Report: Geotechnical Investigation

Fairfax Housing Development: Marinda Drive and Ridgeway Avenue Sites, Marin County, California

For Rothman Construction

by William W. Moore, PE, GE Phyllis E. Flack, PG, PE

October 31, 2016

Table of Contents

INTRODUCTION	5
Purpose and Scope	5
Summary	5
SITE SOILS AND BEDROCK - EXPLORATION BORINGS	6
LOCAL GEOLOGY	7
GEOLOGIC HAZARDS	7
Earthquakes and Seismicity	8
Drainage and Erosion	9
Surficial Landslides and Debris Flows	9
Expansive Soils	9
GROUNDWATER	10
FOUNDATIONS CONDITIONS	10
BUILDING CODES AND REGULATIONS	10
FOUNDATION DESIGN RECOMMENDATIONS	11
Previously Graded Sites	11
Ungraded Sloped Sites	11
Ungraded Heavily Wooded Knoll Site	12
Ridgeway Avenue Site	12
Slab on Grade	12
Retaining Walls (up to 8 feet, base to top)	13
EARTHWORK	14
Marinda Drive Sites	14
Ridgeway Avenue Site	14

2

Cut Slopes	14
FILLS	14
Fill Materials	15
General Fill	15
Select Fill	15
Utility Trench Backfill	15
DRAINAGE CONSIDERATIONS	15
SLOPE STABILITY HAZARD ASSESSMENT FOR DEVELOPMENT	16
Lot 8 (Borings 9A and 9B)	16
Lot 7 (Borings 8A and 8B)	17
Lot 5 (Borings 6A and 5A)	17
Lot 2 (Boring 2A)	18
Lot 1 (Borings 1A, 2A and 3A)	19
Lot 9 (Boring 10)	20
INSPECTIONS / TECHNICAL SUPERVISION	20
FUTURE MAINTENANCE	21
Additional Engineering Services	21
LIMITATIONS ON THE USE OF THIS REPORT	21
APPENDIX A. BORING LOGS	23
APPENDIX B. SEISMIC DESIGN PARAMETERS	26

List of Figures

FIGURE 1.	SITE VICINITY MAP
FIGURE 2.	LOT LAYOUT AND BORING LOCATION MAP
FIGURE 3.	FAULT LOCATION MAP

FIGURE 4. DRAINAGE DETAILS FIGURE 5. CUT SLOPE DRAINAGE DETAILS

List of Tables

TABLE 1.BORING LOCATIONS AND ELEVATIONSTABLE 2.SUMMARY OF BORING INFORMATION

Appendices

APPENDIX A. BORING LOGS APPENDIX B. SEISMIC DESIGN PARAMETERS

Introduction

This report presents the results of geotechnical and geological investigations conducted by William W. Moore, PE, GE and Phyllis E. Flack, PG, PE for a proposed multiple housing development located in Fairfax, California. The planned development is comprised of two sites: one off an existing fire road beyond the current end of Marinda Drive and one beyond the end of Ridgeway Avenue. The Marinda Drive location includes nine residential lots (eight approximately 10 acre lots and a one acre lot) and the Ridgeway Avenue property with one 14.6 acre lot.

All proposed residences would be designed to minimize environmental impacts. Specifically, each will be designed to collect, retain and use as much rainfall runoff as is reasonably possible. In addition, impervious paved or solid surface areas will be minimized to reduce runoff and permeable pavement and other "green" surfaces will be used instead.

The general locations of the proposed two sites are shown on Figure 1, Site Vicinity Map. Site topography and lot boundaries for the Marinda Drive and Ridgeway Avenue Lots are shown on Figure 2.

Purpose and Scope

The purpose of the investigation was to develop geotechnical recommendations for the project addressing: foundations, grading, slope stability, retaining walls, earthwork and seismic considerations.

Our scope of work consisted of reviewing readily available published geotechnical and geological data, site reconnaissance, and subsurface investigations. Fieldwork performed under this investigation consisted of drilling 15 test borings on the Marinda Drive property and 1 boring on the Ridgeway Drive property. Pitcher Drilling of East Palo Alto, CA drilled the borings using wheel mounted and track mounted drilling equipment. Drilling was completed during the week of July 4, 2016.

Summary

Ground conditions at all sites were found to be very good to excellent for supporting foundations for residential developments. Sound bedrock was encountered at shallow depths, generally less than 5 feet below ground surface (bgs) on the Marinda Drive sites and at 13.5 feet bgs at the Ridgeway Avenue Site. Soils overlying bedrock consist of dry loose silty soils with very little clay on the Marinda Drive Sites. Soils overlying bedrock at the Ridgway Avenue site consists of silty sand with some clay; strength of these soils increased with depth to very stiff to hard.

No significant geologic hazards, that might preclude development, were observed. Structures may generally be supported on shallow foundations. Surface soils are highly erodible, therefore establishing and maintaining good drainage will be important. We recommend that Marin County hillside construction practices be followed to safely construct on these properties minimizing adverse impacts to surrounding slopes and vegetation and minimize obstruction of views or altering natural drainages.

Site Soils and Bedrock - Exploration Borings

Boring locations are shown on Figures 2. Borings were drilled to depths from 2 to 18 feet below ground surface (bgs) using a standard mud rotary drilling technique. Rock coring was initiated at or near the top of bedrock utilizing an HQ wireline core recovery system. Bedrock was encountered in our borings at depths ranging from 0.5 to 5 feet bgs on the Marinda Drive site and 14 feet bgs on the Ridgeway property

Boring coordinates and elevations and are provided on Table 1 below.

	1	1			1
Boring Number	Total Depth (ft BGS)	Lot Number	Loca		
			Northing	Easting	Elevation
B-1A	8.0	Lot 1	2190846.0973	5959089.0248	331.93
B-1B	7.0	Lot 1			
B-2A	8.0	Lot 2	2191129.3099	5959017.5318	389.30
B-3A	8.0	Lot 1	2191068.4706	5958891.7168	360.86
B-4A	9.0	Lot 4	2191439.7946	5959180.2626	424.66
B-4B	8.0	Lot 4	2191490.0956	5959149.1611	423.77
B-5A	2.0	Lot 5			Est. 450
B-6A	10.0	Lot 5	2191824.6097	5959123.6858	460.70
B-6B	8.0	Lot 4	2191858.5598	5958961.4935	425.93
B-7A	11.0	Lot 6	2191802.3646	5959221.3869	472.49
B-7B	8.0	Lot 6	2191771.3735	5959260.6687	472.43
B-8A	11.5	Lot 7	2191824.5842	5959336.9196	492.32
B-8B	9.0	Lot 7	2191866.6545	5959366.4590	492.83
B-9A	10.0	Lot 8	2192012.4496	5959439.9989	510.99
B-9B	15.0	Lot 8	2191950.4906	5959421.4369	510.27
B-10	18.0	Lot 9			Est. 355

Table 1. Boring Locations and Elevations

Source: Oberkamper & Associates Civil Engineers, Inc., Novato, CA, August 2016.

Boring information is summarized in Table 2. Detailed descriptions of the materials encountered in borings are presented in the boring logs in Appendix A.

	Total	Soil		Top of		
Boring	Depth	Depth	USCS Soil	Bedrock		Date
Number	(ft BGS)	(ft bgs)	Description	(ft bgs)	Description	Drilled
B-1A	8.0	0-3.5	SM	3.5	Sandstone	7/7/16
B-1B	7.0	0-3.5	ML	3.5	Sandstone	7/7/16
B-2A	8.0	0-4.0	SM/GW	4.0	Sandstone	7/7/16
B-3A	8.0	0-1.5	ML	1.5	Sandstone	7/6/16
B-4A	9.0	0-2.0	SM/GW	2.0	Sandstone	7/6/16
B-4B	8.0	0-5.0	ML/SM	5.0	Sandstone	7/6/16
B-5A	2.0	0-0.5	SM/ML	0.5	Sandstone	7/6/16
B-6A	10.0	0-3.5	ML/GW	3.5	Sandstone	7/5/16
B-6B	8.0	0-2.5	ML	2.5	Sandstone	7/6/16
B-7A	11.0	0-3.0	SM/GW	3.0	Sandstone	7/6/16
B-7B	8.0	0-2.0	SM/GW	2.0	Sandstone	7/6/16
B-8A	11.5	0-3.0	ML/GW	3.0	Sandstone	7/5/16
B-8B	9.0	0-3.5	ML/GW	3.5	Sandstone	7/5/16
B-9A	10.0	0-3.0	SM/GW	3.0	Sandstone	7/5/16
B-9B	15.0	0-6.0	SM	6.0	Sandstone	7/5/16
B-10	18.0	0-13.5	SM/CL/ML/SC	13.5	Sandstone/Shale	7/7/16

Table 2. Summary of Boring Information

Local Geology

The Marinda Drive and Ridgeway properties are situated within the Coast Ranges geomorphic province, which is characterized by northwest trending mountain ranges and intervening valleys controlled by folds and faults that resulted from the collision of the Farallon and North American tectonic plates, and subsequent translational shear along the San Andreas Fault system. Uplift occurred in the coastal ranges from 2 million to 16 million years ago (Quaternary to Miocene Geologic Time Periods). Bedrock in the region consists primarily of the Franciscan Complex, a diverse assemblage of sandstone, shale, greenstone, chert and mélange, with lesser amounts of conglomerate, serpentine, calc-silicate rock, schist and other metamorphic rocks. Franciscan Sandstone was the predominant bedrock material encountered in site borings at the Marinda Drive site and interbedded Franciscan Sandstone and shale at the Ridgeway site. Outcrops observed at the site were predominantly Franciscan Sandstone. The Franciscan Formation/Complex materials are generally overlain by shallow soils and surficial silt to silty sand deposits.

Geologic Hazards

Primary geologic hazards for these sites are listed below and detailed in the sections that follow:

- Earthquakes and Seismicity (severe shaking)
- Drainage/Erosion
- Surficial landslides/debris flows on steep slopes
- Expansive soils

Other low risk geologic hazards considered include: seismic induced surface ruptures, liquefaction, differential compaction, settlement, flooding and deep-seated landslides. These hazards were not considered to significantly impact the proposed development.

Earthquakes and Seismicity

The properties are located within the seismically active San Andreas Fault system within the San Francisco Bay region. The US Geologic Survey estimates that within 30 years, there is up to a 70 percent probability of one or more large (magnitude 7 or 8) earthquakes occurring in the San Francisco Bay region due to faults in the region. For our site locations in Fairfax, two faults are of primary importance: San Andreas (about 6 miles to the west) and the Hayward Fault (about 9 miles to the east). Figure 3 shows the identified fault locations and the proposed development areas. No active faults are known to exist on the properties based on identified faults included in the Alquist-Priolo Earthquake Fault Zoning Act of 1972.

Designs will need to accommodate seismic conditions. The very competent soils and bedrock underlying these sites will readily transmit strong earthquake motions and result in high accelerations (shaking) to structures. According to the California Geologic Survey, structures founded on bedrock or very dense soils, present at both the Marinda Drive and Ridgeway Avenue sites, generally withstand earthquakes far better than structures founded on softer soils, fill or bay mud.

While no active or potentially active faults have been identified in the immediate vicinity of the planned developments, severe ground shaking from earthquakes is likely to occur. Specific motion characteristics will depend on the characteristics of the fault generating motions, and the distance to the released energy as well as the magnitude of the earthquake and site-specific geology.

The following information was derived from USGS web site providing seismic design information and tools. Seismic Design Criteria for the Marinda Drive and Ridgeway Avenue sites are summarized below:

Marinda Drive Lots

- USGS Site Class B Rock
- Seismic Design Category D

Ridgeway Avenue Lot

• USGS Site Class C – Very Dense Soil and Soft Rock

• Seismic Design Category D

Summary and Detailed USGS Reports using USGS on-line software are provided in Appendix B.

Drainage and Erosion

Surface soils throughout both sites have a high silt content resulting in a high susceptibility to erosion. Controlling and directing surface runoff in order to minimize erosion will be very important. Surface drainage within building sites, as well as above and below the site should be designed to keep surface water away from building areas and minimize runoff flows toward steep slopes. All runoff should be directed into existing natural drainages, roadside ditches or culverts. Interceptor drainage ditches should be constructed near the top and bottom of existing and new cut slopes. Specific recommendations for house sites are provided in subsequent sections and on Figures 4 and 5.

Surficial Landslides and Debris Flows

The steep slopes in the area have potential for localized debris flows (mud flows). The use of well engineered slopes, swales, V-ditches, waddles, seeding, and other erosion control practices should be used to minimize concentrated runoff flows and erosion.

The Marinda Drive sites generally face south-southwest. No indications of deepseated slope instability were observed at either the Marinda Drive or Ridgeway sites. Surficial expressions of localized areas of slope instability (shallow scarps and debris flows) were observed upslope of the current end of pavement at Marinda Drive. A local resident reported that mudflows/debris flows have occurred in the past; with a significant debris flow occurring about two years ago following a heavy rainfall. No slope or surface instability areas were identified at the Ridgeway Avenue site.

Expansive Soils

The silty soils present throughout most of the development the area are not considered to be expansive. Based on field observation and classification, some of clay soils may have significant expansive characteristics. Clayey soils encountered on Ridgeway Avenue Lot were tested found to have expansive characteristics. When building layouts are determined additional soil testing within building footprints may be appropriate. At the Ridgeway Avenue site some additional exploration may be needed to evaluate the expansion potential of underlying clayey soils. It is possible that other areas within the Marinda Drive lots may also have zones of expansive soils. The potential for encountering expansive soils should be considered when planning developments. Expansive soils are not considered to be as critical as the other geologic hazards described previously.

Groundwater

Groundwater was not observed in the test borings during our investigation. No springs, seeps or vegetation indicating the presence of high ground water were identified at either site. Groundwater conditions vary with the seasons and annual fluctuations in weather. Below average rainfalls have occurred within the last few years; it is expected that a general rise in groundwater would occur after average or above average rainfall years, which will increase flows in all drainage pathways and could affect basements and foundations.

Foundations Conditions

Excellent foundation materials were found at both the Marinda Drive and Ridgeway Avenue proposed building sites. Sound bedrock was encountered at shallow depths (generally less than 5 feet bgs) on Marinda Drive sites. Soils consist of loose, dry silty soils and overlying weathered bedrock. Bedrock on the Ridgeway site was encountered at a depth of 13.5 feet (bgs). Overlying soils at the Ridgeway Avenue site are silty sand with some clay grading to stiff to hard strength at about 3 feet depth (bgs).

Three lots (6, 7 and 8) of the nine Marinda Drive sites contain areas that were graded previously (about 50 years ago) for home sites. The remaining sites (designated in this study as Lots 1, 2, 3, 4, 5 and 10) have not been graded; they are moderately steep (slopes 15 to 20 degrees) and will require significant cutting and filling to create building sites.

The Ridgeway Avenue site (Lot 9) is located on the top of a broad east-west aligned ridge, which has not been graded. Moderate cutting and filling will be necessary to create a building site.

Building Codes and Regulations

All design and construction activities should be conducted in full compliance with all applicable laws and regulations, including recent updates. The following represents a partial tabulation of key regulatory documents.

- California 2013 Building Code, Volume 2; Special attention to Chapter 16 and 16A Structural Design; Chapter 18 and 18A Soils and Foundations and Appendix J.
- Marin County "Stormwater Quality Manual for Development Projects in Marin County" and Bay area Stormwater Management Agencies Association guidance should be the basis for Stormwater runoff control designs and construction. Ref. BASMAA (Bay Area Stormwater Management Agencies Association) ref. Stormwater Control Plan for Small Projects/Single-Family Homes.

