range of functions associated with the projects.... The guidelines should call for the Permittee to coordinate, for example, street improvement projects so that related improvements are constructed simultaneously to minimize conflicts that may impact green infrastructure."

Provision C.3.j.i.(2)(f): "Standard specifications and, as appropriate, typical design details and related information necessary for the Permittee to incorporate green infrastructure into projects in its jurisdiction."

Provision C.3.j.i.(2)(g): "Requirement(s) that the projects be designed to meet the treatment and hydromodification management sizing requirements in Provisions C.3.c. and C.3.d. For street projects not subject to Provision C.3.b.ii (i.e., non-Regulated Projects) Permittees may collectively propose a single approach with their Green Infrastructure Plans for how to proceed should project constraints preclude fully meeting the C.3.d. sizing requirements. The single approach can include different options to address specific issues or scenarios. That is, the approach shall identify different constraints that would preclude meeting the sizing requirements and the design approach(es) to take in that situation. The approach should also consider whether a broad effort to incorporate hydromodification controls into green infrastructure, even where not otherwise required, could significantly improve creek health and whether such implementation may be appropriate, plus all other information as appropriate (e.g., how to account for load reduction for the PCBs or mercury TMDLs)."

The Town has met these requirements through (1) development through the GI TAC and adoption of Countywide GI Guidelines and Standards, which include typical design details and sample specifications; (2) clarification of sizing of Non-Regulated GI projects; and (3) development through the GI TAC and adoption of BASMAA alternative sizing criteria for Non-Regulated green street projects.

6.2 Countywide GI Guidelines and Standards

6.2.1 San Mateo County GreenSuite

The Town participated in the GI Technical Advisory Committee (GI TAC)'s development of the "GreenSuite". The GreenSuite is a combination of an updated version of the SMCWPPP C.3 Stormwater Technical Guidance Manual (*C.3 Regulated Projects Guide*) and the newly developed GI Design Guide (*Design Guide*). The key content and organization of these guides is summarized in Figure 19.

Organization of the San Mateo County GreenSuite

Green Infrastructure Design Guide

- 1. Introduction: Explains overall purpose and elements of the Design Guide, the existing regulatory framework, and the main functions and design considerations of green infrastructure.
- 2. Green Infrastructure Measures and Opportunities: Provides a general description of 13 green infrastructure measures and design guidance that is applicable in many locations. Benefits; potential constraints; opportunities for; why use measures in a building, site, street, or parking lot; and special considerations are also discussed.
- 3. Design Strategies and Guidelines: Describes strategies and guidance applicable to San Mateo County and other locations. Separate sections describe what is applicable and possible for managing stormwater with green infrastructure at building, site, parking lot, or street locations. More specific guidance is provided for implementation of green infrastructure in streets (green streets), as well as introducing complete street elements and how together these create Sustainable Streets. It also includes two sections that provide illustrative examples in prototypical locations throughout San Mateo County of green infrastructure installations. These include photographs and discussion of built examples and "before and after" illustrations of installations.
- 4. Key Design and Construction Considerations: A range of design and construction consideration that need to be addressed in all green infrastructure designs or in particular situations, such as protecting existing improvements, designing for poor soils, or choosing appropriate plant materials.
- 5. Key Implementation Strategies: Discusses a range of implementations strategies, including reducing project costs, changing municipal policies and codes, and others.
- 6. **Operations and Maintenance:** Provides information related to the operation and maintenance of green infrastructure and other treatment measures.
- A. Appendices, Glossary, and References: Includes technical appendices for definitions of words and phrases; lists additional references and resources; typical sustainable streets design details and specifications, including additional information on biotreatment soil, pervious pavements, and plant palette; sample maintenance plan forms; and the Countywide Program's green infrastructure funding options report.

C.3 Regulated Projects Guide

The **C.3 Regulated Projects Guide** explains Regional Board regulations and provides technical guidance for sizing and design of treatment measures for public and private projects that are required to meet regulated projects water quality requirements.

Figure 19. Key Content and Organization of the San Mateo County GreenSuite. 19

Together, these documents allow designers, Town staff, and developers to implement a range of GI measures and strategies. They also include model procedures for coordinated and consistent plan review of private projects, scoping and design for public projects, as well as recommendations for ongoing operations and maintenance.

46

¹⁹ San Mateo County Green Infrastructure Design Guide. (2019b). SMCWPPP. <u>https://www.flowstobay.org/gidesignguide</u>.

In order to design GI facilities, designers would likely use a combination of both the *C.3 Regulated Projects Guide* and the *Design Guide*. Regulated projects must adhere to the specific requirements of the MRP, but Non-Regulated projects may also benefit from the sizing guidance provided in the *C.3 Regulated Projects Guide*. Designers will find more GI options in the *Design Guide* for Non-Regulated projects, because the *C.3 Regulated Projects Guide* does not cover certain measures like green gutters, green walls, stormwater trees, and vegetated swales. If a designer finds that landscape-based measures are not feasible on a project, they might consider mechanical treatment devices, such as media filters or high-flow rate tree wells, which are described in the *C.3 Regulated Projects Guide*. Having both guides allows for flexibility in GI design and implementation on Non-Regulated projects without repeating information already provided for Regulated projects, while keeping the requirements for Regulated projects clear and separate.

Treepod biofilter located at Target in Serramonte Shopping Center.

6.2.2 Green Infrastructure Design Guide

SMCWPPP, with input and feedback from its member agencies, including the Town of Colma, developed a countywide Green Infrastructure Design Guide (*Design Guide*) and its appendices to provide comprehensive guidance on the planning, design, construction, and operations and maintenance of GI for buildings, parking lots, sites, and streets. The *Design Guide* addresses the requirements of the MRP, fulfilling Section C.3.j.i.(2)(e) requiring design and construction guidelines for streets and projects and C.3.j.i.(2)(f) for developing typical design details and specifications for different street and project types.

The *Design Guide* also addresses the part of C.3.j.i.(2)(g) related to a regional approach for alternative hydraulic sizing for Non-Regulated constrained street projects.

The *Design Guide* includes a range of information related to GI, such as provision of policies and definitions; identification of different types of treatment and site design measures; summation of various benefits including a range of community benefits provided beyond stormwater management; presentation of "before" and "after" images of integrating GI into projects; introduction of complete streets concepts and design; discussion regarding BASMAA's regional approach for alternative sizing for Non-Regulated constrained green street projects; design and implementation considerations; operations and maintenance; and provision of typical construction details and specifications. The *Design Guide* explains how these concepts, considerations, and guidance can be used to effectively integrate GI into new and redevelopment projects, whether C.3 Regulated or not.

General guidelines for overall streetscape and project design, construction, and maintenance have been developed so that projects have unified, thoughtful designs and implement the full range of GI capabilities possible. The MRP emphasizes the need for guidance related to green streets functions, and the *Design Guide* includes implementation guidance specifically for stormwater management and treatment within streets. The guidance supports safe and effective multimodal travel with a focus on the comfort of people walking and cycling; shared use as public space and an attractive and functional public realm; use of appropriate measures for different street and land use contexts and types; and the achievement of urban forestry goals and benefits. The Design Guide describes practices for incorporating GI following the principle of "no missed opportunities" as specified in the MRP, Provision C.3.j, and for directing the efficient and effective coordination, review, and implementation of GI in public and private projects.

The Appendices of the *Design Guide* include typical design details and specifications for the design and construction of GI applicable to a variety of applications whether street or site-based projects. These details, as well as those provided in the *C.3 Regulated Projects Guide*, can be adapted for use on local GI projects.

6.2.3 Adoption of Countywide Green Infrastructure Guidelines

The Town of Colma will use the *Design Guide*, *C.3 Regulated Projects Guide*, and future amended versions to provide support and guidance in implementing GI within the Town. As more GI projects are implemented in Colma, portions of the Design Guide may be superseded by Colma-specific updates or modifications based upon lessons learned and other factors experienced in or determined by the Town.

The *Design Guide* can be found at SMCWPPP's website at <u>https://www.flowstobay.org/gidesignguide</u>.

C.3 Regulated Projects Guide (formerly known as the *C.3 Technical Guidance*) can be found on the SMCWPPP "Flows to Bay" website at <u>https://www.flowstobay.org/newdevelopment</u>.

For any projects which are identified as having GI potential, a feasibility review is undertaken to determine what GI options are best suited to that project, given its goals, funding source, budget, and constraints.

As the project is further developed into concepts and then improvement plans by both Town staff and qualified consultants, the plans, specifications, details, and project constraints is reviewed by Town engineering staff with respect to compliance with both the Countywide GreenSuite and Town standards. Conflicts, if they arise, are resolved through development of site-specific specifications and details.

6.3 GI Measure Sizing Approaches

6.3.1 Standard "C.3.d" Sizing

MRP Provision C.3 Regulated Projects will continue to be subject to the treatment and hydromodification sizing requirements of Provision C.3.c and C.3.d. The definition of a "Regulated" project and details of various treatment sizing options are described in the MRP and the SMCWPPP C.3 Stormwater Technical Guidance Manual.

The MRP also requires that GI projects be "designed to meet the treatment and hydromodification sizing requirements in Provisions C.3.c and C.3.d" (Provision C.3.j.i.(2)(g)). This means that for most projects, there is no difference in the sizing requirements between a Regulated and Non-Regulated Project. As a goal, the Town will aim to meet the requirements of Provision C.3.d. when sizing GI facilities. However, should site constraints preclude fully meeting these requirements, the Town will construct a smaller facility (for green streets projects, refer to Section 6.3.3 of the GI Plan, which describes the BASMSAA Alternative Sizing Criteria). In designing GI facilities, the Town proposes a flexible, adaptive approach. Even if a small facility is constructed with a proposed project, some treatment is better than no treatment, and future facilities can be constructed within the right of way to distribute the area to be treated amongst multiple facilities. Where feasible, bioretention facilities can be designed as "off-line" facilities, and treat a smaller portion of the runoff, bypassing high flows or runoff to be treated downstream.

Non-Regulated GI projects may use the full range of stormwater treatment measures described in both the C.3 Regulated Projects Guide and Green Infrastructure Design Guide, including mechanical treatment measures such as tree well filters and media filters, without the restrictions imposed on Regulated Projects. The C.3 Regulated Projects Guide summarizes the more technical aspects of GI measures, including how they should be sized for treatment. The GI Design Guide introduces some GI measures which are not discussed in the C.3 Regulated Projects Guide. For these, it is not clear how to size the GI measures for treatment.

Measures which are not considered treatment for Regulated Projects (and therefore have no associated sizing criteria for Non-Regulated Projects) are as follows:

- Vegetated Swale
- Green Gutter
- Stormwater Tree
- Green Wall

Three (3) of these measures (vegetated swale, green gutter, and stormwater tree) can optionally be constructed with the same cross section as a stormwater planter (18 inches of bioretention soil, and 12 inches of Class 2 Permeable Material). If these measures are built to the same standards as a Stormwater Planter under the GreenSuite, the same sizing factors as those that apply to Stormwater Planters would apply. Otherwise, a customized sizing approach would need to be proposed by the designer and verified by the Town, with appropriate factors of safety applied.

For green walls, there is no like-measure with established sizing criteria. Therefore, when designing green walls, no minimum sizing criteria pertain, and as such, green walls can be constructed to fit the site-specific context and available wall space.

6.3.2 Defining Drainage Management Areas

Regulated projects must be sized to provide treatment for the effective impervious area which drains to them. For more information about defining catchment areas for projects, refer to the *C.3 Regulated Projects Guide* and Chapter 4 of the *Design Guide*.

Non-Regulated public street applications of GI measures must also be sized to provide treatment for the effective impervious which drains to them, with an exception – they need not be designed to treat contributing private areas, such that the drainage management area (also called "catchment area") is limited to the street right of way, or in some cases, the back of sidewalk. If the sidewalk drains to a planter strip, the drainage management area can be limited to the back of curb, since the sidewalk is "treated" by the landscaped planter strip. This approach was first established in the 2009 San Mateo County Sustainable Green Streets and Parking Lots Guidebook (refer to Chapter 5) and has been deemed acceptable for the purposes of sizing projects for the 2018 C/CAG Safe Routes to School (SRTS) and Green Streets Infrastructure Pilot Program. Sizing for public street applications is not discussed in the GreenSuite.

