

## City of Lucas Planning and Zoning Agenda Request November 10, 2022

Requester: Development Services Director Joe Hilbourn

#### **Agenda Item Request**

Consider a request by Preston Walhood, on behalf of Young Dean Homestead, Ltd., for a preliminary plat for Dean Estates on a parcel of land consisting of 44.185 acres, located in the John McKinney Survey, Abstract Number 596, creating 27 single-family lots and two common spaces on the east side of Stinson Road, approximately 55 feet south of the roundabout.

#### **Background Information**

This parcel of land is zoned R-1 and complies with the City's Comprehensive Plan. It is 44.185 acres, and the applicant is proposing 27 single-family lots and two common spaces. The civil construction plans were approved by the engineering department on November 1, 2022. Dean Estates is proposing a dead-end street that exceeds 600' and has greater than ten lots. Dean Estates is proposing a split entrance to allow for a second means of ingress/egress that is separated, a looped water main into Enchanted Creek Estates Phase 2, and an enlarged cul-de-sac turnaround in accordance with the requirements in 10.03.123 Streets and Drainage under section (a) Streets:

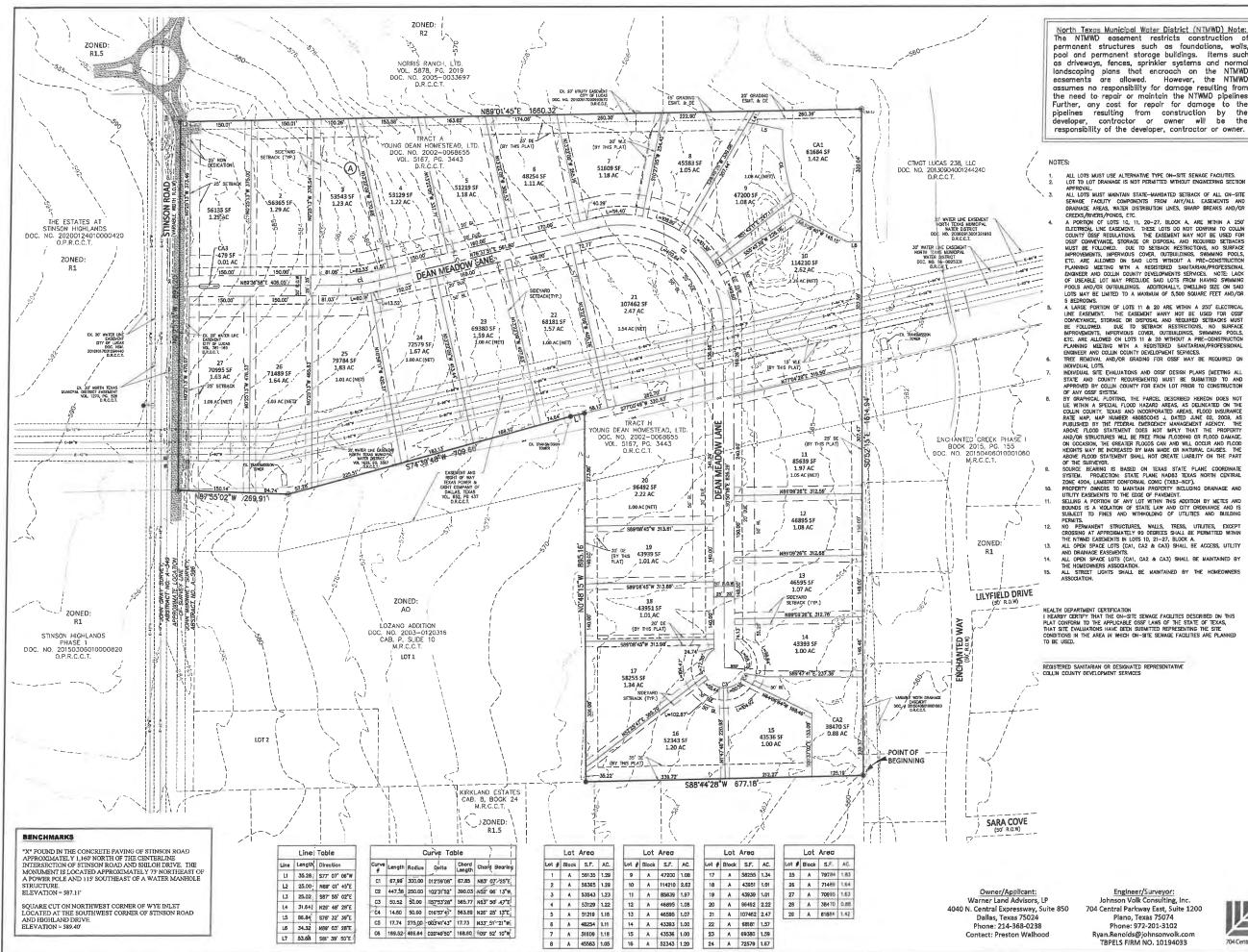
- (5) Where streets within the proposed subdivision are dictated by lot design to be cul-de-sacs, such cul-de-sac streets shall be provided with a permanent cul-de-sac having a minimum right-of-way radius of sixty feet (60') and shall not exceed six hundred feet (600') in length except in circumstances dictated by topography and existing development. Future streets that may offer a second point of access shall not be considered when measuring the length of cul-de-sac until the street is actually constructed. In situations where cul-de-sacs exceed the prescribed length by more than five percent (5%), a combination of the following based on the number of lots and dwelling units will be considered as a mitigating measure:
  - (A) A secondary emergency entrance/exit;
  - (B) Widening of the street and enlarging the cul-de-sac turnaround;
  - (C) Addition of fire hydrants; and
  - (D) Looped water system.

#### **Attachments/Supporting Documentation**

- 1. Preliminary plat
- 2. Location Map
- 3. Application
- 4. Construction plans
- 5. Tree Survey

#### **Budget/Financial Impact**




## City of Lucas Planning and Zoning Agenda Request November 10, 2022

#### Recommendation

Staff recommends approval of the preliminary plat as presented.

