

Staff Report

TO:

Honorable Mayor and Members of the Town Council

FROM:

Mary Beth Van Voorhis, Planning Director

DATE:

July 9, 2019

RE:

REMOVAL AND ABATEMENT OF CONTAMINATED SOIL

3800 TAYLOR ROAD - A PORTION OF APN 044-133-003 AND 044-121-074

RECOMMENDATION

Town Council approve Resolution #19-XX authorizing the Town Manager to file a Notice of Categorical Exemption pursuant to the Class 1 and Class 30 Categorical Exemptions for the remediation and rehabilitation of Town owned property located at 3800 Taylor Road on a portion of APN 044-133-003 and 044-121-074.

ISSUE STATEMENT AND DISCUSSION

The Town owns a 4.08-acre property comprised of three parcels (APN 044-133-003, 044-080-063, and 044-121-074 and recently completed a merger of these parcels recorded on April 25, 2019, Document #2019-0025958-00. The property was formerly the site of WW Molding Company and prior to that C.R. England, Inc. The Town intends to transfer this property to the Loomis Mill Group for rehabilitation and future use.

The Town retained Geocon Consultants, Inc. to perform a Phase 1 Environmental Site Assessment on the property and prepare a Removal Action Workplan (RAW). The report identified certain environmental concerns on the property.

To remediate the environmental concerns identified by Geocon Consultants, Inc., Town Staff determined that remediation of the environmental concerns identified in the report are categorically exempt from analysis under the California Environmental Quality Act (CEQA) pursuant to the Class 30 Categorical Exemption (Minor Actions to Prevent, Minimize, Stabilize, Mitigate or Eliminate the Release or Threat of Release of Hazardous Waste or Hazardous Substances) as described in the CEQA Guidelines at 14 C.C.R. Section 15330 because the project has a total expected cost of less than \$1 million and consists of excavation and offsite disposal of contaminated soils.

Town Staff has also analyzed the proposed rehabilitation of the Property and determined that the rehabilitation of the Property is categorically exempt from analysis under CEQA pursuant to the Class 1 Categorical Exemption (Existing Facilities) as described in the CEQA Guidelines at 14 C.C.R. Section 15301 because the proposed rehabilitation would restore damaged facilities and bring them within current public health and safety standards.

CALIFORNIA ENVIRONMENTAL QUALITY ACT (CEQA) REQUIREMENTS

Filing the attached Notice of Exemption, Class 1 and Class 30 meets the California Environmental Quality Act requirements.

FINANCIAL AND/OR POLICY IMPLICATIONS

None.

ATTACHMENTS

Resolution #19-XX

TOWN OF LOOMIS

RESOLUTION NO. 19 – XX

RESOLUTION OF THE TOWN COUNCIL OF THE TOWN OF LOOMIS
AUTHORIZING THE TOWN MANAGER TO FILE A NOTICE OF CATEGORICAL
EXEMPTION FOR THE REMEDIATION AND REHABILITATION OF THE
PROPERTY LOCATED AT 3800 TAYLOR ROAD IN LOOMIS, CALIFORNIA

WHEREAS, the Town presently owns a 4.08-acre property comprised of three parcels (APNs 044-133-003, 044-080-063, and 044-121-074) ("Property") where W&W Moulding Co. and C.R. England, Inc. previously operated; and

WHEREAS, the Town retained Geocon Consultants, Inc. to perform a Phase I Environmental Site Assessment on the Property and prepare a Removal Action Workplan, attached hereto as Exhibit 1; and

WHEREAS, the Geocon Consultants, Inc. identified certain environmental concerns on the Property; and

WHEREAS, the Town intends to remediate the environmental concerns identified by Geocon Consultants; and

WHEREAS, Town Staff has analyzed the type of remediation activities necessary pursuant to the Removal Action Workplan and determined that remediation of the environmental concerns identified are categorically exempt from analysis under the California Environmental Quality Act ("CEQA") pursuant to the Class 30 Categorical Exemption (Minor Actions to Prevent, Minimize, Stabilize, Mitigate or Eliminate the Release or Threat of Release of Hazardous Waste or Hazardous Substances) as described in the CEQA Guidelines at 14 C.C.R. Section 15330 because the project has a total expected cost of less than \$1 million and consists of excavation and offsite disposal of contaminated soils; and

WHEREAS, the Town intends to transfer the Property to Loomis Mill Group for rehabilitation and use by Loomis Mill Group; and

WHEREAS, Town Staff has analyzed the proposed rehabilitation of the Property and determined that the rehabilitation of the Property is categorically exempt from analysis under CEQA pursuant to the Class 1 Categorical Exemption (Existing Facilities) as described in the CEQA Guidelines at 14 C.C.R. Section 15301 because the proposed rehabilitation would restore damaged facilities and bring them within current public health and safety standards.

NOW, THEREFORE, IT IS HEREBY RESOLVED that Council of the Town of Loomis hereby directs the Town Manager to file the Notice of Categorical Exemption pursuant to the Class 1 and Class 30 Categorical Exemptions for the remediation and rehabilitation of the Property, attached hereto as Exhibit 2.

PASSED AND ADOPTED by the Cour of July 2019 by the following vote:	ncil of the Town of Loomis on thisth da	ıy
AYES: NOES: ABSENT: ABSTAIN:		
ATTEST:	Tim Onderko, Mayor	-
Charleen Strock, Town Clerk		
ATTACHMENTS:		
Exhibit 1 – Removal Action Plan Exhibit 2 – Notice of Categorical Exemption		

PREPARED FOR:

TOWN OF LOOMIS 3665 TAYLOR ROAD LOOMIS, CALIFORNIA

PREPARED BY:

GEOCON CONSULTANTS, INC. 3160 GOLD VALLEY DRIVE, SUITE 800 RANCHO CORDOVA, CALIFORNIA 95742

TABLE OF CONTENTS

REMO	OVAL A	CTION WORKPLAN	PAGE
1.0	1.1 1.2 1.3 1.4	ODUCTION Site Setting Proposed Site Redevelopment Cleanup Oversight Responsibility Project Organization	1 1 2
2.0	2.2 2.3 2.4 2.5 2.6 2.7 2.8	Site Location and Description	333344444555
3.0	NATU 3.1 3.2 3.3	JRE, SOURCE AND EXTENT OF CONTAMINANTS Type, Source and Location of Contaminants Extent and Volume of Soil Contamination Health Effects of Contaminants	9 9
4.0	REMO	OVAL ACTION CLEANUP GOALS	10
5.0		DVAL ACTION IMPLEMENTATION Work Notification Health and Safety Plan Site Preparation and Utility Clearance Soil Excavation, Stockpiling, and Loading 5.4.1 Excavation and Stockpiling. 5.4.2 Loading 5.4.3 Dust Control 5.4.4 Equipment Decontamination Confirmation Sampling and Analysis Supplemental Groundwater Assessment Backfill and Site Restoration Waste-Profile Sampling Field Documentation Removal Action Completion Report	11111111
6.0		SPORTATION PLAN	

LIST OF ACRONYMS AND ABBREVIATIONS

AST	aboveground storage tank			
ATL	Advanced Technology Laboratories			
BTEX	benzene, toluene, ethylbenzene and total xylenes			
CEG	Certified Engineering Geologist			
COC	chain-of-custody			
CSWRCB	California State Water Resources Control Board			
CVRWQCB	Central Valley Regional Water Quality Control Board			
DRO	diesel-range organics			
DTSC	Department of Toxic Substances Control			
ESA	Environmental Site Assessment			
ft ²	square feet			
GRO	gasoline-range organics			
HSP	health and safety plan			
mg/kg	milligrams per kilogram			
mg/l	milligrams per liter			
ORO	oil-range organics			
PE	Professional Engineer			
RACR	Removal Action Completion Report			
RAW	Removal Action Workplan			
UCL	upper confidence limit			
UP	Union Pacific			
USA	Underground Service Alert			
USEPA	United States Environmental Protection Agency			
VCA	Voluntary Cleanup Agreement			
VOCs	volatile organic compounds			
yd ³	cubic yard			

1.3 Cleanup Oversight Responsibility

The Town of Loomis has entered into a VCA with the CVRWQCB. The CVRWQCB will provide regulatory oversight of the cleanup, including review/approval of this RAW including remedial soil excavation and offsite landfill disposal, confirmation sampling and analytical testing, supplemental groundwater assessment, and site restoration/closure activities. After the soil cleanup is completed and the supplemental groundwater assessment generally complies with low threat criteria for petroleum releases, the CVRWQCB will issue a regulatory case closure.

1.4 Project Organization

The organization, name, title/responsibility, phone numbers, and contact information of personnel associated with the RAW are summarized in the following table:

ORGANIZATION	NAME	TITLE OR RESPONSIBILITY	PHONE/EMAIL
CVRWQCB	Steve Meeks	Project Supervisor	916.464.4678 Steve.Meeks@watreboards.ca.gov
CVRWQCB	William Brattain, PE	Project Manager	916.464.4622 Bill.Brattain@waterboards.ca.gov
Town of Loomis	Sean Rabé	Loomis Town Manager	916.652.1840 Srabe@loomis.ca.gov
Geocon	John Juhrend, PE, CEG	Technical Manager	916.852.9118 juhrend@geoconinc.com
Geocon Nicole Hastings-Bethel		Project Manager	916.852.9118 hastings@geoconinc.com
Advanced Technology Laboratories	C I Rachelle Arana		562.989.4045 x237 Rachelle@atlglobal.com

2.1.5 Assessor's Parcel Numbers and Map

Placer County Assessor Parcel Numbers:

044-133-003, 044-080-063, and 044-

121-074

Acreage:

4.08 acres

Land Use and Zoning: Currently vacant; Zoned CG, General Commercial.

2.1.6 Ownership

The current owner of the Site is the Town of Loomis.

2.1.7 Township, Range, Section and Meridian

The Site is in in the eastern portion of Section 9 of Township 11 North, Range 7 East, Mount Diablo Base and Meridian.

2.2 **Operational History and Status**

Business Type:

The Site is not currently used by or for any business.

Prior Land Use:

Prior to 2019 - The Site was operated as the W&W Moulding company since

the 1980s. Prior to that England Trucking operated a tractor

trailer truck facility including a diesel AST for refueling.

Facility Ownership/Operators:

There are no operating facilities on the Site.

Property Owners:

Town of Loomis

Surrounding Land Use:

Primarily commercial, railroad and light industrial

2.3 **Topography**

The United States Geological Survey Rocklin, California topographic map shows the topography of the Site as gently south-sloping at elevations ranging from approximately 350 to 370 feet above mean sea level.

2.4 Geology and Hydrogeology

Information regarding the geology and hydrogeology of the Site and vicinity was obtained from prior site investigation reports prepared by Geocon.