• Town of Fairfax: Guide Papers on the Planning Process, Zoning and especially important "Hill Area Residential Development (HRD) Overlay Ordinance.

Foundation Design Recommendations

The following foundation design recommendations were made based on soils and bedrock encountered in drilled borings. The lot sizes are large and irregularly shaped; and any plan to design a home outside of the footprint containing drilled borings will require additional geotechnical evaluation. Ten home sites were investigated and 4 basic types of foundation conditions were encountered. The table below summarizes the site types.

Site Type	Home Site Numbers	Foundation Materials		
Previously Graded	Marinda Lots 2, 6, 7 and	Bedrock at or near		
	8	ground surface		
Ungraded Sloping Sites	Marinda Lots 1, 3, 4 and	Sloping site with bedrock		
	10	at or near ground surface		
Ungraded Heavily	Marinda Lot 5	Hard Rock Knoll		
Wooded Knoll				
Ungraded on broad ridge	Ridgeway Avenue Lot 9	Very Stiff to Hard Silty		
line		Sand/Sandy Silt		

Previously Graded Sites

For previously graded sites, shallow foundations bearing directly on the bedrock are recommended. Foundations may be slab-on-grade, stem walls or spread footings. For foundations bearing on bedrock a design bearing pressure of 4,000 pounds per square foot (psf) may be used. For lateral loads, passive pressure in the bedrock may be calculated using an equivalent fluid density of 400 psf, neglecting the upper eight inches. A foundation bottom friction factor of 45percent may be used.

Slab foundations should be deepened at the perimeter. The minimum slab thickness should be 8 inches, with the perimeter deepened to 16 inches below the nearest adjacent grade.

If the bearing surfaces, after excavation, are variable, then all foundation elements should be tied together by grade beams or as a slab.

Foundations founded on clean sound bedrock are expected to experience minimal settlement.

Ungraded Sloped Sites

For ungraded sloped sites, a level building pad may be created by cutting back into the hillside, allowing shallow foundations to bear directly on bedrock. Under this scenario the recommendations stated previously for the graded sites may be used. Alternatively, piers may be drilled into the bedrock. Piers should extend a minimum of 5 feet into sound bedrock, with an 18-inch minimum diameter and appropriate vertical and spiral/stirrup steel reinforcement. Piers may be designed for skin friction of 800 psf from one foot below the top of rock. All piers should be tied together with a grid of grade beams. Settlement for this construction is expected to be minimal.

These two types of foundations may be combined, that is one part of the house on rock cut (with a slab foundation) and one part of the house on drilled piers. While minimal settlement is expected from either foundation system, there may be small differential movements between the two types of foundations. The house structure should be designed to accommodate such movements. One method to practically eliminate differential movements/settlements is to support the home structure on robust grade beams supported on rock surfaces at the up-hill side and on piers on the downhill side. Piers and grade beams should be rigidly tied together.

Ungraded Heavily Wooded Knoll Site

The ungraded heavily wooded knoll site should be cleared and graded over a limited area. For foundation support we recommend a grid of grade beams cut into the rock and extending laterally beyond the knoll to accommodate the building footprint desired. Depending on the footprint of the house, some piers may be used on slopes to support some of the beams beyond the central graded area. This concept can support many different home footprints. Design parameters described previously for either slab or pier foundations may be used.

Ridgeway Avenue Site

The ungraded ridgeline site at Ridgeway Avenue will have foundations in very stiff to hard soils. We recommend either a grid of grade beams or a slab-on-grade foundation with deepened perimeter areas. Alternatively spread-footing foundations may be used where the entire footing is excavated in to very stiff to hard soils. To minimize differential movements, all foundation elements should be rigidly tied together. Settlements are expected to be minimal. The potential for expansive soils should be considered during foundation design.

Slab on Grade

A slab-on-grade foundation may be used on all sites subject to some constraints. The most suitable sites are those previously graded where sound bedrock is very near the surface. Sloped sites can accommodate slabs, provided the slab is entirely supported on cut rock surfaces. Marinda Lot 6 may be constrained by the limited area on top of the knoll (in the vicinity of boring 5A). The Ridgeway site will accommodate a slab because the near surface soils are very stiff to hard silty soils with variable clay content that are much easier to cut, grade than the rocky Marinda Drive sites.

Where slabs are used, we recommend structural slabs of an 8-inch minimum thickness reinforced by layers of steel rebar at the top and bottom. We do not

recommend the use of thin slabs (on the order of 3" to 5" thickness), because they nearly always crack and sealing them against water intrusion is not usually successful. Placing any slab on a variable subgrade, such as cut and fill, will result in uneven settlement and cracking.

All slabs should be underlain by a prepared, graded subgrade with gravity drainage pathways routed to points or collection areas well outside the building footprint. A layer of compacted free draining material such as clean, crushed drain rock (1-inch minus), at least, 4" thick should be placed under the slab area and in the drainage pathways. This free draining crushed rock or similar material should be compacted with vibratory plate type compaction equipment.

An impermeable layer of 80 mil HDPE or similar should be placed over the compacted free draining material to form a water and moisture stop. Care will be required to minimize risks of penetrating this layer either by the compacted material below or whatever material is placed above. For living areas it is recommended that a waterproofing expert be consulted.

Additional controls may be required for the Ridgeway Drive site to address potentially expansive soils, if the presence of these materials are confirmed within the building design footprint.

Retaining Walls (up to 8 feet, base to top)

Retaining walls should be founded on the same sound bedrock (for the Marinda Lots) or very stiff/hard soils (for the Ridgeway Avenue Lot) as building foundations. Design bearing pressure should be 4,000 psf. For free standing retaining walls, it is recommended that they be designed to slope back into the slope by approximately 5 degrees. For level backfills, design for lateral soil pressure of equivalent fluid density of 50 pounds per cubic foot (pcf). For uphill-sloped (<20%)backfill of natural soils/rocks use an equivalent fluid density of 65 pcf. Bottom friction of 45% may be used for clean rock surfaces to resist lateral soil pressures. Passive soil resistance may be calculated with an equivalent fluid density of 400 pcf, neglecting the upper 6 inches of sound material. A minimum factor of safety of 1.5 should be used against overturning or lateral sliding. If additional lateral resistance is needed, intermittent 1.5 foot deep keyways may be incorporated.

For retaining walls connected to structures or otherwise restrained at the top, an equivalent fluid density of 75 pcf for level backfill and 85 pcf for 2H:1V (horizontal to vertical) uphill-sloped backfill.

All retaining walls should extend above backfill level by 6 inches for level backfill and one foot for uphill-sloped backfill.

For earthquake loads, an additional uniform lateral load of 16H (where H is the height of the wall in feet) equivalent fluid density is recommended. The Factor of Safety should be at least 1.2 for this transient loading condition. Design soil/rock

bearing pressures may b increased by 1/3 during transient loading (seismic & wind).

All retaining walls must have full back drains, except for the top 6 inches that should be compacted soil of low permeability. The drainage material should consist of clean, very permeable rock or gravel, for at least 8 inches immediately behind the wall and drain to a 4-inch diameter or larger perforated pipe at the bottom. Drainage material and pipe should be fully enclosed by non-woven geotextile filter fabric. See Figure 4.

The drainpipe should slope downward at about 2 percent minimum grade and have cleanout access. The perforated drainpipe may be connected to solid drainpipe to combine with other collected runoff from roof gutters. A bentonite seal should be placed just upstream of the connection between perforated and solid pipe.

Earthwork

All earthworks should be performed in full compliance with the California Code of Regulations - Sections on Soils and Foundations. Earthwork, both cutting and filling, should be minimized to reduce impacts on the natural hillside environment. Similarly, all changes to natural drainage patterns should be minimized while providing proper drainage of building sites, foundations and retaining walls.

Marinda Drive Sites

Excavation of the silty surface soils will be relatively easy. Excavation of the underlying rock will be difficult and should be minimized. It will require ripping hard to very hard rock and extensive work to create level building sites.

Ridgeway Avenue Site

Excavation of the stiff to hard soils will be easier than the Marinda Drive rocky sites. The stiff to hard soils will stand vertically for shallow temporary cuts, under 5 feet during dry conditions. Soil strength will increase with increased depth.

Cut Slopes

The rocky material underlying the silty surface soils will be stable for brief periods - without rainfall. It is recommended that cuts in the rock be sloped back into the hillside with slopes similar to the nearby long standing rock faces; about 1H:1V, or flatter.

Fills

All fill should be started on an essentially level surface. Fills should be compacted in 8-inch (maximum) horizontal lifts. Any fill sections more than 3 feet thick should have a back drains incorporated in the design.

Fill Materials

Soil and rock materials on both sites will be suitable for general fill purposes provided it is properly conditioned. Large rock fragments should be broken up (pieces no larger than 4-inches in maximum dimension) and mixed with available silty/sandy soils. A representative bulk sample of site fill materials should be tested by a soil-testing laboratory (per ASTM D-1557) to determine maximum dry density and optimum moisture content. Fill materials should be moisture conditioned to within a few percent of optimum prior to placement and compaction.

General Fill

General fill- not to support slabs, foundations or pavements – may consist of prepared on-site materials. Fill materials should be moisture conditioned to within 2% of optimum, placed in horizontal lifts less than 8 inches thickness and compacted to 90% of maximum dry density.

Select Fill

Select fill may also consist of prepared on-site materials, moisture conditioned to within 2% of optimum, placed in thin horizontal lifts – less than 6 inches- and compacted to 95% of maximum dry density.

Utility Trench Backfill

Utility trenches backfilled with permeable materials, i.e. sand and gravel, can become conduits routing drainage under foundations and to other undesirable locations. We recommend that utility trenches for branches or laterals off main utility lines be sealed with a compacted bentonite and soil mixture to prevent drainage flowing to homes. This seal should be placed in the trench for the lateral, surrounding the pipe, at the location where the lateral joins the main line. Also, the upper 6-inches of backfill over utility trenches should consist of compacted impermeable material.

Drainage Considerations

These recommendations apply to the geotechnical aspect of the drainage as they affect the stability of the construction lots and nearby slopes. They do not include area drainage, which is within the design responsibility of project civil engineers and landscape professionals. Storm water runoff minimization and control and should be designed to follow best management practices of the California State Water Resources Control Board Phase II NPDES Permit for Small Municipal Storm Sewer Systems and other applicable requirements and regulations.

Positive surface drainage should be provided adjacent to buildings to direct surface water away from the foundations into closed pipes that discharge downslope of proposed buildings (see Figure 4). V-ditches and debris diversion structures as shown in Figure 5 are recommended to intercept and divert rainfall runoff and route rock/soil debris flows around houses.

Surface water and rainwater collected on the roof of the buildings should be transported through gutters, downspouts and closed pipes and routed to suitable discharge facilities or could be stored in tanks on site for later use. Ponding of surface water should not be allowed in any areas adjacent to the structures. To prevent erosion or weakening of the slopes, concentrated flows of water should not be allowed across site slopes. The stormwater runoff dissipation structures, trenches or bioretention structures may also provide appropriate drainage controls. Use of Pervious pavements is recommended to further reduce stormwater runoff flows.

SLOPE STABILITY HAZARD ASSESSMENT FOR DEVELOPMENT

The following information and assessments are provided primarily to assist the project Civil Engineer in evaluating the area hydrology and formulating appropriate measures to minimize the risk of flooding and/or debris flows from occurring.

Plans should be developed to minimize slope instability that could result in slope failures. No evidence of deep-seated slope failures was observed in the area; however shallow, surficial debris flows have been reported in the recent past and will likely continue after site development occurs. It is not expected that the development plans will exacerbate the existing slope instabilities, and careful planning and implementation of runoff controls may reduce the risk and severity of these historic, predevelopment debris flows.

Naturally occurring slope instability results from the type of soils blanketing the surface of the site, depth to bedrock, steep slopes, ground cover and the frequency and intensity of storms and runoff. The following section presents an evaluation completed for potential building sites within the proximity of drilled borings. Typically slope instability in this area develops during or immediately after rainstorm events. Our assessments are therefore closely related to likely stormwater running onto a building site or running off from a building site on to potentially unstable slopes.

Our assessment started at the top of the Marinda Drive development area and proceeded down to the entrance (current end of pavement at Marinda Drive).

Lot 8 (Borings 9A and 9B)

This building site is located near the top of the Marinda Drive Fire Road. This is a graded site, with moderately steep (approximately 30 degrees) rocky up-slope on the north side. The slope is stable but will yield silty debris flows under heavy rainfall conditions. Runoff coming from this site will flow primarily east toward a steep, heavily wooded slope with good grassy ground cover. While this slope

appears stable, runoff from the site should be dissipated near the top of the slope or routed to existing natural drainages.

The west side of the site is bounded by the fire road cut. The slope is well vegetated with several trees. Site runoff should be directed into a roadside culvert/drainage ditch (to be constructed when the access road is paved.

The south side of this building site consists of a steep (40 to 50 degree rocky slope). Site drainage should be directed to either east or west side; flow down the south rocky slope should be minimized.

Provided care is taken to control and/or dissipate site runoff to the east, we assess the slope hazards, due to development to be moderate.

Lot 7 (Borings 8A and 8B)

This building site is immediately south of Lot 8. This site is a graded site similar to Lot 8; and stormwater run-on will come only from the rocky up-slope with some grass cover. While the slope is essentially stable, rainfall can cause some silty debris material to wash down onto the site. Site runoff should be directed primarily to the east down-slope (similar to Lot 8 above). Runoff should be dissipated or routed to existing developed drainages. The west side of this site is also bounded by the fire road and a short, moderately steep down-slope with minimal visible rock out crops and some brush ground cover and a few trees. Runoff toward the east and south should be directed to roadside ditches or culverts.

Slope hazards for the east side are rated as moderate, provided drainage is routed to existing drainages and/or dissipation structures.

Lot 5 (Borings 6A and 5A)

Two possible building sites were examined: an upper building site by boring 6A and a building site by 5A.

The 6A site is ungraded on a moderately steep slope west of the Fire road. A road cut runs to the west down the hill to Lot 4 (6B). The 6A site is on an east-west trending ridgeline sloping down to the west. This site will require significant grading to create a level building site. Primary runoff flows will bifurcate to the west, with about one-third flowing into a large deep valley to the north and two thirds flowing to a large deep valley on the south side. This runoff will likely carry silty debris. The north side slope is heavily wooded with thick vegetation. The south side surface cover is a mixture of well-established grass with numerous clumps of trees. The areas north and south of the sites are large, deep, well established valleys.

The area surrounding boring 5A consists of a knoll close to the west side of the Fire road. There is no drainage onto the knoll. Runoff, depending on development will be very small relative to the drainage areas north, west and south of this possible

building site. Depending on final building footprint, there may be some modest volume of runoff on to Lot 4 near borings 4A and 4B.

Because the sites are relatively small (compared to the sizes of the valleys), the volume of additional site runoff after development should be small compared to the sizes of the existing drainages; therefore slope instability hazards related to development of these sites is assessed as relatively low.

Lot 4 (Borings 4A, 4B and 6B)

There are numerous rock outcrops visible along the main Fire Road and the road/track running west to Lot 4 (by boring 6B) from Lot 5, boring 6A. Provided that the Fire road grading and drainage are maintained, there should be essentially no runoff entering the Lot 4 area from the east.