#### Motion

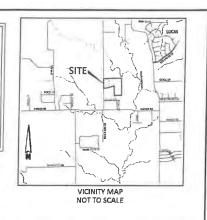
I make a motion to recommend to the City Council to approve/deny a request by Preston Walhood, on behalf of Young Dean Homestead, Ltd., for a preliminary plat for Dean Estates on a parcel of land consisting of 44.185 acres, located in the John McKinney Survey, Abstract Number 596, creating 27 single-family lots and two common spaces on the east side of Stinson Road, approximately 55 feet south of the roundabout.



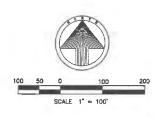
North Texas Municipal Water District (NTMWD) Note: The NTMWD easement restricts construction of permanent structures such as foundations, walls, permanent structures such as foundations, wolls, pool and permanent storage buildings. Items such as driveways, fences, sprinkler systems and normal landscoping plans that encroach on the NTMWD easements are allowed. However, the NTMWD assumes no responsibility for damage resulting from the need to repair or maintain the NTMWD pipelines for the program of the state for the state of the the Further, any cost for repair for damage to the pipelines resulting from construction by the pipelines resulting from construction by the developer, contractor or owner will be the responsibility of the developer, contractor or owner.

ALL LOTS MUST USE ALTERNATIVE TYPE ON-SITE SEWAGE FACILITIES. LOT TO LOT DRAINAGE IS NOT PERMITTED WITHOUT ENGINEERING SECTION

LOI TO LOI DRAIMAGE IS NOI PERMILED WITHOUT ENWIREENING SECTION APPROVAL ALL LOIS MUST MAINTAIN STATE-MAINDATED SETBACK OF ALL ON-SITE SEMAGE FACULTY COMPONENTS FROM ANT/ALL EASEMILTS AND DRAIMAGE AREAS, WATER DISTRIBUTION LINES, SHARP BREAKS AND/OR CREEKS/RWIREF/DONDS, TC.


CREDICS, RAVERS, POINDS, ETC. A PORTINO FOLDTS 10, 11, 20–27, BLOCK A, ARE WITHIN A 250' DECTINGAL LINE EASSNOTT. THESE LOTS DO NOT COMINITIN TO COLLIN COUNTY DOSF REGULATIONS. THE EASSNOTT MAY NOT BE USED FOR DSSF DOWNEYNINGE STORAGE OF DISFORM. MON REGULIRED STERACES MUST BE FOLLINGED. DUE TO SETERICA RESTRUCTIONS, NO SUFFACE INFROMMENTS, INFERIOUS COVER, OUTBILLIONSS, SWIMING POOLS, ETC. ARE ALLONED ON SAUD LOTS WITHOUT A PRE-CONSTRUCTION PLANNING MEETING WITH A REGISTRED SANITARIA/PROFESSIONAL PLANNING MEETING WITH A REGISTRED SANITARIA/PROFESSIONAL POOLS MAD TO CULIN COUNTY DEVELOPMENTS SERVICES. DO SAND POOLS MAD TO CULIN COUNTY DEVELOPMENTS SERVICES. POOLS AND /OR OUTBUILDINGS. ADDITIONALLY, DWELLING SIZE ON SAID LOTS MAY BE LIMITED TO A MAXIMUM OF 5,500 SQUARE FEET AND/OF

S BEDROMS. A LARGE PORTION OF LOTS 11 & 20 ARE WITHIN A 250' ELECTRICAL LINE FASSIMENT. THE EASEMENT MANY NOT BE USED FOR OSSF CONVEYANCE, STORAGE OR DISPOSAL AND REQUIRED SCIPACRSS MUST BE FOLLOWED. DUE TO SETBACK RESTRICTIONS, NO SURFACE INPROVEMENTS, IMPERVOUS COVER, OUTBUILDINGS, SWIMAING FOOLS, ETC. ARE ALLOWED ON LOTS IN & 20 WITHOUT A PRE-CONSTRUCTION PLANNING MEETING WITH A REOSTBED SANTARIAN/PROFESSIONAL ENGINEER AND COLLIN COUNTY DEVELOPMENT ESTINCES. TREE REMOVAL AND/OR GRADING FOR OSSF MAY BE REQUIRED ON INDIVIDUAL LOTS.


THEE REMUYAL AND/WALLAND CONTROL AND OSSF DESIGN PLANS (MEETING ALL INDIVIDUAL SITE EVALUATIONS AND OSSF DESIGN PLANS (MEETING ALL STATE AND COUNTY REQUIRIEMENTS) MUST BE SUBMITTED TO AND APPROVED BY COLLIN COUNTY FOR EACH LOT PRIOR TO CONSTRUCTION

OF ANY OSSE'SYSTEM. BY GRAPHICA, PLOTING, THE PARCEL DESCRIBED HEREON DOES NOT LIE WITHIN A SPECIAL FLOOD HAZARD AREAS, SLOOD INSURANCE COLLIN COLINY, TEXAS AND MORPORATED AREAS, FLOOD INSURANCE RATE MAP, MAP NUMBER 480850043 J, DATED JUNE 02, 2009, AS PUBLISHED BY THE FEDERAL BURGENCY MARCAELINT AGENCY. THE ABOVE FLOOD STATEMENT DOES NOT IMPLY THAT THE PROPERTY AND/OR STRUCTURES MILL BE FREE FROM FLOODING 08 FLOOD DAMAGE. ON OCCASION, THE GREATER FLOODS COM NOT NOT ADD DAMAGE. ON OCCASION, THE GREATER FLOODS COM NOT NOT ADD DAMAGES. THE SURVEYOR.