2.4.1 Geology and Soil Types

The Site is located in the southeastern Sacramento Valley, which is the northern portion of the Great Valley geomorphic province of California. The Sacramento Valley is bounded by the Sierra Nevada to the east, the Coast Ranges to the west, and drains west to the Sacramento-San Joaquin delta. The Sacramento Valley is predominantly filled with a thick sequence of Jurassic to Recent-age sedimentary deposits both continental and marine in origin.

of W&W Moulding, confirmed that England & Sons formerly operated a "large" diesel AST for refueling tractor trailer trucks through the early 1970s. Soil impacts were only identified in samples obtained from boring B1 located near the former diesel AST. Diesel concentrations of 3,400 and 1,700 milligrams per kilogram (mg/kg) were reported for soil samples obtained from boring B1 at depths of 2 and 6 feet, respectively. Forensic analysis of sample B1-2 indicated the diesel fuel was likely released into the environment prior to 1990. Diesel-impacted soil was observed in trenches T2 and T4.

2004 Limited ESA - We completed seven additional borings in June 2004 (B3 through B9) to further define the extent of diesel-impacted soil and groundwater. Diesel-impacted soil was identified in borings B3, B4, and B5 to a maximum depth of 6 feet. Groundwater samples obtained from borings B5, B6, and B8 contained diesel at concentrations ranging from 1.2 to 6.1 milligrams per liter (mg/l). Our referenced October 2004 Report was submitted to Ms. Wendy Cohen with the CVRWQCB by UP in December 2004. Based on information provided by Ms. Cohen in October 2008, the CVRWQCB did not actively required additional assessment or corrective action with respect to the identified diesel soil and groundwater impacts due to other priority hazardous substance release cases. Ms. Cohen indicated at that time that the CVRWQCB will be the lead oversight agency when corrective action and regulatory "no further action" closure status is pursued under the Spills, Leaks, Investigations and Cleanup program.

2008 Phase I and II ESA - We completed another seven borings and one trench in November 2008 (B10 through B16 and trench LT8), to further define the extent of diesel-impacted soil and groundwater identified on the Site near the former diesel AST. The approximate extent of diesel-impacted soil was defined as depicted on Figure 2. Diesel was detected in groundwater samples collected from each of the November 2008 perimeter borings at concentrations less than or near the CVRWQCB water quality objective (taste and odor threshold) of 0.1 mg/l.

<u>2019 Phase I ESA</u> - We completed a Phase I ESA in February 2019 that identified environmental concerns at the Site including the presence of documented diesel soil and groundwater impacts associated with the former diesel AST, stained soil areas, and a former railroad spur.

<u>2019 Structure Survey</u> - We completed an asbestos and lead-containing paint survey of the vacant onsite mill building. Asbestos was identified in samples of floor tile and roofing mastic. Appropriate asbestos abatement procedures were presented. Lead was not detected in paint samples at concentrations exceeding hazardous waste thresholds.

The 2019 Phase I ESA was submitted to the CVRWQCB who provided a written review letter dated May 15, 2019 requesting a workplan for additional site assessment. Geocon and CVRWQCB representatives subsequently met and determined that additional site assessment of soil and groundwater would be incorporated into this RAW.

Excerpts from the 2008 Phase I and II ESA Report including figures, data table summaries of the historical soil and groundwater data, and copies of boring and trench logs for the Site are in Appendix A. The approximate soil boring and trench locations are depicted on the Site Plan, Figure 2.

contain GRO or VOCs at concentrations exceeding the laboratory reporting limits. Metal concentrations were reported within the range of naturally occurring background levels. Based on the elevated DRO and ORO concentrations and visually stained soil, the soil stain area will be included within the planned soil removal areas.

Surface soil samples SS3 and SS4 collected from the former railroad spur contained metals at concentrations within the range of naturally occurring background levels. Based on the laboratory data and lack of field indicators of impacts (i.e. staining, odors, distressed vegetation, etc.), no further assessment is warranted for the former railroads spur area.

Composite sample SP-COMP collected from the planned import backfill material source contained respective DRO and ORO concentrations of 4.7 and 12 mg/kg. Metal concentrations were reported within the range of naturally occurring background levels. Based on the laboratory data and lack of field indicators of impacts (i.e. staining, odors, etc.), the import source should be suitable for use as remedial excavation backfill material.

A copy of the ATL analytical report is in Appendix B.

4.0 REMOVAL ACTION CLEANUP GOALS

The proposed cleanup goals for regulatory unrestricted residential land use are summarized below:

coc	Maximum Concentration (mg/kg)	Proposed Unrestricted Cleanup Goal (mg/kg)	Source
Diesel	7,100	260	San Francisco Bay Regional Water Quality Control Board's Residential Environmental Screening Level (ESL) for diesel, January 2019 (Revision 1)
Oil	28,000	1,000	Site-specific ceiling value reduced from San Francisco Bay Regional Water Quality Control Board's Tier 1 ESL for motor oil of 1,600 mg/kg, January 2019 (Revision 1)

mg/kg - milligrams per kilogram

The cleanup goals will be considered achieved when the analytical results of the confirmation soil samples collected from the excavation area indicate that any residual concentrations are at or below the respective screening levels. If one or more samples contain diesel or oil above the cleanup goal, then additional remedial excavation and confirmation sampling will be performed until the cleanup goal criteria is achieved.

Stockpiled soil will be managed to ensure that stormwater does not cause sediment-laden runoff from the stockpiles and that airborne dust is not generated. Excavated soil will be placed in the designated stockpile area on Town of Loomis property adjacent and west of the Site (Figure 4) on, and covered with, plastic sheeting, which will then be secured with weight and surrounded with stormwater best management practices such as straw wattles. Stockpiled soil will be characterized for waste disposal purposes as described in Section 5.4 and will not be stored onsite longer than 5 working days.

5.4.2 Loading

Following waste characterization and waste disposal facility acceptance of the stockpiled soil, the soil will be loaded into trucks for transportation to the waste disposal facility. A loader will be used to move soil from the stockpile to trucks. Additional truck loading details are provided in Section 6.1.2. Water spray will be applied prior to and during loading to minimize generation of airborne dust as described in Section 5.3.3.

5.4.3 Dust Control

During the soil-disturbing activities (e.g., excavation, stockpiling, and loading), water will be utilized to minimize or prevent generation of airborne dust. Water will be applied (sprayed) in work areas prior to daily work activities, during excavation/loading activities, and at truck staging/loading locations. Watering equipment will be continuously available to provide proper dust control. Soil-disturbing activities will be not performed during periods of high winds or during conditions when these activities cannot be prevented from generating visible airborne dust. The site safety officer will monitor onsite work for conditions that could require cessation of work.

5.4.4 Equipment Decontamination

Entry to the petroleum hydrocarbon-impacted areas will be limited to only authorized personnel and equipment to avoid unnecessary exposure and track-out of impacted soil to non-impacted areas of the Site or offsite. Trucks that are used for transporting excavated soil for offsite disposal will not require decontamination because they will not enter the impacted area. Excavation equipment that enters the diesel-impacted area will be dry-decontaminated in a designated area before leaving the Site.

5.5 Confirmation Sampling and Analysis

Following completed removal of petroleum hydrocarbon-impacted soil within the designated areas that exhibit field indicators of contamination (i.e. staining, odors, etc.), confirmation soil samples will be collected from the floor (and mid-point of the sidewall for the former diesel AST area) of the excavations for laboratory analysis to confirm the site cleanup goals have been met. We will collect soil samples from the former diesel AST area excavation bottom on a 20-by 20-foot grid pattern (minimum 6 samples) and one sidewall sample per approximately 50 linear feet of the excavation sidewalls (minimum 5 samples). Three confirmation soil samples will be collected from the base of the oil stain area excavation. The confirmation soil samples will be collected directly into laboratory-

5.10 Removal Action Completion Report

A Removal Action Completion Report (RACR) will be prepared and submitted to the CVRWQCB upon completion of the removal action. The RACR will document compliance and any deviations with this RAW, summarize the removal and offsite disposal of petroleum hydrocarbon-impacted soil, present the results of confirmation soil analytical data and supplemental groundwater assessment, and request regulatory closure status where appropriate. The RACR will include copies of the landfill disposal documents, laboratory reports, and site photographs.

6.3 Waste Shipment Documentation

For petroleum hydrocarbon-impacted soil that is transported offsite for landfill disposal as non-hazardous waste, a bill of lading or non-hazardous waste manifest will be used to document and accompany each truck shipment. At a minimum, the shipping document will include the name and address of the waste generator, transporter and disposal facility and a description and quantity of waste shipped. The Site Manager will maintain a copy of the shipping document for each truckload onsite until completion of the removal action. Following disposal, the transporter will provide copies of weigh tickets and invoices from the landfill.

APPENDIX

Photo No. 1 Southwesterly View of Exploratory Backhoe Trenches T4, T2 and T3 (Nov. 2000)

Photo No. 2 Soil Staining Observed in Exploratory Trench T4 (Nov. 2000)

PHOTOS NO. 1 & 2

Union Pacific Parcels 1 through 7

Loomis, California

GEOCON Project No. S8321-06-11

December 2008

Photo No. 5 View of Lumber and Cast Masonry Storage at W & W Moulding Facility (Parcel 3)

Photo No. 6 View of High-Hand Nursery Operations on Parcels 2 and 4

PHOTOS NO. 5 & 6

Union Pacific Parcels 1 through 7

Loomis, California

GEOCON Project No. S8321-06-11

December 2008

Project No. S8321-06-11 December 10, 2008 Page I of 2

TABLE 2 SUMMARY OF SOIL ANALYTICAL DATA - TITLE 22 METALS UNION PACIFIC PARCELS 1 THROUGH 7 LOOMIS, CALIFORNIA

		Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Соррег	Prog	Мођуваепип	Nickej	Selenium	Silver	Thallium	Vanadium		Mercury
Sample ID	Sample Date			•					Rest	ılts Reported as	mg/kg							
LTI-0	11/6/2008	<2.0	<1.0	120	<1.0	<1.0	21	6.2	15	2.3	<1.0	15	<1.0	<1.0	<1.0	37	31	<0.10
LT2-1	11/6/2008	3.9	6.5	5300(13)	<1.0	5.3	24	4.8	57	760(26)[1.8]	2.3	17	<1.0	<1.0	<1.0	. 26	4000(190)	0.34
LT5-0	11/6/2008	<2.0	<1.0	140	<1.0	<1.0	18	5.3	14	<1.0	<1.0	14	<1.0	<1.0	<1.0	34	30	<0.10
Composite SS1-0, SS2-0, SS3-0, SS4-0	11/6/2008	<2.0	12.0	93	<1.0	<1.0	19	6.1	18	15	<1.0	14	<1.0	<1.0	<1.0	34	46	<0.10
SS5-0	11/6/2008	<2.0	6.7	81	<1.0	<1.0	. 23	5.3	20	55(3.6)	<1.0	18	<1.0	<1.0	<1.0	31	84	<0.10
TTLC		500	500	10,000	75	100	2,500	8,000	2,500	1,000	3,500	2,000	100	500	700	2,400	5,000	20
10 x STLC		150	50	1,000	7.5	10	50	800	250	50	3,500	200	10	50	70	240	2,500	2.0
Published Background I	evels (mg/kg)	0.6	3.5	509	1.28	0.36	122	14.9	28.7	23.9	1.3	57	0.058	8.0	15.7	112	149	0.26
Residential CHHSLs		30	0.070	5,200	150	1.7	10,000/17	660	3,000	150	380	1,600	380	380	5.0	530	23,000	18