Again, because the likely development area is very small compared to the sizes of the adjacent drainage basins, the impact of development on possible slope hazards is small.

Lot 4 in the vicinity of borings 4A and 4B is graded, adjacent to the Fire Road on the east side and part of the south side. On the north side is predominantly rock cut slope of about 40 degrees. This slope is immediately south of the part of Lot 5 surrounding boring 5A. While there will be runoff from the north it is likely to be primarily silty debris type flow, with no deep slope failures in the bedrock.

The west side of this site is a moderately steep, heavily wooded and densely vegetated. The drainage down-slope to the west is well established. It is estimated that 35% of runoff from this site may flow to the west.

Because stormwater running onto the site from the north and Fire Road, with drainage ditches to the east and south, only a modest volume of runoff is likely to flow down the west slope. We assess the hazard of development creating an impact of the west slope as slight.

Lot 2 (Boring 2A)

The boring 2A site is located on a nose facing south. It is relatively level, but a portion slopes slightly to the east. Based on where the site is situated, there is practically no potential for stormwater to flow onto the site. The Fire Road runs along the west and south sides. The road cuts range from a few feet up to approximately 25 feet high on the south side. The rock outcrops appear stable, however rainfall may cause silty debris flows. Down-slope residents have confirmed that major rainfalls caused silty debris flows down the Fire Road track on to the paved road (Marinda Drive).

We assess the likelihood of significant debris flows on the east, south sides as high. However, the increment caused by runoff from the contributing area of the site development is a relatively small proportion of the total. As in the past, uncontrolled debris flows running down existing cut slopes on to the Fire Road may continue to be problem.

Additionally, we observed a potential problem area on the west side of the Fire Road (opposite side from Boring 2A Site) where loose soil and some debris have been pushed off the road. This area of loose debris is about 20 feet wide by approximately 30 feet long (down the slope) and it may be very unstable when rainfall commences. At a minimum, the Fire road should be graded into the slope, such that runoff will flow to and along the inside (cut side) of the road, to minimize potential for discharges onto the down slope and potential resulting instability.

Lot 2 also includes a large drainage valley just above the current end of the Marinda Drive paved road. This area has been unstable in the past and produced major debris flows that have repeatedly flooded, engulfed the upper portion of Marinda Drive. The most recent example of this occurrence was about 2 years ago (according to a local resident).

Four of the possible building sites located on the east side of the Fire Road (Lots 2, 6, 7 and 8) will contribute some runoff to this slope. Because the lower portion of the basin is currently unstable, even a small increase in runoff, caused by development of these sites will add a very small increment slope instability.

It is suggested that a debris wall could be constructed at the bottom of the drainage, adjacent to Marinda Drive to contain or greatly reduce debris flows. Design of this structure would require detailed drainage, runoff and stability design studies – beyond the scope of our investigation.

Lot 1 (Borings 1A, 2A and 3A)

The boring 3A site is located on the south edge of the Fire Road at the top of a moderately steep grassy slope (35 to 45 degrees), with scattered clumps of trees. The rock is relatively shallow (visible on the road bed cut). Provided the road grade is maintained such that no runoff may flow onto this site, then the south and eastern slopes appear stable. Because the site is well vegetated (with grasses, bushes and some trees) and the runoff volume is low (from this site only – no runon from the road above), it is anticipated that the impacts from development will be modest. Drainage ditches and diversions to protect this as well as existing downslope properties and houses will be required. Slope instability hazard potential is assessed as low to moderate.

Slope instability hazard associated with the boring 1A site is very similar to conditions surrounding boring 3A. No runoff should be allowed from the Fire Road above.

The area surrounding 1B is about 100 feet south of the Fire Road on a 25 to 30 percent grassy slope with scattered clumps of trees. The slope faces south and

becomes steeper below the site. There are established homes about 80 feet further down slope.

There will be runoff flow onto this site from the above slope. Some collection/diversion ditch or wall may be needed as shown in Figure 5. The slope is roughly uniform on the east and west sides and there will be minimal flow on to the site. Because the slope below the site extends to the fence line of existing houses, some collection/diversion of any runoff that occurs is needed. All collected runoff should be routed to the east by south east to existing drainages.

Presently there is loose exposed soil along a track created for drill rig access from the Fire Road to the drill site 1B. These areas of loose, highly erodible soil should be protected with waddles, seeding or other corrective actions before the wet weather season.

The hazard of negative impacts on slope stability from development of this site is high without implementing the drainage collection, improvements described above. With these improvements the slope stability hazard may be reduced to moderate.

Lot 9 (Boring 10)

This site is on a broad knoll near the end of Ridgeway Avenue, with no stormwater runoff entering the site. The north side is heavily wooded and moderately sloped with an abandoned road cut about 150 feet from the site. Runoff contributions from areas to the north will be small compared to the size of the whole hillside. Similarly, the east side consists of a gentle slope (or dip) followed by a slight up-slope to a ridgeline running north, up the hill. A minimal slope instability hazard to the north and east is anticipated related to development of this site.

The west side down-slope steepens with distance from the site. It is also heavily wooded with trees and brush. Runoff from this site to the west will be quite small relative to the size of the western hillside; consequently, only slight slope instability hazard is indicated.

The south side slope consists of a fairly open, grassy moderate slope with a wooded area about 200 feet down slope. Again, because runoff from the site will be small compared to the hillside, minimal slope instability hazard related to development is indicated.

Inspections / Technical Supervision

It is recommended that all grading, earthwork (cuts, fills, backfills) and foundation construction be conducted under the technical supervision of a qualified Civil or Geotechncial Engineer. This designated Engineer should have the authority to review construction plans and approve or modify plans to accommodate specific onsite circumstances. He/She should also confirm that construction work is performed pursuant to the recommendations provided in this report. These inspections should include at least following:

- Grading and cut slopes
- Filling and compaction (including approval of fill materials, moisture conditioning, compaction methods)
- Foundation excavations, including piers before placement of rebar and pouring of concrete.
- Drainage ditches and other drainage features including placement of filter fabric and drainrock and inspect all drainage discharge points to off site natural drainage courses including review and approval of drainage materials.
- Retaining wall drainage and construction

Future Maintenance

Because of the highly erodible soils present at both sites, a qualified Civil or Geotechncial Engineer should perform periodic inspections of individual sites and area drainages. We recommend inspections be performed at least annually and immediately following major rainstorms (e.g. 2 inches or more within 3 to 4 days).

In addition sites with adjacent upslopes, and/or retaining walls or debris bearers, should also be inspected periodically and after major rainstorms.

It is likely that natural debris (silt, sand, and rocks) will accumulate against walls, debris barriers and in drainage ditches and should be removed in order to minimize possible overtopping of the walls and clogging of drainage paths.

Additional Engineering Services

A qualified Civil or Geotechnical Engineer should work closely with project engineers and architects to review site plans for conformance with the intent of the recommendations presented in this report, and provide inspections and testing as necessary during project construction to assure compliance, and provide a certification of construction compliance at the conclusion of the project.

Limitations on the Use of This Report

The recommendations made in this report are based on the assumption that soil and groundwater conditions do not deviate appreciably from those encountered in the exploratory borings drilled at the two sites. If any variations or undesirable conditions are encountered during future exploration or construction, the effects of these conditions on the recommendations presented herein should be evaluated and modified or supplemented as appropriate.

William W. Moore and Phyllis E. Flack complied with the standards of care and skill ordinarily exercised by members of our profession currently practicing in the same

or similar localities in performing our professional services. No other warranty, either expressed or implied, is made or intended in connection with the work we performed.

Prepared by:

William W. Moore, GE	Phyllis E. Flack, PG, PE
No. GE-615 R. ES Exp. 06-30-1Z CALFORNIC	PHYLLIS'E. Back FLACK PHYLLIS'E. Back FLACK No. 4507 TO F CALIFORN
Geotechnical Engineer #615, exp. 6/30/17 Civil Engineer #18340, exp 6/30/17	Professional Geologist #4507, exp. 11/30/17 Civil Engineer #67169, exp 9/30/18

Fairfax, California

Figure 1. Site Vicinity Map

 $http://www.conservation.ca.gov/cgs/cgs_history/PublishingImages/FAM_750k_ReleaseStatement_SAMPLE.jpg$

Figure 3. Fault Location Map

Figure 4. Drainage Details

Figure 5. Cut Slope Drainage Details

Appendix A. Boring Logs

			UN				DN						
Gray	FIELD IDENTIFICATION PROCEDURES (Excluding particles larger than 3 inches and basing fractions on estimated weights)		DURES	Group	TY	PICAL N	AMES			1			
ight		g c	Clean	Wide range in	grain size and substanti	al GW	Well-graded	gravels or g	ravel-sand	0	mbols		2. Color (Field Moisture Condition)
	Eye	s of Coa Per Tha Size Aay Be	Gravels (Little or	Predominately	one size or a range of	0.0	Poorly-grade	ed gravels of	r gravel-sand		tual sy	de	4. Particle Size Range
	ils al Is Size Naked	ravel Is Larg Sieve Sieve Sieve	No Fines)	sizes w/some Non-plastic fir	intermediate sizes missin es (for identification	g GP	mixtures, littl	e or no fines	3		se of c	nclu	 Consistency (Soft, Hard, etc.) Moisture content (Dry, Moist, Wet)
A A	d So Materia Sieve	G C Thar action No. 4 No. 4	with Fines	procedures se	e ML below)	GM	Silty gravels,	, gravel-san	d-silt mixtures		C C	ust I	 Structure (Stratified, Laminated, Fissured) Geologic Origin
44/ 44/	alf of I o. 200	Nor Fra	Amount of Fines)	procedures se	e CL below)	GC	Clayey grave	els, gravel-s	and-clay mixtures	0/ %	N, GP GM, G	M	 Additional comments indicating soil characteristics which might affect engineering
Darl	Se-gu han H han N cle Vis	Coarse Than te sificatio	Clean Sands	Wide range in amounts of int	grain size and substanti- ermediate particle sizes	al SW	Well-graded or no fines	sand or gra	velly sands, little		SP, G I, SC,		properties (organics, root holes, mica, gypsum, caving, sloughing, loss of drilling water,
	Coar More T rrger T	alf of C maller eve Siz Equiv	(Little or No Fines)	Predominately sizes w/some	one size or a range of intermediate sizes missin	g SP	Poorly-grade little or no fin	ed sands or les	gravelly sands,		- SW, 6 - SM derline		contamination, etc.)
	La	Sar Nan H Dn Is Son Is Son Is Son Is Sid	Sands	Non-plastic fir procedures se	es (for identification e ML below)	SM	Silty sands,	sand-silt mix	tures		an 5% an 12%		 Percentage of Boulders, Cobbles, Gravel, Sand or Fines
**	The S	For Nore T	(Appreciable Amount of Fines)	Plastic fines (f	or identification e CL below)	SC	Clayey sand	s, sand-clay	mixtures		ess the ore th %-12%		11. Particle Angularity (angular, rounded, etc.) 12. Particle Shape (if appropriate)
Blac N2.5	About	ID Procedures o	n Fraction Sr	naller Than	No. 40 Sieve Size	e .					oi ≤ C	æ	13. Maximum Particle Size 14. Hardness of Coarse Particles
	ze eve ls.		Ory Strength (Crushing Characteristics)	Dilatan (Reactio to Shakin	cy Toughness n (Consistency g) Near Plastic Limit)							slude	15. Cementation (if present)
	oils eve Si ard Si	Silts & Clays	None to low	Rapid to s	low None	ML	Inorganic silts silty or clayey	s, very fine s y fine sands v	ands, rock flour; with slight plasticity	ШП		y Inc	17. Local Name (if known)
ray	of Mat 200 Si	Liquid Limit Less Than 50	Medium to high	None to very	r slow Medium	CL	Inorganic clay gravelly clays	s of low to m , sandy clays	edium plasticity, , silty clays, lean clay:			Ma	18. Plasticity of Fines 19. Dilatancy
ve G 3/2	Brain No. n No. S		Low to mediun	n Slow	Low	OL	Organic silts of low plastic	and organi	c silt-clays	XXX			20. Toughness 21. Reaction with Acid
5 S	e Thar er Tha	Cilta & Clava	Low to medium	n Slow to n	one Slight to mediur	n MH	Inorganic sil fine sand or	ts, micaceou silty soils, e	us or diatomaceous lastic silts				Example: SM DARK GRAY SILTY FINE SAND
Dar	Mon Smalle The N	Liquid Limit	High to very hig	h None	High	СН	Inorganic cla	ays of high p	lasticity, fat clays				(wet) (loose) [FILL] (caving of borehole sides)
		Greater I han 50	Medium to high	None to very	slow Low to medium	ОН	Organic clay organic silts	s of mediun	n to high plasticity,	N.			
Gray	Highly	Organic Soils	Readily identifi frequently by fi	ed by color, o brous texture	dor, spongy feel and	PT	Peat and oth	ner highly or	ganic soils	\bigotimes	Desc	C ription	riteria for Describing Dry Strength Criteria
3Y5/				Undrained	Unconfined						None		The dry specimen crumbles into powder with mere pressure of handling
50	Clay Consistency	Thumb Penetration	SPT, N Blows/ft.	Shear Strength c	Strength q	Criteria for Describing Angularity of Coarse-grained Particles			Mediu	um	The dry specimen crumbles into powder with some finger pressure The dry specimen breaks into pieces or		
0				(PSF)	POCKET	Descriptio	on Crit	teria			High		crumbles with considerable finger pressure The dry specimen cannot be broken with
LOWD		Easily penetrated	+	TORVARE	PENETROMETER	Angular	Par pla ar Par	ticles have s ane sides wi ticles are sir	sharp edges and rei th unpolished surfa milar to angular des	latively ces cription	Verv H	liah	ninger pressure. Specimen will break into pieces between thumb & a hard surface The dry specimen cannot be broken
sh B	Very Soft	several inches by thumb. Exudes bet	<2	250	500	Subrounded Particles have nearly plane sides bul		out have	t have		between the thumb & a hard surface		
eddi		fingers when squeezed in hand.				Rounded	Par	ell-rounded o ticles have s	corners and edges smoothly curved sid	les and	nd Descr		Criteria
LK R		Easily penetrated one inch by thumb.					Criteria for	Describing	Particle Shape		None		No visible changes in the specimen
Da	Soft	Molded by light finger pressure.	2-4	250-500	500-1000	The partic width and	le shape shall thickness refe	be describe or to the grea	ed as follows where atest, intermediate a	length, and	Slow		Water appears slowly on the surface of the specimen during shaking and does not dis- appear or disappears slowly upon squeezing
7.0		Can be penetrated over 1/4 inch by	×			Flat	Par	ticles with w	idth/thickness >3		Rapid		Water appears quickly on the surface of the
R3/6	Medium stiff	moderate effort. Molded by strong	4-8	500-1000	1000-2000	Elongated	Par	ticles with le	ngth/width >3				specimen during shaking and disappears quickly upon squeezing
Dark 2.5Y		finger pressure.				Particles meet criteria for both flat and elongated		and	Desci		Criteria for Describing Toughness		
	Stiff	inch by thumb but penetrated only wit	h 8-15	1000-2000	2000-4000	Descriptio	Criteria for D	escribing M	Noisture Content		Low		Only slight pressure is required to roll the thread near the plastic limit. The thread and
~	Verv stiff	Readily indented b	15-30	2000-4000	4000-8000	Dry	Abs	sence of moi	sture, dusty, dry to	touch	Mediu	im	the lump are weak and soft Medium pressure is required to rol I he thread
Yello'	Hard	Indented with	>20	>4000	>2000	Moist	Dar	mp, but no v	isible water		High		to near the plastic limit. The thread and the lump have medium thickness Considerable pressure is required to roll the
YR6	Hard	VARIATIONS IN		>4000	28000	Wet	Visible free water, usually soil is below water table		low		ign	thread to near the plastic limit. The thread and the lump have very high stiffness	
10wr				N SOIL STRATIGRAPHY		Criteria for Describing the Reaction with HCI Description Criteria		I	Deser	dution	Criteria for Describing Plasticity		
Ē	Descriptive Term	Thickness or	Configuration	i		None	No	visible react	ion		Nonpl	astic	A 1/8-in. (3mm) thread cannot be rolled at any
	Parting	- 0 to 1/16 inch t	hickness			Weak	Sor	ne reaction,	with bubbles formin	ng slowly	Low		water content The thread can barely be rolled and the lump cannot be formed when drier than the plastic
wn 84/3	Layer	- 1/16 to 1/2 inch - 1/2 to 12 inch t	hickness			Strong	im	mediately	, with bubbles torm	ing	Mediu	ım	limit The thread is easy to roll and not much time is
Bro 10YF	Stratum	- Greater than 1	2 inch thickness	5 11 1.6		Criteria for Describing Cementation Description Criteria					required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. The lime crumbles when drive than the		
	Varved Clay	 Small, erratic d Alternating sea 	eposit, usually ms or layers of	sand, silt & o	clay (laminated)	Weak	Cru	imbles or bri iger pressur	eaks with handling e	or little	High		plastic limit It takes considerable time rolling and kneading
5	Occasional	- One or less pe	foot of thickne	SS	(And Carl Contraction	Strong	fin Will	imples or bri iger pressuri I not crumble	e e a or break with finge	ble			to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without
Srow	With	 More than one 5 to 15 percent 	per toot of thick	kness			pr	essure	,				crumbing when drier than the plastic limit
rile E	Trace	- Less than 5 pe	rcent			Soil Ty	pe	SPT, N blows/ft	Relative Density, %	Field Te	est		
10) Pa	Description	CRITERIA FOR E	ESCRIBING	STRUCTUR	?E	Very loc	ose sand	4	0-15	Easily p	enetrated	with 1	1/2-in. reinforcing rod pushed by hand
Ver	Stratified	Alternating layer least 1/4 inch thi	s of varying ma	iterial or colo	r with layers at	Loose s Medium	and I dense sand	4-10 10-30	15-35 35-65	Easily p Penetra	enetrated ted a fool	with 1 with 1	I/2-in. reinforcing rod pushed by hand //2-in. reinforcing rod driven with a 5-lb hammer
LN	Laminated	Alternating layer	s of varying ma	terial or colo	r with the layers	Dense s	sand	30-50	65-85	Penetra	ted a fool	with 1	/2-in. reinforcing rod driven with a 5-lb hammer
Brov 2/2	Fissured	less than 1/4 mil Breaks along de	limeter thick; no finite planes of	fracture with	little resistance	very de	nse sand	UC	00-100	Penetra	ied a few	inches	s with 1/2-in, reinforcing rod driven with a 5-lb hammer
Dark DYR		to fracturing	picifico 01			Materia	l <mark>l Fr</mark>	action S	lieve Size	Grain S	Size		Approximate Scale Size
ery [Slickensided	Fracture planes striated.	appear polishe	d or glossy; s	ometimes	Cobbles	5	3	in to 12 in.	3 in. to	12 in.		Fist-sized to basketball
>	Blocky	Cohesive soil the lumps which res	at can be broke ist further break	n down into down	small angular	Gravel	Co	parse 3	/4 in. to 3 in.	3/4 in. t	o 3 in.		Thumb-sized to fist-sized
	Lensed	Inclusion of sma lenses of sand s	Il pockets of dif	ferent soils, s	such as small	Sand	Co	barse N	lo. 10 to No.4	0.19 in.	1. to 0.19	in.	Rock Salt to pea-sized
		thickness.	outinout				Me Fit	edium N ne N	lo. 40 to No. 10 lo. 200 to No. 40	0.017 ir 0.0029	n. to 0.079 in. to 0.01) in. 17 in.	Sugar-sized to rock salt
)	Homogeneou	us Same color and	appearance thr	oughout.		Fines (s	silt/clay)	F	assing No. 200	0.0029.	in.		Flour-sized and smaller