HEALTH DEPARTMENT CERTIFICATION I HEARY CERTIFY THAT THE ON-SITE SEWAGE FACILITES DESCRIBED ON THIS PLAT CONFORM TO THE APPLICABLE OSSF LAWS OF THE STATE OF TEXAS, THAT SITE EVALUATIONS HAVE BEEN SUBJUTTED REPRESENTING THE SITE CONDITIONS IN THE AREA IN WHICH ON-SITE SEWAGE FACILITIES ARE PLANNED TO BE USED.



| _          |                                                                                     |
|------------|-------------------------------------------------------------------------------------|
|            | LEGEND                                                                              |
| · ·        | Point of Curvature or Tangency on<br>Center Line                                    |
| •          | 1/2" iron rod w/ yellow plastic cap<br>stamped "JVC" set (unless otherwise noted)   |
|            | 1/2" iron rod found w/ yellow plastic cap<br>stamped "JVC" (unless otherwise noted) |
| AC         | Acre                                                                                |
| BL         | Building Line                                                                       |
| C1         | Curve No.                                                                           |
| ¢.         | Center Line                                                                         |
| <cm></cm>  | Control Monument                                                                    |
| DE         | Drainage Easement                                                                   |
| Esmt       | Easement                                                                            |
| L1         | Line No.                                                                            |
| C1         | Curve No.                                                                           |
| SF         | Square Feet                                                                         |
| UE         | Utility Easement                                                                    |
| WLE        | Water Line Easement                                                                 |
| U.T.E.     | Utility & Telecommunications Easement                                               |
| P.O.E.     | Positive Overflow Easement                                                          |
| W.M.E.     | Wall Mointenance Easement                                                           |
|            | T. = Official Public Records of Collin County, Texas                                |
| D.R.C.C.T. | = Deed Records of Collin County, Texas                                              |



PURPOSE OF PLAT THE PURPOSE OF THIS PLAT IS TO CREATE 27 RESIDENTIAL LOTS FROM A 44.084 ACRE TRACT OF LAND

#### PRELIMINARY PLAT **DEAN FARMS AT STINSON HIGHLAND**

LOTS 1-27, CA1 & CA2, BLOCK A 27 SINGLE FAMILY LOTS & 2 COMMON SPACES 44.084 ACRES OUT OF THE JOHN MCKINNEY SURVEY, ABSTRACT NO. 596 CITY OF LUCAS COLLIN COUNTY, TEXAS EXIST. ZONING: R1

> September 27, 2022 SHEET 1 OF 2

Engineer/Surveyor: Johnson Volk Consulting, Inc. 704 Central Parkway East, Suite 1200 Plano, Texas 75074 Phone: 972-201-3102 Ryan.Renolds@iohnsonvolk.com TBPELS FIRM NO. 10194033