Notes:

Results in **BOLD** exceed California Hazardous Waste Threshold

mg/kg = Milligrams per kilogram

< = Less than the laboratory test method reporting limits

 $TTLC = Total\ Threshold\ Limit\ Concentrations\ (mg/kg)$

STLC = Soluble Threshold Limit Concentrations

¹Background: Mean Concentration - Background Concentrations of Trace and Major Elements in California Soils, U.C. Calif., March 1996

CHHSLs: California Human Health Screening Levels (Chromium III = 10,000; Chromium VI = 17)

(13) = Waste Extraction Test (WET) soluble results in milligrams per liter

 $\hbox{[1.8]$=$Toxicity Characteristic Leaching Procedure (TCLP) soluble results in milligrams per liter}$

TABLE 4 SUMMARY OF GROUNDWATER ANALYTICAL DATA UNION PACIFIC PARCELS 1 THROUGH 7 LOOMIS, CALIFORNIA

SAMPLE I.D.	SAMPLE DATE	TPHg (mg/l)	TPHd (mg/l)	BTEX (µg/l)
B5W	6/24/2004	0.22	6.1	<0.50
B6W	6/24/2004	<0.050	1.2	<0.50
B8W	6/24/2004	<0.050	3.5	<0.50
B10W1	11/5/2008		0.16*	
B11WI	11/5/2008		0.14*	grame.
B12W1	11/5/2008		0.090*	
B13W1	11/5/2008		0.14*	grintik
B14W1	11/5/2008		0.11*	
B15W1	11/5/2008		0.091*	
B16W1	11/5/2008		0.080*	
LT8W	11/6/2008		0.054*	

Notes:

TPHg = Total petroleum hydrocarbons as gasoline

TPHd = Total petroleum hydrocarbons as diesel

BTEX = Benzene, toluene, ethylbenzene and total xylenes

mg/l = milligrams per liter

μg/l = micrograms per liter

<= Less than laboratory test method detection limits

--- = Not analyzed

* = Silica gel cleanup

ROJECT NO.	S8321-0	5-04		•
DEPTH IN FEET PENETRAT. RESIST. BLOWS/FT.	SAMPLE NO.	BORING NO. B1 DATE DRILLED	SOIL (USCS)	HEADSPAC (PPM)
		EQUIPMENT GEOPROBE DRILLER V&W DRILLING		
		SOIL DESCRIPTION		
1 - 2 - 3 -	В1-2 1200	Loose, damp to moist, dark gray blue, fine to medium SAND, some silt, strong hydrocarbon odor	SM	49.2
4 5 - 6 -	B1-6 1205	WEATHERED GRANITIC BEDROCK Loose, damp to moist, gray-blue, fine to coarse SAND, strong hydrocarbon odor	SP	14.5
		REFUSAL - BORING TERMINATED AT 6.5 FEET		
	-			
	-			

Figure B1, Log of Boring B1, page 1 of 1

ENV_NO_WELL LOOMIS.GPJ 10/27/04

DODD TO ME WITH TOUT	T. I.	11	ENGINEER/GEOLOGIST:	,	WEST BOURGAULT
BORING ELEVATION:	NA.	ı	ENGINEER/GEOFOGIST:		MEDI DOOMGWODY
		5 E			

PRCJEC	T NO.	S8321	-06	-04		ì		
DEPTH IN FEET	SAMPLE · NO.	ГІТНОСОВУ	GROUNDWATER	ŠOIL CLASS (USCS)	BORING T1 ELEV. (MSL.) NA DATE COMPLETED 11/15/00 EQUIPMENT BACKHOE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
					MATERIAL DESCRIPTION			
- 0 -					Loose, dry, light brown, fine to medium SAND, some silt	_		,
- 2 - 	-	+ +			WEATHERED GRANITE - degree of weathering increases with depth			
4 -		+ +						
					TRENCH TERMINATED AT 5.5 FEET			

Figure B10, Log of Boring-T1, page 1 of 1

GEO_NO_WELL TRENCH.GPJ 10/27/04

an war a dan wor a	SAMPLING UNSUCCESSFUL		STANDARD PENETRATION TEST	DRIVE SAMPLE (UNDISTURBED)
SAMPLE SYMBOLS	disturbed or bag sample	-	CHUNK SAMPLE	▼ WATER TABLE OR SEEPAGE

PROJEC	CT NO.	S8321	-06	5 - 04		1		
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОДУ	GROUNDWATER	SOIL CLASS (USCS)	BORING T3 ELEV. (MSL.) NA DATE COMPLETED 11/15/00 EQUIPMENT BACKHOE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
	<u></u>				MATERIAL DESCRIPTION			
- 0 2 -					Loose, damp, light brown, fine to medium SAND, some silt			
					TRENCH TERMINATED AT 3 FEET			
		·		,				
							•	
								-

Figure B12, Log of Boring T3, page 1 of 1

GEO_NO_WELL TRENCH.GPJ 10/27/04

SAMPLE SYMBOLS	SAMPLING UNSUCCESSFUL	STANDARD PENETRATION TEST	DRIVE SAMPLE (UNDISTURBED)
	DISTURBED OR BAG SAMPLE	CHUNK SAMPLE	▼ WATER TABLE OR SEEPAGE

PROJE	CT NO.	S8321-	06-10			
DEPTH IN FEET	PENETRAT. RESIST. BLOWS/FT.	SAMPLE NO.	LITHOLOGY	BORING NO. B3 DATE DRILLED 6/24/04 WATER LEVEL (ATD)	SOIL	HEADSPACE
岛市	RES	SAN	. HT	EQUIPMENT CME 75 DRILLER V&W DRILLING	(USCS)	(PPM)
				SOIL DESCRIPTION		
	-	<u> </u>		ALLUVIUM		
- 1 -				Medium dense, moist, very dark gray (2.5Y N3), Silty SAND		
- 2	12			-	SM ·	
- 3 -	- 12	B3-3 0830		- hydrocarbon odor		32.3
- 4	-	,	$\prod_{i=1}^{n} \frac{1}{i}$	-		
- 5	> 50	B3-5.5 0840		Dense, moist, light gray (2.5Y N6), slightly Silty SAND, decomposed granodiorite, with hydrocarbon odor	SM-SP	36.0
- 6 · - 7 ·				BEDROCK Granodiorite: hard to weakly weathered, light gray (2.5Y N7)		
- 8 -	-			-		
- 9 -	-			· -		
- 10 -	- > 50	NOREC .	H	-		
- 11 -	1			· · · · -		
- 12	-			-		
- 13	┨ .			- hard drilling, rig bouncing		
- 14	-	-				
- 15 -	> 50	B3-15 0900		_		2.2
- 16 ·	-			REFUSAL - BORING TERMINATED AT 16 FEET NO GROUNDWATER ENCOUNTERED		
			.	·		

Figure B3, Log of Boring B3, page 1 of 1

ENV_NO_WELL UPSPUR GPJ 10/27/04

		TAXBURY WAS A SUSSESSED.	•
nonnici di esta monte. NA	ENGINEER/GEOLOGIST:	JOHN MATTEY	
BORING ELEVATION: NA	LITORIED CHOLOCODE.	O CARL I AIMAA A A MA	
	The state of the s		

S8321-06-10 PROJECT NO. **BORING NO. B5** LITHOLOGY SAMPLE SOIL WATER LEVEL (ATD) ____9.5' DATE DRILLED 6/24/04 HEADSPACE (USCS) (PPM) DRILLER V&W DRILLING CME 75 EQUIPMENT _ SOIL DESCRIPTION ALLUVIUM Medium dense, moist, very dark gray (2.5Y N3), Silty SAND, hydrocarbon odor SM 6 80.3 B5-3 1014 Dense, very moist, gray (2.5Y N5), slightly Silty SAND, decomposed granodiorite, hydrocarbon odor SM 50 58.6 B5-6 1020 BEDROCK Granodiorite: moderate hardness, wet, moderately weathered, 10 4.1 B5-10 1034 > 50 11 REFUSAL - BORING TERMINATED AT 11 FEET COLLECTED WATER SAMPLE B5W 1105

Figure B5, Log of Boring B5, page 1 of 1

ENV_NO_WELL UPSPUR.GPJ 10/27/04

		ł	ENGINEER/GEOLOGIST:	JOHN MATTEY	
BORING ELEVATION:	NA	ŀ	ENGINEEN GEOFOGOT.	O CHARLI LITURE THE T	
DOMING CPE A WITOM	TATY			A STATE OF THE PARTY OF THE PAR	

PROJECT NO. S8321-06-10 **BORING NO. B7** SAMPLE NO. LITHOLOGY SOIL DATE DRILLED 6/24/04 WATER LEVEL (ATD) HEADSPACE (USCS) (PPM) DRILLER V&W DRILLING **CME 75** EQUIPMENT . · SOIL DESCRIPTION SM FILL Dense, damp, light gray (2.5Y N7), Gravelly SAND ALLUVIUM Medium dense, damp, very dark, gray (2.5Y N3), Silty SAND SM 8 0.0 B7-3 1246 Dense, moist, gray (2.5Y N5), Silty SAND, decomposed granodiorite 5 SM 39 0.3 B7-6 1250 BEDROCK Granodiorite: hard, weakly weathered, gray (2.5Y N5) 10 > 50 11 0.0 B7-11 1300 12 **REFUSAL - BORING TERMINATED AT 12 FEET** NO GROUNDWATER ENCOUNTERED

Figure B7, Log of Boring B7, page 1 of 1

ENV_NO_WELL UPSPUR.GPJ 10/27/04

P		1	1	JOHN MATTEY
			I TO LOUI TOUR LOUIS ACTOR.	I S S LO IN I IN IN IN IN IN IN IN
BORING ELEVATION:	N A	E CONTRACTOR DE CONTRACTOR	ENGINEER/GEOLOGIST:	. R C D F R I N 1 V R PA 1 H 21/ I
I BURING PLEVALIUM	131.74		I THIGHTEDIA OFFICE CONT.	O CAME I AIMEAN AND A
	TITAL			

1 -	RESIST. BLOWS/FT.	SAMPLE . NO.	LITHOLOGY	DATE DRILLED 6/24/04 WATER LEVEL (ATD)	SOIL ·	HEADSPAC
1 -	BLV	کن ن	E			1 4000.00
2				EQUIPMENT CME 75 DRILLER V&W DRILLING	(USCS)	(PPM)
2				SOIL DESCRIPTION		
3 -	8	·		ALLUVIUM Medium dense, damp, olive brown (2.5Y 4/3), Silty SAND -	SM	
4 - 5 -	13	B9-3 1450		Medium dense, very moist, light olive brown (2.5Y 5/4), Silty SAND, decomposed granodiorite	SM	0.1
6 - 7 - 8 -		B9-6 1455		BEDROCK Granodiorite: hard, weakly weathered, gray (2.5Y, N5)		0.5
9 - 10 - 11 - 12 -	70	NOREC B9-10.5 1505		-		0.2
				REFUSAL - BORING TERMINATED AT 12 FEET NO GROUNDWATER ENCOUNTERED		
		•	,			
	•					

Figure B9, Log of Boring B9, page 1 of 1

ENV_NO_WELL UPSPUR.GPJ 10/27/04

				JOHN MATTEY
BORING ELEVATION:			ENGINEER/GEOLOGIST:	
	NA.			