5/27/03 vsa t:\library\unified_soil_class-may03.cdr

Source: URS, 1995

1

Figure A-1. USCS Classification Key

WEATHERING					
Fresh	Rock fresh, crystals bright, few joints may show slight staining. Rock rings under hammer blows if crystaline				
Very Slight	Rock generally fresh, joints stained, some joints may show thin clay coatings, crystals in broken face show bright. Rings under hammer blows if crystaline.				
Slight	Rock generally fresh, joints stained, and discoloration extends into rock up to 1 inch. Joints may contain clay. In granite rocks, some occasional feldspar crystals are dull and discolored. Crystaline rock rings under hammer blows.				
Moderate	Significant portions of rock show discoloration and weathering effects. In granite rocks, most feldspars are dull and discolored; some show clayey. Rock has dull sound under hammer blows and shows significant loss of strength as compared with fresh rock.				
Moderately Severe	All rock except quartz discolored or stained. In granite rocks, all feldspars dull and discolored and manority show kaolinization. Rock shows severe loss of strength and can be excavated with geologist's pick. Rock goes 'clunk' when struck				
Severe	All rock except quartz discolored or stained. Rock "fabric" clear and evident, but reduced in srength to strong soil. In some granite rocks, all feldspar kaolinized to some extent. Some fragments of strong rock usually remain.				
Very Severe	All rock except quartz discolored or stained. Rock "fabric" discernible, but rock mass effectively reduced to "soil" with only fragments of strong rock remaining.				
Complete	Rock reduced to "soil". Rock "fabric" not discernible or discernible only in small scattered locations. Quartz may be present as dikes or stringers.				

STRENGTH							
Very Strong	Resists breakage from hammer blows; but will yield dust and small chips.						
Strong	Withstands a few hammer blows; but will yield large fragments.						
Moderately Strong	Withstands a few firm hammer blows.						
Weak	Crumbles with light hammer blows.						
Friable	Can be broken down with hand and finger pressure.						

	ROCK QUALITY DESIGNATION							
RQD	Rock Mass Quality							
90-100	Excellent							
75-90	Good							
50-75	Fair							
25-50	Poor							
0-25	Very Poor							

	HARDNESS							
Very Hard	Cannot be scratched with a knife; metal powder left on sample							
Hard	Scratched with knife with difficulty; trace of metal powder left on samples; scratch faintly visible.							
Moderately Hard	Readily scratched with knife, scratch leaves heavy trace of dust and is readily visible.							
Low Hardness	Gouged or grooved to 1/16 inch by firm pressure on knife; scratches with penny.							
Soft	Gouged or grooved readily with knife; small thin pieces can be broken by finger pressure.							
Very Soft	Carves with knife; scratched by fingernail.							

Rock Quality Designation (RQD) is the ratio of the total length of core segments longer than 4 inches to the total length of the core run, expressed as a percentage. Mechanical breaks are ignored in the calculation of total length of segments greater than 4 inches long. RQD will always be equal to or less than percent recovery.

Percent Recovery is the ratio of the total length of core recovered to the total length of the core run, expressed as a percentage.

	ROUGHNESS OF DISCONTINUITY SURFACES
Smooth	Appears smooth and essentially smooth to the touch. May be slickensided.
Slightly Rough	Asperities on surfaces are visible and distinct.
Medium Rough	Asperities are clearly visible and surface feels abrasive.
Rough	Large angular asperities can be seen. Some ridge and high side angle steps are evident.
Very Rough	Near vertical steps and ridges occur on surfaces.

	DISCONTINUITY SPACING	i
Joints	Bedding, Cleavage, Foliation	Spacing
Very Close	Very thin	Less than 2 inches
Close	Thin	2 inches to 1 foot
Moderately Close	Medium	1 foot to 3 feet
Wide	Thick	3 feet to 10 feet
Very Wide	Very thick	Greater than 10 feet

C _M	ĩνα	10	da					Proj	ect No.: ect Refer	Client:		<i>.</i>	~	1	ß	-1	Sheet (of)
		7	171					Ro	Human	Fairfax Develos IVII. KOIV	Cha		d By:		D	+1	π
Date(s) Drille	i: (10	4	0.1			Logged Drill Bit	By: WVVIII	Tot	al D	opth	8	.0'		
Dram	g smoure	Ma: 1	50	aki	010	The	c (r	MAYOM	Size/Typ	Pitcher	Drill		(m):				m
Drittin	J HIG T	/po:	110	181		110			Location	37° 59' 36" N mN	Incl	Inat	ion fro	m	Ve	trica	U O deg
Groun	owerer	rum-	Con	not	- (-	7011	t		Sempler	TYDE: SPT/ HQCUIL Baril	Han	inte	r Data:	: 14	0#	= A	utomatiz
Count				w 1)	0.							C	011 6	200		s 1	
III)			ROC	KC		(in)	s				F	1	SP	T	i Kasta		
avel (n				pacing		(mm/m	ulty Day			MATERIAL DESCRIPTION	1	ĺ	8	Ornim	(m) ((%)	REMARKS
lative L	n No.	ox No.	C R (%)	acture §	0 D (%	ill Rate	acontin	eptin.	thology		edv	umber	lows er 150m	Value lows/30	ecover	Vater	
8	B	ഷ്	F	Æ	œ	ā	ö	<u>a</u>	5	FILL-Road Cut Nate.	F	Z	<u> </u>	ZB	<u>ac</u>	50	
					'			F									
								Ļι			•	-+	5		10/	-	
									SM	1.0-2.3 SILE TO SITISTORY			35		116	na	
								42		hand, dry, low posticity	9		52/4	874	1201		
								F			-	Ц		-		-	
q								2		arramit							
H LLA								E		Clear DU,							
A AND	F		1-		131					Sandstone dicavay,							
510 10	11	1	42		47"	4/		24		hard, v. slight to fresh				•			
roperty						174	n	F	2	victose, trace clay							
demsu								-5	JE	infilling along longitudi	nae						
a remat								Ł	5	Clucks							
100								56	B								
								-	G'								
0								- 7	m								
TIS SI B									IZ								
e drawn													-				
	+		-	-	-	-	-	-07		TD 8.0'							
5																	
								-9									
								-	*								
2.07								- 									
00210								-									
										8							
	NO	TES:	Soll	classii hole k	ication	n via /	S 172	26 - 1993 oniuction	with cove	r sheet.							

	64	NC.		da					Pro	ject No.:	Cilent:				R	-1	C Sheet of
		110	7	171	20	11.			Ro	thmai	Fairfax Develot M. ROTA	ma			Þ	-+	Ð
	Date(s)	Drille	d: '		10	10 AL	0.07			Logged Drill Bit	Garloide Rock Core BIT	Total	Depth		11	<u> </u>	
	Uniing		00: Y	nu Fio	ar	010	m	1	ntd	Size/Typ	Ditchen -	Drille	<u>1 (m):</u>	4.	1.0		
	Dritting	Rig T	ype:	110	1SIL		100		1000	Location	n: mN	Inclin	ition fr		Vor	ntica	n L O deg
	Ground	trator	Dolar	Chev	ver	v+ (200	1+		Sempler	HQ WITELIN SUSKM,	Homa	intal/Be	1: 14	401	#/	Automatic
1	Boleno		AB76101*	<u>u</u>		,	400			1		Te		240/		0	
	a RL)			ROC	E	ind:	(ui	a				-	SI	T		1	
	evel (n				Spacing		n/mm)	uity Da			MATERIAL DESCRIPTION		8	omm	(m) /	(%)	REMARKS
and an other states of the	elative L	m No.	ox No.	C R (%	acture :	0 D (%	ill Pate	scontin	- utida	thology		ype	lows er 150m	Velue tews/30	ecover	later	
and the second se	<u> </u>	đ	ă	F	úË	Œ	ā	ā	- <u> </u>		Fil inner pushed		00	Zā	CC	50	Steep
						,			F		up to construct						Slope, Grass
and									-1		level pad for drilling.						slope.
										111	Contraction of the second alour	+		-	-	+ -	
									*2	ML	Med. brown, V. Shiff,		5				
									-		low plash city, ory.		9	21	9/18		
멷									3				12		50	8	
Alla Pty											Rorr CORE -	4		-		na	
S Austra		1	1	40"	11	11%			A		Sandstone, med. brown to						
y of UR				42	t0 711	42"	-	-	27	15	strong to strong, low to						
propert				45%	,	269	0		-	5	moderately hara, made	P					
ains the									-5	Sca	slight to fresh weathering	g.					
. It rem									-	, CI	0						
RIGHT									26	an							
o COP									-	E							
ubject t	_							_	-7 -			₩		-		-	
ving is s									-		TD 7.0'						
his drav									8								
2/9/12 7									-								
GDT 1																	
DTECH.									-9								
N GEO										-							
911.0								1	#D								
E 2012(.								
MPLAT								+	-11								
INT TE											· .						
OLE G							.		12								
BOREN		NO	TES:	Soil c Borel	lassifi nole lo	ication og to b	i via A le rea	d in co	95 - 1993 Injuction	with cover	sheet.						

15 *

Miranda Pr	sport No.: Sport Roterence: Thman Fairfax Develpt.	cient: M.Roth	man	B-2A	Sheet (of)
Date(s) Drilled: 716/16	Loggod By: PEF		Checked By:		
Drilling Mothod: Mud Rotary	Drill Bit Bucket Auger, Th Co Size/Type: Carbide Core Bit	ne,	Total Depth Drilled (m):	8'	
Drilling Rig Type: Failing 1600	Drilling Contractor:		Relative Lovel:		៣
Groundwater Depth: Da	Location: 37, 9940 N -122, 5915 W	mN mE	Inclination from Horizontal/Bearing	Vertical	O deg
Borehole Backill: Centent Grout (Top 2!)	Sampler Type: HQ Wireline Core	e System	Hammer Data:	nla	

0		1	6	200	KC	ORI						S	OILS	AM	PLE	S	
And the second se	evel (m RL)			100	Spacing (I,		(mm/min)	uity Data			MATERIAL DESCRIPTION		SP #	- uuuoo	ry (m)	((%)	REMARKS
	Relative L	Run No.	Box No.	T C R (%)	Fracture (RQD(%	Drill Rate	Discontin	Depth .	Lithology		Number	Elevra per 150n	N Vatue Blows/36	Recove	Water	
						,			-	SM/GW	angular gravel (2"+),					~	
									- (Weathered sandsone, tan, V. highly fractured, spacing (<1")						Drilled with tricone bit to 4', set
									#2								surf. casing 1 commence coving @ 4
alia Ply Ltd.									-3								
of URS Austra			-	(0)	011	-			4	a-	clayey infil math top of		-	-			4'cored in
ins the property of		1	1	48	2- 1(*	42	10 min per Pt		-6	X	Sandstone, DKgray with TanyRustmottles, strong, moderately hard, slight	200					43 minutes.
RIGHT. It rema									sle	FI MBS	veathering to Tresh, Tractor 2"-(1" at 20° to Vertical angle	S	6				
subject to COP									-7	Durcis							
la chawing is										E							
12/0/12 Th		-		-	-	F					TD 8.0'						
DTECH.GDT									9								
011.GPJ GEC										-							
JLATE 20120								-									
E GINT TEMF									0								
OREHOL		N	OTES	: Soll Bore	classi shole	licatio log to	n via be re	AS 17 ad in c	+ 1993 26 - 1993 conjuction	with cove	r sheet.	in an					
00														_	-		

.