| OWNER'S CERTIFICATION & DEDICATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SURVEYOR'S CERTIFICATE:                                                                                                                                                                                                                                                                                                                                | CERTIFICATE OF APPROVAL:                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STATE OF TEXAS §<br>COUNTY OF COLLIN §                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NOW, THEREFORE KNOW ALL MEN BY THESE PRESENTS:                                                                                                                                                                                                                                                                                                         | This plat is hereby approved by the Planning and Zoning Commission of the City of Lucas, Texa:<br>This plat approved subject to all platting ordinances, rules, regulations and resolutions of the Cit                 |
| BEING a tract of land situated in the JOHN MCKINNEY SURVEY, ABSTRACT NO. 596, City of Lucas, Collin County,<br>Texas and being all of those tracts of land described as Tract A and Tract H in Deed to Yaung Dean Homestead,<br>Ltd., as recorded in Document No. 2002–0068655 (Volume 5167, Page 3443), Deed Records, Collin County, Texas<br>and being more particularly described as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | THAT I, Ryan S. Reynolds, do hereby certify, that I prepared this plat from an actual on the ground<br>survey of the land as described and that the corner monuments shown thereon were properly placed<br>under my personal supervision in accordance with the Platting Rules and Regulations of the City of<br>Lucas Planning and Zoning Commission. | Dusty Kuykendall Date<br>Chair, Planning and Zoning Commission                                                                                                                                                         |
| BEGINNING at a 1/2 inch iron rod faund in the west line of ENCHANTED CREEK PHASE 1, an Addition to the City of<br>Lucas, Collin County, Texas according to the Plat thereof recorded in Book 2015, Page 155 (Document No.<br>20150406010001060), Map Records, Collin County, Texas for the common southeast corner of sald Tract H and<br>northeast corner of KIRKLAND ESTATES, an Addition to the City of Lucas, Collin County, Texas according to the<br>Plat thereof recorded in Cobinet 8, Book 24, Map Records, Collin County, Texas;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PRELIMINARY, THIS DOCUMENT SHALL NOT BE RECORDED<br>FOR ANY PURPOSE AND SHALL NOT BE USED OR VIEWED<br>OR RELIED UPON AS A FINAL SURVEY DOCUMENT.                                                                                                                                                                                                      | ATTEST: Signature Date                                                                                                                                                                                                 |
| THENCE South 88 degrees 44 minutes 28 seconds West, leaving said west line and with the common south line of<br>said Tract H and north line of said KIRKLAND ESTATES Addition, a distance of 677.18 feet to a 1/2 inch iron rad<br>found for the common southwest corner of said Tract H and southeast corner of Lot 2 of LOZANO ADDITION, an<br>Addition to the City of Lucas, Collin County, Texas according to the Plat thereof recorded in Cabinet P, Slide 10<br>(Document No. 2003-0120316), Map Records, Collin County, Texas;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RYAN S. REYNOLDS, R.P.L.S.<br>Texas Registered Professional Land Surveyor No. 6385.                                                                                                                                                                                                                                                                    | Name & Title Date The Director of Public Works of the City of Lucas, Texas hereby certifies that to the besf of his, belief, this subdivision plat conforms to all requirements of the Code of Ordinances and with eng |
| THENCE North 00 degrees 48 minutes 15 seconds West, leaving said common line and with the common west line<br>of said Tract H and east line of said Lot 2, a distance of 895.16 feet to a 1/2 inch iron rod found in the south<br>line of said Tract A for the common northwest corner of said Tract H and northeast corner of said Lot 2;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STATE OF TEXAS §<br>COUNTY OF COLLIN §                                                                                                                                                                                                                                                                                                                 | construction standards and processes adopted by the City of Lucas, Texas as to which his/her a<br>required.                                                                                                            |
| THENCE South 77 degrees 07 minutes 06 seconds West, leaving said common line and with the common south line of said Lot 2, a distance of 35.28 feet to a 1/2 inch iron rod found for corner;-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Before me, the undersigned authority, a Notary Public in and for the said County and State, on this                                                                                                                                                                                                                                                    | Scott Holden, PE Date                                                                                                                                                                                                  |
| THENCE South 74 degrees 39 minutes 48 seconds West, continuing with said common line, a distance of 709.66 fest to a 1/2 inch iron rod with a yellow plastic cap stamped "JVC" set for corner;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | day personally appeared                                                                                                                                                                                                                                                                                                                                | Director of Public Works<br>The Development Services Director of the City of Lucas, Texas hereby certifies that to the best of                                                                                         |
| THENCE North 87 degrees 55 minutes 02 seconds West, continuing with said common line, a distance of 269.91 feet to an "X" set in concrete for the southwest comer of said Tract A;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                        | knowledge or belief, this subdivision plat conforms to all requirements of the Code of Ordinances<br>been amended or modified, as allowed, by the Planning and Zoning Commission as to which his/<br>required.         |
| THENCE North 00 degrees 25 minutes 13 seconds West, leaving sold common line, a distance of 892.20 feet to a 1/2 inch iron rod with a yellow plastic cap stamped "UVC" set for the common northwest corner of sold Tract A and southwest corner of that tract of land described in deed to Norris Ranch, Ltd., as recorded in Volume 5878, page 2019 (Document No. 2005–0033697), Deed Records, Collin County, Texos;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Given under my hand and seal of office, this day of, 20,                                                                                                                                                                                                                                                                                               | Joseph Hilbourn Date                                                                                                                                                                                                   |
| THENCE North 89 degrees 01 minutes 45 seconds East, a distance of 1,660.32 feet to a 1/2 inch iron rod with a red plastic cap stamped "KHA" found for the northeast corner of said Tract A;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                        | Director of Development Services                                                                                                                                                                                       |
| THENCE South 00 degrees 52 minutes 15 seconds East, a distance of 1,614.94 feet to the POINT OF BEGINNING and containing 44.084 acres of land, more or less.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Notary public for and in the State of Texas                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                        |
| NOW THEREFORE, KNOW ALL MEN BY THESE PRESENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | My commission expires:                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                        |
| That WARNER LAND ADVISORS, LP., does hereby thid themselves and their heirs, assignees and successors of title<br>this plot designating the hereinaboxe described property as DEAN FARMS AT STINSON HIGHLAND, an addition to the<br>City of Lucas, and does hereby described property as DEAN FARMS AT STINSON HIGHLAND, an addition to the<br>casements shown therean, and does hereby reserve the assement strips shown on this plot for the purposes stated<br>and for the mutual use and accommodation of garbage collection agencies and all utilities desiring to use or using<br>some. Any public utility shall have the right to remove and keep removed all or part of any buildings, fences, trees,<br>shrubs, or other growths or improvements that in any way endanger or interfere with construction, maintenance or<br>efficiency of its respective systems on any of these easement strips, and any public utility shall at all times have<br>the right of ingress or egress to and from and upon the said easement strips for purpose of constructing,<br>reconstructing, inspecting, patrolling, without the necessity of any time of procuring the permission of anyone.<br>Additionally, WARNER LAND ADVISORS, L.P., certifies that it is the sole owner of the declated property and that no<br>other's interest is attached to this property unless otherwise indicated on the required Mortgage Holder Certification<br>that is included on this plot. Furthermore, as the owner of the property described herein, and in consideration of<br>establishing the subdivision described herein, it agrees to the following: |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                        |
| By: Stephen L. Saliman, Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                        |
| STATE OF TEXAS § COUNTY OF COLLIN §                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                        |
| Before me, the undersigned authority, a Notary Public In and of the State of Texas, on this day personally<br>appeared WARNER LAND ADVISORS, LP., known to me to be the person whose name is subscribed to the foregoing<br>instrument and acknowledged to me that he executed the same for the purpose and consideration therein stated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                        | G                                                                                                                                                                                                                      |
| Given under my hand and seal of office, this day of 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                        |
| Notary public in and for the State of Texas My Commission Expires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                        |

Owner/Applicant: Warner Land Advisors, LP Engineer/Surveyor: Johnson Volk Consulting, Inc. 4040 N. Central Expressway, Suite 850 Dallas, Texas 75024 704 Central Parkway East, Suite 1200 Plano, Texas 75074 Phone: 214-368-0238 Phone: 972-201-3102 Contact: Preston Walhood Ryan.Renolds@johnsonvolk.com TBPELS FIRM NO. 10194033

#### NOTES: 1. 2.

of Lucas, Texas.