_	LAT. T. FT.	끸) OGX	BORING NO. B10	SOIL	
DEPTH IN FEET	PENETRAT. RESIST. BLOWS/FT.	SAMPLE NO.	гітногодх	DATE DRILLED 11/5/08 WATER LEVEL (ATD) 21.5'	(USCS)	HEADSPACE (PPM)
Δ	PER PLA	Š	E	EQUIPMENTCME 75 w/ Hollow-stem augers DRILLERTest America		
				SOIL DESCRIPTION		
- 1 -	70	B10-1.5		RESIDUAL SOIL Very dense, moist, dark yellowish brown, Silty SAND, non-plastic, poorly graded, fine-grained, no hydrocarbon staining or odor	SM	0.0
- 2 - 3 - 4 - 5		0845		Very dense, moist, dark olive brown, poorly graded, SAND with silt, non-plastic, fine to medium-grained, completely weathered, no hydrocarbon staining or odor	SP	
- 6 - - 7 - - 8 -	50 FOR 6"	B10-6 0855		Very dense, moist, white and black, Silty SAND, non-plastic, fine to medium-grained, highly weathered, no hydrocarbon staining or odor	SM	0.0
- 9 10 11 12 13 14 -	50 FOR 6'	B10-11 0900			-	0.0
- 15 - - 16 - - 17 - - 18 -	50 FOR 6	B10-16 0905		- becomes poorly graded, fine to coarse-grained sand, no hydrocarbon staining or odor		0.0
	50 FOR 6	" B10-20 0921		Y	1	0.0
- 22 - - 23 -				- becomes wet		
- 24 -	1			BORING TERMINATED AT 24 FEET		

Figure A1, Log of Boring B10, page 1 of 1

ENV_NO_WELL LOOMIS UP PARCELS.GPJ 11/19/08

		┑	PMODIFICE OF OCICE	Mark Repking
BORING ELEV	ATION:	- 1	ENGINEER/GEOLOGIST:	Mark Repains
Donairo Bbo.		_		

PROJEC	JI NO.	S8321-	00-11			
DEPTH IN FEET	PENETRAT. RESIST. BLOWS/FT.	SAMPLE NO.	LITHOLOGY	BORING NO. B12 DATE DRILLED 11/5/08 WATER LEVEL (ATD) 6.0' EQUIPMENT CME 75 w/ Hollow-stem augers DRILLER Test America	(USCS)	HEADSPACE (PPM)
				SOIL DESCRIPTION		
- 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 10 - 10 - 10 - 10 - 10 - 10	31 50 FOR 1"	B12-3 1155 B12-6 1203			SM	0.0

Figure A3, Log of Boring B12, page 1 of 1

ENV_NO_WELL LOOMIS UP PARCELS.GPJ 11/19/08

BORING ELEVATION:][ENGINEER/GEOLOGIST:	Mark Repking	

PROJECT NO.	S8321	-06-11			
DEPTH IN FEET PENETRAT. RESIST. BLOWS/FT.	SAMPLE .NO.	гтногосу	BORING NO. B14 DATE DRILLED 11/5/08 WATER LEVEL (ATD) 8.5' EQUIPMENT CME 75 w/ Hollow-stem augers DRILLER Test America	SOIL (USCS)	HEADSPACE (PPM)
			SOIL DESCRIPTION		
- 1 - - 2 - - 3 - - 4 - - 5 -			FILL Loose, moist, dark yellowish brown and dark brown, poorly graded, fine-grained, Silty SAND, non-plastic, no hydrocarbon staining or odor	SM	
- 6 - ₁₃ - 7 - ₋ - 8 - ₋ - 9 -	B14-6 1415		GRANITIC ROCK Loose, very moist, brownish gray and black, poorly graded, fine-grained, Silty SAND, non-plastic, completely weathered - becomes dense, no hydrocarbon staining or odor - becomes wet	SM	0.0
- 10 - 50 FOR	2"B 4-10.5		- becomes moderately weathered Very dense, very dark gray, strong brown and white and black poorly graded, fine to medium-grained, SAND, non-plastic, moderately weathered, no hydrocarbon staining or odor REFUSAL - BORING TERMINATED AT 10.6 FEET	SP	0.0

Figure A5, Log of Boring B14, page 1 of 1

ENV_NO_WELL LOOMIS UP PARCELS.GPJ 11/21/08

	The same same and a contract	March Dan Indian
BORING ELEVATION:	ENGINEER/GEOLOGIST:	Mark Repking
BORING ELEVATION.	21.100.100.100	

PROJECT NO	. S8321-0	6-11			
DEPTH IN FEET FEET PENETRAT.	SAMPLE NO.	LITHOLOGY	BORING NO. B16 DATE DRILLED 11/5/08 WATER LEVEL (ATD) 5.0' EQUIPMENT CME 75 w/ Hollow-stem augers DRILLER Test America	SOIL (USCS)	HEADSPACE (PPM)
		SOIL DESCRIPTION			
- 1 2 3 4 5 -				SM	

Figure A7, Log of Boring B16, page 1 of 1

ENV_NO_WELL LOOMIS UP PARCELS.GPJ 11/19/08

	I mean man toron octor. Mande Doulting
DODBIO DI EMATIONA	ENGINEER/GEOLOGIST: Mark Repking
BORING ELEVATION:	Zittelit ibbit obe be sit it in
	· · · · · · · · · · · · · · · · · · ·

June 07, 2019

Nicole Hastings-Bethel Geocon Consultants, Inc. 3160 Gold Valley Drive, Suite 800 Rancho Cordova, CA 95742

Tel: (916) 852-9118 Fax:(916) 852-9132 ELAP No.: 1838 CSDLAC No.: 10196 ORELAP No.: CA300003

RE: ATL Work Order Number

: 1902180

Client Reference

: Loomis Former Mill, S8321-03-04

Enclosed are the results for sample(s) received on May, 31 2019 by Advanced Technology Laboratories. The sample(s) are tested for the parameters as indicated on the enclosed chain of custody in accordance with applicable laboratory certifications. The laboratory results contained in this report specifically pertains to the sample(s) submitted.

Thank you for the opportunity to serve the needs of your company. If you have any questions, please feel free to contact me or your Project Manager.

Sincerely,

Edgar Caballero

President & Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and its absence renders the report invalid. Test results contained within this data package meet the requirements of applicable state-specific certification programs. The report cannot be reproduced without written permission from the client and Advanced Technology Laboratories.

Geocon Consultants, Inc.

Project Number: Loomis Former Mill, S8321-03-04

3160 Gold Valley Drive, Suite 800

Report To: Nicole Hastings-Bethel

Rancho Cordova, CA 95742

Reported: 06/07/2019

Client Sample ID SS1-0 Lab ID: 1902180-01

Diesel Range Organics by EPA 8015B

Analyst: HT

Analyte	and the	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	SE SECTION	92	5.0	5	B9F0128	06/05/2019	06/06/19 13:35	70
ORO	erabitation	200	5.0	5	B9F0128	06/05/2019	06/06/19 13:35	
Surrogate: p-Terphenyl	TRAFFIGUE V	48.4 %	34 - 158		B9F0128	06/05/2019	06/06/19 13:35	

Geocon Consultants, Inc.

Project Number: Loomis Former Mill, S8321-03-04

3160 Gold Valley Drive, Suite 800

Report To: Nicole Hastings-Bethel

Rancho Cordova, CA 95742

Reported: 06/07/2019

Client Sample ID SS2-0 Lab ID: 1902180-02

Diesel Range Organics by EPA 8015B

Analyst: HT

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: p-Terphenyl	0%	34 - 158	i i	B9F0128	06/05/2019	06/06/19 14:27	S4

Volatile Organic Compounds by EPA 8260B

Analyst: VW

Analyte		Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
1,1,1,2-Tetrachloroethane	White to the pe	ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	-,,,,,,,,,,,,,,,,,,,,,,,
1,1,1-Trichloroethane		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
1,1,2,2-Tetrachloroethane		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
1,1,2-Trichloroethane		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
1,1-Dichloroethane		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
1,1-Dichloroethene		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
1,1-Dichloropropene		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
1,2,3-Trichloropropane		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
1,2,3-Trichlorobenzene		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
1,2,4-Trichlorobenzene		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
1,2,4-Trimethylbenzene		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
1,2-Dibromo-3-chloroprop	ane	ND	10	1	B9F0009	06/03/2019	06/03/19 12:49	
1,2-Dibromoethane		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
1,2-Dichlorobenzene		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
1,2-Dichloroethane		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
1,2-Dichloropropane		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
1,3,5-Trimethylbenzene		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
1,3-Dichlorobenzene		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
1,3-Dichloropropane		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
1,4-Dichlorobenzene		ND	5.0	1 1	B9F0009	06/03/2019	06/03/19 12:49	
2,2-Dichloropropane		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
2-Chlorotoluene		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
4-Chlorotoluene	tare te al	ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
4-Isopropyltoluene		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
Benzene		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
Bromobenzene		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
Bromochloromethane		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
Bromodichloromethane		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
Bromoform		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
Bromomethane		ND a	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	
Carbon disulfide		ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	

Geocon Consultants, Inc.