6.3.3 Alternative Sizing Approach

6.3.3.1 Alternative Approach Description (MRP C.3.j.2.g)

All GI projects should be designed to meet the treatment requirements of Provisions C.3.c and C.3.d of the MRP (and hydromodification requirements, where applicable). However, an alternative regional sizing approach was developed for street projects where site constraints preclude fully meeting the sizing requirements of Provision C.3.d.

BASMAA was tasked with developing Alternative Sizing Criteria on a regional basis. Per the MRP, GI facilities must be sized using either a flow, volume, or combination flow and volume method, depending on the type of treatment measure used and based on the engineering judgment of the project designer. The least conservative method is the combination flow and volume method, which specifies that treatment facilities should be sized to treat at least 80 percent of the total runoff over the life of the project, using local rainfall data. Using the combination flow and volume method and a continuous simulation analysis, BASMAA's consultant, Dubin Environmental Consulting, assessed what sizing factors

are needed—assuming a standard bioretention area cross section—to achieve the MRP sizing requirements. It was determined that bioretention facilities with a standard cross section can both capture and treat the required amount of Provision C.3.d. runoff when sized to 1.5% - 3% of the tributary equivalent impervious area, depending on the project location.

Hydromodification management control requirements were also assessed. Dubin Environmental Consulting determined that a standard bioretention facility sized to 4% of the tributary equivalent impervious area, having a 6-inch deep surface storage layer, 2-inches of freeboard, 18 inches of bioretention soil, and 12-inch deep gravel storage layer would meet the hydromodification standard at any location in the Bay Area.

6.3.3.2 Conditions Under Which the Alternative Approach May Be Used

The BASMAA Alternative Sizing Criteria can be used when site constraints are present which preclude fully meeting the sizing criteria.

Where feasible, bioretention facilities on street projects should be sized as large as possible. There are several reasons to design and build facilities larger than the Provision C.3.d minimum:

- Promotes better performance
- Ensures compliance with Provision C.3.d despite minor flaws in design, construction, or maintenance
- Allows for an engineering safety factor
- Maximizes removal of pollutants
- Allows the facilities to operate as full trash capture devices
- Facilitates management of hydromodification effects, as relevant

However, existing streetscapes can be challenging to retrofit, making it difficult to build large GI facilities. These constraints include the following:

- Limited project funding
- Larger facilities can result in more parking loss and more impacts to residential driveways
- The presence of existing underground utilities can create restrictions in either the footprint or depth of a GI facility. Typically, clearances are required by the utility owner between the existing utility and the GI facility and any associated storm drain piping. In addition, having utilities in the GI facility can create issues in the future, as a utility owner must be careful not to destroy the GI facility or impair its function when performing repairs on their utility lines. Utility crews are typically not familiar with the construction requirements or functionality of GI facilities.
- The presence of existing or proposed above-ground structures and fixtures such as streetlights, fire hydrants, and utility boxes can reduce the amount of functional cross-sectional area of the GI facility.

- Larger bioretention facilities are likely to impact existing mature trees and root systems. It may be preferable to reduce the treatment area in order to preserve a tree, especially given that mature trees offer many stormwater quality benefits.
- Sometimes, the elevations of nearby storm drain facilities, or the lack of storm drain facilities, put restrictions on either the depth or use of an underdrain facility or overflow structure.
- It is difficult to define and control catchment areas for street projects, because both public areas (streets, curbs, and sidewalks) and private areas (residential or commercial areas, some of which may be treated by onsite facilities) drain to the bioretention areas. Typically, it would make the project infeasible to aim to treat the entirety of public and private runoff.
- The in-situ soil permeability and strength is often low. Protection of the adjacent roadway structure (e.g., via deep retaining curbs) is often necessary to prevent compromising the roadway by oversaturation. This can increase project costs.
- In some cases, it may be preferable to limit the depth of the facility adjacent to the roadway or sidewalk, or to introduce 3:1 side slopes to promote safety. These modifications for safety can reduce the effective area of the treatment measure.
- Right-of-way is highly limited, and the Town must always consider the site context and various Town objectives when designing a project. Truck turning radii, the presence of bike lanes and pedestrian walkways, parking loss, through lane widths, and driveway impacts are all considerations when designing GI facilities on a public street.

7.0 INTEGRATION WITH OTHER PLANNING DOCUMENTS

7.1 Introduction

To ensure implementation of the GI Plan, the MRP states that the GI Plan shall contain the following:

C.3.j.i.(2)(h): "A summary of the planning documents the Permittee has updated or otherwise modified to appropriately incorporate GI requirements, such as: General Plans, Specific Plans, Compete Street Plans, Active Transportation Plans, Storm Drain Master Plans, Pavement Work Plans, Urban Forestry Plans, Flood Control or Flood Management Plans, and other plans that may affect the future alignment, configuration, or design of impervious surfaces within the Permittee's jurisdiction, including, but not limited to, streets, alleys, parking lots, sidewalks, plazas, roofs, and drainage infrastructure. Permittees are expected to complete these modifications as a part of completing the GI Plan, and by not later than the end of the permit term."

C.3.j.i.(2)(h): "To the extent not addressed above, a work plan identifying how the Permittee will ensure that GI and low impact development measures are appropriately included in future plans (e.g., new or amended versions of the kinds of plans listed above)."

7.2 Evaluation of Planning Documents

The Town undertook a review of its existing planning documents to determine if the documents: (1) contained opportunities for GI implementation; (2) have existing language and policies supporting GI implementation; and (3) hold potential for updates to further implement Green Infrastructure (GI). The planning documents were then organized into the following categories:

- Planning documents that do not require modification or are unrelated to GI;
- Existing planning documents which support GI implementation;
- Modifications made to existing planning documents; and
- Planning documents to be updated in the future.

Planning documents unrelated to GI are not included in the GI Plan.

The Town presents the key planning documents which include language that support or relate to GI implementation in section 7.3. Planning documents to be updated are discussed in section 7.4.

7.3 Existing Planning Documents Which Support GI Implementation

The implementation of GI is addressed in many of the Town's existing planning documents' policies, goals, and objectives. Because of the multiple benefits that can be achieved through GI, the Town can implement GI as a strategy for flood reduction, climate change adaptation, traffic calming, and other Town goals. Table 8 summarizes the Town's existing documents and the method by which each document supports GI implementation.

Table 8. Existing planning documents which support GI implementation.

Planning Document	Related Sections and Pages
Administrative Code	Water Conservation Incentive Program – Subchapter 1.14
Modified – 2017	Sustainability Policy – Section 1.15.060 – Permeable Surfaces
	Sustainability Policy – Section 1.15.070 – Green building Practices

The Town of Colma Administrative Code contains rules, regulations, policies and guidelines adopted by the Town. The Administrative Code includes the Town's Sustainability Policy and Water Conservation programs which support the implementation of GI. Language in Sections 1.15.060 and 1.15.070 were modified to create a nexus between developments and the GI Plan in new construction and the redevelopment of streets to encourage the implementation of GI.

Climate Action Plan	Page 3 – Measures and GHG Reductions
Existing – 2013	Page 18 – Water Conservation Measure
To be updated	Page 19 – Green Building

The Town of Colma Climate Action Plan (CAP) was adopted in 2013 with a goal to reduce Greenhouse Gas (GHG) emissions by 15% by the year 2020. Although the Town is planning to update the Climate Action Plan with new goals and associated programs, many of the existing policies and programs in the Climate Action Plan have a direct nexus to GI Implementation, such as the policies to promote alternative methods of transportation, water conservation, and green building practices.

Four (4) categories of CAP measures are identified to achieve target GHG emissions. Several of these measures, while originally identified as methods to reduce greenhouse gas emissions, are also achieved by implementing GI. For example, under the "Planning, Land Use, and Increased Opportunities for Alternative Transportation" CAP measure category, "Implement polices from *San Mateo County Sustainable Green Streets and Parking Lot Design Guidebook*" is listed. This 2009 guidebook has since been transitioned into the 2019 *Green Infrastructure Design Guide* and includes specific guidance for how to integrate green infrastructure as both a water quality and traffic calming feature on streets. Another CAP measure category identified is "Energy Efficiency, Water Conservation, and Green Building". Water conservation can promote water quality by limiting the amount of excess water which runs off properties and collects pollutants. Rainwater harvesting is a GI measure that can help to supply an alternative water source and promote water conservation.

Planning Document	Related Sections and Pages
General Plan –	Policy 5.03.720 – Complete Streets
Circulation Element	Section 5.03.623 – Landscaping and Views
Existing – 2014	Section 5.03.300 – Street Trees
To be updated	

The Town will update the 2014 Circulation Element concurrent with the Town's General Plan Update. The existing Circulation Element includes a goal to identify facilities for the safe, efficient, and environmentally responsible movement of people and goods through the Town and includes street tree and complete streets policies which support GI implementation. There are opportunities to expand these policies to clearly connect it to the GI Plan during the General Plan Update.

General Plan – Open	Policy 5.04.310 – Air and Water Resources, Water Supply, Ground Water
Space and	5.04.340 – Flooding
Conservation Element	5.04.320 – Colma Creek
Existing – 1999	
To be updated	

The Town will update the 1999 Open Space and Conservation Element concurrent with the Town's General Plan update. The existing Open Space and Conservation Element supports the conservation of ground water and public water supply and stormwater capture and infiltration. For example, Policy 5.04.341 requires the construction of on-site storm water detention facilities for developments in excess of ½ acre that contribute runoff to Colma Creek. There are opportunities to expand these policies to more clearly connect it to the GI Plan during the General Plan Update.

General Plan Land Use	Policy 5.02.312 – Tree Planting and Road Median Maintenance			
Element	Policy 5.02.318 – Street Tree Planting			
Existing – 1999				
To be updated				
The Town will update the 1999 Land Use Element concurrent with the Town's General Plan Update. Th				

The Town will update the 1999 Land Use Element concurrent with the Town's General Plan Update. The existing Land Use Element includes policies for beautification of street frontages and road medians, which include GI implementation through street tree planting and the incorporation of landscaping. In addition, policies regarding adequate off-street parking and the installation of sidewalks which provide opportunities to implement GI. During the General Plan update process, Staff will review existing policies to integrate the GI Plan to the General Plan.

Planning Document	Related Sections and Pages
General Plan Safety	Policy 5.07.423
Element	
Existing – 1999	
To be updated	
The Town will undate th	a 1000 Safety Element concurrent with the Town's Conoral Plan Lindate. The

The Town will update the 1999 Safety Element concurrent with the Town's General Plan Update. The existing Safety Element includes a policy which requires the construction of on-site storm water detention facilities for developments in excess of ½ acre that contribute runoff to Colma Creek, similar to Policy 5.04.341 of the Open Space and Conservation Element. There is an opportunity to expand this policy to more clearly connect it to the GI Plan during the General Plan Update.

7.3.1 El Camino Real Bicycle and Pedestrian Improvement Plan

Colma adopted a Vision Zero initiative, which is a Silicon Valley Bicycle Coalition initiative targeted at having zero deaths or life-altering injuries due to roadway design or user error in San Mateo and Santa Clara Counties. Key to this initiative is improving safety for bicyclists and pedestrians. The desired outcomes of the initiative include feeling safe on bikes, promoting accessible, convenient, and enjoyable bike travel, and utilizing bicycling as a core component of a healthy and active lifestyle.

GI can play an important role in improving bicyclist and pedestrian safety by promoting traffic calming. GI can be integrated into curb extensions (also called "bulb outs"). Curb extensions increase the visibility of crosswalks, reduce curb radii, decrease crossing distance, reduce vehicle speeds, and improve the safety and comfort of users. Adding vegetation and trees to curb extensions further enhance safety by reducing the perceived width of the street and reducing speeding. Attractive green spaces can also help to improve mental and physical health as well as encourage local residents to go outside and be more physically active.

7.4 Planning Document Updates Schedule

Colma is currently updating the Town's Climate Action Plan and General Plan with tentative completion dates in 2019 and 2020 respectively. During the update process, Planning Department and Public Works Staff will review the existing language for opportunities to build on policies that support the implementation of GI. Updates to the existing planning documents require consideration by the City Council.

In future documents, planning and public works staff will support the process in updating and developing planning documents in order to ensure that the requirements and policies of the GI Plan are incorporated. Table lists the anticipated date of completion of planning document updates.