her knowledge or neering pproval is

f his/her or as many have er approval

- ALL LOTS MUST USE ALTERNATIVE TYPE ON-SITE SEWAGE FACILITIES. LOT TO LOT DRAINAGE IS NOT PERMITTED WITHOUT ENGINEERING SECTION
- 3.
- ALL LOTS MUST USE ALTERNATIVE TYPE ON-SITE SEWAGE FACULTES. LOT TO LOT DRAINAGE IS NOT PERMITTED WITHOUT ENGINEERING SECTION APPROVAL. ALL LOTS MUST MAINTAIN STATE-MANDATED SETMACK OF ALL ON-SITE SEWAGE FACULTY COMPONENTS FROM ANY/ALL EASEMENTS AND DRAINAGE AREAS, WATER DISTRIBUTION LINES, SHARP, BEAKSS ANJ/OR CREEKS/RIVERS/POINDS, ETC. A FORTION OF LOTS 10, 11, 20-27, BLOCK A, ARE WITHIN A 250° LECTRICAL LINE EASEMENT. THESE LOTS DO NOT DE USED FOR OSSY CONVEYANCE, STORAGE OR DISPORAL AND RECOMPRED SEMANCES MUST BE FOLLOWED. DUE TO SETBACK RESTINCTIONS, NO SUPPACE IMPROVEMENTS, IMPERVOUS COVER, OTTENLIDINGS, SIMMAINO DOLS, ETC. ARE ALLOWED ON SAUL DITS WITHOUT A STORAGE OR DISPORAL AND RECOMPOSE THANKS MUST BE FOLLOWED. DUE TO SETBACK RESTINCTIONS, NO SUPPACE IMPROVEMENTS, IMPERVOUS COVER, OTTENLIDINGS, SIMMAINO DOLS, ETC. ARE ALLOWED ON SAUL DITS WITHOUT A FORTIALINE, SIMMAINO FOOLS, ETC. ARE ALLOWED ON SAUL DITS WITHOUT A STATARIAN/PROFESSIONAL AMENICIPAL. MEETING OUNT A RECOTEND SETBACK RESTINCTIONS, NO SUPPACE IMPROVEMENTS, IMPERVOUS COVER, ON SAUL DITS MAY BE CLIMETED TO A MAXIMUM OF SAUD CONT AND RECORDING SEMICAS. MOTE LAKE OF USED FOR OSS DOUNCE SAUD LOTS FROM HAVING SIMULING FOOLS AND/OR OUTBUILDINGS ADDITONALLY, DIRELING SEZ ON SAUL DITS MAY BE LIMITED TO A MAXIMUM OF SAUS COLVER, FIET AND/OR 5 EDEDODUS. A LAKES PORTION OF LOTS 11 & 20 SEC DECORDONALLY, DIRELING SEZ ON SAUD LOTS MAY BE LIMITED TO A MAXIMUM OF SOUDARLY, DIRELING SEZ ON SAUD LOTS MAY BE LIMITED TO A MAXIMUM OF SEVED FOR OSS'C CONVEYANCE. STORAGE ORISONAL AND RECURRED SEAD FOR OSS'C CONVEYANCE STORAGE ORISONAL AND RECURRED DEVELOPMENTS, IMPERVOUS OVER, OUTBUILDINGS, SUMMING POOLS, ETCL ARE LUMED ON LOTS 11 & 20 STATARIA/PROPESSIONAL DIREAD RESTRICTIONS, NO SUBFACE IMPROVEMENTS, IMPERVOUS OVER, OUTBUILDINGS, SUMMING POOLS, ETCL ARE LUMED ON LOTS 11 & 20 STATARIA/PROPESSIONAL DIREAD RESTRICTIONS, NO SUBFACE MARDOVEMENTS, IMPERVOUS OVER, OUTBUILDINGS, SUMMING POOLS, ETCL ARE LALLOWED ON LOTTY DEVELOPMENT SERVICES. 4.
- 5.

- DOUBULLINGS, SIMIAMOV FOULS, ELLA AND, ALLOND, VILLO'S IN & 20 MITHUT A REGISTERED SANTTANIAN/PROFESSIONAL ENGINEER AND COLLIN COUNTY DEVELOPMENT SERVICES.
  TINEE REMOVAL AND/OR GRADING FOR OSSF MAY BE REQUIRED ON INDIVIDUAL LIST RE REMOVAL AND/OR GRADING FOR OSSF MAY BE REQUIRED ON INDIVIDUAL LIST RECREMENTS) MUST BE SUBMITTED TO AND APPROVED BY COLLIN COUNTY REQUREMENTS) MUST BE SUBMITTED TO AND APPROVED BY COLLIN COUNTY REQUREMENTS) MUST BE SUBMITTED TO AND APPROVED BY COLLIN COUNTY REQUREMENTS) MUST BE SUBMITTED TO AND APPROVED BY COLLIN COUNTY REQUREMENTS) MUST BE SUBMITTED TO AND APPROVED BY COLLIN COUNTY REQUREMENTS) MUST BE SUBMITTED TO AND APPROVED BY COLLIN COUNTY REQUREMENTS) MUST BE SUBMITTED TO AND APPROVED BY COLLIN COUNTY REQUREMENTS) MUST BE SUBMITTED TO AND APPROVED BY COLLIN COUNTY REQUREMENTS).
  BY GAMPHICAL, PLOTOR, THE PARED EDSCRIED CON THE COLLIN COUNTY, TEXAS SUBJECT TO AND APPROVED BY COLLIN COUNTY, TEXAS DEDINATION OF ANY DOS THE COLLINE CONTINUE COMMENT. APPROVED AND APPROVED BY COLLIN COUNTY, TEXAS DEDINATION OF ANY DOS THE COLLIN COUNTY, TEXAS DEDINATION APPROVED BY ADDITION DAVID CON TANDER AND APPROVED APPROVED AND APPROVED AND APPROVED AND APPROVED AND APPROVED APPROVED AND APP

HEALTH DEPARTMENT CERTIFICATION I HEARBY CERTIFY THAT THE ON-STE SEWAGE FACILITIES DESCRIBED ON THIS PLAT COMFORM TO THE APPLICABLE OSS' LAWS OF THE STATE OF TEXAS, THAT STE EVALUATIONS HAVE BEEN SUBMITTED REPRESENTING THE SITE CONDITIONS IN THE AREA IN WHICH ON-STE SEWAGE FACILITIES ARE PLANNED TO BE USED.