Project Number: Loomis Former Mill, S8321-03-04

3160 Gold Valley Drive, Suite 800

Report To: Nicole Hastings-Bethel

Rancho Cordova, CA 95742

Reported: 06/07/2019

Client Sample ID SS2-0 Lab ID: 1902180-02

Volatile Organic Compounds by EPA 8260B

Analyst: VW

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Vinyl chloride	ND	5.0	1	B9F0009	06/03/2019	06/03/19 12:49	1/2 (CONTRACT)
Surrogate: 1,2-Dichloroethane-d4	116 %	60 - 145		B9F0009	06/03/2019	06/03/19 12:49	
Surrogate: 4-Bromofluorobenzene	87.0 %	68 - 121		B9F0009	06/03/2019	06/03/19 12:49	
Surrogate: Dibromofluoromethane	117 %	65 - 137		B9F0009	06/03/2019	06/03/19 12:49	
Surrogate: Toluene-d8	92.1 %	82 - 119		B9F0009	06/03/2019	06/03/19 12:49	

Geocon Consultants, Inc.

Project Number: Loomis Former Mill, S8321-03-04

3160 Gold Valley Drive, Suite 800

Report To: Nicole Hastings-Bethel

Rancho Cordova, CA 95742

Reported: 06/07/2019

Client Sample ID SS4-0 Lab ID: 1902180-04

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	eas s eedt	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	e produce a service	ND	2.0	1	B9F0125	06/06/2019	06/06/19 14:54	
Arsenic		2.8	1.0	1	B9F0125	06/06/2019	06/06/19 14:54	
Barium		76	1.0	1	B9F0125	06/06/2019	06/06/19 14:54	
Beryllium		ND	1.0	1	B9F0125	06/06/2019	06/06/19 14:54	
Cadmium		ND	1.0	1	B9F0125	06/06/2019	06/06/19 14:54	
Chromium		20	1.0	1	B9F0125	06/06/2019	06/06/19 14:54	
Cobalt		5.4	1.0	1	B9F0125	06/06/2019	06/06/19 14:54	
Copper		16	2.0	. 1	B9F0125	06/06/2019	06/06/19 14:54	
Lead		9.4	1.0	1	B9F0125	06/06/2019	06/06/19 14:54	
Molybdenum		ND	1.0	1	B9F0125	06/06/2019	06/06/19 14:54	
Nickel		18	1.0	1	B9F0125	06/06/2019	06/06/19 14:54	
Selenium		ND	1.0	1	B9F0125	06/06/2019	06/06/19 14:54	
Silver		ND	1.0	1	B9F0125	06/06/2019	06/06/19 14:54	
Thallium		ND	1.0	1	B9F0125	06/06/2019	06/06/19 14:54	
Vanadium		27	1.0	1	B9F0125	06/06/2019	06/06/19 14:54	
Zinc		55	1.0	1	B9F0125	06/06/2019	06/06/19 14:54	

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK

Analyte	112	ere on A	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury		V 100 100 100 100	ND	0.10	1	B9F0143	06/06/2019	06/06/19 19:16	

Geocon Consultants, Inc.

Project Number: Loomis Former Mill, S8321-03-04

3160 Gold Valley Drive, Suite 800

Report To: Nicole Hastings-Bethel

Rancho Cordova, CA 95742

Reported: 06/07/2019

QUALITY CONTROL SECTION

Title 22 Metals by ICP-AES EPA 6010B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B9F0125 - EPA 3050B_S										
Blank (B9F0125-BLK1)					Prepared	l: 6/6/2019 A	nalyzed: 6/6/2	2019		
	ND	2.0	0.51		1		0.1			
Antimony	ND	1.0	0.31							
Arsenic										
Barium	ND	1.0	0.12							
Beryllium	ND	1.0	0.03							
Cadmium	ND	1.0	0.14							
Chromium	ND	1.0	0.26							
Cobalt	ND	1.0	0.07							
Copper	ND	2.0	0.19							
Lead	ND	1.0	0.18							
Molybdenum	ND	1.0	0.12							
Nickel	ND	1.0	0.18							
Selenium	ND	1.0	0.40							
Silver	ND	1.0	0.12							
Thallium	ND	1.0	0.38							
Vanadium	ND	1.0	0.06							
Zinc	ND	1.0	0.15							
LCS (B9F0125-BS1)					Prepared	l: 6/6/2019 A	nalyzed: 6/7/2	2019		
Antimony	45.8101	2.0	0.51	50.0000		91.6	80 - 120			
Arsenic	43.7575	1.0	0.12	50.0000		87.5	80 - 120			
Barium	46.0483	1.0	0.12	50.0000		92.1	80 - 120			
Beryllium	44.4508	1.0	0.03	50.0000		88.9	80 - 120			
Cadmium	43.5136	1.0	0.14	50.0000		87.0	80 - 120			
Chromium	46.4842	1.0	0.26	50.0000		93.0	80 - 120			
Cobalt	45.5802	1.0	0.07	50.0000		91.2	80 - 120			
Copper	46.1923	2.0	0.19	50.0000		92.4	80 - 120			
Lead	44.5814	1.0	0.18	50.0000		89.2	80 - 120			
Molybdenum	45.8577	1.0	0.12	50.0000		91.7	80 - 120			
Nickel	45.2224	1.0	0.18	50.0000		90.4	80 - 120			
Selenium	42.9618	1.0	0.40	50.0000		85.9	80 - 120			
Silver	43.1887	1.0	0.12	50.0000		86.4	80 - 120			
Thallium	45.7858	1.0	0.38	50.0000		91.6	80 - 120			
Vanadium	46.4954	1.0	0.06	50.0000		93.0	80 - 120			
Zinc	43.1018	1.0	0.15	50.0000		86.2	80 - 120			
	10,7070		ource: 19021		Prenareo		nalyzed: 6/7/	2019		
Duplicate (B9F0125-DUP1) Antimony	ND	2.0	0.51		ND	0.0.201711		NR	20	
Anumony	ND	1.0	0.12		ND			NR	20	
	125.002	1.0	0.12		307.722			84.5	20	R
Barium			0.12		ND			NR	20	K
Beryllium	ND	1.0	0.03		ND			INIX	20	

Geocon Consultants, Inc.

Project Number: Loomis Former Mill, S8321-03-04

3160 Gold Valley Drive, Suite 800

Report To: Nicole Hastings-Bethel

Rancho Cordova, CA 95742

Reported: 06/07/2019

Title 22 Metals by ICP-AES EPA 6010B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
			-							
Batch B9F0125 - EPA	3050B_S (continued)									
Matrix Spike Dup (B9F	0125-MSD1) - Continued		Source: 1902178-	01	Prepared	: 6/6/2019 A	Analyzed: 6/6/20	19		
Nickel	105.958	1.0	0.18	125.000	18.6761	69.8	37 - 108	2.80	20	
Selenium	86.4148	1.0	0.40	125.000	ND	69.1	48 - 95	0.945	20	
Silver	97.6670	1.0	0.12	125.000	ND	78.1	53 - 99	5.86	20	
Thallium	79.0515	1.0	0.38	125.000	ND	63.2	38 - 93	0.299	20	
Vanadium	134.948	1.0	0.06	125.000	36.6063	78.7	48 - 104	7.13	20	
Zinc	122.348	1.0	0.15	125.000	37.5676	67.8	24 - 111	3.97	20	

Geocon Consultants, Inc.

Project Number: Loomis Former Mill, S8321-03-04

3160 Gold Valley Drive, Suite 800

Report To: Nicole Hastings-Bethel

Rancho Cordova, CA 95742

Reported: 06/07/2019

Mercury by AA (Cold Vapor) EPA 7471A - Quality Control

, — ·									
	Result	PQL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B9F0143 - EPA 7471_S

Post Spike (B9F0143-PS1)

Source: 1902178-01

Prepared: 6/6/2019 Analyzed: 6/6/2019

Mercury

0.002848

2.00000E-3 0.000304

127

85 - 115

M1

Geocon Consultants, Inc.

Project Number: Loomis Former Mill, S8321-03-04

3160 Gold Valley Drive, Suite 800

Report To: Nicole Hastings-Bethel

Rancho Cordova, CA 95742

Reported: 06/07/2019

Diesel Range Organics by EPA 8015B - Quality Control

9.9	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B9F0128 - GCSEMI_DRO	_LL_S									
Blank (B9F0128-BLK1)					Prepared	l: 6/5/2019 A	Analyzed: 6/6/20	019		
DRO	ND	1.0	1.0							
ORO	ND	1.0	1.0					X , '		nod extends
Surrogate: p-Terphenyl	2.811			2.66667		105	34 - 158			
LCS (B9F0128-BS1)					Prepared	l: 6/5/2019	Analyzed: 6/6/20	019		
DRO	33.2987	1.0	1.0	33.3333		99.9	47 - 152	400		. Luis anni
Surrogate: p-Terphenyl	3.486			2.66667		131	34 - 158			
Matrix Spike (B9F0128-MS1)			Source: 1902	180-01	Prepared	l: 6/5/2019	Analyzed: 6/6/20	019		
DRO	88.0750	5.0	5.0	33.3333	91.5883	-10.5	34 - 130	13		M2
Surrogate: p-Terphenyl	1.413			2.66667		53.0	34 - 158			
Matrix Spike Dup (B9F0128-MSD1)			Source: 1902	180-01	Prepared	l: 6/5/2019	Analyzed: 6/6/20	019		
DRO	104.120	5.0	5.0	33.3333	91.5883	37.6	34 - 130	16.7	20	16232616
Surrogate: p-Terphenyl	1.262			2.66667		47.3	34 - 158			

Geocon Consultants, Inc.

Project Number: Loomis Former Mill, S8321-03-04

3160 Gold Valley Drive, Suite 800

Report To: Nicole Hastings-Bethel

Rancho Cordova, CA 95742

Reported: 06/07/2019

	Result		PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	di	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B9F0009 - MSVOA_S (con	tinued)										
Blank (B9F0009-BLK1) - Continued						Prepare	ed: 6/3/2019 A	analyzed: 6/3/	2019		
Dichlorodifluoromethane	ND		5.0	2.2							
Ethyl Acetate	ND		50	8.1							
Ethyl Ether	ND		50	6.1							
Ethyl tert-butyl ether	ND		5.0	0.67							
Ethylbenzene	ND		5.0	0.91							
Freon-113	ND		5.0	2.8							
Hexachlorobutadiene	ND		5.0	2.5							
Isopropylbenzene	ND		5.0	1.8							
m,p-Xylene	ND		10	1.5							
Methylene chloride	ND		5.0	2.3							
MTBE	ND		5.0	0.63							
n-Butylbenzene	ND		5.0	2.4							
n-Propylbenzene	ND		5.0	2.2							
Naphthalene	ND		5.0	0.97							
o-Xylene	ND		5.0	0.87							
sec-Butylbenzene	ND		5.0	2.3							
Styrene	ND		5.0	1.5							
tert-Amyl methyl ether	ND		5.0	0.59							
tert-Butanol	ND		100	19							
tert-Butylbenzene	ND		5.0	2.0							
Tetrachloroethene	ND		5.0	1.6							
Toluene	ND		5.0	0.94							
trans-1,2-Dichloroethene	ND		5.0	0.59							
trans-1,3-Dichloropropene	ND		5.0	2.1							
Trichloroethene	ND		5.0	3.1							
Trichlorofluoromethane	ND		5.0	1.4							
Vinyl acetate	ND		50	9.8							
Vinyl chloride	ND .		5.0	1.7		to of or L	New York	9.7	02:- 1		
Surrogate: 1,2-Dichloroethane-d4	48.45				50.0000		96.9	60 - 145			
Surrogate: 4-Bromofluorobenzene	45.18				50.0000		90.4	68 - 121			
Surrogate: Dibromofluoromethane	52.12				50.0000		104	65 - 137			
Surrogate: Toluene-d8	47.39				50.0000		94.8	82 - 119			
LCS (B9F0009-BS1)						Prepare	ed: 6/3/2019 A	Analyzed: 6/3/	/2019		
1,1,1,2-Tetrachloroethane	50.3700		5.0	0.96	50.0000	0	101	82 - 114			
1,1,1-Trichloroethane	48.6300		5.0	1.1	50.0000		97.3	70 - 121			
1,1,2,2-Tetrachloroethane	44.6600		5.0	0.62	50.0000		89.3	65 - 116			
1,1,2-Trichloroethane	42.2400		5.0	1.6	50.0000		84.5	73 - 114			
1,1-Dichloroethane	43.4100		5.0	0.81	50.0000		86.8	69 - 117			
1,1-Dichloroethene	50.8100		5.0	2.6	50.0000		102	57 - 128			
1,1-Dichloropropene	47.8900		5.0	2.3	50.0000		95.8	76 - 122			
1,1 Diamotopropone	17.0700		5.5	2.5	20.000	-	20.0				

Geocon Consultants, Inc.