Table 9. Schedule for update of planning documents.

Name of Plan to be Completed / Updated	Anticipated Date of Completion / Update
Colma Climate Action Plan	December 2019
Colma General Plan – Circulation Element	March 2021
Colma General Plan – Open Space and Conservation Element	March 2021
Colma General Plan – Land Use Element	March 2021

7.5 Maintenance and Engineering Standards

With the approval of this GI Plan, the Town adopts the GreenSuite, which is the combination of the GI Design Guide and the Regulated Projects Guide, and any amendments thereof, as its GI guidelines. **Refer to Section 6.2.2.**

Bioretention curb extension located at Hillside Boulevard.
8.0 FUNDING OPTIONS

8.1 Introduction

Provision C.3.j.i.(2)(k) of the MRP states that the Green Infrastructure (GI) Plan shall contain the following:

"An evaluation of prioritized project funding options, including, but not limited to: Alternative compliance funds; grant monies, including transportation project grants from federal, State, and local agencies; existing Permittee resources; new tax or other levies; and other sources of funds."

To undertake an evaluation of potential funding options and sources, the Town (1) reviewed the GI program elements and associated costs; (2) participated in the development of a Nexus Funding Evaluation, which identified and evaluated the feasibility of various funding strategies through the GI TAC; (3) assessed the funding strategies of the Nexus Funding Evaluation for local applicability; (4) discussed opportunities for public and private cooperation; and (5) developed a process for funding GI through integration into the Town's existing Capital Improvement Program.

A single source of revenue for GI is unlikely to cover all the various elements of a GI program. Instead, implementation of GI will require a range of funding sources. This chapter is a starting point to both gauge funding needs and develop a suite of funding options for use with GI. As the program develops, the funding needs and opportunities may change. This chapter and the Town's approach to funding may be revisited in the future as more information becomes available and more awareness is brought to the GI policies and requirements.

8.2 GI Program Elements and Funding Needs

8.2.1 Current Assessment of GI Costs

Implementation of GI measures is expensive. It is estimated that the cost to install the GI required to be in place by 2040 per the MRP ranges in the tens of millions of dollars for the capital (construction) costs alone. Additional costs include management of the GI program, planning, design, tracking of completed projects, as well as operations and maintenance.

One of the difficulties of developing funding for GI is that few funding sources are available which can be used for all the elements of a GI program throughout its lifecycle. For example, grants can be used to fund design and construction costs, but not overall management of the GI program or operations and maintenance costs.

GI costs may include the following:

• **Program Management.** Though the Town has managed MRP compliance for many years, GI implementation will take additional staff time beyond permit compliance activities which occurred prior to 2016. In addition to review of capital projects for GI potential, Town staff will

track GI projects and monitor progress toward achieving the milestones for GI implementation for 2030 and 2040. Participation in the SMCWPPP GI TAC will also likely continue to be necessary past the date when the GI Plan is submitted in September 2019 to assist in developing the Countywide Sustainable Streets Master Plan and to coordinate with other San Mateo County agencies on GI implementation and tracking efforts. Interdepartmental meetings among the Public Works, Planning, and Parks and Recreation Departments will also likely continue to be necessary to ensure that GI is implemented successfully on private and public projects.

• Capital Costs. GI capital costs depend on the type of measure(s) to be implemented, the size of the facility, the ease with which such measure(s) can be incorporated on a project that includes other elements, and the local context (such as the ease of connecting to existing drainage systems, how steep the area is sloped, space limitations, and nearby existing utilities).

Because of the limited construction cost data available for public GI projects in San Mateo County, it is difficult to estimate their cost. Several private projects have been constructed in San Mateo County, but often the Town does not have access to the detailed cost data for the GI component(s). Private project and public project costs differ in key ways: public projects must contend with the removal and modification of existing street infrastructure, utility conflicts, space limitations, pedestrian safety and grade limitations, and must be constructed with prevailing wage labor forces. San Mateo County also tends to have higher construction costs than other Bay Area counties, and California in general has higher construction costs than the nationwide average. In addition, GI detailing can vary widely from jurisdiction to jurisdiction, making it difficult to make cost comparisons among projects.

Current (2019) capital costs for a bioretention area can range from \$50 to \$150 per square foot, a span highly dependent on local context, grading required, water and power sources, storm drain connection proximity, and selected plant palette and irrigation system. Permeable paving can range from \$25 to \$100 per square foot, depending on the depth of the section and whether it is necessary to work around existing utilities or trees. Capital costs of \$129,000 to \$187,000 per acre of impervious area managed²⁰ were quoted for projects in Onondaga County, New York, which would work out to roughly \$258,000 to \$374,000 for construction costs of curb extensions installed at an intersection which treats 2 acres of impervious surface area. Limited recent bid result data in San Mateo County suggest that a similar size project here would cost in excess of \$500,000 to construct.

• Planning and Design Costs. Planning and design costs for capital projects are typically around 10-20% of the capital costs. Integrating GI into other capital programs can reduce both the construction costs for GI as well as the design costs. The SMCWPPP Green Infrastructure Design

²⁰ The Real Costs of GI, Stormwater Report. (2015, December 2). <u>https://stormwater.wef.org/2015/12/real-cost-green-infrastructure/</u>.

Guide (*Design Guide*) clarifies the application of GI on public projects. As GI becomes more common on public projects and GI designs are standardized, GI projects will become less expensive to plan and design.

- Operation and Maintenance (O&M) Costs. Limited data are available on maintenance costs, because maintenance is often performed by Town staff as part of their regular course of business, making it difficult to separate time spent on maintenance of standard Town landscaping and streets versus GI. It is possible that due to the specialized nature of the maintenance of GI measures, or if staff are otherwise at capacity on maintenance of other Town infrastructure, the Town may need to contract maintenance work to an outside vendor. Vendors may in the future have special GI maintenance certifications not held by staff, such as the Bay Friendly Landscaping certification or the National Green Infrastructure certification by the Water Environment Federation. In Onondaga County, New York, maintenance costs for bioretention areas were approximately \$2,000 per acre of impervious area managed per year.²⁰ This would be \$4,000 per year for curb extensions installed at an intersection which treats 2 acres, or \$200,000 in total over a 50-year life of the system. Again, these costs are likely lower than what would be anticipated in San Mateo County, and do not reflect inflation or the rising cost of construction projects. The Design Guide further clarifies GI maintenance needs, leading to standardized maintenance practices and lower maintenance costs.
- Outreach and Education Costs. The Town will continue to participate in outreach and education
 for stormwater quality through the SMCWPPP Public Information and Participation (PIP)
 subcommittee. However, due to its limited budget and various priorities (e.g., trash and litter
 reduction as well as outreach to businesses and construction sites to coordinate with the
 stormwater inspection programs), the PIP subcommittee may have limited ability to offer GIrelated outreach. However, ongoing outreach and education is an important facet of GI
 implementation, because it can lead to not only a better understanding of the measures being
 installed, but also could build support for a dedicated GI or environmental protection funding
 source. This may result in the construction of GI elements within individual homes and businesses
 on a voluntary basis.
- Inspection Program Costs. The Town inspects private GI projects in accordance with its Enforcement Response Plan and Provision C.3.h of the MRP. The Town's O&M agreement template allows for the Town to seek reimbursement of the inspection costs. A typical inspection, including time for coordinating with the site representative and writing an inspection report, takes approximately three (3) hours per site. If follow-up inspections are required, an additional three (3) hours is often required for each follow-up visit. The frequency of inspections is specified in the Town's ERP, but generally sites are inspected on a 5-year interval or more frequently, and 20% of the Town's private GI projects are inspected each year. It is estimated that approximately four (4)

sites are inspected per year, at a cost of approximately \$2,000-\$4,000 per year. As additional GI projects are constructed, this cost will increase.

Figure 20 depicts the estimated relative costs of the GI program elements for a GI project with an assumed \$500,000 construction cost consisting of stormwater curb extensions at an intersection. Limited data are available to ascertain these relative costs, so they have been assumed until more data becomes available.

Figure 20. Estimated Relative Costs of GI Program Elements.

8.2.2 Future Assessment of GI Costs

Section 8.2.1 describes the costs associated with the various elements of a GI program based on limited funding information available in San Mateo County and in other areas of the United States. Estimated costs for GI will be improved over time with agency-specific and County-specific knowledge as the GI program is implemented. Future sources of cost estimating data will include bid results from GI projects, proposals received from designers and construction management firms to design and inspect GI projects, actual consultant and staff time spent providing program management, planning, and outreach services, public works maintenance staff time performing maintenance on GI systems, and time spent performing inspections. It will likely be difficult to assess time spent by staff on tasks relating to GI, as it will not necessarily be tracked separately from other staff time.

The Town may also draw from other published resources available to estimate the costs of GI. For example, the SFPUC has made its cost estimating model available to other municipalities to use for planning-level analyses. This Excel-based model can be used as a planning tool to plan and budget for GI maintenance obligations for labor and costs. The user will be able to input user-defined project attributes (e.g., BMP type, size, date), and the model will yield long-term maintenance costs and staffing obligations as outputs.

Bioretention areas located at B Street.

8.3 Funding Strategies

Through the GI TAC, the Town and SMCWPPP developed a GI Funding Nexus Evaluation document for jurisdictions within San Mateo County with the goal of expanding on existing stormwater funding sources and supplementing them with strategies in line with GI implementation goals. The Nexus Funding Evaluation describes and evaluates funding mechanisms, outlines funding needs, and provides strategies to procure such funding for design and construction of new GI. This subsection is intended to describe the Town-specific approach to the funding strategies discussed in the Nexus Evaluation. Rather than repeating the information available in the Nexus Evaluation, this subsection can be used in connection with the Nexus Evaluation to further explore those funding options that align with the Town's priorities. It is anticipated that the evaluation of funding options for GI is an ongoing process and revisited in the future as the program develops.

BALLOTED APPROACHES

The most sustainable and formative funding approach, but also the most challenging. Successful balloted approaches are most inclined to provide significant funding for stormwater management and stormwater-related projects. The two (2) biggest challenges for balloted approaches are planning the strategy for the proposed project/program and effectively presenting the project and vision to the voting community. Examples of balloted approaches include the following:

- Parcel Taxes
- Other Special Taxes
- Property-Related Fees
- General Obligation Bonds

Town-Specific Approach: At this time, the Town does not plan on pursuing green-infrastructure specific parcel taxes, other special taxes, property-related fees, or general obligation bonds, but may revisit these funding approaches later as the program develops. Other local agencies may move forward with these funding strategies in the coming years. By delaying implementation of these funding strategies, the Town can build upon the efforts of those early adopters.

NON-BALLOTED APPROACHES

These include funding strategies that do not require a ballot or voter approval. Non-balloted approaches may encounter lack of support from the general public; therefore, a nexus study/cost analysis is required to determine the middle ground cost that would not be considered a tax to the payer of the fees. Examples of non-balloted approaches include the following:

- Senate Bill 231
- Regulatory fees
- Developer Impact Fees
- Re-Alignment
- Grants
- Loans

Town-Specific Approach: The Town has already successfully pursued grants for GI and will continue to pursue grant opportunities as they arise. Successful grant-funded projects include the Hillside Boulevard Beautification Project, which was constructed in 2014 and included stormwater curb extensions, and the Mission Road Sidewalk project, which is under development and will include GI. At the Countywide level, the Town will help to lobby for the inclusion of GI funding in transportation grants, stormwater grants, and other grants for capital programs that lend to integration with GI.

Senate Bill 231, signed by Governor Brown on October 6, 2017, helps to clarify that "sewer" is intended to be used interchangeably to mean "storm sewer" and "sanitary sewer" to gain access to funds made available by Proposition 218. However, there is no legal precedent for an agency's instituting stormwater

fees without a ballot measure, and it is important for any agency considering such an approach to consult with other agencies and industry groups to coordinate their efforts in a strategic manner. The Town will continue to support Senate Bill 231 at a Countywide level through SMCWPPP and C/CAG.

The Town currently does not have regulatory or developer impact fees. Currently, the Town is in the process of developing a fee study to reimburse expenditures from the business stormwater inspection program. It may be possible to reimburse similar expenditures from the C.3.h. operations and maintenance inspection program for C.3 regulated projects. The use of developer impact fees for storm drainage or GI is not currently feasible under the Town's development climate, but the Town may revisit these funding approaches later as the program develops.