REGISTERED SANITARIAN OR DESIGNATED REPRESENTATIVE

PURPOSE OF PLAT THE PURPOSE OF THIS PLAT IS TO CREATE 27 RESIDENTIAL LOTS FROM A 44.084 ACRE TRACT OF LAND

#### PRELIMINARY PLAT **DEAN FARMS AT** STINSON HIGHLAND

LOTS 1-27, CA1 & CA2, BLOCK A 27 SINGLE FAMILY LOTS & 2 COMMON SPACES 44.084 ACRES OUT OF THE JOHN MCKINNEY SURVEY, ABSTRACT NO. 596 CITY OF LUCAS COLLIN COUNTY, TEXAS EXIST. ZONING: R1

> September 27, 2022 SHEET 2 OF 2

JOHNSON VOLK CONSULTING TBPELS: Engineering Firm No. 11962 / Land Surveying Firm 704 Central Parkway East | Suite 1200 | Plano, TX 75074 | 972201.3100 ing Firm No. 1019409



## LOCATION MAP: THE HOMESTEAD ZONING CHANGE

Å

| 600 920 1230720730800 924 919 925 920 921 911 1180 1190                                                                       | 1155                              | 800<br>810 820 830 840 850 860 1378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 930 934                                                                                                                       | 5 11.1                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 930 K Hurt Ci 934<br>1000 124112311219 1203 1002 1001 1012 1013 932 922 872 862                                               | A. 1                              | and a second sec |
| 1010 1211 1012 1015 1022 Bristor Park                                                                                         | 1325                              | Santa Anita o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                               | -                                 | and the second sec                                                                                                                                                                                                                                             |
| 1020 1222 1208 1103 1107 1100 1100 827 805                                                                                    |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1026 1228 1214 1200 1020 945 937 927 877 847 827 805<br>104 122112151207 1102 1102 1112 1129 901                              | 1415                              | and the second sec                                                                                                                                                                                                                                             |
|                                                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1124 1226 12121204 1119 1116 1120 1126 1201                                                                                   |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                               | 1475                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13071229 1213 11251115 1100 1020 1211 845 805 785 745 715 1221<br>1203 1105 1219 1219 1250 1250 1250 1250 1250 1250 1250 1250 |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1230 1219 1350 1241                                                                                                           | 1500 1605                         | 1979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1345 1000 1011 1000 13901370 13301310 1001                                                                                    |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                               |                                   | Muddy Creat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1310 1315 900 1381 1341 1321 1301                                                                                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1320 1323 903 1361 1321 1301                                                                                                  | 1655                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1320 1411 1400 1407 Highland Dr                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1350 1411 1400 1405 1410 1411<br>1415 1410 1445 1440 1441                                                                     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1360<br>1421 1420<br>1501 1480<br>1500 800 790 760 720 1471                                                                   |                                   | 1500 1505 Osage Ln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15101520 4505                                                                                                                 |                                   | 1500 1501 1500 1515 3939 3595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 15101520 1505 811 801 795 755 705 651                                                                                         |                                   | 1000 4564 01511 4565 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                               |                                   | 1520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1602                                                                                                                          | <sup>77</sup> 1705                | 1510 1511 1520 1521 100 5901 5015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12 40 8 6 4 2<br>16<br>1905<br>1615<br>1610<br>1615                                                                           |                                   | 1600 955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 17151725 <sup>1801</sup>                                                                                                      | 1745                              | 211 201 111 101 1605<br>1610 1710 7 6 7 8 7 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 15 Chisholm Tri 14 1700 1722 1621                                                                                             | 1755                              | 1610 1710 1700 1630 1615 1990 7 6 5 6 5 6 1615 1990 3 4 3 4 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12 1710 1716 1800                                                                                                             |                                   | 1620         3         4         3         4         3         4           300 <sub>2145</sub> 1715         1625         2050         1         2         1         2         1         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                               | 590 560 520 480 440 400 350       | 300 <sub>2145</sub> 1715<br>2155 <sup>1700</sup> 1725 1705 <sup>16451635</sup> 1625 2050 1 2 1 2<br>770 Maadowbrook 0<br>900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 11 2 10 8 6 4 2                                                                                                               | Shiloh Dr                         | 600 640690 750 800820 870 920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8 Janna Way                                                                                                                   |                                   | 21/5 1/10 1/11 1/20 850 Aztec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6 9 7 5 3 1                                                                                                                   | 591 561 521 481 441 401 351       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4 5 3 1 4                                                                                                                     | 7604                              | 2245 munder Bay Dr. 1811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 2 <sup>7051</sup> <sub>7081</sub> 2 <sup>7237</sup> 7259 7403 7503 7                                                        | 7691<br>763176517671 772577517791 | 2275 1810 221 211 201 1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| E Parker Rd (2514) Lucar                                                                                                      |                                   | 2305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Parker 2514                                                                                                                   | E Parker Rd                       | Wylie 2514 Lucas Parker Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Turner Branch                                                                                                                 | 1 2 2 2 1                         | Brianna Dr. Bain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                               | 1 1 1 m                           | Dalton Dr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                               |                                   | irene 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                               |                                   | Elaine C,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X Rd                                                                                                                          | 4                                 | Whiteomb Way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Tear                                                                                                                          | 3283                              | Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| erbrook Dr                                                                                                                    | 191                               | (Thailand), NGCC, (c) OpenStreetMap contributors, and the GIS User Community                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