. *

. Miranda	roject No.: roject Roteronce: Rothman Fairfax Develpt.	Cilent: MiRoth	nman	B-3A	Sheet of (
Date(s) Drilled: 7/6/16	Logged By: WWM		Checked By:		
Drilling Mothod: Mud Rotary	Drill Bit Bucket Auger SteerType: Carloidid Core Bit		Total Depth Drilled (m):	5.0'	
Drilling Rig Type: Fraste - Track Prox	Drilling Contractor: Pitchur		Relative Lovel:	*	m
Groundwater Depth: N/A	Location: 37° 59' 38" N	mN	Inclination from Horizontal/Bearing	. Vertical	O deg
Borehole Backfill: CEWWA Grout	Sampler Type: HQ Wireline Core	System	Hammer Data:	140# /A	utomatic

-		F	ROC	KC	ORE							5	UIL S	AR	PLE	5	
elative Level (m RL)	un No.	ox No.	C R (%)	racture Spacing (I.)	10D (%)	hill Rate (mm/min)	liscontinuity Data	Jepth ,	łthology	MATERIAL DESCRIPTION	Type	Number	Biows per 150mm	N Value Blows/300mm	Recovery (m)	Water Content (%)	REMARKS
œ	8	8	4	<u>u</u>	,			• - - - (FILL-SILT with Rock Fragments, dry, loose							Flat gladed. fill.
							-	#2	ML	Silt to Siltstone, Lt. Brown, v. hard, grading to sandstone w/ clay infilling along fractures, highly fractured, molerate to slight			6 20 41	61	11/ /18 619a	nla	-
								-3		book COPE							
	1	_ 1	47/ 148 989			>			Franciscan Fm. 1	Soundatione, Pleanay, strong to v. strong, moderately hard, highly fractured to close fractures.							
								-9		8.0'TD							
	NC	ATES:	: Soll (Bore	classii hole k	ication og to t	, 1 via / De ree	AS 17. Id in c	- - 2 26 - 1993 onjuction	with cove	r sheet.							
	Relative Level (m RL)	Relative Level (m RL)	Petetive Level (m RL)	NOTES: Soll Box No.	NOTES: Soil classif Borchole	ROCK CORE Rock content Image: Solution of the second distribution of the second distresecond distribution of the second distrese distresecond	NOTES: Soll classification via / Borehole log to be ree	ROCK CORE Image: Construction of the state of the	ROCK CORE Image: Construction of the second of the seco	ROCK CORE Image: Construction of the second of	ROCK CORE MATERIAL DESCRIPTION 1	ROCK CORE 1 1 1	ROCK CORE NATERIAL DESCRIPTION 1 1 1 1 1	ROCK CORE Source Source 1	ROCK CORE SUBJECT SUBJECT	ROCK CORE Sold Justice 1	POCK CORE Out Statut Liss 1

[Mi	[]	N	a					Proju	oct No.: oct Refere	an hullot	Cilent:	nar	l		В	-4	Sheet (of
-	.10 001		71	611	10				Rot	hman	Fairfat wap.	Theorem	Check	od By:		1-		
-	Date(s) D	Drilled		to	4 ()	201	V		Drill Bit	Bucket Auger, Thico	ne,	Total I	lepth		9.0	D'	
H	Unlang a	nemo	<u>a: r</u>	Full	LIA	210		<u>x</u>		Size/Typ	contractor: Pitcher		Relath	(m): e Lovel	:			m
	Dritting F	tig Ty	po:	b		gı	60	0		Location	10 59'42"N 35' 27" W	mŊ	Incline	tion fro	m \	Ver	tica	l O deg
ľ	Groundw	vator i	Depth	= II	ent	gre	nut	Ém	micel	Moved	20'SW of orig. watto	2 Sustem	Hamm	or Data	in surveys.	r	ya	-
L	Borehold	Baci	dill:C	UH1)	ngs	-40	p2			Gundren	HIX WINGING CON	capian	1 6	011 6	4 6/1		0	
ſ	F		F		KC	ORI	(L						2	SP	T		3	
	m) lev				pacing		mm/mi	ity Date			MATERIAL DESC	RIPTION		Ę	mm	(m) /	(%)	REMARKS
	tive Le	No.	No.	R (%)	tura Sp	D (%)	Rate (ontinu	-5	ology	CUNE-MASS. Shrules	veq.	pe	ws 150mi	Value wa/300	Covery	ater	
	Rela	Run	Box	01	Frac	B O	III-O	Die	å	튁	Sull Coude / Aport	Partos	≥ź	a la	Ză	Å	Šŏ	
						,			-	SM/	gravels up to 1"	tan,	71	9				Bucket
									Ē,	000	loose, dry							3; tricone
									E									to 5' B65.
									-							-		
									#2-	+			T					
									-		Whe sandsto	ne						
1.14									-3									
alla Pl									F	+ -	Sandston	re						
S Austr									E-4		3440.00							
y of UR									Ē									
propert									F] -	
ine the		-	1	181	0"	-	-	-	-5-	-	DK. gray sands	one w/			T			
It rema		1	1	148	10	342			F	15	rust and white	mothes	·					
HOHT.				100	8"	760			66	4	V. few fractures	ona,						
COPYF				1Wa	1	100	ľ		F	2g	v. slightly weath	ierato						
ject to									E-	NG	fresh.	d to						
g is sub									E'	Dra 1	han.	a io						
drawin									-	-	1 Dour							
12 This									4B									
12/9/1									ţ									
H.GDT					_	Ļ	-	1	-9	+			1+	t				
EOTEC									F	-	10 90)						
GPJ G									E-10									
20011.									F									
TE 201									ŀ.									
EMPLA									- (1									
TT THE									-									
HOLE				- Cell	0	linet		ASI	12	3				1	1			
BOREL		14	JIES	Bore	ehole	log to	be re	ad in	conjuction	n with cov	er sheet.							

. .

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	M	m	N	da	د				Proje	ect No.: ect Refere	nce:	ilient:	na	n		B	-4	B Sheet of
Reading billion Total Depth Z I United Billion Drilling Mithods: Mudd Robard Doilling Billing Total Depth Z I United Billing Drilling Mithods: Mudd Robard Doilling Billing Total Depth Z I United Billing Drilling Mithods: Mudd Robard Doilling Billing Protects m Groundwater Depth: Ma Location: 122:367 281 W mithod Mithods Machine Data Bornholds Backtin: COWART GNOUT Sampler Type: STE HAG Wirding Hammer Data: MACH / Autowatic Bornholds Backtin: COWART GNOUT Sampler Type: STE HAG Wirding Hammer Data: MACH / Autowatic Bornholds Backtin: CowArt gNout Sampler Type: STE HAG Wirding Sampler Type: Sampler Type: Sampler Type: Sampler Type: Total Depth Sampler Type:			7/	611	6				Rot	hmar	Fairtax Leverps. 1		Check	ed By:			1.52	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Date(s)	Drilled	d: V	Nu	AF	ot	100			Drill Bit	sy. 00 0011		Total I	Depth	9	3.0)	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	Dalillan	Die Tu		500	ste	2	tro	rk	- mt.	Drilling (contractor: Pitcher		Relath	(m): re Level	:			m
$ \begin{array}{c} \hline \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \hline \begin{array}{c} \hline \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \hline \begin{array}{c} \hline \begin{array}{c} \hline \begin{array}{c} \hline \begin{array}{c} \hline \begin{array}{c} \hline \begin{array}{c} \hline \end{array} \\ \hline \begin{array}{c} \hline \begin{array}{c} \hline \begin{array}{c} \hline \begin{array}{c} \hline \begin{array}{c} \hline \end{array} $	Driung	rig Ty	po:		Va		1.0			Location	37°59'42"N	N	Inclina	tion fro	m	Ver	+	Ô deg
$\frac{1}{1} \frac{1}{1} \frac{1}{35^{\circ}} \frac{1}{15^{\circ}} $	Bombol	Paller	Lehu	(Ver	M	nt	000	out	-	Sampler	TYDE: SPT & HQ WINDLING	m	Hamm	er Data:		140)#/	Automatic
$\frac{1}{1} \frac{1}{1} \frac{35''}{35''} \frac{1}{1} \frac{1}{35''} \frac{1}{1} \frac{1}{35''} \frac{1}{1} \frac{1}{1} \frac{1}{35''} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{35''}{35''} \frac{1}{1} \frac{1}{1}$	Borenoi	le bac	Ann:		,		-			Camptor	ucase				A 6/	DIE	.c	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RL)		F	100	E E	ORE	Ê							SP	T		3	
1 1 1 38" K2" 0 1 1 1 1 38" K2" 0 1 1 1 1 1 38" K2" 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m) lave				pacing		m/mm)	lity Dat			MATERIAL DESCR	IPTION		E	mm	(m) /	(%)	REMARKS
$\frac{1}{2} \frac{1}{2} \frac{1}$	ative Le	No.	No.	R (%)	cture S	(%) Q (I Rate	continu	oth	Vgolot			pe	ews f 150m	Value owe/300	scoven	ater	
$1 1 \frac{1}{35''} \frac{1}{5''} \frac{1}{5'''} \frac{1}{5'''} \frac{1}{5'''} \frac{1}{5''''} \frac{1}{5''''} \frac{1}{5'''''} \frac{1}{5'''''} \frac{1}{5'''''''''''''''''''''''''''''''''''$	Rei	Bur	Box	40	Fra	BC	Di	SiD	, <u>a</u>	<u> </u>	CIL IL PROVIDO SI	Twith	FZ	22	ZÖ	œ	30	
1 1 35" 42" 0 1 1 35" 42" 0 1 1 2 3" 42" 0 1 1 2 1 35" 42" 0 1 3 1 35" 42" 0 1 4 1 35" 42" 0 1 5						'					rockfragments t	Jard						
$\frac{1}{1} \frac{1}{2} \frac{3}{3} \frac{3}{1} \frac{1}{2} \frac{1}$									-1		out 16"							
$\frac{1}{1} \frac{1}{1} \frac{35''}{36''} \frac{1}{20} \frac{1}{10} \frac{1}{10$																		
1 1 35" by 0 3 Suyleu 1 1 35" by 0 3 Suyleu 1 1 22 9/28 Na 3 Suyleu 3 Suyleu 3 Suyleu 1 2 2 6 1 2 2 9/28 Na 449 1 2 2 6 1 2 0 9/28 Na 449 1 2 2 6 1 2 0 9/28 Na 1 2 0 9/28									-					-		-	$\left - \right $	
$\frac{3}{3} = \frac{3}{3} = \frac{3}$									# <i>L</i> _	ML	Lt. Brown SILT, V	shiff,	1	18	22	1/12	na	
1 1 35" K2" 0 9778 3" 56 LL ROCK CORE 9778 3" 56 LL ROCK CORE 978 3" 578 100 LL ROCK CORE 978 3" 100 LL ROCK CORE 978 30 LL ROCK CORE 978 30 LL ROCK CORE 978 30 LL ROCK											sand content ind	racong		Iu		44		
1 1 35" 12" 0 36" 12" 0 5 - ROCK CORE 19 6120 19 6120									-3	SMML								
1 1 35" 12" 1 2 35" 12" 1 3 55 12 10 100 100 100 100 100 100 100 100 1	20110110									-	Sandy Silt It. Bra	aun,	12	6	10	14,9	nla	
1 1 35" 1/2" 0 36" 1/2" 0 5 ROCK. CORE Sandstone, med. brown to Jk. gray; weak to modurately Jk. gray; weak to modurately strong; soft to low hardness moderate weathering. Treed shrub roots @ 6'BES. -7 35 Strength increased to strong to very strong, strong to very strong,									#4	314	dry, V. shiff			10		10		
1 1 35" 12" 0 36" 12" 0 10 56 2 Soundstone, med. brown to 36" 12" 0 10 56 2 Strong; soft to low hardness strong; soft to low hardness moderate weathering. Treed shrub roots @ 6'Bes. 7 3 Strength increased to strong to very strong,									-							61-0	Ĩ	
1 1 35" 12" 36" 12" 97% 3" 5	adoid a										DOCU A	OF	_	\vdash	-	-	 .	
1 1 36" 1/2" 0 to 978 3" -7 5 -7 -7 5 -7 5		-	-	26"	-	-	-	F	-5-	† -	sandstone, med. b	rown to						
979 3" 56 (2 strong; soit weathering. Treed shinds roots @ 6'86s. 7 3 strong to very strong, 8 strong to very strong,		1	1	36"	12	0				2	dk gray; weak to r	hardn	ess					
-7 Strength increased to strong to very strong,				979	3"				56	LE I	moderate weather	ling. Tree	4sh	rub				
-7 Strength increased to strong to very strong,	100			114	ľ				-	Se la	roots @ 6'BES.							
strong to very strong,	nplea								-7	130	showing the process	d to	-					
	s si buu								Ē	NB I	strong to very str	rong,						
Woderately hard to v. hard;	nis drav								8	LF I	moderately hard to	v. hard;	e4	-	\vdash			
T = T = T = T = T = T = T = T = T = T =	1171/6	-	-	-	† -	\vdash	-	T	_	1 -	TD 8.0'							
	21 10								-		12 0.0							
	ECH.G								-9									
	0HO								-									
	11.GPJ								\$10									
	201209								E									
	LATE								En									
	TEM								ŧ"									
	E GIN								10									
NOTES: Soil classification via AS 1726 - 1993 Borehole log to be read in conjuction with cover sheet.	DIREHO	N	OTES	: Soil Bore	class	ification log to	on via be re	AS 17 ad in c	26 - 199 conjuction	3 n with cove	er sheet.							

Miranda	Project No.: Project Reference: Roth Man Fairfax Durelft.	cilent: MiRot	hman	B-5A	Sheet Lof 1
Date(s) Drilled: 7/6/16	Logged By: WWM		Checked By:		
Drilling Method: Mud Rotany	Drill Bit Size/Type: Bucket Augur-6	"	Total Depth Drilled (m):	2.0'	
Drilling Rig Type: Fraste - Track M	t. Drilling Contractor: Pitcher		Relative Level:		m
Groundwater Depth: Ma	37° 59' 43" N Location: (22° 36' 27" W	mN mE	Inclination from Horizontal/Bearin	.Vertical	O deg
Borehole Backfill: DNII Cuttings	Sampler Type: Bucket Auger	-	Hammer Data:	nla	

ſ	-		F	ROC	KC	ORE							SC	JIL S	AM	PLE	5	
	telative Level (m RL)	tun No.	lox No.	- C R (%)	racture Spacing (1,)	3 Q D (%)	Orill Rate (mm/min)	Discontinuity Data	Jepth ,	Lithology	MATERIAL DESCRIPTION	Type	Number	Blows per 150mm	N Vetue Blows/300mm	Recovery (m)	Water Content (%)	REMARKS
ŀ	œ	œ	8	4	<u>u</u>	<u>ш</u>			• <u> </u>		topsoil	Π	T					V. Steep,
						,			-		sandstone, Lt. Tan, v.	Π	1	@1.0	B	S		touch access
									-1		hard, cementica, no							source
									• • •		fractures, dry.		2	@1.2	'B	6S		available.
											(Coved w/ Bucket Auger)		1	to	218	Ľ		Jor or ming
				-			_	-	*2 -		TD 2.0'							
by Ltd.									3									
stralia F									-									
/ of URS Aut									# 4						•			
property																		
emaine the									-5									
DPYRIGHT . It r									56									
is subject to CC									-7									
drawing																		
9/12 This									8									
OTECH.GDT 12/									-9									
1.GPJ GE									10									
12091								1	F									
ATE 20									Ē									
TEMPL									F									
GINT									F									
AOLE	L	1				16		AST	F 12						1		1	1
BORE		N	OTES	Bor	class ehole	log to	be re	ad in	conjuction	with cov	er sheet.							