SPECIAL FINANCING DISTRICTS

Financial frameworks that were constructed by the local government to levy fees, taxes, and assessments for any improvements and services conducted. Most special financing districts are required to conduct a ballot that includes affected property owners, but in most cases, these affect small areas or an individual landowner. Examples of special financing districts include the following:

- Benefit Assessments
- Community Facilities District
- Business Improvement Districts
- Enhanced Infrastructure Financing Districts (EIFD)

Town-Specific Approach: The Town of Colma is home to many commercial enterprises, including auto dealerships, flower shops, cemeteries, restaurants, medical office buildings, and retail shops. As sites are redeveloped, the Town enforces C.3 stormwater treatment requirements to ensure that GI measures are constructed onsite. However, the Town is unlikely to increase treatment requirements on developers beyond the C.3 requirements in the current development climate. Some other local agencies work with large developers, like Facebook or Google, who are motivated to develop in areas close to public transit and are happy to provide GI in their frontage. Developers that come to the Town, by contrast, are operating on small profit margins. For these developers, being required to provide additional stormwater treatment beyond C.3 requirements may mean that they do not develop in the Town of Colma. However, the Town has been highly successful at constructing GI in public spaces through grants and through the Town's general fund, without the addition of private funds.

There are priority areas where the Town is interested in providing streetscape improvements, including Collins Avenue and Serramonte Boulevard, and these projects will include GI. The Town will continue to work with SMCWPPP to advertise how GI can bring economic vitality to the surrounding areas, and through this outreach, may be able to convince local businesses of the benefits of GI. These priority areas may be good candidates for a future business improvement district. As the program develops, the Town will continue to look for opportunities to promote public and private partnerships.

PARTNERSHIPS

Partnerships are effective strategies to acquire additional funds and resources needed for GI improvement projects. Collaborative efforts do not guarantee direct additional funding, but they can establish alternative benefits that will assist the overall resources necessary to complete proposed GI projects. By distributing resources and funding throughout different entities, GI improvement projects and programs are capable of being delivered more cost-effectively. Examples of partnerships include the following:

- Multi-Agency Partnerships (includes Regional Projects)
- Transportation Opportunities
- Caltrans Mitigation Collaboration
- Public-Private Partnerships (P3)
- Financial Capability Assessment
- Volunteers

Town-Specific Approach: The Town will investigate opportunities to partner with other agencies to construct regional projects which help improve water quality Countywide and contribute to the Town's GI implementation goals. The Town may pursue transportation funding which can be used to mitigate transportation challenges as well as construct GI. The Town would be interested in collaborating with Caltrans for a project in the vicinity of El Camino Real.

The Town has a community that is actively involved in keeping Colma clean. Every year, the Town organizes a Town-Wide Cleanup Day, in which volunteers and Town staff walk the streets of Colma to pick up trash. There might be an opportunity to expand the Town's volunteer opportunities to include trash pickup, planting, or maintenance of public GI measures (currently, these public GI measures are maintained by a landscape contractor hired by the Town), or there may be other opportunities to collaborate with the public and build community support for GI measures. The Town will explore these and other community engagement opportunities while implementing the GI Plan.

The remaining funding strategies in this section (Public-Private Partnerships and Financial Capability Assessment) will not be pursued at this time, but the Town may revisit these approaches in the future.

ALTERNATIVE COMPLIANCE

Previously, the Regional Water Board SFRWQCB has provided alternative compliance options in Provision C.3.e.i of the MRP 2.0 which can be utilized on Special Projects that meet certain criteria and cannot feasibly install the required amount of LID treatment onsite. The alternative options include the following:

- Construction of a joint stormwater treatment facility with the ability to treat combined runoff from two or more regulated projects
- Construction of a stormwater treatment system off-site
- Payment of an in-lieu fee for regional projects

These and other alternative compliance options can also be used on Non-Regulated projects, but with more flexibility than what could be used on regulated projects. On regulated projects, the alternative compliance site must be within the same watershed as the site to be mitigated and be constructed within three years of the site to be mitigated. Regional project timelines may be extended up to five years. These same restrictions would not apply to Non-Regulated projects.

Examples of alternative compliance include the following:

- In-Lieu Fees
- Credit Trading

Town-Specific Approach: Under the terms of the current MRP, in-lieu fees cannot be implemented simply enough to ensure successful funding of GI projects. If the regulations change to offer more flexibility, the Town may reassess opportunities for in-lieu fees on regulated projects.

The Town is interested in a future credit trading program and will continue to work with SMCWPPP and the GI TAC to explore this option further. As more GI projects are identified through the CIP screening process (see Chapter 4, Project Identification and Prioritization), there will be more opportunities to utilize alternative compliance.

8.4 Economic Vitality Benefits and Public-Private Cooperation

Establishing additional requirements for the installation of GI on private properties may create an undue burden on private property owners and developers. At the same time, the costs to comply with the GI milestones are significant, and it is necessary to share some of those costs with the private sector.

By communicating the benefits of GI to local businesses, the Town hopes to encourage voluntary implementation of GI and/or build support for a special financing district to avoid needing to resort to additional blanket-style requirements on developers. On a project-by-project basis, the Town can assess opportunities to meet water quality goals, and scale implementation to fit the project constraints. The Town will continue to explore public and private cooperation opportunities as the GI program develops.

GI can help to support economic vitality by providing access to landscape and green spaces, which results in the following direct benefits to residential and commercial areas²¹:

- Higher property values and rent value
- Increased consumer spending in commercial districts
- Energy savings
- Reduced lifecycle and maintenance costs (for some treatment measures)
- Lower possibility of flood damage
- Lower water bills, if rainwater harvesting is used
- Reduced crime
- Improved health and job satisfaction for office employees
- Healthier and more sustainable communities
- Community placemaking
- Improved worker productivity
- Increased potential that patrons will linger longer on retail main streets
- Higher occupancy rates for apartments and shorter periods between leases

8.5 Integration of GI with the Capital Improvement Program

One obstacle to funding a GI program is that the Town must balance the many needs of its community to both keep the Town operational and well-maintained while working towards the goals and vision set forth in the Town's General Plan. Pavement maintenance, replacement and repair of underground utilities, transportation improvements, performing facility needs assessments and making facility upgrades, and parks improvements are all key facets of the Town's CIP. The Town can adopt innovative approaches to working within the framework of the existing CIP and budget in order to fund GI.

Though it is primarily an outgrowth of a stormwater or environmental program, green stormwater infrastructure can be considered an expansion of many different CIP projects because it provides benefits beyond simply improving water quality (see Figure 21).

²¹ *GI Design Guide*, 1st Edition. (2019, June). San Mateo County Water Pollution Prevention Program. Page 1-13.

Figure 21. Integration of GI with other types of improvements.

By recognizing the many direct and ancillary benefits of GI, it becomes possible to integrate GI on several Capital Improvement Program projects, if the project goals align with the GI benefits. Examples of projects that potentially lend to integration with GI include the following:

- Park or facility upgrades
- Pavement rehabilitation
- Creek channel repairs
- Storm drain repairs
- Complete streets projects

Some cost savings is achieved by early incorporation of GI. By integrating GI into the project scope early, the project can incorporate GI more seamlessly, and in a way that does not greatly increase project costs. Prioritization and early screening of CIP projects is discussed in Chapter 4, Project Identification and Prioritization.

8.6 Integration of GI with Adopted Budget

The Town of Colma currently uses a combination of federal and state grants along with local funding sources to fund construction of projects in its Capital Improvement Program (CIP) and other projects.

The Town's major funding sources are listed below, and are more particularly described in the Town's 2018-2019 Capital Improvement Program:

- Measure A Transportation Fund
- Transportation Grants Fund
- Capital Improvement Fund
- COPs Town Hall Fund

Bioretention area located at CarMax Dealership.

In order to facilitate the future integration of GI in the CIP, a sample list of potential GI measures which may be integrated into various types of projects is shown in Table 10.

Table 10. Sample Integration of Potential GI Measures with Adopted Budget.

OTHER REATMENT MEASURES	Hyarodynamic Separator Media Filter Filter		>		>	
	llsW n991				>	
	Green Gutter	>			>	
	9lsw2 bətətəgəV	>		>	>	
JRES	Rainwater Harvesting			>	>	
MEASU	Green Roof				>	
IAL GI	Pervious Pavement	>		>	>	
OTENT	Infiltration System	>	>	>	>	
ē.	V Interceptor Tree	>	>	>	>	
	Stormwater Curb Extension	>	>		>	
	Stormwater Planter / Rain Garden	>	>	>	>	
FUNDING SOURCES		Measure A Capital Improvement Fund Grants	Capital Projects Fund	Capital Projects Fund	Gl Fund Capital Improvements Fund COPs Town Hall Fund	
TYPES OF PROJECTS		Transportation• Hillside Boulevard Beautification*• Mission Road Improvements• Collins Avenue Improvements• Serramonte Boulevard Beautification• Other Future Potential Projects	StormwaterFuture Potential Projects	Park ImprovementsFuture Potential Projects	 Non-Stormwater / Facilities Town Hall Campus Renovations* Sterling Park Playground Improvements ADA Transition Plan Upgrades Lawndale Boulevard Landscape Improvements Other Future Potential Projects 	*Existing GI Projects

70

9.0 OUTREACH AND EDUCATION

9.1 Introduction

The MRP states that each Permittee under a GI Plan shall perform the following tasks:

Provision C.3.j.i.(4)(a): "Conduct public outreach on the requirements of this provision, including outreach coordinated with adoption or revision of standard specifications and planning documents, and with the initiation and planning of infrastructure projects. Such outreach shall include general outreach and targeted outreach to and training for professions involved in infrastructure planning and design."

Provision C.3.j.i.(4)(b): "Train appropriate staff, including planning, engineering, public works maintenance, finance, fire/life safety, and management staff on the requirements of this provision and method of implementation."

Provision C.3.j.i.(4)(c): "Educate appropriate Permittee elected officials (e.g., mayors, city council members, county supervisors, district board members) on the requirements of this provision and methods of implementation."

The three primary goals of the outreach and education effort are summarized in Table 11:

Outreach and Education Goal	Objective	Audience
Public Outreach	Conduct public outreach on the GI requirements, including outreach coordinated with adoption or revision of GI guidelines and standards and planning documents, and with the initiation and planning of infrastructure projects.	Both the general public and professionals involved in GI planning and design.
Train Appropriate Staff	Conduct training on the GI requirements and the methods of implementation.	Planning, Engineering, Public Works Maintenance, Finance, Fire/Life Safety, and Management Staff.
Education of Elected Officials	Conduct outreach on the GI requirements and methods of implementation.	Mayor, City Council, and Planning Commission.

 Table 11. Outreach and Education Goals, Objectives, and Audiences.

One of the first steps in the development of a GI Plan is educating department staff, managers, and elected officials about the purposes and goals of GI, the benefits of GI, the required elements of the GI Plan, and the steps needed to develop and implement the GI Plan. It is vital to earn the support of City Council, Town staff, and members of the public to ensure successful implementation of the GI Plan. Outreach and education efforts began in FY 15-16 and will continue even after GI Plan adoption.

9.2 Public Outreach

9.2.1 Local Efforts

The Town conducted outreach in coordination with approval of the GI Workplan and GI Plan. Refer to Section 9.4, Education of Elected Officials.

In addition, the Town developed a GI Map using ArcGIS online to feature the existing and potential GI projects within the Town. Refer to Section 5.3, Town Public-Facing Project Tracking System. This map was made accessible to the general public on May 17, 2019.

The GI Map and GI Plan draft were advertised in the following ways:

- Via a Weekly Update by the Town Manager. This is a weekly email sent to Town staff and elected officials.
- Via a newsletter, the Town's Live Wire. The Live Wire is mailed out to the residents on a monthly basis.

9.2.2 SMCWPPP Efforts

SMCWPPP has several committees which discuss ideas, plans, and schedules for new and ongoing participation in processes to promote GI, such as the New Development (ND) Committee, GI Technical Advisory Committee (GI TAC), and the Public Information and Participation (PIP) Committee.