#### PLATTING APPLICATION

Name of Subdivision and/or Project: Dean Farms at Stinson Highlands

| Ite   | ems  | Subn    | nitted                                                                                     | Filing Fee |
|-------|------|---------|--------------------------------------------------------------------------------------------|------------|
|       | p    | relin   | linary Plat                                                                                |            |
| -     | - 21 |         | ngle Family Residential Subdivision Development                                            |            |
|       | 1.5  | 0       |                                                                                            |            |
|       |      | 0       | \$750 + \$5 per acre with 20 acres or less (i.e. \$850 for 20 acres) excluding minor       |            |
|       |      |         | plats of five (5) acres or less.                                                           |            |
|       |      | 0       | \$750 + \$5 per acre with 21 - 30 acres (i.e. \$900 for 30 acres)                          |            |
|       |      | X       | \$800 + \$5 acre with 31 - 45 acres (i.e. \$1,025 for 45 acres) 44 acres                   | \$1,020    |
|       |      | 0       | \$900 + \$5 per acre with 46+ acres (i.e. \$1,130 for 46 acres)                            | 2 (A122)   |
|       | 18   | Es      | tate Residential Subdivision Development                                                   | _          |
|       |      | 0       | \$1,000 + \$7 per acre for all size parcels (i.e. \$1,140 for 20 acres)                    |            |
|       |      | M       | inor Plats                                                                                 |            |
|       |      | 0       | \$500 + \$5 per acre with 5 acres or less (i.e. \$525 for 5 acres)                         |            |
|       | 1.   | No      | on-residential District Plats                                                              |            |
|       |      | 0       | \$800 + \$10 per acre with 30 acres or less                                                |            |
|       |      | õ       | \$850 + \$10 per acre with $31 - 45$ acres                                                 |            |
|       |      | ò       | \$950 + \$10 per acre with $46 + acres$                                                    |            |
|       | E    | nal I   |                                                                                            |            |
| -     |      |         |                                                                                            |            |
|       | - 0  |         | igle Family Residential Subdivision Development                                            |            |
|       |      | 0       | \$800 + \$5 per acre with 30 acres or less                                                 |            |
|       |      | 0       | \$850 + \$5 per acre with 31 – 45 acres                                                    |            |
|       |      | 0       | \$950 + \$5 per acre with 46+ acres                                                        |            |
|       |      |         | Any additional development fees will be charged at final plat rates.                       |            |
|       | •    | Es      | tate residential Subdivision Development                                                   |            |
|       |      | 0       | \$950 + \$7 per lot for all size parcels                                                   |            |
|       |      | Mi      | nor Plat                                                                                   |            |
|       |      | 0       | \$350 + \$5 per acre with 5 acres or less                                                  |            |
|       |      | No      | n-residential District Plats                                                               |            |
|       |      | o       | \$850 + \$10 per acre for up to 30 acres                                                   |            |
|       |      | õ       | \$900 + \$10 per acre with $31 - 45$ acres                                                 |            |
|       |      |         |                                                                                            |            |
|       |      | 0<br>Do | 1,000 + 10 per acre with 46+ acres                                                         |            |
|       | 12.  |         | plat                                                                                       |            |
|       |      | 0       | Minor Plat (5 acres or less) \$450 + \$5 per acre (\$475 for 5 acres)                      |            |
|       |      | 0       | All others - \$600 + \$10 per acre                                                         |            |
|       |      | An      | nended Plat                                                                                |            |
|       |      | 0       | Minor Plats (5 acres or less) - \$300 + \$7 per acre (i.e. \$300 for an amended plat for 5 |            |
|       |      |         | acres)                                                                                     |            |
|       |      | 0       | All others - \$500 + \$10 per acre (i.e. \$700 for an amended plat for 20 acres)           |            |
|       | Ste  | rm      | Water Run-Off Permit                                                                       |            |
|       |      | 0       | Developments 0 – 3 acres \$75                                                              |            |
|       |      | 0       | Developments 4 – 10 acres \$150                                                            |            |
|       |      | 0       | Developments 10+ acres \$500                                                               |            |
|       | Va   |         | on of Plat                                                                                 |            |
| -     | 1.6  | 0       | \$500 + \$10 per acre                                                                      |            |
|       | Co   |         |                                                                                            |            |
| -     | Co   |         | t Plan (Optional Land Study)                                                               |            |
| -     | -    | 0       | \$150 per session with Planning & Zoning and/or City Council                               | NUCES -    |
|       |      |         | rvey/Conservation Plan                                                                     | No Fee     |
|       | Ir   |         | emoval & Site Clearing Permit                                                              |            |
| 1     | 11   | 0       | \$ 250                                                                                     |            |
|       | Pa   | rk Si   | te Dedication                                                                              |            |
| 34    |      | 0       | \$ 1,000 per lot or land dedication                                                        | ** ***     |
| TO    | TA   | L       |                                                                                            | \$1,020    |
|       |      |         |                                                                                            |            |
|       |      |         |                                                                                            |            |
| PI A  | TTD  | IG AF   | PLICATION                                                                                  | 4          |
| 1.402 |      | -u ar   |                                                                                            |            |



#### PLATTING APPLICATION

| Physical Location of Property: East of Stinson Ro<br>(Address and general location – approximate distance to nearest existi | oad, 100' south of Highland Drive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Legal Description of Property: JOHN MCKINNE                                                                                 | EY SURVEY, ABSTRACT NO. 596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (Survey/ Abstract Number and Tracts Platted Subdivision Name with L                                                         | ots/Block – Must attach metes and bounds description)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Comprehensive Zoning Designation(s): R1                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Existing Zoning Designation(s): R1                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Description of Project Use: Single Family Resid                                                                             | ential Lots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Acreage: 44,084 acres                                                                                                       | Existing # of Lots/Tracts: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| OWNERS NAME: Young Dean Homestead,                                                                                          | Contract a function of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Applicant/Contact Person Preston Walhood                                                                                    | Title: Vice President                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Company Name Warner Land Advisors, LP                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Street Address 4040 N Central Expressway,                                                                                   | Suite 850 Dallas Texas 75204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Mailing Address                                                                                                             | and the second |
| Phone: 214-368-0238 Fax:                                                                                                    | Email: pwalhood@warnergroup.con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| OWNERS NAME:                                                                                                                | Contact Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Applicant/Contact Person                                                                                                    | Title:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Company Name                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Street Address                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Mailing Address                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Phone: Fax:                                                                                                                 | Email:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ENGINEER REPRESENTATIVE: Johnson Volk                                                                                       | Consulting Contact Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Applicant/Contact Person Tom Dayton, PE                                                                                     | Title:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Company Name JohnsonVolk Consulting                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Street Address 704 Central Parkway East, Sui                                                                                | ite 1200 Plano, Texas 75074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mailing Address                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Phone: 972-201-3102 Fax:                                                                                                    | Email: tom.dayton@johnsonvolk.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Read before signing below: If there is more than one property owner complete a separate sheet with the same wording as below. The City requires all original signatures. If applicant is other than the property owner a "Power of Attorney" with original, notarized signatures are required. (notaries are available)

#### ITEMS REQUIRED PRIOR TO FINAL PLAT APPROVAL:

ALL APPLICATIONS MUST BE COMPLETE, ACCOMPANIED BY THE APPLICABLE CHECKLIST AND TAX CERTIFICATE SHOWING TAXES PAID BEFORE BEING SCHEDULED ON THE P&Z AGENDA. It is the applicant's responsibility to be familiar with, and to comply with, all City submittal requirements (in the Zoning & Subdivision Ordinances, and any separate submittal policies, requirements and/or checklists that may be required from City staff), including the number of plans to be submitted, application fees, etc. Please contact City staff in advance for submittal requirements. Drawings will not be returned to applicant.