	.M	in	a	nd	a				Proj Proj	ect No.: ect Refer	Citent: MiRot	im	a	n		B	-61	A Sheet (of)
	Deta(a) I	Pulling	. 7	15	511	6			160	Lograd	BY: WWW	Che	cka	d By:				
	Dritting I	Motho		to ALL	dp	ato	10	1		Drill Bit	Thicone, Core Bit	Tota	D	opth	ι	0.1	D	
	Deliliona			Pr	7981	P.	TO	100	Ria	Drilling	contractor: Pitcher	Rola	tive	- Lovel	:			m
	Grounde	vetor	Denti	h- 1	1/2					Location	37059'45" N	Incli	inet	ion fro	m nina:	Ve	rtic	al O [°] deg
	Romholi	Bac	kelle:	Cen	nes	At a	sra	đ		Sampler	Type: Ho Wireline Core Sustem	Han	mo	r Data:		140	#/	Automatic
1												1	G	<u></u>	AM		S	
	a RL)			100	E		(uju	ta ta				F	1	SP	Т			
	avel (n				Spacing		(mm/n	ulty Da			MATERIAL DESCRIPTION			a,	Omm	(m) V	(%)	REMARKS
	lative L	m No.	x No.	C R (%	acture :	00 (%	ill Plate	scontin	apth	thology	Such Socilomass	odv	lumber	lows er 150n	Value Rewa/30	lecover	Vater	
	8	Bu	å	Ŧ	ŭ	œ	ā	ö	<u>a</u>	5	Topsoil	F	Z	00	20	<u> </u>	50	
						,												
									-1-		Santaman It	+	lt	17	-	-		
									-	MY	sift to sanda one, it	4	"	18	42	19/18	Na	
									-	GV	dry	7		25	15	562	14a	
												-	Ц					
Pty Ltd									-3			_			-			
untralia											V.hard sandstone, mod.		2	27		7/10	nla	
URS A									æ4		weathering tan to gray, as	1		94"	·	101	prit	
enty of																		
he prop						-			-6-		ROCK CORE -		F,	-	-	-		
maina	- 1	1	1	58"		81	5/				sandstone, moderate							
-T. # re		_		60"	12	160"	30	min	, I		gray, clay infilling							
(DIA)					to		1/4	hin.	-		along some tractilles,	c						
to CO				0-15	4"	1207	1		-	5	\$ 0-90, weak to moderate	1						
subject				912	þ	1240			-7	Æ	hardness; moderately	na.						
wing is										an	v close to close fractur				•			
his dra									-8	1'sc	7.5'. Strength & hardness	T						
121/6/3									-	N N	increasing, weathering							
10										FICO	strong to V. strong; moder	ve	4					
TECH.C									- 9		hera to hathering							
GEO									-	-	^o							
11.GP.			-		_			_	#10_	-		+	H		-			
20120	1								-		TD 10.0'							
PLATE									-11									
UT TEM									-									
TE GI									- 12									
HER		NO	TES	Soll o Bore	classi hole l	ication og to l	n via /	AS 172 d in o	26 - 1993 onjuction	with cove	sheet.							

.M	lin	ar	rd	a				Proj	ect No.: ect Refere	Cilent: Ma Rottaman B-6B Sheet Lof
		. 7	16	116	2			IKO	innar	By: LAT(L)M Checked By:
Date(s)	- Drilled	at V	Min	AR	2010	04	~		Drill Bit	Bucket Aven, On Bit Total Depth 8.0'
Dutting	Die Th		Ga	151	0.	T	S CI	int.	Daliling (Contractor: Pitchen Relative Level: m
	nug i)	Donti		nla	<u> </u>		na	-110.	Location	370 59'46"N inclination from Vertical Odeg
Bergha	In Rea	Paire	1.	100	int	ano	ut	-	Sempler	Type: SPT/HQ Wireline Core Hammer Data: 40# Automatic
Contene	NO DEC	PAIN.	<u>u</u>	rue		<u>ð</u>				
RL)		F	<u> 100</u>	E	ORI	î	e			SPT SPT
elative Level (m	un No.	ox No.	C R (%)	racture Spacing	(%) Q D (%)	hill Rate (mm/m	liacontinuity Dat	Jepth ,	ithology	MATERIAL DESCRIPTION
<u>«</u>	œ	8	-	<u>u</u>	,	<u> </u>		•		topsoil, grading into brown site drog.
								-1 #2	ML	Brown, silt (wtx sandston 1 1/18 - Siltstone) w/tr. clay, 4 14 50% stiff, low plasticity, 10
alia Ply Ltd.								-3		Sandstone/Highly fractured, moderate weathering
operty of URS Austr								24	Gu) Bedro	$\begin{array}{c c} 6 & 13 \\ 13 & 29 \\ 16 & 728 \end{array}$
his drawing is subject to COPVRIGHT. It remains the pro	1	1	35" 36 979	4" to 13" 70	36	0		-5 -	Franciscan Fin.	- ROCK-CORE Sandstone, dkonay to Black, moderately shrong to strong, low hardness to hard (increasing with depth) moderate to v. slight weathering; fractures 45° to 80°(2.5)
REHOLE GINT TEMPLATE 20120011.GPU GEOTECH.GDT 12/0/12 1	NC	DIES	: Soil	class	lificatio	n via	AS 17	- 9 10 11 28 - 1990		r sheet.

x

Dames Difficient The Introduction of the second secon		. M	in	ar	rd	a				Proj	ject No.: ject Refere	Energy Develot M. Roth	maj	ı		B	-7A	Sheet (of)
Normality Munde AUG 7 (Mund Rottauld) Intermity Decision Call and Call and the Decision for the Decision for the Call and the Decision for the Decision for the Decision for the Decision fore the Decis and the Decision for the Decision fore the Decision		Data(a)	Driller	.7	61	16					Loggad	By: Def	Check	ed By:				
Intermediate Constraints Intermediate Con		Orilling (Metho	A A	uge	70	Nuc	R	ota	ry	Drill Bit Size/Typ	Bicket auger, Bit	Total I	Depth		11	/	
$\frac{1}{1} \frac{1}{1} \frac{1}$	and on the second se	Datilina	Die Th								Drilling	contractor: Pitcher	Relath	ro Love	:			m
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	and a second second	Drining	11913	Denti							Location	37°59'45" N mN	Incline	tion fro	m	V	enti	cal O deg
The second seco		Grounos	azter	Daba	1;						Complex	BUCKET Auger, SPT	Hamm	er Data	:	14	0\$	=/Automatic
SUE SAMPLES	l	Borehol	o Bac	ICHIII:							Gampton	HO WITCHTCCOTE COLOR				1990 B 199	1/2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(1)		F	100	KC	ORI						60		SAM T		S	
$\frac{1}{2} = \frac{1}{2} = \frac{1}$		ve Level (m l	ó	o.	(%)	tre Spacing ((%)	tate (mm/mir	ntinuity Data	-	Ago	MATERIAL DESCRIPTION	Per	somm {	aua s/300mm	overy (m)	or tent (%)	REMARKS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Relativ	Run N	Box N	TCR	Fractu	ROD	Drill P	Diaco	Dept	lothu		Type	Blow	N Va Blow	Rec	Vat	
The function of the strate interest of the s							1				SY/ML	silty sand to sandy silt, Lt. Tan, w/ ourgular grave loose, dry.	5					est.1−2″+topsoil
The set of	ralia Pty Ltd.									#2	5m/Gw	Rock content increasing)- 	5%5	100	5/5	20	Refusal@ 2.5'bgs.
$\frac{1}{12} + \frac{1}{12} $	t remains the property of URS Aust		1		32"/		4.5	3.5		-5 -		- ROCK-CORE Sandstone, dk.gray;	-					Circulation 105t @8.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9/12 This drawing is subject to COPYRIGHT. I				769	0	112	Son in the	ŵ	-7	Franciscan Fim	strong moderately hard, highly fracture rust mottles along fractures, fracture 24's 30-60°, fracture infilling - cemented w/ solice; clay infilling (2) 7.8'	4				;	pulled string Clayplugged carloide core bit@ 27.8'
NOTES: Soll classification via AS 1726 - 1993 Resolution to be read in contriction with cover sheet.	PLATE 20120911.GPJ GEOTECH.GDT 12/		2	1	25".	2. 5 3.0'	0	2.5 34 min 1/3.6		-9		Sandstone, Jk gray, abundant Fractures (20° to planiy vertical); clayey infilling at 10.511 Rust colored mottles, slightly to modurately weathered, strong to moderately strong	gs.					
NOTES: Soil classification via AS 1726 - 1993	E GINT TEM	-		-				-				TD=11.0'						
The state of the s	REHOLI		NC	DTES	Soll	classi bolo l	l ficatio	n via /	AS 17	26 - 1993	3 with cove	r sheet.		1	1	1	<u> </u>	

1.

- M	ir	à	nd.	a				Proj Proj	ect No.: ect Refere	n Fairfax Develot.	cilent: M.Roth	ima	n		B	,-7	Sheet of B	
Date(s)	Drilled	17	61	6					Loggad	By: pef		Check	ed By:					
Dritting	Niethc	ad: f	wa	I F	Poto	an	X		Drill Bit Size/Typ	: Tricone, Carbide	Core Bit	Total I Drifled	Depth I (m):		8.0	<u>o'</u>		
Drilling	Rig T)	/po:	Fa	ili'r	g	160	B		Drilling (Contractor: Pitcher		Relath	ro Lovel	k:			m	
Ground	water	Depti	h:	n(a				Location	: 37° 59'44" N (MOVCA)	mN mE	Incline Horizo	tion fro ntal/Be	m mina:	Ve	int.	O deg	
Borehol	le Bac	idili:	Cer	ner	ut g	nou	£		Sampler	Type: Ha wirdine cor	e system	Hamm	or Data		nl	a		
	r	1	ROC	KC	ORI	-			1			S	OILS	SAM	PLE	S		
slative Level (m RL)	in No.	ox No.	C R (%)	acture Spacing (I i)	Q D (%)	rill Rate (mm/min)	iscontinuity Data	epth .	Ithology	MATERIAL DESC	RIPTION	Type Number	Blows per 150mm	N Value Blows/300mm	Recovery (m)	Water Content (%)	REMARKS	
<u> </u>	18	ă	-	ŭ	, ,	Δ	٥	-	SM/ GW	Silty SAND, Lt. tz abundant angul loose, dry	in w/ our ghave	5			_		Sitting on nose of hitside-ang gravel on grou surface-upt	lar nd 3"
	-							2.3	GW Bedr	Weathered San grading to M ack weathered sou Angular frogn Colored mottles, Fresh surfaces Hard Ledge @2	dstore, odurateli Ndstore ents, ru: dk. grau	y st-					Rock drilline w/ tricone bi	¥.
(-	4	2,"	111		-		4		Hand Ledge @4. ROCK CO Janvistone, JK. 9	o' RE		_			-	Rock Coning # 5'6' (5min)	Eates
	+	1	36"	10 5"	7 ₃₄ 251			-7	Franciscan fim	w/rust-mottles, fractu 20-75° no pre 2's. slight we to fresh, mod hand to hand,	t White 22 2's forentia attenive evately strong	e 3					6'-7' (5min) 7'-8' (13min) Aressure 2150psi.	
								-9	+~	TD 8	.0							
								e(D										X
	NC	DTES	: Soll Bore	class	lificatio log to	n via be rei	AS 17 ad in (- - - 	3 a with cove	r sheet.								

×.

	. K	lir	a	nd	a				Proj	ect No.: ect Refer	Esicher Develot M. Rot	hm	an		B	- 8	Sheet (of (
	Data(a)	Duille	71	5/1	6				RU	Lograd	BV: OPF	Chec	lood By:				
	Drilling	Metho	od: (to Mu	16	Date	10,	1		Drill Bit Size/Typ	BUCKLTAUGEN, BUCKLTAUGEN, BIT	Total	Depth d (m):		11.5	51	
	Deilina	Rig T	/00:	Fr	ast	e	14	ac	k	Drilling	contractor: Pitcher	Relati	ive Leve	l:			m
	Grounds	unter	Depl	h:	nl	a				Location	37° 59' 46" N	Inclin Horiz	ation fro ontal/Be	m mina:	Ve	enti	cal O deg
	Romhol	la Bac	defilit.	Ce.	me	nt	on	SW	-	Sampler	Type: SPT/HQ WIRLING Core	Hama	ner Data	: 1	40	#//	Automatic .
1							0				Cypium		2011	SAM		S	
	I BL)			ROC	E		(uj	g				-	SF	T			
	evel (m				pacing		(mm/m	uity Dec			MATERIAL DESCRIPTION		ε	omm	(m) A	(%)	REMARKS
	ative L	n No.	ć No.	(%) H (icture S	%) Q Z	II Rate	contin	μd	hology		edv	ows or 150m	Value owa/30	ecover	later ontent	
	Re	Bu	â	Ť	E.	ä	ā	ă	Å	3	toosal-visparse, sitty			20	<u>a</u>	50	
						1			Ł		sand to sandy sut, dry						
									-1-	-	eith to cith is and it Tan in	,	100	Ī	111	$\left \right $	
									È.	SM	Trace Gravel cangular, residu	al	76"	100	16	-	
									-		v. hard, dry						
									F Z		Rock content increasing	3					
									E		decreasing V.						
Pty Ltd.									-3								
utralia l		-	Ļ	-	L .	\vdash	\vdash	-	ŧ -		- ROCK CORE		-		-	T	
URS Au									#4								
urty of I									F								
le prop									F 6			+		-		\vdash	
naine th		1	1	36"	1.5"	11"	-		E		Sandstone, DK gray						
IT. It ren		1	1	36	to	36			Ł.	15	when to v strong: have	13					
-IDIAY				100%	3.5"	31%			25 6	2	V. slight to fresh weather	ring					
to COF									-	g	Fracture 4's 0 to 45						
ubject									-7	Ci3							
ving is s									Ē	Sa l							
his drav									-8	E		Ħ		-	Ī		
72/16/		12		151		256	U		E.	1	Same as RUNI.						
DT 12		4		V.	10	42"	ſ		Ļ								
ECH.G				42"	9"	14			-9								
GEOI				1009	þ	61%	þ		-	1.							
11.GPJ									10	V							
201209									F								
LATE									En								
T TEMP									-								
LE GIN									F_		TD 11.5'						
REHOL		NC	DTES	: Soll (classi hole l	fication	n via be rea	AS 17	26 - 1993 conjuction	with cove	r sheet.		gad metaoren set			Augenered	ing a subject of the
8																	