Project Number: Loomis Former Mill, S8321-03-04

3160 Gold Valley Drive, Suite 800

Report To: Nicole Hastings-Bethel

Rancho Cordova, CA 95742

Reported: 06/07/2019

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B9F0009 - MSVOA_S (co	ontinued)									
LCS (B9F0009-BS1) - Continued					Prepare	d: 6/3/2019 A	nalyzed: 6/3/2	2019		
m,p-Xylene	98.4200	10	1.5	100.000		98.4	85 - 118			
Methylene chloride	44.3500	5.0	2.3	50.0000		88.7	44 - 146			
MTBE	40.9500	5.0	0.63	50.0000		81.9	61 - 122			
n-Butylbenzene	55.8500	5.0	2.4	50.0000		112	78 - 135			
n-Propylbenzene	49.4600	5.0	2.2	50.0000		98.9	78 - 127			
Naphthalene	44.1900	5.0	0.97	50.0000		88.4	68 - 129			
o-Xylene	95.1700	5.0	0.87	100.000		95.2	86 - 118			
sec-Butylbenzene	55.2300	5.0	2.3	50.0000		110	80 - 127			
Styrene	46.7200	5.0	1.5	50.0000		93.4	85 - 117			
tert-Amyl methyl ether	36.8700	5.0	0.59	50.0000		73.7	48 - 135			
tert-Butanol	127.460	100	19	250.000		51.0	0 - 175			
tert-Butylbenzene	50.4200	5.0	2.0	50.0000		101	81 - 122			
Tetrachloroethene	49.6700	5.0	1.6	50.0000		99.3	77 - 122			
Toluene	100.860	5.0	0.94	100.000		101	79 - 114			
rans-1,2-Dichloroethene	44.7700	5.0	0.59	50.0000		89.5	66 - 125			
trans-1,3-Dichloropropene	43.8400	5.0	2.1	50.0000		87.7	76 - 120			
Trichloroethene	45.6100	5.0	3.1	50.0000		91.2	79 - 117			
Trichlorofluoromethane	55.1500	5.0	1.4	50.0000		110	55 - 133			
Vinyl acetate	534.160	50	9.8	500.000		107	52 - 141			
Vinyl chloride	35.7400	5.0	1.7	50.0000		71.5	58 - 132			
Surrogate: 1,2-Dichloroethane-d4	48.24	27 Apr	1 0	50.0000	a republic	96.5	60 - 145	R'n (4 1 1
Surrogate: 4-Bromofluorobenzene	49.74			50.0000		99.5	68 - 121			
Surrogate: Dibromofluoromethane	49.62			50.0000		99.2	65 - 137			
Surrogate: Toluene-d8	47.36			50.0000		94.7	82 - 119			
LCS Dup (B9F0009-BSD1)					Prepared	d: 6/3/2019 A	nalyzed: 6/3/2	019		
1,1,1,2-Tetrachloroethane	48.9100	5.0	0.96	50.0000		97.8	82 - 114	2.94	20	
1,1,1-Trichloroethane	46.5600	5.0	1.1	50.0000		93.1	70 - 121	4.35	20	
1,1,2,2-Tetrachloroethane	42.7700	5.0	0.62	50.0000		85.5	65 - 116	4.32	20	
1,1,2-Trichloroethane	41.9000	5.0	1.6	50.0000		83.8	73 - 114	0.808	20	
1,1-Dichloroethane	41.7000	5.0	0.81	50.0000		83.4	69 - 117	4.02	20	
1,1-Dichloroethene	49.5400	5.0	2.6	50.0000		99.1	57 - 128	2.53	20	
1,1-Dichloropropene	45.1000	5.0	2.3	50.0000		90.2	76 - 122	6.00	20	
1,2,3-Trichloropropane	45.2700	5.0	0.54	50.0000		90.5	65 - 116	5.96	20	
1,2,3-Trichlorobenzene	46.9100	5.0	1.2	50.0000		93.8	72 - 130	3.09	20	
1,2,4-Trichlorobenzene	48.7200	5.0	1.1	50.0000		97.4	74 - 141	2.85	20	
1,2,4-Trimethylbenzene	49.2700	5.0	1.5	50.0000		98.5	81 - 126	4.45	20	
1,2-Dibromo-3-chloropropane	50.5300	10	1.6	50.0000		101	63 - 126	7.85	20	
1,2-Dibromo-3-chloropropane	42.0500	5.0	3.2	50.0000		84.1	75 - 113	2.61	20	
1,2-Dioromoetnane				50.0000		84.1 94.7	73 - 113 83 - 114	4.66		
	47.3400	5.0	1.1						20	
1,2-Dichloroethane	46.8500	5.0	1.2	50.0000		93.7	73 - 115	3.85	20	

Geocon Consultants, Inc.

Project Number: Loomis Former Mill, S8321-03-04

3160 Gold Valley Drive, Suite 800

Report To: Nicole Hastings-Bethel

Rancho Cordova, CA 95742

Reported: 06/07/2019

	Result	PQI	L MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/k	g) (ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B9F0009 - MSVOA_S (co	ntinued)									
LCS Dup (B9F0009-BSD1) - Contin	ued				Prepare	d: 6/3/2019 A	nalyzed: 6/3/20	019		
Styrene	44.5300	5.0	1.5	50.0000		89.1	85 - 117	4.80	20	
tert-Amyl methyl ether	36.7000	5.0	0.59	50.0000		73.4	48 - 135	0.462	20	
ert-Butanol	55.7900	100	19	250.000		22.3	0 - 175	78.2	20	R
ert-Butylbenzene	46.9200	5.0	2.0	50.0000		93.8	81 - 122	7.19	20	
Tetrachloroethene	46.3900	5.0	1.6	50.0000		92.8	77 - 122	6.83	20	
Toluene	96.2800	5.0	0.94	100.000		96.3	79 - 114	4.65	20	
rans-1,2-Dichloroethene	43.3100	5.0	0.59	50.0000		86.6	66 - 125	3.32	20	
rans-1,3-Dichloropropene	42.5900	5.0	2.1	50.0000		85.2	76 - 120	2.89	20	
Trichloroethene	44.5600	5.0	3.1	50.0000		89.1	79 - 117	2.33	20	
Frichlorofluoromethane	52.2200	5.0	1.4	50.0000		104	55 - 133	5.46	20	
Vinyl acetate	500.320	50	9.8	500.000		100	52 - 141	6.54	20	
Vinyl chloride	34.2500	5.0	1.7	50.0000		68.5	58 - 132	4.26	20	
Surrogate: 1,2-Dichloroethane-d4	47.42		7	50.0000	76. 1	94.8	60 - 145	g to give		ji c, c
Surrogate: 4-Bromofluorobenzene	47.28			50.0000		94.6	68 - 121			
Surrogate: Dibromofluoromethane	49.17			50.0000		98.3	65 - 137			
'urrogate: Toluene-d8	46.78			50.0000		93.6	82 - 119			
Matrix Spike (B9F0009-MS1)	70170		Source: 1902		Drengre		nalyzed: 6/3/20	019		
,1,1,2-Tetrachloroethane	46.8500	5.0	0.96	50.0000	ND	93.7	45 - 121			
.1.1-Trichloroethane	54.2700	5.0	1.1	50.0000	ND	109	43 - 127			
,1,2,2-Tetrachloroethane	41.8000	5.0	0.62	50.0000	ND	83.6	32 - 128			
,1,2-Trichloroethane	39.5800	5.0	1.6	50.0000	ND	79.2	45 - 121			
,1-Dichloroethane	46.7500	5.0	0.81	50.0000	ND	93.5	46 - 119			
,1-Dichloroethene	59.4500	5.0	2.6	50.0000	ND	119	40 - 130			
,1-Dichloropropene	48.9800	5.0	2.3	50.0000	ND	98.0	45 - 130			
,2,3-Trichloropropane	44.0000	5.0	0.54	50.0000	ND	88.0	42 - 124			
,2,3-Trichlorobenzene	34.6600	5.0	1.2	50.0000	ND	69.3	4 - 135			
,2,4-Trichlorobenzene	38.2200	5.0	1.1	50.0000	ND	76.4	8 - 141			
,2,4-Trimethylbenzene	48.1900	5.0	1.5	50.0000	ND	96.4	30 - 136			
,2-Dibromo-3-chloropropane	49.7800	10	1.6	50.0000	ND	99.6	38 - 132			
,2-Dibromoethane	39.6200	5.0	3.2	50.0000	ND	79.2	45 - 121			
,2-Dichlorobenzene	42.3600	5.0	1.1	50.0000	ND	84.7	30 - 125			
,2-Dichloroethane	45.8500	5.0	1.1	50.0000	ND	91.7	51 - 115			
,2-Dichloropropane	39.5900	5.0	1.8	50.0000	ND	79.2	50 - 118			
	45.6600	5.0	1.7	50.0000	ND	91.3	29 - 137			
1,3,5-Trimethylbenzene	42.5700	5.0		50.0000	ND	85.1	30 - 124			
Market and a consistence of the contract of th	43.6300			50.0000	ND ND	87.3	49 - 116			
1,3-Dichloropropane		5.0		50.0000	ND	85.2	31 - 124			
1,4-Dichlorobenzene	42.5800	5.0					41 - 134			
2,2-Dichloropropane	44.7500	5.0		50.0000	ND	89.5	41 - 134 32 - 127			
2-Chlorotoluene	44.4900	5.0		50.0000	ND	89.0				
4-Chlorotoluene	45.0900	5.0	1.5	50.0000	ND	90.2	34 - 124			

Geocon Consultants, Inc.