SMCWPPP's Public Information and Participation (PIP) Committee releases an internal bimonthly document detailing its recent and future outreach efforts. This outreach work includes distribution of information about rain barrel rebates, provision of public-facing GI presentations and outreach materials, and dissemination of information about public outreach and citizen involvement events, as well as the Flows to Bay website which explains GI basics and provides links to documents relevant to municipal staff and elected officials, such as the *C.3 Regulated Projects Guide* and *Design Guide* (see Figure 22).

On June 18, 2019, SMCWPPP hosted a training event for municipality staff and design professionals to cover the new and updated guidance documents produced, including the *Design Guide*, and *C.3 Regulated Projects Guide*.

SMCWPPP also engaged the public during the development of the Stormwater Resources Plan (SRP), which established a prioritization protocol for GI projects and an initial list of prioritized projects. Key public engagement efforts included the following (SMCWPPP 2017):

- Four (4) presentations to the SMCWPPP Stormwater Committee (public meetings) between January and November 2016.
- C/CAG staff presented on the SRP planning process at the Sustainable San Mateo County's November 2015 Water Indicator Summit and San Mateo County's Office of Sustainability's Sea Level Rise in July 2016.

²²San Mateo County Green Infrastructure Design Guide. SMCWPPP 2019b. <u>https://www.flowstobay.org/gidesignguide</u>.

- When the draft SRP was complete, C/CAG hosted three public workshops to solicit public and stakeholder feedback in January 2017. At these workshops, C/CAG described the upcoming GI plans and how the SRP relates to that effort.
- C/CAG staff and consultants promoted the SRP workshops through social media (Facebook and Twitter).
- A press release was distributed to local media outlets, including both print and online publications to advertise the workshop. The press release also called attention to the Flows to Bay website (www.flowstobay.org), where the public could review the draft SRP and submit comments.

9.3 Train Appropriate Staff

Permittees must conduct training for appropriate staff on the requirements of the MRP and methods of GI implementation. The Town began this process in FY 15-16 with the development of the GI Workplan and continued to engage staff to discuss GI implementation. Interdepartmental coordination and staff training efforts included the following:

- Convened interdepartmental meetings with affected department staff and management to discuss GI requirements and GI plan development. Key departments involved included public works and planning. Outside of meetings, communication was maintained via email to update staff on progress of the GI Plan and to receive feedback on a regular basis.
- Discussed the potential for incorporation of GI on capital projects and continued to refine and add to the Town's list of planned and potential GI projects. This list will continue to be updated in future years as part of the GI Plan implementation process.
- Participated in SMCWPPP training events.
- Participated in the SMCWPPP GI Subcommittee, New Development Subcommittee, and Public Information and Participation Subcommittee. All these subcommittees discussed GI implementation and outreach.

9.4 Education of Elected Officials

On May 8, 2017, the City Council approved the GI Workplan. The GI Workplan included educational material about GI. The "What is Green Infrastructure?" section focused on raising awareness of what GI looks like, why it's important, and how it can benefit the quality of life and health of residents.

The Town of Colma conducted outreach to elected officials in coordination with GI Plan approval. On April 10, 2019, Town staff and their consultant (CSG Consultants Inc.) provided a presentation to City Council to provide an overview of and update on the GI Plan. The GI Plan was later brought to Council for approval on July 10th, 2019.

Changes made to local planning documents to support GI implementation are also reviewed and approved by the City Council.

9.5 Next Steps

The Town will continue to engage the public while implementing the GI plan to advertise the many benefits of GI and build support for GI projects.

As part of the FY 18-19 Annual Report, a plan and schedule for new and ongoing participation in processes to promote GI at the regional level will be developed. The following future approach and potential activities were discussed at a recent New Development Subcommittee:

- Continue actions related to the Regional Roundtable and reconvene the Roundtable with key participants such as San Francisco Bay Area Planning and Urban Research Association (SPUR), Caltrans, Save the Bay, and others. Bay Area Stormwater Management Agencies Association (BASMAA) and San Francisco Estuary Partnership (SFEP) will conduct tasks that address this idea, including creating an Executive Summary and Action Plan for the Roundtable "Roadmap" under a supplemental contract as part of the *Urban Greening Bay Area* grant.
- Continue to work with Caltrans on funding opportunities and GI implementation along State routes.
- Continue to work with MTC to get GI integrated into transportation plans and funding.
- Conduct workshops and trainings on asset management for GI, possibly in coordination with CASQA, the SFRWQCB and/or EPA.

10.0 IMPLEMENTATION APPROACH

10.1 Overview

MRP Provision C.3.j.i.(3) requires each Permittee to complete the following:

"Adopt policies, ordinances, and/or other appropriate legal mechanisms to ensure implementation of the Green Infrastructure Plan in accordance with the requirements of this provision."

The various elements of the GI Plan comprise an implementation toolbox (Figure 23 on the next page) that the Town will access over the life of the GI Plan to foster improved water quality through design and construction of public and private Green Infrastructure (GI) facilities. As the GI program develops, the Town will apply an adaptive management strategy for flexibility in the face of changing conditions, development climates, and forecasts. Additional implementation strategies may be evaluated in the future.

Bioretention area located at Cypress Lawn.

Green Infrastructure Implementation Toolbox

Figure 23. Town's starting Green Infrastructure Implementation Toolbox.

10.2 Private Development Program and Policies

10.2.1 Standard Operating Procedures

The Town is committed to shifting its conventional "gray" storm drain infrastructure to more resilient, sustainable stormwater management which reduces runoff volumes, disperses runoff to vegetated areas, harvests and uses runoff where feasible, promotes infiltration and evapotranspiration, and utilizes natural processes to detain and treat runoff. This will include implementing, to the extent practicable, Low Impact Development (LID) features and facilities such as pervious pavement, bioretention facilities ("rain gardens"), green roofs, and rainwater harvesting systems.

The Town will continue to use its planning, zoning, and building authorities to require proposed new development and redevelopment projects to incorporate LID features and facilities in accordance with the New Development and Redevelopment (Provision C.3) requirements and the current edition of the San Mateo County Water Pollution Prevention Program C.3 Guidelines.

The Town's development review process is summarized in flowcharts in Appendix D for each of the following project phases:

- Entitlement Pre-Application Review
- Development and Redevelopment C.3 Applicability Review
- Entitlement Review
- Plan Review
- Construction Oversight
- Closeout / Acceptance / Occupancy

These flowcharts summarize the process by which both Provision C.3 Regulated and Non-C.3 Regulated Projects are reviewed, and at which level of detail, for each project phase. They show the coordination efforts needed between Town departments and external agencies. Documenting this process and integrating key information from the MRP helps to avoid information or department "siloing", where the requirements or process are only understood by a few key individuals. The Town will aim to use these flowcharts to train new staff. Town staff will periodically update the flowcharts as necessary to reflect new MRP requirements.

The Town of Colma utilizes Standard Conditions of Approval (COAs) during the entitlement review phase to require implementation of GI in private developments. These COAs include requiring that applicants detain runoff onsite, incorporate Best Management Practices, and minimize increases of impervious cover in accordance with the Town's General Plan Policies. In addition, applicants must comply with the requirements of MRP Provision C.3, complete either the C.3 and C.6 Development Review Checklist or Stormwater Requirements Checklist for Small Projects, incorporate efficient landscaping systems, and when feasible, incorporate landscaping that promotes surface infiltration, minimizes the use of pesticides

and fertilizers, and incorporates sustainable landscaping practices. Applicants are additionally required to prepare and implement a Storm Water Pollution Prevention Plan (SWPPP) during construction to reduce or eliminate construction-related pollutants. Acknowledgement of, and agreement to abide by, NPDES Best Management Practices (BMPs) must also be included with plans and enforced during construction.

10.2.2 Municipal Code

The Town reviewed its existing ordinances and other legal policies to identify whether sufficient legal authority exists to implement the GI Plan and comply with the MRP. Based on the existing Municipal Code, the Town currently holds the legal authority to require implementation of GI in both public and private projects which are Provision C.3 Regulated under the MRP. The following sections of the Town of Colma Municipal Code provide the Town with the authority to require GI implementation (excerpted below; full versions of the Municipal Code can be accessed at https://www.colma.ca.gov/municipal-code/):

- Chapter 3.10 Stormwater Management and Discharge Control
 - 3.10.050 This Ordinance shall be construed to assure consistency with the requirements of the Federal Clean Water Act and acts amendatory thereof or supplementary thereto, applicable implementing regulations, and NPDES Permit No. CA0029921 and any amendment, revision or reissuance thereof.
- Chapter 5.11 Water Efficient Landscape Regulations
 - 5.11.010(a)(10) Cemetery development, operation and maintenance that are done in compliance with the stormwater management requirements of Chapter 3.10 of the Colma Municipal Code enhance water quality and utilize land such that rainfall is captured to produce a public resource and benefit through groundwater recharge
 - 5.11.190 (a) Stormwater management practices minimize runoff and increase infiltration which recharges groundwater and improves water quality. It is strongly encouraged that all landscape and grading design plans implement stormwater best management practices in order to minimize runoff and to increase on-site rainwater retention and infiltration.
 - 5.11.190 (b) Project applicants shall refer to the Colma Municipal Code Chapter 3.10, or to the Regional Water Quality Control Board for information on any applicable stormwater technical requirements.

In addition, the Town is in the process of amending the Stormwater Management and Discharge Controls section of the Municipal Code to strengthen the connection between the Municipal Code and the GI Plan and the legal authority to implement the GI Plan. The Town intends to add new definitions to define the GI Plan and update BMPs to include GI as a strategy to capture pollutants. The amendment is tentatively scheduled to be complete in 2019.

10.3 Maintenance Programs and Policies

An effective maintenance program helps ensure that GI measures continue to perform as designed. Compared to conventional "gray" pipe-based stormwater facilities, GI measures are much more maintenance-intensive, and their performance depends on the level of maintenance effected. A successful maintenance program has three (3) key elements: (A) consideration of maintenance issues during design of GI measures, (B) development of an Operation and Maintenance (O&M) agreement, and (C) implementation and enforcement of this O&M agreement.

The Town is responsible for ensuring that storm sewer system components within the Town's right-ofway, such as conveyance pipes, manholes, catch basins, GI measures, and other BMPs are maintained and in good working order. Maintenance of these measures falls under the Town's standard operating procedures for stormwater assets. Additional information about maintenance of stormwater treatment measures is provided in the SMCWPPP Green Infrastructure Design Guide, Chapter 6.

Most stormwater facilities located in the Town of Colma are owned and maintained by private property owners, and not the Town of Colma. These property owners include, but are not limited to, Homeowners Associations (HOAs), property management companies, school districts, commercial/industrial site owners, and residential homeowners. They are responsible for the care and management of their facilities, and are expected to conduct regular stormwater inspections.

To ensure successful maintenance of installed GI measures on development projects, the Town requires the project proponent to sign a statement accepting responsibility for operation and maintenance through an O&M Agreement. Through such an agreement, the project proponent accepts responsibility for O&M of the installed GI measures until such responsibility is legally transferred to another entity. Acceptance of maintenance responsibility can be documented via another legally enforceable agreement or mechanism allowed per Provision C.3.h. of the MRP. Assumption of responsibility for O&M may be documented through various means. Such means may include written text included in project deeds or conditions, covenants and restrictions (CCRs) for multi-unit residential projects that require the homeowner's association, or, if there is no association, each individual owner, to assume responsibility for the O&M of the installed GI measures.

The minimum requirements of any O&M Agreement are listed below:

- Full description of the stormwater treatment measures to be maintained;
- An O&M Plan describing the schedule for maintenance;
- Provisions for access by SFRWQCB staff, mosquito and vector control agency staff, and Town staff;
- Requirements for property owner(s) to maintain the function of the stormwater treatment system(s) and, if applicable, hydromodification management control(s); and

• Mechanism for denoting that O&M responsibilities "run with the land" (that is, are conveyed to the new owner when a property is transferred).

The Town has developed a Business Inspection Plan (BIP) and Enforcement Response Plan (ERP) describing the process how the Town inspects GI measures on development projects for enforcement of proper installation and maintenance.