	. M	liv	â	nd	a				Proj Proj	ect No.: ect Refere	Fairfax Develpt. M.	n: . Rothi	na	n		P	3-8	3B Sheet (of)
	Date(s) [Drilled	7	15	16					Logged	iv: pef	c	:heci	læd By:				
	Dritting I	lietho	d: (Mu	df	Pot	an	UK .		Drill Bit Size/Typ	Bucket Augen, Bit	1	'otal Drille	Depth d (m);		C	1'	
	Drilling F	Na Ty		Fr	iste	0, -	Tr	ac	K	Drilling C	ontractor: Pitcher	F	tointi	ivo Lovol	:			m
	Groundu	untor i	Donii	110	n	la				Location	37° 59' 45" N	61 2-	nclin toriz	ation fro ontal/Be	m minal	(er	tice	L O deg
	Romholi	Bac	cilii:	Ce	me	nt	0	roi	t	Sampler	Type: SPT/HQ Wireline Con	e	lam	nor Data	14	Dŧ	ŧ /	iutomatic
0	Dorenou						(<u>} </u>		· · · · · · · · · · · · · · · · · · ·	2401-1		1 0		AM		e I	
	RL)			<u> 100</u>	E	ORE	Ê						–	SP	T	Regilies	Ĩ	
	lative Level (m	n No.	ix No.	C R (%)	acture Spacing	Q D (%)	rill Rate (mm/m	iscontinuity Dat	epth ,	thology	MATERIAL DESCRIP	TION	lype	Number Blows Der 150mm	N Value Blowa/300mm	Recovery (m)	Mater Content (%)	REMARKS
	ĕ	æ	ă	-	<u>ل</u>	e:	0	0	•	FILL	Site Fill- Silty sand w	1/grave	Í	1				
														\top	-			
									#2	ML	Silt to Siltslove/Sand Lt to med tan, have dry. (Residual soil or to mod. suverely wear rock 4).	totone, 1) roding therea		17 32 34	bb	12/18 1679	-	
Pty Ltd.									-3		Bonng cleanou	t						
RS Australia								-	2A	GWY Bedroc	Weathered Siltstone/S Brown/Gray, hard,	Sandiste	ne,	5%	100	6%	70 -	
property of Ui											Sandstone, fractu Dk.grau	red						
ne the	_	-	1	-	-			-	-5	F	- KOCK COK	C-	\dagger	1	F		\vdash	
4 to COPYRIGHT. It remai		Т	1	44"	がも4	48" (87.0	4/101	nin. Imin	56	n fm.	Sandstone, de gray v vust/brown mottles, to modurately strong to modurate hardness modurate to slight weathering, highly fi	weak 15 low 5; iractur	ed.					
ing is subject									-7	Sca	Fracture & 's 0° to 60.	•						
9/12 This drav								-	-8	ranc	Fracture spacing 2"	'to4"						
CH.GDT 12					-				-9-		TD-9.05							
3PJ GEOTE										-								
20120911.0																		
IT TEMPLATE								-										
ILE GIN									ŀ		-							
REHC		NC	DTES	: Soil	classi	ficatio	n via	AS 17	26 - 1993	3	the state							

,, **x**

. Miranda	Project No.: Project Reference: Kothman Fairfax Devel pt	Mi Ro	thman	B-9A	Sheet of
Date(s) Drilled: 7/5/16	Logged By: pef		Checked By:		
Drilling Method: Mud Rotary	Drill Bit Bucket Auger, Thico Startype: Canbide Core Bit	ne,	Total Depth Drilled (m):	10'	
Drilling Rig Type: Failing 1600	Dritting Contractor: Pitcher		Relativo Lovel:		m
Groundwater Depth:	Location: 370 59 47 "N	mN	Inclination from Horizontal/Bearing	Vertical	() deg
Boreholo Backilli: CPMENT Grout	Sampler Type: Ho Wireline Core	system	Hammer Data:	nla	

		F	10C	KC	ORI	-					-	JOIL .	31-7000	U" finella		
ielative Level (m RL)	tun No.	lox No.	·CR(%)	racture Spacing (I)	3 Q D (%)	Jrill Flate (mm/min)	Discontinuity Data	Depth ,	Lithology	MATERIAL DESCRIPTION	Type	Plows per 150mm	N Value Blows/300mm	Recovery (m)	Water Content (%)	REMARKS
<u> </u>	<u>.</u>	8	1	<u>u</u> .	,	1		8 <u>-</u>	SM	SittuBand W/Angular gravels to cobbies (sandsto loose, dry						Grab Sample from Bucket Auger
								-1		Lt. tan silty SAND W/ angular sanastone coloble loose, drug	5,	-	-			
								#2	GW	Rock content increasing to well graded on avel, w/trace silt. Hand at 2	5					
						 5mi /G	r	-3								
								z 4								Drilling 4.0-5 pressure 200 psi
	1	1	12"	2"	-	- 1/	-	-5~	N Finh.	Sandstone, dik gray w/ rust mottles, modicate	44					
	_		1007	たー	-	_Ĥw	in.	æ6_	cìsca	Slight to Fresh Weathering Highly fractured, 45-60°2.	2	'	-			
	2	1	48	5	13"			7	Fraun	Fracture X's 45°-70°, mod. strong to strong.						
			100%	6	29	0		8		fresh, some fractures infiled with comentation math, rust coloration	5					
								-9	1	along fractures.						
_	_			_	-	-		510	-	TD 10'	+	+				
								F ((
		TEC	Soll	clacel	ficatio	n via	AS 17	26-1990	1							

.

[N	liv	a	no	la	_			Proj	ect No.: ect Refer	ction: aronge: A taylor the M. Pottoman B-9B Sheet of 2
-			. 7/	511	6				Ro	thmar	A Fairtax Jevepi Mindivirtati O ric
	illina i	Jrillec	d: 1	to		4.1.	116	Port	2011	Drill Bit	R Total Depth 15,0
-	illing f	No Th	* +	Lug L		in a	15	TA	ny	Drilling	a Contractor: PitcNeX Relative Level: m
G	nunda	ug i j	Deali	<u> </u>	n	2				Location	570 59'47"N mN Inclination from Vertical O deg
Bo	veholi	Bac	kill:	de	me	At	9	rou	Jt.	Sampler	or Type: SPT/HQ Wirelive Core Hammer Data: 140# Automatic
C							0			1	i Systemi
	(IRI)			100	KC	OK	(ii	s			SPT
	telative Lovel (n	Run No.	sax No.	r c r (%)	Fracture Spacing	3 Q D (%)	Drill Rate (mm/n	Discontinuity Da	Depth ,	Lithology	MATERIAL DESCRIPTION
						,			(bad)	SM	Silty sand, Lt to med. take w angular gravels $\begin{array}{c} \text{Roots to} \\ \approx 6-8'' \end{array}$
									Buildin		loose, dry 9 6", Poor recovery 18 77 - rode, Rotton
									Eveling	SW.	Silty sand w/ siltstone/ 20 13%
weitalia Ply Lid.									3 444		weathered) Letan, softrock 23 crumbly, dry.
operty of URS /											46 12/8
It remains the pr									514		42 72 67%
ubject to COPYRIGHT.									-7		Siltu sand to witx. sand- store, yellowish lorown, dense, dry.
This crawing is s									8	(Boring Cleanout
0120011.GPJ GEOTECH.GDT 12/0/12	5	1	1	30"/ '30" 1002	-	12"/ "35" 40%			-9	OUNCISCON FIN	- ROCK CORE- Sandstone, dk gray to brown, rust mottles along fractures, fractures 30-60°, modurately strong to strong, well indurated,
E GINT TEMPLATE 2		 2	1	48"		264	10m Perft	in		LF -	Con't p.2 of 2.
OREHO		NC	DTES	Soil Bore	classi hole	ficatio log to	n via / be rea	AS 17 ad in (26 - 1990 conjuction	3 with cove	ver sheet.
60											

. Miranda	Project No.: Project Reference:	Cilent:		B-9B	sheet2of2 (CON't)
Date(s) Drilled: 7/5/2016	Loggad By: Pef		Checked By:		
Drilling Method:	Drill Bit Siza/Type:		Total Depth Drilled (m):		
Drilling Rig Type:	Drilling Contractor:		Relative Lovel:		m
Groundwater Depth:	Location:	mN	Inclination from Horizontal/Bearing:		deg
Borehole Backfill:	Sampler Type:		Hammer Data:		

1	-		F	ROC	KC	ORI	2					S	OILS	SAM	PLE	S	
	stative Level (m RL	un No.	ox No.	C R (%)	acture Spacing (I _i)	Q D (%)	riil Rate (mm/min)	iscontinuity Data	epth ,	ithology	MATERIAL DESCRIPTION	lype Number	Blows ber 150mm	N Vehue Blowa/S00mm	Recovery (m)	Mater Content (%)	REMARKS
	č.	2	1.	100	Œ	54	IOM FE	in .	212 -3 ≉14		Degray Sandsfone Visilight tofresh Weathering, moderately hard to hard, rust colored mottles along fractures (30 to 60°4's), med. rough to rough fracture surfaces.						Does not break w/ hammer- Sevatch w/ Knife.
AEHOLE GINT TEMPLATE 20120011.GPJ GEOTECH.GDT 12/0/12 This drawing is subject to COPYRIGHT. It remains the property of URS Australia Pty Ltd.		NC	TTES:	Soll 4		licatio	n via /	AS 17	-15 - # 		FÐ-15,0						
ŝ				Bore	nole l	og to l	De rea	id in c	onjuction	WIEN COVE	f breder.						

•

5

Qr	da		1. 1	1.				Proj	ject No.: ject Refer		Client:				F	3-10) Sheet (of 2
100	щ	<u> </u>	117	110	2			Ro	thma	n Fairfax Develor.	MIROM	Check	nd Bv:				
Date(s)	Drille	k	to	10					Logged Drill Bit	Bucket Auger, Trice	one,	Total D	lepth		0	^	
Orilling	Metho	id: [m	ak	oto	ry	5		Size/Typ	e: Carloide Cone Bit		Drilled	<u>(in):</u>		01	0	alasianan yana kuma kuma kuma kuma kuma kuma kuma kum
Drilling	Rig T)	/po:	fai	lin	9	160	00		Drilling	37° 59' 27' N	mbl	Incline	tion fro	1: 	1/0	N 610	m al () das
Ground	water	Depti	i: r	na	-				Location	122° 35' 19" W	ME COR	Horizo	ntal/Be	ering:	1e	H /	hutomatic.
Boreho	le Bac	kill:	cu	ner	nt a	gro	ut		Sampler	Type: JPT, Havinan Sush	m	Hann	er Data	: (40.	+//	augnatio
-		F	10C	KC	ORI				T			S	OILS	SAM	PLE	S	
telative Level (m Rl.	tun No.	sox Na.	CR (%)	racture Spacing (I	4 Q D (%)	Orill Rate (mm/min)	Discontinuity Data	Depth ,	Lithology	MATERIAL DESCI	RIPTION	Type Number	Blows per 150mm	N Velue Blows/300mm	Recovery (m)	Water Content (%)	REMARKS
	<u>a</u>		1		,			-(SM	Med brown to Lt.7 silty SAND w/tra anguar gravels loose to mud. de	an a s, dry, ense.						
								#2	514/ML	Silty sand to sar trace cray, dense to moist, mediti lorown.	ay silt, , ary an to		18 22 22	44	9"," 9"18 502	Tr.	
							-		Mya	SityCLAY to clay low plashicity, m to yellowish brow to hard, crumbles tr. moisture	eyslit, va. tan n. v. shf s casily,	4	10 14 13	27	11"/18"	Tr 6	
								-5-	CYML	Same			14 18 21	39	12% 679	, Tr	
								-7	se/cz	Sandy CLAY to clo mild tan-brown, plashicity, v. strift, trace morsture	low med.dens	0, 1	91215	27	9 718 289	Tr Po	
								-9	*	gray mottle	25 @ 10'		11 11 21	32	13// 18'' 72%	Tr B	
							_		CL.	sandy CLAV, med V.Stiff to hard v Sandy silt, tr. m	l tan, w/ tr: hoisture		10 25 38	63	12% 18 675	tr. B	
								-		contta p	2082			T			
	NC	TES:	Soil	classi	ficatio	n via /	AS 17	26 - 1993	3				And Supervised on the	Argeneration		l	an ann an farinn an farinn an thairt an start an

•

Ridgway	Project No.: Project Reference:	Gilent:		B-10 con't.	
Date(a) Drilled: 7/7/16	Loggod By: Def		Checked By:		
Orilling Method:	Drill Bh Size/Type:		Total Depth Drilled (m):		
Drilling Rig Typo:	Drilling Contractor:		Rolativo Lovel:		
Groundwater Depth:	Location:	mN	Inclination from Horizontal/Berrina:	deg	
Borehole Backill:	Samplar Type:		Hammor Data:		

ROCK CORE					-	SUL		PLE	3							
telative Lovei (m RL	tun No.	lox No.	.CR(%)	racture Spacing (1,	300(%)	Jrill Rate (mm/min)	Discontinuity Data	Cepth ,	lithology	MATERIAL DESCRIPTION	Type	Number Blows per 150mm	N Value News/300mm	Recovery (m)	Water Content (%)	REMARKS
16			-		,			42 -13	C4 _{SC}	Clarky SAND to survey CLAY, Yellowish brown, v. hard, highly with shall sandstone will greenish gray mottles + rust mottles		18 29 34	63	10% /18 569	20	
CAPTZ I HIG GERWING IS SUBJECT to COPPERATI. It wontation the property of URS Australia Pty Lid.	1	1.	31%/48" 48"	がた 2 -	0	- 13nii 4 12m 4 22m 4	I sui internet .	-15 -16 -17 -19	Franciscan Fm -7	ROCK CORE Interbedded sandstone avd claystone-Kust to med. brown, highly weathered, low hardnes weat. Highly fractured (a 16.5' Dk. gray sandstone, herd, strong. Fractures 30-60-22 clayey fractures 30-60-22 claye fractures 30-	M. M	-				
	MOT	TES:	Soll cl	inestific ote log	ation g to b	via A	5 172 1 linco	-21 #22 8 - 1983 njuolion v	with cover	sheet.						

•

Appendix B. Seismic Design Parameters

USGS Design Maps Summary Report

User-Specified Input

 Report Title
 MARINDA DRIVE
Sat October 29, 2016 18:33:19 UTC

 Building Code Reference Document
 ASCE 7-10 Standard
(which utilizes USGS hazard data available in 2008)

 Site Coordinates
 37.99415°N, 122.58654°W

 Site Soil Classification
 Site Class B – "Rock"

Risk Category I/II/III

USGS-Provided Output

S _s =	1.500 g	S _{MS} =	1.500 g	S _{DS} =	1.000 g
S ₁ =	0.606 g	S _{M1} =	0.606 g	S _{D1} =	0.404 g

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

For PGA_M, $T_{_L},\,C_{_{RS}},$ and $C_{_{R1}}$ values, please \underline{view} the detailed report.

EUSGS Design Maps Detailed Report

ASCE 7-10 Standard (37.99415°N, 122.58654°W)

Site Class B – "Rock", Risk Category I/II/III

Section 11.4.1 — Mapped Acceleration Parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_s) and 1.3 (to obtain S_1). Maps in the 2010 ASCE-7 Standard are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 11.4.3.

From <u>Figure 22-1</u> ^{[1][1]}	$S_{S} = 1.500 \text{ g}$
From <u>Figure 22-2 ^{[2] [2]}</u>	S ₁ = 0.606 g

Section 11.4.2 — Site Class

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class B, based on the site soil properties in accordance with Chapter 20.