Project Number: Loomis Former Mill, S8321-03-04

3160 Gold Valley Drive, Suite 800

Report To: Nicole Hastings-Bethel

Rancho Cordova, CA 95742

Reported: 06/07/2019

		Result		QL MDL	Spike	Source		% Rec		RPD	
Analyte	10	(ug/kg)	(ug	/kg) (ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B9F0009 - MSV	OA_S (co	ntinued)									
Matrix Spike (B9F0009-I	MS1) - Cor	ntinued 4		Source: 190	2195-01	Prepar	ed: 6/3/2019 A	Analyzed: 6/3/2	2019		vi3V and subt
Trichloroethene		46.1500	5.	0 3.1	50.0000	ND	92.3	36 - 142			
Trichlorofluoromethane		63.5000	5.	0 1.4	50.0000	ND	127	37 - 135			
Vinyl acetate		415.930	5	9.8	500.000	ND	83.2	0 - 136			
Vinyl chloride		41.4200	5.		50.0000	ND	82.8	42 - 131			
Surrogate: 1,2-Dichloroeti	hane-d4	52.06	771	6.00	50.0000	nakho!	104	60 - 145	COMP. IN		e (j)
Surrogate: 4-Bromofluoro		47.99			50.0000		96.0	68 - 121			
Surrogate: Dibromofluoro		54.30			50.0000		109	65 - 137			
Surrogate: Toluene-d8		47.47			50.0000		94.9	82 - 119			
Matrix Spike Dup (B9F0	000 MSD1	1 (a) (b)		Source: 190	2105-01	Drenar	ed: 6/3/2019 A	nalyzed: 6/3/	2019		
	009-1412D1		+1/-2			E) 1997.		F-6			
1,1,1,2-Tetrachloroethane		45.7000	5.		50.0000	ND	91.4	45 - 121	2.49	20	
1,1,1-Trichloroethane		49.7600	5.		50.0000	ND	99.5	43 - 127	8.67	20	
1,1,2,2-Tetrachloroethane		43.4400	5.		50.0000	ND	86.9	32 - 128	3.85	20	
1,1,2-Trichloroethane		41.0800	5.		50.0000	ND	82.2	45 - 121	3.72	20	
,1-Dichloroethane		43.6700	5.	0.81	50.0000	ND	87.3	46 - 119	000 6.81	20	
,1-Dichloroethene		54.0100	5.	0 2.6	50.0000	ND	108	40 - 130	9.59	20	
,1-Dichloropropene		44.3700	5.	0 2.3	50.0000	ND	88.7	45 - 130	9.88	20	
,2,3-Trichloropropane		46.0600	5.	0.54	50.0000	ND	92.1	42 - 124	4.57	20	
,2,3-Trichlorobenzene		32.7800	5.	0 1.2	50.0000	ND	65.6	4 - 135	5.58	20	
,2,4-Trichlorobenzene		34.4800	5.	0 1.1	50.0000	ND	69.0	8 - 141	10.3	20	
,2,4-Trimethylbenzene		43.8900	5.	0 1.5	50.0000	ND	87.8	30 - 136	9.34	20	
,2-Dibromo-3-chloroprop	ane	53.2200	1	1.6	50.0000	ND	106	38 - 132	6.68	20	
,2-Dibromoethane		41.3000	5.	0 3.2	50.0000	ND	82.6	45 - 121	4.15	20	
,2-Dichlorobenzene		39.9100	5.	0 1.1	50.0000	ND	79.8	30 - 125	5.96	20	
,2-Dichloroethane		45.8900	5.	0 1.2	50.0000	ND	91.8	51 - 115	0.0872	20	
,2-Dichloropropane		38.9900	5.		50.0000	ND	78.0	50 - 118	1.53	20	
1,3,5-Trimethylbenzene		41.1300	5.		50.0000	ND	82.3	29 - 137	10.4	20	
,3-Dichlorobenzene		39.0100	5.		50.0000	ND	78.0	30 - 124	8.73	20	
,3-Dichloropropane		43.0900	5.		50.0000	ND	86.2	49 - 116	1.25	20	
,4-Dichlorobenzene		39.5300	5.		50.0000	ND	79.1	31 - 124	7.43	20	
2,2-Dichloropropane		40.4600	5.		50.0000	ND	80.9	41 - 134	10.1	20	
2-Chlorotoluene		41.0500	5.		50.0000	ND	82.1	32 - 127	8.04	20	
-Chlorotoluene		41.4200	5.		50.0000	ND	82.8	34 - 124	8.48	20	
Chrotolitene Isopropyltoluene		43.9600	5.		50.0000	ND	87.9	26 - 141	13.3	20	
			_				91.3	48 - 117	4.92	20	
Benzene Bromohonzono		91.3100	5.		100.000	ND		40 - 117	4.53	20	
Bromobenzene		40.1400	5.		50.0000	ND	80.3	48 - 117			
Bromochloromethane		41.4600	5.		50.0000	ND	82.9		2.74	20	
Bromodichloromethane		44.1800	5.		50.0000	ND	88.4	49 - 115	0.429	20	
Bromoform		46.7400	5.		50.0000	ND	93.5	42 - 127	4.66	20	
Bromomethane		40.5800	5.		50.0000	ND	81.2	19 - 157	11.6	20	
Carbon disulfide		47.7700	5.	0 3.5	50.0000	ND	95.5	34 - 138	12.0	20	

Geocon Consultants, Inc.

Project Number: Loomis Former Mill, S8321-03-04

3160 Gold Valley Drive, Suite 800

Report To: Nicole Hastings-Bethel

Rancho Cordova, CA 95742

Reported: 06/07/2019

Volatile Organic Compounds by EPA 8260B - Quality Control (cont'd)

	Result	PQL	Spike	Source		% Rec	, x	RPD	of the agent
Analyte	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B9F0009 - MSVOA_S (continued)

Matrix Spike Dup (B9F0009-MSD1) - Continued

Source: 1902195-01

Prepared: 6/3/2019 Analyzed: 6/3/2019

Surrogate: Toluene-d8

48.09

50.0000

96.2

82 - 119

Tel: (562) 989-4045 • Fax: (562) 989-4040 3275 Walnut Ave., Signal Hill, CA 90755

CHAIN OF CUSTODY RECORD

S. # OF SAMPLES MATCH COC ATLCOC Ver:20180321 7. COOLER TEMP, deg C: Condition ☐ ☐ 6. PRESERVED 0 z\ D For Laboratory Use Only 3. CONTAINER INTACT 2. HEADSPACE (VOA) Condition O ATL **Method of Transport**

(<u>Instruction</u> : Complete all shaded areas. Address: ≋3160 Gold Valley.Dr	<u>រក</u> : Complet Address: ្ន	ilete all shaded areas. 3160 Gold Valley Drive,	ded ared I Valley I	še,	Suite 800		Odles		4. SE	4. SEALED	Tel	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2-9118		\mathcal{E}'
Geocon Consultants, Inc	10.	ΙŌ	City:	Rancho Cordova	rdova				State:	5	Zip: 9	95742	Fax:	(916) 852-9132	9.433		
SEND	SEND REPORT TO:				SEN	SEND INVOICE TO	CE TO:				ime as S	same as SEND REPORT	ľ	END.			19
e Hustinas	hastlaaso acocor	Me com	Attn:	•						Email				5 H	Excel	\$ **	Koutine
Geocon Cónsultants, Inc	nc.		Company:												0 Equis	0 0	□ Caltrans □ Legal
3160 Gold Valley Drive, Suite 800	te 800	44	Address: "													<u></u>	□ RWQCB □ Level IV
Rancho Cordova	State: CA	Zip: 95742 City:	٠٨.						State	ú	Zip			1		0	
11.14	Quote #: Special	Special Instructions/Comments	its:			Reque	Requested Analysis	alysis			San	Sample Matrix	trix	8 	Container		
S 831 - 03 - 04 mpler:	#: Q.		(seliteloV)	(Volatiles)	chlorine Pesticides)	(Title 22 Metals)						}	(TAT) 0 20 11 b	(TAT) əmiT b	VOA; 3=Liter; 4=Pint; = Canlater i; 2=Plastiq: 3=Metal	HCI; Z=HNO3; 3=HZSO4;	
	Sample Description	ion	769 /	(ояэ	(PCBs)	0004						atawo Rataw		tity		τίνε: 1= πίνε: 1=	rls
	Sample ID / Location	Date	Time)5108	2808						2011D 201F	WASTE	סור	uenC		=4C; 2=;	eway
0-188		5/28/19	2:35	× W	46 46 46 46 46 46 46 46 46 46 46 46 46 4			18/18 1814 1815	2006 安全				20 E)	ı M	, a	.
852.0	.0	(G/24/A)	9:30	× × ×	建造 基定 建定	×					8			2	۳	3	
283	<i>o</i> .	5/24/19	25.76			×					۶			ر ارک	m	5	
0-255	.0	5/29/9	03.6			×		200 200 200			2			<u>-</u>	M	3	
202	9-101-05	5/29/19	9.75	×		×					Ж			ر کا	n	3	
														562			
										(1) (3) (3) (3) (3)							
								ing in The same Services									
							2/4				7 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3		920 1920 1941				
lie recelving hours; 7:30 AM to 7:30 PM Monday - Friday, Saurday 8:00 lies submitted AFTER 3:00 PM are considered received the following by blowing turnarout thre conditions apply: TMT = 0:300% surcharge SAME BUSINESS DAY (Foceived by 9:00 AM TMT = 1:000% surcharge NEXT BUSINESS DAY (FOR 5:00 PM) TMT = 1:000% surcharge NEXT BUSINESS DAY (COB 5:00 PM) TMT = 1:00% surcharge ATH BUSINESS DAY (COB 5:00 PM) TMT = 1:00% surcharge ATH BUSINESS DAY (COB 5:00 PM) TMT = 1:00% surcharge ATH BUSINESS DAY (COB 5:00 PM) TMT = 1:00% SURCHARGE SH BUSINESS DAY (COB 5:00 PM) TMT = 1:00% SURCHARGE SH BUSINESS DAY (COB 5:00 PM) Send, hollday, after-hours work ask for quote.	rurday 8:00 AM to 12:00 PM. sllowing business day at 8:00 AM. sl. 9:00 AM sl. 19:00	to the subcontract lab — ask for quote. 6. Liquid and solld samples will be disposed of ahear 45 calendar days from receipt of samples; alr samples will be disposed of late 14 calendar days after receipt of sample. 7. Electronic records maintained for five [5] years from report date. 8. Hard copy reports will be disposed of after 45 calendar days from report date. 9. Stongage and Report Fees: 1. Clauld & soild samples; Complimentary stonge for forty-five (45) calendar days from receipt of samples; \$2/sample/month if extended storage or hold is requested. At samples; \$2/sample/month if extended storage for mold caps from receipt of samples; \$20 sample/work if textended storage is requested. Hard copy and regenerated reports/FDDs; \$17.50 per hard copy report requested; \$50.00 per	for quote. Sposed of after 4: alendar days after live (5) years from 1 of after 45 caler limentary storag storage for ten (1 3 storage is reque (2 1 storage is reque (2	5 calendar da r receipt of ss n report date. idar days fron dar days fron de for forty-fiv e or hold is n e or hold is n col calendar d sted.	refrom receimples, report date e (45) calend; ays from rece ays from rece	ipt of sample of	es; air samp receipt of les;		regener nanalyzed sa na Baborator le laborator Matrix S perform	ated/reform imples: samples: will is ando y will rando wis/MSD or	atted report add 2 days t neur a dispo nly select fr te (MS/MS) your sampl	; \$35 per reg o analysis Ta sai fee of \$7 om all QC sa on all QC sa) at no cost. e, a charge v	regenerated/reformatted report, \$35 per reprocessed EDD. 10. Rush TCLP/STLC samples: add 2 days to analysis TAT for extraction procedure. 11. Unalwayberd samples will nave a disposal fee of 57 per sample. 12. The laboratory will anddomly select from all QC samples received the sample to spike for Matrix Spike/Matrix Spike Daplicate (MS/MSD) an ocest. However, iyou want the laboratory to additionally perform MS/MSD on your sample, a charge will be assessed for the specific sample used.	DD. tion proced ved the sam f you want t	ure. ple to spike ne laboratoi specific sam	for Matri ry to addii sple used.	x Spike/ thonally