10.4 Implementation of Public Green Infrastructure

10.4.1 Internal Policies that Support GI Implementation

The Town maintains an ongoing list of prioritized GI opportunities, based on a screening of its Capital Improvement Program, as discussed in Chapter 4. This list is updated annually with new opportunities. The Town will strive to incorporate GI on the following types of projects:

- New construction and substantial upgrades to Town facilities, including public buildings, offices, stations, parking lots, corporation yards, which are found to have GI potential.
- Transportation projects for which the Town is a sponsor or participant, including roadway widening or reconstruction, streetscape improvements, "complete streets" projects, traffic calming, safe routes to schools, and other projects that involve roadway reconfiguration, which are found to have GI potential.
- Storm drain capacity improvement or reconfiguration projects which are found to have GI potential.
- Parks improvements projects which are found to have GI potential.

When a project is found to be Provision C.3 Regulated, measures will be installed in accordance with the Provision C.3 requirements of the MRP. Otherwise, alternative sizing criteria may be used, as discussed in Section 6.3.3.

If a project is reviewed for GI potential and it is found that implementation of GI is infeasible, the reasons for infeasibility will be documented, and the project removed from the Town's map and list of prioritized projects.

Bioretention area located at Target in Serramonte Shopping Center.

10.4.2 Early Project Implementation

The Town's existing and potential GI projects are summarized in Appendix C. These include both private projects which are required to construct GI due to being Provision C.3-regulated projects as well as public voluntary GI projects.

During the development of this GI Plan, the Town explored various GI opportunities which are appropriate to the context and character of the Town.

These opportunities include the following:

- **Mission Road Bicycle and Pedestrian Improvement Project.** This bicycle and pedestrian improvement project will include the construction of stormwater curb extensions, which integrate a bulb-out and bioretention area.
- Serramonte Boulevard / Collins Avenue Master Plan. A Master Plan development effort is underway to develop recommended pedestrian safety enhancements, traffic calming treatments, and green infrastructure improvements along Serramonte Boulevard and Collins Avenue, between El Camino Real and Junipero Serra Boulevard.
- Hillside Boulevard Phase II Project. This project will enhance safety for pedestrians, bicyclists, and vehicles along Hillside Boulevard between Lucky Chances Casino and Sand Hill Road. This

project involves a grind and overlay treatment, restriping, and new signage and lighting. The project is currently unfunded, but the Town hopes to obtain grant funds. The Town plans to include green infrastructure, such as bioretention areas, in the project similar to those installed as part of Phase I of this project.

Concept sheets for these prioritized projects, including a description and approximate schedule for completion, are included in Appendix E. Appendix E also includes an approximate schedule for the Town's current GI opportunities.

10.4.3 Workplan to Complete Prioritized Projects

MRP Provision C.3.j.i.(2)(j) requires each Permittee to complete the following:

"A workplan to complete prioritized projects identified as part of a Provision C.3.e. Alternative Compliance program or part of Provision C.3.j. Early Implementation."

The schedule and early implementation concept sheet in Appendix E and the Town's CIP serve as the initial workplan to complete prioritized projects. The Town's list of prioritized projects will be continuously updated and will eventually include projects identified through the San Mateo Countywide SSMP.

10.5 Plan Updates Process

The GI Plan is intended to be a "living" document, periodically updated to reflect the outcomes of the Town's adaptive management process, adjusting to reflect lessons learned and used to track GI implementation progress. The text of the GI Plan need not necessarily be updated in the future; however, as time progresses, the Town may reassess the adequacy of its tools or implementation strategies to secure achievement of GI Plan milestones. Table 12 proposes a preliminary schedule for when various elements of the GI Plan will be revisited. The Town may change or modify this schedule without updating this section.

Table 12. Green Infrastructure Plan Update Schedule.

GI Plan Implementation Element	GI Plan Reference Section	What will be updated	Update Schedule
GI Milestones Progress	Chapter 3.0, GI Milestones	Tracking of progress towards meeting GI milestones	Annually. This will be tracked via the Town's internal database until 2021, or when the San Mateo Countywide SSMP is developed.
Capital Improvement Program Screening	Chapter 4.0, Project Identification and Prioritization	Town's internal screening database	Annually.
Tracking of GI Projects	Chapter 5.0, Project Tracking	Town's internal database and public GI map	As needed (annually , at a minimum).
Tracking of GI Projects	Chapter 5.0, Project Tracking	Chapter 5.0, Project Tracking	2021 , or when the San Mateo Countywide SSMP is developed.
Guidelines and Specifications	Chapter 6.0, Guidelines and Specifications	GI Guidelines and Standards	Every 5 years , the Town will reassess the applicability of the Countywide GI Guidelines and Standards and review the potential for updating Town-specific standards and details.
Planning Document Updates	Chapter 7.0, Integration with Other Planning Documents	Section 7.6, Future Updates	2021 , or when planning document modifications are complete.
Funding Options	Chapter 8.0, Funding Options	Section 8.3, Funding Strategies	Revisit every 5 years to assess whether funding strategies are adequate.
Outreach and Education	Chapter 9.0, Outreach and Education	Internal outreach and education strategy	Participate at the Countywide level (estimated 2 times per year) to support outreach and education about GI.
Programs and Policies	Chapter 10.0, Implementation Approach	Standard Operating Procedures, Municipal Code, and Policies	Revisit every 5 years to assess whether implementation approach is adequate.

BIBLIOGRAPHY AND DOCUMENT REFERENCE LIST

- Bay Area Stormwater Management Agencies Association (BASMAA). (2016, May). *Guidance for Identifying Green Infrastructure (GI) Potential in Municipal Capital Improvement Program (CIP) Projects.* BASMAA, Oakland, CA.
- Bay Area Stormwater Management Agencies Association (BASMAA). (2017, December 13). *Green Infrastructure Facility Sizing for Non-Regulated Street Projects.* Prepared by Dubin Environmental for BASMAA, Oakland, CA.
- Bay Area Stormwater Management Agencies Association (BASMAA). (2018, September 6). *Guidelines for Sizing Green Infrastructure Facilities in Street Projects* (5th draft). Prepared by Dan Cloak Environmental Consulting & EOA Inc for BASMAA, Oakland, CA.
- California Stormwater Quality Association (CASQA). (2003). *Stormwater Best Management Practice* Handbook: New Development and Redevelopment. CASQA, Menlo Park, CA.
- Caltrans Division of Transportation Planning, Office of Smart Mobility and Climate Change. (Accessed 2019, May 9). Complete Streets Program. <u>http://www.dot.ca.gov/transplanning/ocp/complete-streets.html</u>.
- City of San Mateo. (2015, February). *Sustainable Streets Plan.* Prepared by Nelson/Nygaard Consulting Associates, Community Design and Architecture, Local Government Commission, ChangeLab Solutions, & Urban Advantage. San Mateo, CA.
- Community Design + Architecture (CD+A). (January 3, 2019). SMCWPPP Green Infrastructure Plan Development Support – UPDATED estimate of land area for new and redevelopment from 2013 to 2020, 2020 to 2030, and 2030 to 2040 [Memorandum]. SMCWPPP Green Infrastructure Committee.
- Contra Costa Clear Water Program. (2018, December 20). *Example Municipal Policies to Support Green Infrastructure Implementation*. Prepared by Dan Cloak.
- National Association of City Transportation Officials (NACTO). (2017). *Urban Street Stormwater Guide*. Island Press, Washington, USA.
- San Francisco Regional Water Quality Control Board (SFRWQCB). (2013). San Francisco Bay Beaches Pathogens TMDL. SFRWQCB, San Francisco, CA.
- San Francisco Regional Water Quality Control Board (SFRWQCB). (2015). NPDES Phase 1 MS4 Municipal Regional Stormwater Permit (MRP) for San Francisco Bay Region. Order No. R2-2015-0049. SFRWQCB, San Francisco, CA.
- San Francisco Regional Water Quality Control Board (SFRWQCB). (2016). San Francisco Bay Mercury TMDL. SFRWQCB, San Francisco, CA.

- San Mateo Countywide Water Pollution Prevention Program (SMCWPPP). (2007). *Trash Assessments in Six Watersheds in San Mateo County, California.* City/County Association of Government, SMCWPPP, Redwood City, CA.
- San Mateo Countywide Water Pollution Prevention Program (SMCWPPP). (2009, January). San Mateo County Sustainable Green Streets and Parking Lots Guidebook. City/County Association of Government, SMCWPPP, Redwood City, CA.
- San Mateo Countywide Water Pollution Prevention Program (SMCWPPP). (2016, June). *C.3 Stormwater Technical Guidance*, Version 5.0 Handbook. City/County Association of Government, SMCWPPP, Redwood City, CA.
- San Mateo Countywide Water Pollution Prevention Program (SMCWPPP). (2017, February). *Stormwater Resource Plan for San Mateo County.* Prepared by Paradigm Environmental & Larry Walker Associates, Inc. City/County Association of Government, SMCWPPP, Redwood City, CA.
- San Mateo Countywide Water Pollution Prevention Program (SMCWPPP). (2018a, June). *Quantitative Relationship Between Green Infrastructure Implementation and PCBs/Mercury Load Reduction.* Prepared by Paradigm Environmental. Part of the SMCWPPP 2017-18 MRP Annual Report. City/County Association of Government, SMCWPPP, Redwood City, CA.
- San Mateo Countywide Water Pollution Prevention Program (SMCWPPP). (2018b, June). San Mateo County-Wide Reasonable Assurance Analysis Addressing PCBs and Mercury: Phase I Baseline Modeling Report. Prepared by Paradigm Environmental & Larry Walker Associates, Inc. City/County Association of Government, SMCWPPP, Redwood City, CA.
- San Mateo Countywide Water Pollution Prevention Program (SMCWPPP). (2019a, January). *Green Infrastructure Planning: Green Infrastructure Funding Nexus Evaluation*. Prepared by SCI Consulting Group and Larry Walker Associates. City/County Association of Government, SMCWPPP, Redwood City, CA.
- San Mateo Countywide Water Pollution Prevention Program (SMCWPPP). (2019b, June). *Green Infrastructure Design Guide* (1st ed.). City/County Association of Government, SMCWPPP, Redwood City, CA.
- San Mateo Countywide Water Pollution Prevention Program (SMCWPPP). (2019c under development). San Mateo County-Wide Reasonable Assurance Analysis Addressing PCBs and Mercury: Phase II Green Infrastructure Modeling Report. Prepared by Paradigm Environmental & Larry Walker Associates, Inc. City/County Association of Government, SMCWPPP, Redwood City, CA.

Town of Colma. (1999, June). General Plan. Colma, CA.

Town of Colma. (2013, May 8). *Town of Colma Climate Action Plan*. Prepared by the Town of Colma Climate Action Plan Development Team and the Climate Action Plan Internal Working Group in collaboration with KEMA Services, Inc. and HARA. Colma, CA.

- Town of Colma. (2014, February 1). *Long-Term Trash Load Reduction Plan and Assessment Strategy.* Colma, CA.
- Town of Colma. (2017, May 8). Green Infrastructure Workplan. Colma, CA.
- Town of Colma. (2018, May). *Municipal Code.* Current through Ordinance 779, passed May 2018. Colma, CA.
- United States Environmental Protection Agency (USEPA). (2017, February). *Developing Reasonable Assurance: A Guide to Performing Model-Based Analysis to Support Municipal Stormwater Program Planning.* Prepared by Paradigm Environmental. USEPA, Washington D.C., USA.
- United States Environmental Protection Agency. (accessed 2019, May 9). *What is Green Infrastructure?* <u>https://www.epa.gov/green-infrastructure/what-green-infrastructure.</u>
- United States Internal Revenue Service. (accessed 2019, May 9). *Tax Years*. <u>https://www.irs.gov/businesses/small-businesses-self-employed/tax-years</u>.
- Water Environment Federation (WEF). (2014). *Green Infrastructure Implementation*. WEF, Alexandria, VA.

GREEN INFRASTRUCTURE PLAN APPENDICES (COLMA)

A. Glossary

- B. Capital Improvements Program Green Infrastructure Potential Screening Flowcharts
- C. Existing Projects and Future Opportunities
 - a. Water Resources
 - b. FEMA 100-yr Flood Plain
 - c. Sea Level Rise
 - d. Prioritized Green Streets Projects
 - e. Prioritized LID and Regional Projects
 - f. Existing and Potential Green Infrastructure Projects
- **D. Development Review Flowcharts**
- E. Early Project Implementation Schedule and Concept Sheets
 - a. Draft Schedule for Prioritized Projects
 - b. Mission Road Bicycle and Pedestrian Improvement Project
 - c. Serramonte Boulevard / Collins Avenue Master Plan
 - d. Hillside Boulevard Phase II Project

APPENDIX A: Glossary

Several terms used in this green infrastructure may be unfamiliar to readers. For the reader's convenience, definitions of key terminology have been adapted from various sources in the table below.