Table 20.3–1 Site Classification

Site Class	vs	\overline{N} or \overline{N}_{ch}	_ s _u
A. Hard Rock	>5,000 ft/s	N/A	N/A
B. Rock	2,500 to 5,000 ft/s	N/A	N/A
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50	>2,000 psf
D. Stiff Soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf
E. Soft clay soil	<600 ft/s	<15	<1,000 psf
	10 ft of soil hav > 20, ≥ 40%, and rength s _u < 500	ving the characteristics:	
F. Soils requiring site response analysis	See	e Section 20.3.1	

F. Soils requiring site response analysis

in accordance with Section 21.1

For SI: $1ft/s = 0.3048 \text{ m/s} 1lb/ft^2 = 0.0479 \text{ kN/m}^2$

Section 11.4.3 — Site Coefficients and Risk-Targeted Maximum Considered Earthquake (\underline{MCE}_R) Spectral Response Acceleration Parameters

Site Class	Mapped MCE $_{\rm R}$ Spectral Response Acceleration Parameter at Short Period							
	$S_s \le 0.25$	$S_{s} = 0.50$	$S_{s} = 0.75$	$S_{s} = 1.00$	S _s ≥ 1.25			
А	0.8	0.8	0.8	0.8	0.8			
В	1.0	1.0	1.0	1.0	1.0			
С	1.2	1.2	1.1	1.0	1.0			
D	1.6	1.4	1.2	1.1	1.0			
Е	2.5	1.7	1.2	0.9	0.9			
F	See Section 11.4.7 of ASCE 7							

Table 11.4–1: Site Coefficient F_{a}

Note: Use straight–line interpolation for intermediate values of $\ensuremath{\mathsf{S}_{\mathsf{S}}}$

For Site Class = B and $\rm S_s$ = 1.500 g, $\rm F_a$ = 1.000

Table 11.4–2: Site Coefficient F_v

Site Class	Mapped MCE $_{\rm \tiny R}$ Spectral Response Acceleration Parameter at 1–s Period							
	$S_1 \leq 0.10$	$S_1 = 0.20$	$S_1 = 0.30$	$S_1 = 0.40$	$S_1 \ge 0.50$			
А	0.8	0.8	0.8	0.8	0.8			
В	1.0	1.0	1.0	1.0	1.0			
С	1.7	1.6	1.5	1.4	1.3			
D	2.4	2.0	1.8	1.6	1.5			
E	3.5	3.2	2.8	2.4	2.4			
F	See Section 11.4.7 of ASCE 7							

Note: Use straight-line interpolation for intermediate values of S₁

For Site Class = B and S_1 = 0.606 g, $F_v = 1.000$

Equation (11.4–1):	$S_{MS} = F_a S_S = 1.000 \times 1.500 = 1.500 g$
Equation (11.4–2):	$S_{M1} = F_v S_1 = 1.000 \times 0.606 = 0.606 g$
Section 11.4.4 — Design Spectral Acceleration	on Parameters
Equation (11.4–3):	$S_{DS} = \frac{2}{3} S_{MS} = \frac{2}{3} \times 1.500 = 1.000 \text{ g}$

Equation (11.4–4):

 $S_{D1} = \frac{2}{3} S_{M1} = \frac{2}{3} \times 0.606 = 0.404 \text{ g}$

Section 11.4.5 — Design Response Spectrum

From <u>Figure 22-12 [3] [3]</u>

 $T_L = 12$ seconds

Section 11.4.6 — Risk-Targeted Maximum Considered Earthquake (MCE_R) Response Spectrum

The MCE_{R} Response Spectrum is determined by multiplying the design response spectrum above

Section 11.8.3 — Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F

From <u>Figure 22-7</u>^{[4][4]}

Equation (11.8-1):

 $PGA_{M} = F_{PGA}PGA = 1.000 \times 0.537 = 0.537 g$

		Table 11.8-1: S	Ite Coefficient F _{PG}	δA			
Site	Маррес	I MCE Geometri	c Mean Peak Gr	ound Acceleration	on, PGA		
Class	PGA ≤ 0.10	PGA = 0.20	PGA = 0.30	PGA = 0.40	PGA ≥ 0.50		
А	0.8	0.8	0.8	0.8	0.8		
В	1.0	1.0	1.0	1.0	1.0		
С	1.2	1.2	1.1	1.0	1.0		
D	1.6	1.4	1.2	1.1	1.0		
Е	2.5	1.7	1.2	0.9	0.9		
F	See Section 11.4.7 of ASCE 7						

Note: Use straight-line interpolation for intermediate values of PGA

For Site Class = B and PGA = 0.537 g, F_{PGA} = 1.000

Section 21.2.1.1 — Method 1 (from Chapter 21 – Site-Specific Ground Motion Procedures for Sei Design)

From Figure	22-17	[5] [5]
-------------	-------	---------

From Figure 22-18 [6] [6]

 $C_{R1} = 0.996$

 $C_{RS} = 1.047$

PGA = 0.537

Section 11.6 — Seismic Design Category

Table 11.6-1 Seismic Design Cate	egory Based on Short Period Response Acceleration Parameter

	RISK CATEGORY						
VALUE OF S _{DS}	I or II	III	IV				
S _{DS} < 0.167g	А	А	А				
$0.167g \le S_{_{DS}} < 0.33g$	В	В	С				
$0.33g \le S_{DS} < 0.50g$	С	С	D				
$0.50g \leq S_{DS}$	D	D	D				

For Risk Category = I and S_{DS} = 1.000 g, Seismic Design Category = D

	RISK CATEGORY					
VALUE OF S _{D1}	I or II	III	IV			
S _{D1} < 0.067g	A	A	A			
$0.067g \le S_{D1} < 0.133g$	В	В	С			
$0.133g \le S_{D1} < 0.20g$	С	С	D			
$0.20g \leq S_{D1}$	D	D	D			

For Risk Category = I and S_{D1} = 0.404 g, Seismic Design Category = D

Note: When S_1 is greater than or equal to 0.75g, the Seismic Design Category is **E** for buildings in Risk Categories I, II, and III, and F for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with Table 11.6-1 or 11.6-2" = D

Note: See Section 11.6 for alternative approaches to calculating Seismic Design Category.

References

- 1. Figure 22-1: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-1.pdf
- 2. Figure 22-2: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-2.pdf
- 3. Figure 22-12: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-12.pdf
- 4. Figure 22-7: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-7.pdf
- 5. Figure 22-17: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010 ASCE-7 Figure 22-17.pdf
- 6. Figure 22-18: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-18.pdf

References

- 1. Figure 22-1: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-1.pdf
- 2. Figure 22-2: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-2.pdf
- 3. Figure 22-12: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-12.pdf
- 4. Figure 22-7: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-7.pdf
- 5. Figure 22-17: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-17.pdf
- 6. Figure 22-18: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-18.pdf

USGS Design Maps Summary Report

User-Specified Input

 Report Title
 Ridgewway Sat October 29, 2016 18:37:19 UTC

 Building Code Reference Document
 ASCE 7-10 Standard (which utilizes USGS hazard data available in 2008)

 Site Coordinates
 37.99415°N, 122.58654°W

 Site Soil Classification
 Site Class C – "Very Dense Soil and Soft Rock"

 Risk Category
 I/III/III

USGS-Provided Output

s _s =	1.500 g	S _{MS} =	1.500 g	S _{DS} =	1.000 g
S ₁ =	0.606 g	S _{M1} =	0.788 g	S _{D1} =	0.525 g

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

USGS Design Maps Detailed Report

ASCE 7-10 Standard (37.99415°N, 122.58654°W)

Site Class C - "Very Dense Soil and Soft Rock", Risk Category I/II/III

Section 11.4.1 — Mapped Acceleration Parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_s) and 1.3 (to obtain S_1). Maps in the 2010 ASCE-7 Standard are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 11.4.3.

From <u>Figure 22-1</u> ^{[1][1]}	$S_{S} = 1.500 \text{ g}$
From <u>Figure 22-2</u> ^{[2][2]}	S ₁ = 0.606 g

Section 11.4.2 — Site Class

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class C, based on the site soil properties in accordance with Chapter 20.

Site Class	v _s	\overline{N} or \overline{N}_{ch}	\bar{s}_{u}		
A. Hard Rock	>5,000 ft/s	N/A	N/A		
B. Rock	2,500 to 5,000 ft/s	N/A	N/A		
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50	>2,000 psf		
D. Stiff Soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf		
E. Soft clay soil	<600 ft/s	<15	<1,000 psf		
	 Any profile with more than 10 ft of soil having the characteristics: Plasticity index PI > 20, Moisture content w ≥ 40%, and Undrained shear strength s_u < 500 psf 				
F. Soils requiring site response analysis	See Section 20.3.1				

Table 20.3–1 Site Classification

in accordance with Section 21.1

For SI: $1 \text{ ft/s} = 0.3048 \text{ m/s} 1 \text{ lb/ft}^2 = 0.0479 \text{ kN/m}^2$

Site Class	Mapped MCE _R Spectral Response Acceleration Parameter at Short Period						
	$S_s \le 0.25$	$S_{s} = 0.50$	$S_{s} = 0.75$	$S_{s} = 1.00$	S _s ≥ 1.25		
А	0.8	0.8	0.8	0.8	0.8		
В	1.0	1.0	1.0	1.0	1.0		
С	1.2	1.2	1.1	1.0	1.0		
D	1.6	1.4	1.2	1.1	1.0		
E	2.5	1.7	1.2	0.9	0.9		
F	See Section 11.4.7 of ASCE 7						

Table 11.4–1: Site Coefficient F_a

Section 11.4.3 — Site Coefficients and Risk–Targeted Maximum Considered Earthquake (\underline{MC} Spectral Response Acceleration Parameters

Note: Use straight-line interpolation for intermediate values of S_s

For	Site	Class	=	C	and	S,	=	1.500	g,	F,	=	1.000	i
-----	------	-------	---	---	-----	----	---	-------	----	----	---	-------	---

Table 11.4–2: Site Coefficient F_v

Site Class	Mapped MCE $_{\rm R}$ Spectral Response Acceleration Parameter at 1–s Period						
	$S_1 \leq 0.10$	$S_1 = 0.20$	$S_1 = 0.30$	$S_1 = 0.40$	$S_1 \ge 0.50$		
А	0.8	0.8	0.8	0.8	0.8		
В	1.0	1.0	1.0	1.0	1.0		
С	1.7	1.6	1.5	1.4	1.3		
D	2.4	2.0	1.8	1.6	1.5		
E	3.5	3.2	2.8	2.4	2.4		
F	See Section 11.4.7 of ASCE 7						

Note: Use straight–line interpolation for intermediate values of ${\rm S}_{\rm 1}$

For Site Class = C and S $_{\rm i}$ = 0.606 g, $F_{\rm v}$ = 1.300

Equation (11.4–1): $S_{MS} = F_a S_S = 1.000 \times 1.500 = 1.500 g$

Equation (11.4–2): $S_{M1} = F_v S_1 = 1.300 \times 0.606 = 0.788 \text{ g}$

Section 11.4.4 — Design Spectral Acceleration Parameters

Equation (11.4–3):

Equation (11.4-4):

 $S_{D1} = \frac{2}{3} S_{M1} = \frac{2}{3} \times 0.788 = 0.525 \text{ g}$

 $S_{DS} = \frac{2}{3} S_{MS} = \frac{2}{3} \times 1.500 = 1.000 \text{ g}$

Section 11.4.5 — Design Response Spectrum

From <u>Figure 22-12</u>^{[3][3]}

 $T_{L} = 12$ seconds

Section 11.4.6 — Risk-Targeted Maximum Considered Earthquake (MCE_R) Response Spectrum

by 1.5. $S_{MS} = 1.500$ $S_{MS} = 1.500$ $S_{M1} = 0.788$ $S_{M1} = 0.788$ $T_0 = 0.105$ $T_5 = 0.525$ $T_5 = 0.525$ $T_{5} = 0.525$ $T_{5} = 0.780$

The $\mathrm{MCE}_{\scriptscriptstyle \rm R}$ Response Spectrum is determined by multiplying the design response spectrum above

Section 11.8.3 — Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F

From <u>Figure 22-7</u>^{[4][4]}

PGA = 0.537

Equation (11.8-1):

 $PGA_{M} = F_{PGA}PGA = 1.000 \times 0.537 = 0.537 g$

		Table 11.8-1: S	ite Coefficient F _{PC}	5A				
Site	Mapped MCE Geometric Mean Peak Ground Acceleration, PGA							
Class	PGA ≤ 0.10	PGA = 0.20	PGA = 0.30	PGA = 0.40	PGA ≥ 0.50			
А	0.8	0.8	0.8	0.8	0.8			
В	1.0	1.0	1.0	1.0	1.0			
С	1.2	1.2	1.1	1.0	1.0			
D	1.6	1.4	1.2	1.1	1.0			
Е	2.5	1.7	1.2	0.9	0.9			
F		See Se	ction 11.4.7 of	ASCE 7				

Note: Use straight-line interpolation for intermediate values of PGA

For Site Class = C and PGA = 0.537 g, $F_{_{\rm PGA}}$ = 1.000

Section 21.2.1.1 — Method 1 (from Chapter 21 – Site-Specific Ground Motion Procedures for Seismic Design)

From Figure 22-17 [5] [5]

 $C_{RS} = 1.047$

From Figure 22-18^{[6][6]}

 $C_{R1} = 0.996$

Section 11.6 — Seismic Design Category

VALUE OF S_{ds}	RISK CATEGORY					
	I or II	III	IV			
S _{DS} < 0.167g	А	А	А			
$0.167g \le S_{_{DS}} < 0.33g$	В	В	С			
$0.33g \le S_{DS} < 0.50g$	С	С	D			
0.50g ≤ S _{DS}	D	D	D			

Table 11.6-1 Seismic Design Category Based on Short Period Response Acceleration Parameter

For Risk Category = I and S_{DS} = 1.000 g, Seismic Design Category = D

Table 11.6-2 Seismi	c Design Category	Based on 1-S Period	Response Acce	leration Parameter
---------------------	-------------------	---------------------	---------------	--------------------

	RISK CATEGORY					
VALUE OF S _{D1}	I or II	III	IV			
S _{D1} < 0.067g	А	А	А			
$0.067g \le S_{_{D1}} < 0.133g$	В	В	С			
$0.133g \le S_{D1} < 0.20g$	С	С	D			
0.20g ≤ S _{D1}	D	D	D			

For Risk Category = I and $S_{_{D1}}$ = 0.525 g, Seismic Design Category = D

Note: When S_1 is greater than or equal to 0.75g, the Seismic Design Category is **E** for buildings in Risk Categories I, II, and III, and **F** for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with Table 11.6-1 or 11.6-2" = D

Note: See Section 11.6 for alternative approaches to calculating Seismic Design Category.

References

- 1. Figure 22-1: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-1.pdf
- 2. Figure 22-2: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-2.pdf
- 3. Figure 22-12: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-12.pdf
- 4. *Figure* 22-7: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-7.pdf
- 5. Figure 22-17: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-17.pdf
- 6. Figure 22-18: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-18.pdf

References

- 1. Figure 22-1: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-1.pdf
- 2. Figure 22-2: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-2.pdf
- 3. Figure 22-12: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-12.pdf
- 4. Figure 22-7: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-7.pdf
- 5. Figure 22-17: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-17.pdf
- 6. Figure 22-18: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-18.pdf