Received by: (Signature and Printed Name)
Received by: (Signature and Printed Name) 00./ Date: 69/19

SMB

me

Date:

Signal Control of Cont Time: (5/2) 4///5, Received by: (Signature and Printed Name)

As the authorized agent of the company above, I hereby purchase laboratory services from ATL as shown above and hereby guarantee payment as quoted.

The 0.300% suchange State Business Day if received by 9:00 AM The 1.300% suchange State Business Day (1005 5:00 PM)
The 1.100% suchange NATO Business Day (1005 5:00 PM)
Th 2.300% suchange 30P BUSINESS DAY (1005 5:00 PM)
Th 4.300% suchange 30P BUSINESS DAY (1005 5:00 PM)
Th 5.100 Suchange 31P BUSINESS DAY (1005 5:00 PM)
Th 5.100 Suchange 31P BUSINESS DAY (1005 5:00 PM)
Th 5.100 SURCHARGE 5th BUSINESS DAY (1005 5:00 PM)
Th 5.100 Suchange 31P BUSINESS DAY (1005 5:00 PM)
Th 5.100 Suchange 31P BUSINESS DAY (1005 5:00 PM)
The 5.100 Suchange 31P BUSINESS DAY (1005 5:00 PM)
The Suchange 31P BUSINESS DAY (10 Relinquished by: (Signature and Printed Name) Page 29 of 29

To: Office of Planning and Research	From: (Public Agency): Town of Loomis
P.O. Box 3044, Room 113	PO Box 1330, 3665 Taylor Road
Sacramento, CA 95812-3044	Loomis, CA 95650
County Clerk	
County of: Placer County	(Address)
2954 Richardson Dr. Auburn, CA 95603	
Project Title: Removal and abatement of	contaminated soil from Town of Loomis owned property.
Project Applicant: Town of Loomis, PO Be	ox 1330, 3665 Taylor Road, Loomis, CA 95650 - (916) 652-1840
Project Location - Specific: 3800 Taylo	r Road, Loomis, CA 95650
A portion o	FAPN's 044-133-003 & 044-121-074
(Merged or	April 25, 2019, DOC 2019-0025958-00)
Project Location - City: Loomis, CA	Project Location - County: <u>Placer County</u>
stained soil areas, and a former railroad sp	pacts associated with a former diesel aboveground storage tank, ur as identified in the Phase 1 Environmental Site Assessment, 3800 ocon, dated February 20, 2019 in accordance with the Central Valley
Name of Public Agency Approving Project:	Town of Loomis, CA
Name of Person or Agency Carrying Out P	roject: Town of Loomis, CA
Exempt Status: (check one):	
□ Ministerial (Sec. 21080(b)(1); 152	268);
□ Declared Emergency (Sec. 21080	(b)(3); 15269(a));
□ Emergency Project (Sec. 21080(I	b)(4); 15269(b)(c));
XX Categorical Exemption. State type □ Statutory Exemptions. State code	and section number: <u>15330, Class 30 and 15301, Class 1.</u> number:

Reasons why project is exempt:

15330. Minor Actions to Prevent, Minimize, Stabilize, Mitigate or Eliminate the Release or Threat of Release of Hazardous Waste or Hazardous Substances.

Class 30 consists of any minor cleanup actions taken to prevent, minimize, stabilize, mitigate, or eliminate the release or threat of release of a hazardous waste or substance which are small or medium removal actions costing \$1 million or less.

- (a) No cleanup action shall be subject to this Class 30 exemption if the action requires the onsite use of a hazardous waste incinerator or thermal treatment unit or the relocation of residences or businesses, or the action involves the potential release into the air of volatile organic compounds as defined in Health and Safety Code Section 25123.6, except for small scale in situ soil vapor extraction and treatment systems which have been permitted by the local Air Pollution Control District or Air Quality Management District. All actions must be consistent with applicable state and local environmental permitting requirements including, but not limited to, off-site disposal, air quality rules such as those governing volatile organic compounds and water quality standards and approved by the regulatory body with jurisdiction over the site.
- (b) Examples of such minor cleanup actions include but are not limited to:
- (1) Removal of sealed, non-leaking drums or barrels of hazardous waste or substances that have been stabilized, containerized and are designated for a lawfully permitted destination;
- (2) Maintenance or stabilization of berms, dikes, or surface impoundments;

- (3) Construction or maintenance or interim of temporary surface caps;
- (4) Onsite treatment of contaminated soils or sludges provided treatment system meets Title 22 requirements and local air district requirements;
- (5) Excavation and/or offsite disposal of contaminated soils or sludges in regulated units;
- (6) Application of dust suppressants or dust binders to surface soils;
- (7) Controls for surface water run-on and run-off that meets seismic safety standards;
- (8) Pumping of leaking ponds into an enclosed container;
- (9) Construction of interim or emergency ground water treatment systems;
- (10) Posting of warning signs and fencing for a hazardous waste or substance site that meets legal requirements for protection of wildlife.

15301. Existing Facilities

Class 1 consists of the operation, repair, maintenance, permitting, leasing, licensing, or minor alteration of existing public or private structures, facilities, mechanical equipment, or topographical features, involving negligible or no expansion of use beyond that existing at the time of the lead agency's determination. The types of "existing facilities" itemized below are not intended to be all-inclusive of the types of projects which might fall within Class 1. The key consideration is whether the project involves negligible or no expansion of an existing use.

Examples include but are not limited to:

- (a) Interior or exterior alterations involving such things as interior partitions, plumbing, and electrical conveyances;
- (b) Existing facilities of both investor and publicly-owned utilities used to provide electric power, natural gas, sewerage, or other public utility services;
- (c) Existing highways and streets, sidewalks, gutters, bicycle and pedestrian trails, and similar facilities (this includes road grading for the purpose of public safety).
- (d) Restoration or rehabilitation of deteriorated or damaged structures, facilities, or mechanical equipment to meet current standards of public health and safety, unless it is determined that the damage was substantial and resulted from an environmental hazard such as earthquake, landslide, or flood;
- (e) Additions to existing structures provided that the addition will not result in an increase of more than:
- (1) 50 percent of the floor area of the structures before the addition, or 2,500 square feet, whichever is less; or
- (2) 10,000 square feet if:
- (A) The project is in an area where all public services and facilities are available to allow for maximum development permissible in the General Plan and
- (B) The area in which the project is located is not environmentally sensitive.
- (f) Addition of safety or health protection devices for use during construction of or in conjunction with existing structures, facilities, or mechanical equipment, or topographical features including navigational devices;
- (g) New copy on existing on and off-premise signs;
- (h) Maintenance of existing landscaping, native growth, and water supply reservoirs (excluding the use of pesticides, as defined in Section 12753, Division 7, Chapter 2, Food and Agricultural Code);
- (i) Maintenance of fish screens, fish ladders, wildlife habitat areas, artificial wildlife waterway devices, streamflows, springs and waterholes, and stream channels (clearing of debris) to protect fish and wildlife resources;
- (j) Fish stocking by the California Department of Fish and Game;
- (k) Division of existing multiple family or single-family residences into common-interest ownership and subdivision of existing commercial or industrial buildings, where no physical changes occur which are not otherwise exempt;
- (1) Demolition and removal of individual small structures listed in this subdivision;

- (1) One single-family residence. In urbanized areas, up to three single-family residences may be demolished under this exemption.
- (2) A duplex or similar multifamily residential structure. In urbanized areas, this exemption applies to duplexes and similar structures where not more than six dwelling units will be demolished.
- (3) A store, motel, office, restaurant, or similar small commercial structure if designed for an occupant load of 30 persons or less. In urbanized areas, the exemption also applies to the demolition of up to three such commercial buildings on sites zoned for such use.
- (4) Accessory (appurtenant) structures including garages, carports, patios, swimming pools, and fences.
- (m) Minor repairs and alterations to existing dams and appurtenant structures under the supervision of the Department of Water Resources.
- (n) Conversion of a single family residence to office use.
- (o) Installation, in an existing facility occupied by a medical waste generator, of a steam sterilization unit for the treatment of medical waste generated by that facility provided that the unit is installed and operated in accordance with the Medical Waste Management Act (Section 117600, et seq., of the Health and Safety Code) and accepts no offsite waste.
- (p) Use of a single-family residence as a small family day care home, as defined in Section 1596.78 of the Health and Safety Code.

Lead Agency Contact Person:	Sean Rabé, Town Manager	Area Code/Telephone/B	Extension: <u>916-652-1840</u>
	ant: tified document of exemption finding. ice of Exemption been filed by the put	olic agency approving th	ne project? . <u>XX</u> Yes□ No
Signature:	Date: <u>J</u>	lune 28, 2019 Title:	Planning Director
XX Si	gned by Lead Agency □ Signed by	⁄ Applicant	
Authority cited: Sectio Reference: Sections 2	ns 21083 and 21110, Public Resources Code 1108, 21152, and 21152.1, Public Resources	Date Received s Code.	for filing at OPR:

Revised 2011