Key Term	Definition	References
Bioretention Area	A type of low impact development treatment measure designed to have a surface ponding area that allows for evapotranspiration and filters water through 18 inches of engineered biotreatment soil. After the water filters through the engineered soil, it encounters a 12-inch layer of rock in which an underdrain is typically installed to convey treated water to the storm drain system.	<i>C.3 Regulated Projects Guide</i> – Glossary (SMCWPPP 2016)
	Also known as a "Stormwater Planter".	Green Infrastructure Design Guide
		(SMCWPPP 2019b)
Bioswale	See "Bioretention Area".	
Biotreatment	A type of low impact development treatment allowed under Provision C.3.c. of the MRP. Biotreatment areas must be designed to have a surface area no smaller than what is required to accommodate a 5 inches/hour stormwater runoff surface loading rate and must use biotreatment soil as specified under the MRP (Appendix K of the C.3 Regulated Projects Guide).	<i>C.3 Regulated Projects Guide –</i> Glossary (SMCWPPP 2016)
Bulb-outs	Synonymous with "Curb Extension". Bulb-outs are extensions of the curb, gutter, and sidewalk into the roadway, typically located at street crossings such as intersections or mid-block crosswalks. They are a traffic calming and pedestrian safety enhancement measure that reduce the crossing distance for pedestrians. Stormwater curb extensions are curb extensions that incorporate the use of stormwater treatment	Green Infrastructure Design Guide

	through the use of stormwater planters or other green infrastructure measures.	(SMCWPPP 2019b)
Complete Streets	A complete street is a transportation facility that is planned, designed, operated, and maintained to provide safe mobility for all users, including bicyclists, pedestrians, transit vehicles, truckers, and motorists, appropriate to the function and context of the facility. Every complete street looks different, according to its context, community preferences, the types of road users, and their needs.	Caltrans Division of Transportation Planning – Office of Smart Mobility and Climate Change
Detention Basin	Detention is the process of providing temporary storage of stormwater runoff in ponds, vaults, bermed areas, or depressed areas to allow treatment by sedimentation and metered discharge of runoff at reduced peak flow rates. In more urban situations, detention can also be provided by using rock filled trenches or suspended paving systems directly adjacent to other treatment measures to allow them to store water and treat it over a longer period.	Green Infrastructure Design Guide (SMCWPPP 2019b)
Directly Connected Impervious Area	The area covered by a building, impermeable pavement, and/or other impervious surfaces, which drains directly into the storm drain without first flowing across permeable land area (e.g., turf buffers).	<i>C.3 Regulated Projects Guide</i> – Glossary (SMCWPPP 2016)
Dry Weather Runoff	Runoff that occur during period without rainfall. In a natural setting, dry weather runoff result from precipitation that infiltrates into the soil and slowly moves through the soil to the creek channel. Dry weather runoff in storm drains may result from human activities, such as over-irrigation.	<i>C.3 Regulated Projects Guide</i> – Glossary (SMCWPPP 2016)
Evapotranspiration	Evaporating water into the air directly or through plant transpiration.	<i>C.3 Regulated Projects Guide</i> - Glossary (SMCWPPP 2016)

Fiscal Year	A fiscal year is twelve consecutive months ending on the last day of any month except December.	IRS.gov
Flow-through Planter Box	A flow-through planter box is a contained landscape area designed to capture and retain stormwater runoff. It is fully lined and connected via an underdrain to a stormwater system.	Green Infrastructure Design Guide (SMCWPPP 2019b)
Green Building	Green building is the practice of creating structures and using processes that are environmentally responsible and resource-efficient throughout a building's lifecycle from siting to design, construction, operation, maintenance, renovation and deconstruction.	United States Environmental Protection Agency <u>https://www.epa.gov/land-</u> <u>revitalization/green-</u> <u>buildings</u> (Accessed 6/12/19)
Green Gutters	Green gutters help capture and slow stormwater runoff within very arrow and shallow landscaped areas.	Green Infrastructure Design Guide (SMCWPPP 2019b)
Green Infrastructure	Green infrastructure comprises a range of natural and built approaches to stormwater management– such as rain gardens, bioretention, and permeable paving–that mimic natural systems by cleaning stormwater and letting it absorb back into the ground. Green infrastructure could reduce the amount of runoff that enters the traditional piped stormwater system below ground and could prevent overflows that pollute nearby water bodies.	United States Environmental Protection Agency
Green Roof	Green roofs are landscaped systems placed on rooftops designed to capture rainfall and allow to evaporate back into the air before runoff is created.	Green Infrastructure Design Guide (SMCWPPP 2019b)
Green Streets	Green Streets are defined as streets that maximize permeable surfaces, tree canopy, and landscaping elements in order to divert stormwater from the sewer system; filter and reduce the amount of polluted stormwater entering rivers and streams;	

	increase urban greenspace; improve air quality and reduce ambient air temperature; and improve watershed health. There is some evidence that Green Streets also improve pedestrian and bicycle safety and promote travel by these modes.	
Gray Infrastructure	Gray infrastructure is defined as traditional brick, mortar, and concrete construction to remove stormwater from its source and transport it to a downstream outfall or treatment facility.	Shamsi, U.M., J.W. Schombert, and L.J. Lennon. 2014. <i>SUSTAIN</i> <i>Applications for Mapping</i> <i>and Modeling Green</i> <i>Stormwater Infrastructure.</i> Journal of Water Management Modeling C379. doi: 10.14796/JWMM.C379
Groundwater Recharge	Groundwater recharge is the process in which surface flows are stored for a period sufficient for water to percolate into the soil or groundwater table.	Caltrans Willits Bypass Project Mitigation and Monitoring Proposal
Hydromodification	The modification of a stream's hydrograph, caused in general by increases in flows and durations that result when land is developed (e.g., made more impervious). The effects of hydromodification include, but are not limited to, increased bed and bank erosion, loss of habitat, increased sediment transport and deposition, and increased flooding.	NPDES No. CAS612008 Glossary
Impervious Surface	A surface covering or pavement of a developed parcel of land that prevents the land's natural ability to absorb and infiltrate rainfall/stormwater. Impervious surfaces include, but are not limited to, roof tops; walkways; patios; driveways; parking lots; storage areas; impervious concrete and asphalt; and any other continuous watertight pavement or covering. Landscaped soil and pervious pavement, including pavers with pervious openings and seams, underlain with pervious soil or pervious storage	NPDES No. CAS612008 Glossary

	material, such as a gravel layer sufficient to hold at least the C.3.d volume of rainfall runoff are not impervious surfaces. Open, uncovered retention/detention facilities shall not be considered as impervious surfaces for purposes of determining whether a project is a Regulated Project under Provisions C.3.b. and C.3.g. Open, uncovered retention/detention facilities shall be considered impervious surfaces for purposes of runoff modeling and meeting the Hydromodification Standard.	
Infiltration	The process of slowing, filtering, and soaking stormwater runoff into native soil. Greater infiltration can often be achieved, as necessary, by employing a specified biotreatment soil mix and aggregate storage prior to infiltration into native soil.	Green Infrastructure Design Guide (SMCWPPP 2019b)
Infiltration Trench	Infiltration systems are underground facilities and structures designed to collect and temporarily store runoff, such as a gravel filled trench, pipe or vault, and allows the water to infiltrate into surrounding subsurface soils. In some cases, it can include an underdrain.	Green Infrastructure Design Guide (SMCWPPP 2019b)
Low Impact Development (LID)	A sustainable practice that benefits water supply and contributes to water quality protection. Unlike traditional storm water management, which entails collecting and conveying storm water runoff through storm drains, pipes, or other conveyances to a centralized storm water facility, LID focuses on using site design and storm water management to maintain the site's pre-development runoff rates and volume. The goal of LID is to mimic a site's predevelopment hydrology by using design techniques that infiltrate, filter, store, evaporate, and detain runoff close to the source of rainfall.	Green Infrastructure Design Guide (SMCWPPP 2019b)
Municipality	A municipality is a city, county, city and county,	California Air Resources
	special district, a public agency of the State of California, and any department, division, public corporation, or public agency of this State or two or more entities acting jointly, or the duly constituted body of an Indian reservation or rancheria.	Board FAQ
------------------------------	--	--
Non-Potable Water Supply	Any water, including reclaimed water, not meeting current potable water standards. Water which is suitable for beneficial uses excluding human consumption. Specifically excluded from this definition is "gray water."	California State Water Resources Control Board – Guidelines for Distribution of Nonpotable Water (1992).
Percolation	Percolation is the internal drainage rate of a substrate (in mm/hr) in the same way that infiltration indicates the capacity to infiltrate water into the surface of the substrate.	Caltrans Office of Stormwater Prevention – Soil Resource Evaluation
Pervious Surface	A natural, landscaped, or permeable hardscape (e.g., turf block, brick, natural stone, cobbles, gravel) that allows surface runoff to infiltrate into underlying soils.	<i>C.3 Regulated Projects Guide</i> – Glossary (SMCWPPP 2016)
Polychlorinated Biphenyls	PCBs are a group of man-made organic chemicals consisting of carbon, hydrogen and chlorine atoms. The number of chlorine atoms and their location in a PCB molecule determine many of its physical and chemical properties. PCBs have no known taste or smell, and range in consistency from an oil to a waxy solid.	EPA.gov
	PCBs belong to a broad family of man-made organic chemicals known as chlorinated hydrocarbons. PCBs were domestically manufactured from 1929 until manufacturing was banned in 1979. They have a range of toxicity and vary in consistency from thin, light-colored liquids to yellow or black waxy solids. Due to their non-flammability, chemical stability, high boiling point and electrical insulating properties, PCBs were used in hundreds of industrial and commercial applications.	
Public Right-of-	Public right-of-way is defined as the right of passage	Black's Law Dictionary

Way	held by the public in general to travel on roads, freeways, and other thoroughfares.	1351 (8th ed. 2004).
Reasonable Assurance Analysis	From a regulatory perspective, reasonable	BASMAA (Bay Area
(RAA)	implementation of control measures will, in combination with operation of existing or proposed storm drain system infrastructure and management programs, result in sufficient pollutant reductions over time to meet total maximum daily load (TMDL) wasteload allocations, water quality-based effluent limits (WQBELs), or other water quality targets specified in a municipal separate storm sewer system (MS4) permit1 (United States Environmental Protection Agency [USEPA], 2017).	Agencies Association). 2017. <i>Bay Area Reasonable</i> <i>Assurance Analysis</i> <i>Guidance Document.</i> BASMAA, Oakland, CA.
	From the perspective of a stakeholder in the watershed who is focused on the improvement of water quality or restoration of a beneficial use of a waterbody, reasonable assurance is the demonstration and a commitment that specific management practices are identified with sufficient detail (and with a schedule for implementation) to establish that necessary improvements in the receiving water quality will occur.	
	From the perspective of an MS4 Permittee, reasonable assurance is a detailed analysis of TMDL wasteload allocations (WLAs), associated permit limitations, and the extent of stormwater management actions needed to achieve TMDL WLAs and address receiving water limitations. RAAs may also assist in evaluating the financial resources needed to meet pollutant reductions based on schedules identified in the permit, TMDL, or stormwater management plan, and in preparing associated capital improvement plans.	
Rainwater	Rainwater harvesting is defined as a method for	Boers, T. M. Rainwater

 $^{^{\}rm 1}$ All references to a permit in this document refer to the 2015 version (MRP 2.0).

Harvesting	inducing, collecting, storing, and conserving local surface runoff for agriculture in arid and semi-arid regions.	Harvesting in Arid and Semi-Arid Zones. International Institute for Land Reclamation and Improvement, 1997.
Regulated Projects	Development projects as defined in provision C.3.b.ii	NPDES No. CAS612008 Glossary
Special Projects	Certain types of smart growth, high density and transit-oriented development projects that are allowed, under Provision C.3.e.ii of the MRP, to receive LID treatment reductions.	<i>C.3 Regulated Projects Guide</i> – Glossary (SMCWPPP 2016)
Sustainable Streets	Sustainable streets are multimodal rights of way designed and operated to create benefits relating to movement, ecology and community that together support a broad sustainability agenda embracing the three E's: environment, equity, and economy.	<i>Green Infrastructure Design Guide</i> - Chapter 3 (SMCWPPP 2019b)
Vegetated Swale	Shallow landscaped areas designed to capture, convey, and potentially infiltrate stormwater runoff as it moves downstream.	<i>Green Infrastructure Design Guide</i> (SMCWPPP 2019b)
Wasteload Allocation	A portion of a receiving water's TMDL that is allocated to one of its existing or future point sources of pollution.	NPDES No. CAS612008 Glossary
Watershed	A watershed is defined as the area where precipitation drains to a common waterway, such as a stream, lake, estuary, wetland, or the ocean.	Merrick JRW, Parnell GS, Barnett J, Garcia M (2005). A multiple-objective decision analysis of stakeholder values to identify watershed improvement needs.

APPENDIX B: Capital Improvements Program GI Potential Screening Flowcharts

3I Potential									Move to Part 3								Assess possibility of	integrating green	Intrastructure into these Master Planning	Documents. Associated	individual projects	move to Part 3	Project must include GI	per Provision C.3	Requirements.	Individually assess for GI	If no notential exists	document why GI is	impracticable.		
Part 2: Assessment of (Project involves:	Alternations to existing building's roof	drainage	New/replaced pavement or drainage	suuciales Concrete work	Landscaping, including tree planting	Streetscape and intersection	improvements	Project is of these retrofit types:	Road Diet	BIRE/ PEO FACIIITIES	Faveriterit records a dution Street Reautification	Tree Planting	Park/Landscaping Retrofit	Drainage Reconstruction	Parking Lot	Building	-	Project is a master planning document, such as a Bike/Ped Master Plan. Parks	Master Plan, or Storm Drain Master Plan				Project is subject to C.3 requirements			None of the above categories apply				
								Eliminate from List								Eliminate from list,	but reconsider next FY					Eliminata from Lict							Move to Dart 2		
Part 1: Initial Screening	No Potential	No exterior work (e.g., interior remodel)	Exterior building upgrades or equipment	Development or funding of municipal programs	Technical studies, data collection, or training	Construction of streetlights and traffic signals	Minor bridge and culvert repairs/replacement	Non-stormwater utility projects	Equipment purchase or maintenance	Irrigation system installation, upgrades, or repairs	Too Late to Change	Project has gone to bid or is under construction	Project is too far along in design stage to make changes	(up to Agency judgment based on schedule and budget	considerations)	Too Early to Assess	Not enough information to assess project for GI potential	Maintenance/Minor Construction	Project is for maintenance purposes only or is minor in	nature, and maintains the existing lines, grades, and	capacity of the original facility. In addition, the project	is not concentrated in one location and includes	multiple work orders throughout various locations in	the City. For example:	1. Pavement maintenance/replacement	2. Sidewalk, curb and gutter repairs	3. ADA ramps and other improvements	Project meets the above criteria but includes at least	5,000 SF of impervious surface created or replaced in a	single contiguous area.	All other projects

Part 3: Preliminary Design
Step 1: Information Collection / Reconnaissance
 Locate roof leaders and discharge points. Look for opportunities to substitute pervious pavements for impervious pavements. Identify available landscaped or paved areas adjacent or downgradient from paved or roof areas. Locate nearby storm drains.
 Assess potential for infiltration and groundwater depth. Assess potential for connection of underdrain (typ. 2-2.5 below bioretention area surface).
Step 2: Preliminary Sizing and Drainage Analysis
 Delineate drainage areas. Identify pathways to direct drainage from roof and pavement areas to potential GI facilities. Preliminary sizing of GI facilities.
Step 3: Barriers and Conflicts
 Identify barriers and conflicts: Utility conflicts. Property ownership. Availability of water supply for irrigation. Integration of GI features vs. "add-on". Presence of barriers or conflicts does not necessarily mean GI is infeasible but may affect cost or public acceptance.
Step 4: Budget and Schedule
 Budget considerations: Sources of funding that might be available for GI. Sources of funding that might be available for GI. Potential savings achieved by integrating with other planned projects (e.g. bike/ped, beautification, etc.) or reducing cost of "gray" drainage facilities. Schedule considerations: Constraints on schedule due to regulatory mandates, grant requirements, etc. Whether schedule allows time for any design changes needed to incorporate GI.
Step 5: Results of Assessment
 Does the project have GI potential? Consider results of previous steps. Consider ancillary benefits of GI. Does it make sense to include GI in this project, if funding was available for the incremental costs of GI elements?

APPENDIX C: GI Project Prioritization Maps

- a. Water Resources
- b. FEMA 100-yr Flood Plain
- c. Sea Level Rise
- d. Prioritized Green Streets Projects
- e. Prioritized LID and Regional Projects
- f. Existing and Potential Green Infrastructure Projects

APPENDIX D: Development Review Flowcharts

Entitlement Pre-Application Review

Development and Redevelopment C.3 Applicability Review

C.3 REGULATED PROJECT MEASURES Applicant to complete the "C.3 and C.6 Development Review Checklist", and select

- Source Control Measures
- Construction Best Management Practices
- Stormwater Treatment Measures
- Hydromodification Management Controls (if applicable)

NON-C.3 REGULATED PROJECT MEASURES

Applicant to complete the "Stormwater Checklist for Small Projects", and select appropriate:

- Site Design Measures* Source Control Measures
- Construction Best Management Practices

*One or more site design measures are required for projects that create and/or replace 2,300 square feet or more of impervious surface. Otherwise, these measures are optional.

Construction Oversight

IN-PROGRESS C.3 REGULATED PROJECT INSPECTIONS

In-progress inspections of stormwater treatment measures are optional under the Municipal Regional Stormwater NPDES Permit (NRR), hough are recommedide to enter the measures are constructed in accordance with the approved plan set. Any issues identified can be corrected in a timely fashion, well before project closeout. Inspections should occur at several stages of construction, for example:

- Subgrade preparation
- Placement of material loyers (filter fobric, subbase, base, soli, etc.) Placement of material loyers (filter fobric, subbase, base, soli, etc.) Reinforcing steel ond concrete formwork placement (if applicable) Installation of irrigation and planting

 - After final landscaping

Closeout / Acceptance / Occupancy

APPENDIX E: Early Project Implementation Schedule and Concept Sheets

- a. Draft Schedule for Prioritized Projects
- b. Mission Road Bicycle and Pedestrian Improvement Project
- c. Serramonte Boulevard / Collins Avenue Master Plan
- d. Hillside Boulevard Phase II Project

DRAFT SCHEDULE FOR PRIORITIZED GI PROJECTS

Town of Colma

Mission Road Bicycle and Pedestrian Improvement Project

Design Construction Operations and Maintenance (continues in perpetuity)

Serramonte-Collins Improvements Project

Master Plan Development Design Construction Operations and Maintenance (continues in perpetuity)

Hillside Boulevard Phase II Project

Design Construction Operations and Maintenance (continues in perpetuity)

FY 29/30						
FY 28/29						
FY 26/27						
FY 25/26						
FY 24/25				ERMINED	ERMINED	ERMINED
FY 23/24				to be det	to be det	to be det
FY 22/23						
FY 21/22						
FY 20/21						
FY 19/20						
6L/8L Y7						
81/ <i>1</i> 1 Y7						
L1/91 X3						
9L/SL XJ						

	TO BE DETERMINED	TO BE DETERMINED

Prioritized Project: 903 – Mission Road Bicycle and Pedestrian Im	Iprovement Pro	oject
5	Site Information:	
	Location	Mission Road between El Camino Real and Lawndale Colma, CA 94014
	Capture Area	59,350 square feet (per March 2017 grant application)
	Impervious Area (%)	100%
	Possible GI Measures	Bioretention Areas
	Project Schedule:	
	Design of the project project completion ir	t is proposed to start in 2019, with n FY 19/20.
	Project Cost:	
Image Source: Rendering over Google Earth imagery (2018), CSG Consultants, Inc.	The total project cost will be funded from a One Bay Area Grant, SB 1, and the Genera	t is estimated to be \$1.6 million, and a variety of sources, including the Measure A, Safe Routes to School, al Fund.
Project Description:		
 The Mission Road Bicycle and Pedestrian Improvements Project includes implementation of several and vehicles along Mission Road between El Camino Real and Lawndale Boulevard. The project scol Relocation and reconstruction of the existing curb, gutter, sidewalk, driveway approaches, and r Addition of new continuous sidewalk. Extension of Class II bicycle lanes in the northbound direction. Construction of bulb-outs and high visibility crosswalks with rectangular rapid flashing beacons. Installation of energy efficient street lights. Construction of landscape planters for drainage and stormwater treatment purposes. 	l safety related impro pe includes: non-ADA compliant ra	vements for pedestrians, bicyclists, mps.

These improvements will address the safety concerns expressed by the community and improve the accessibility of the pedestrian and bicycle facilities in compliance with the San Mateo County Comprehensive Bicycle and Pedestrian Plan. This project also adheres to the Town of Colma's Circulation Plan, which consists of Complete Streets and Green Infrastructure policies.

Prioritized Project: 913 – Serramonte Boulevard / Collins Avenue	e Master Plan	
	Site Information:	
	Location	Serramonte Boulevard and Collins Avenue Colma, CA 94014
REAL SERRAMONTE BLVD	Capture Area	7.5± acres
	Impervious Area (%)	100%
	Possible GI Measures	Bioretention Areas
COLINS AVE	Project Schedule:	
	Completion of the Sel anticipated to be in th schedule for the reco yet been developed.	rramonte/Collins Master Plan is ne first quarter of 2019. The mmended improvements has not
	Project Cost:	
CONSTRUCT CONSTRUCT CONSTRUCT CONSTRUCT CONSTRUCT CONSTRUCT CONSTRUCT T T T T T T T T T	The total cost of the Ma The cost of the associat Boulevard and Collins A	aster Plan Development is \$400,000. ed improvements on Serramonte wenue is yet to be developed.
Project Description:		
This project involves the development of a Master Plan for Serramonte Boulevard and Collins Aven	nue. The project include	SS
 One through lane in each direction with a center two-way left-turn lane One travel lane in each direction, with a parking lane featuring intermittent planted bulbouts, w Flex Zone between the sidewalk and eastbound roadway: planted median, plaza, or drop-off Zoi Potential to improve safety along the corridor by providing left-turn storage out of the travel lar 	vider sidewalks, and lar ine ne	ıdscaping

The proposed road diet would greatly improve access to the commercial sites along Serramonte Boulevard. A two-way center left turn lane would allow ingress and egress from all driveways along Serramonte Boulevard. Collins Avenue would gain traffic calming treatments and pedestrian enhancements. All of the recommended improvements are in line with the Complete Street polices contained in the General Plan.

÷
e
[0
Р
=
Se
a.
Ч
σ
ar
No.
n
õ
de
Si
₩.
<u> </u>
· ·
8
÷
e G
6
$\overline{}$
ed Pl
ized P
ritized P
oritized P

(2018)
imagery
oogle Earth
Source: Go
Image

Site Information:	
Location	Hoffman Street to 600 feet south of Serramonte Boulevard Colma, CA 94014
Capture Area	4.0± acres
Impervious Area (%)	100%
Possible GI Measures	Likely Bioretention Areas, to match Hillside Blvd Phase I

Project Schedule:

Phase I was completed in 2014/15. Phase II design began in FY 18/19. Construction is scheduled for 2022/23, pending receipt of grant funding.

Project Cost:

A reserve of \$1,068,059 is being held in the Capital Improvement Fund towards the cost of this \$9,100,000 million project. The Town hopes to obtain grant funds for this project.

Project Description:

pedestrians, bicyclists, and vehicles along Hillside Boulevard, from Lucky Chances Casino to Sand Hill Road. The project scope includes a 2" grind and asphalt concrete overlay treatment, restriping, and new signage and lighting. This segment of Hillside Blvd includes both parking and bike lanes; these amenities would be retained as part of the project. Phase I of the three-phase Hillside Beautification Project (which extended between Hoffman Street to 600 feet south of Serramonte Boulevard) was completed in FY 2014/15. The Hillside Boulevard Beautification Phase II Project includes implementation of several safety related improvements for

The Town hopes to integrate bioretention areas to provide water quality enhancement along the corridor, similar to the Phase 1 Project approach.