## ALL PARCELS/PROPERTIES MUST MATCH IN ACREAGE ALL OTHER DOCUMENTS SUBMITTED WITH NO AMBIGUITY.

SUBMISSIONS: Failure to submit all materials to the City with this application will result in delays scheduling the agenda date

NOTICE OF PUBLIC RECORDS: The submission of plans/drawings with this application makes such items public record, and the applicant understands that these items may be viewed by the public unless they are copyrighted.

PLATTING APPLICATION



#### PLATTING APPLICATION

- Applicant agrees to pay any and all monies due to the City including but not limited to Park Site fee, Tree Removal
  Permit fee, 3% of Construction cost (developer to provide contracts for verification) and including but not limited to
  other fees that may be required prior to final plat approval.
- Maintenance Bond for City Improvements, 2 year 10% Bond to be verified by submitting contract
- Construction as-built record drawings (mylar)
- Engineering construction test reports.
- · Walk-through with Public Works personnel completed with satisfactory outcome.
- HOA (covenants, conditions & restrictions) documentation approved by City Attorney before submittal to Planning & Zoning.

By signing this application, staff is granted access to your property to perform work related to your case. I waive the statutory time limits in accordance with Texas Local Government Code, Section 212.

STATE OF TEXAS (COUNTY OF COLLIN)

BEFORE ME, a Notary Public, on this day personally appeared **WALLOW** the undersigned applicant, who, under oath, stated the following: "I hereby certify that I am the owner, or duly authorized agent of the owner, (**proof must be attached, e.g.** "Power of Attorney) for the purposes of this application; that all information submitted herein is true and correct. I understand that submitting this application does not constitute approval, and incomplete applications will result in delays and possible denial."



Owner / Agent (circle one)

SUBSCRIBED AND SWORN TO before me, this the Notary Public in and for the State of Texas:

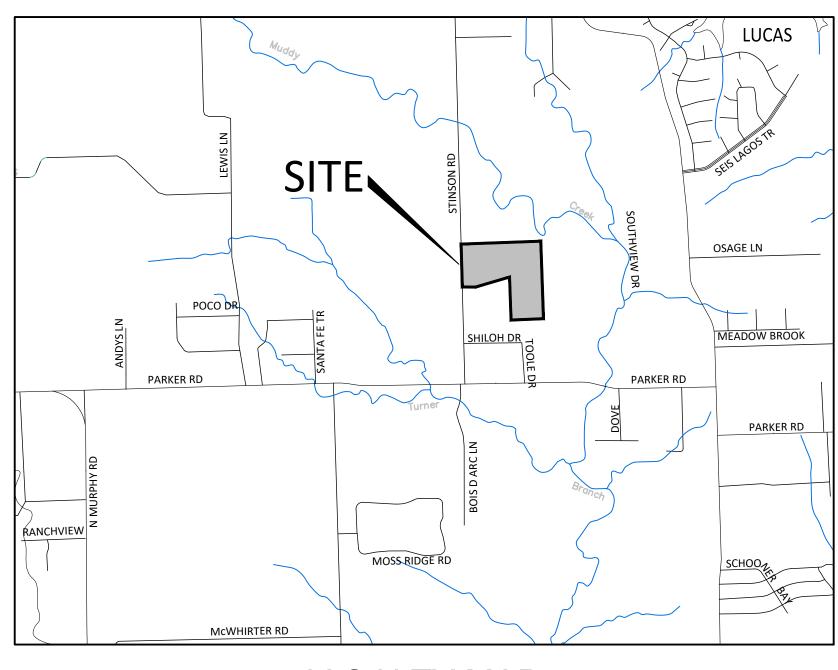
| Official Use Only:                                                              |                |       | - |
|---------------------------------------------------------------------------------|----------------|-------|---|
| Planning & Zoning:                                                              |                | Date: |   |
| City Council:                                                                   |                | Date: |   |
| Applicant Withdrew: Yes or No<br>Applicant Made a Written Withdrawal: Yes or No | Date:<br>Date: |       |   |

PLATTING APPLICATION

## SHEET INDEX

## SHEET TITLE

- COVER
- 2 PRELIMINARY PLAT SHEET 1 OF 2
- 3 PRELIMINARY PLAT SHEET 2 OF 2
- GENERAL NOTES
- PAVING PLAN & PROFILE DEAN MEADOW LN BEGIN TO STA 10+50
- 6 PAVING PLAN & PROFILE DEAN MEADOW LN STA 10+50 TO 21+50
- PAVING PLAN & PROFILE DEAN MEADOW LN STA 21+50 TO CUL-DE-SAC
- 8 PAVING CROSS SECTIONS
- GRADING PLAN SHEET 1 OF 2
- 10 GRADING PLAN SHEET 2 OF 2
- 11A SWALE SECTIONS
- 11B SWALE SECTIONS
- 12 EXISTING DRAINAGE AREA MAP
- 13 STORM PLAN & PROFILE SHEET 1 OF 2
- 14 STORM PLAN & PROFILE SHEET 2 OF 2
- 15 STORM PLAN & PROFILE
- DETENTION POND A 16
- WATER PLAN SHEET 1 OF 2 17
- 18 WATER PLAN SHEET 2 OF 2
- 19 WATER PLAN
- 20 WATER PROFILES
- 21 EROSION CONTROL PLAN
- 22 EROSION CONTROL DETAILS
- 23 WATER DETAILS SHEET 1 OF 2
- 24 WATER DETAILS SHEET 2 OF 2
- 25 WATER DETAILS


**OWNER/DEVELOPER:** 

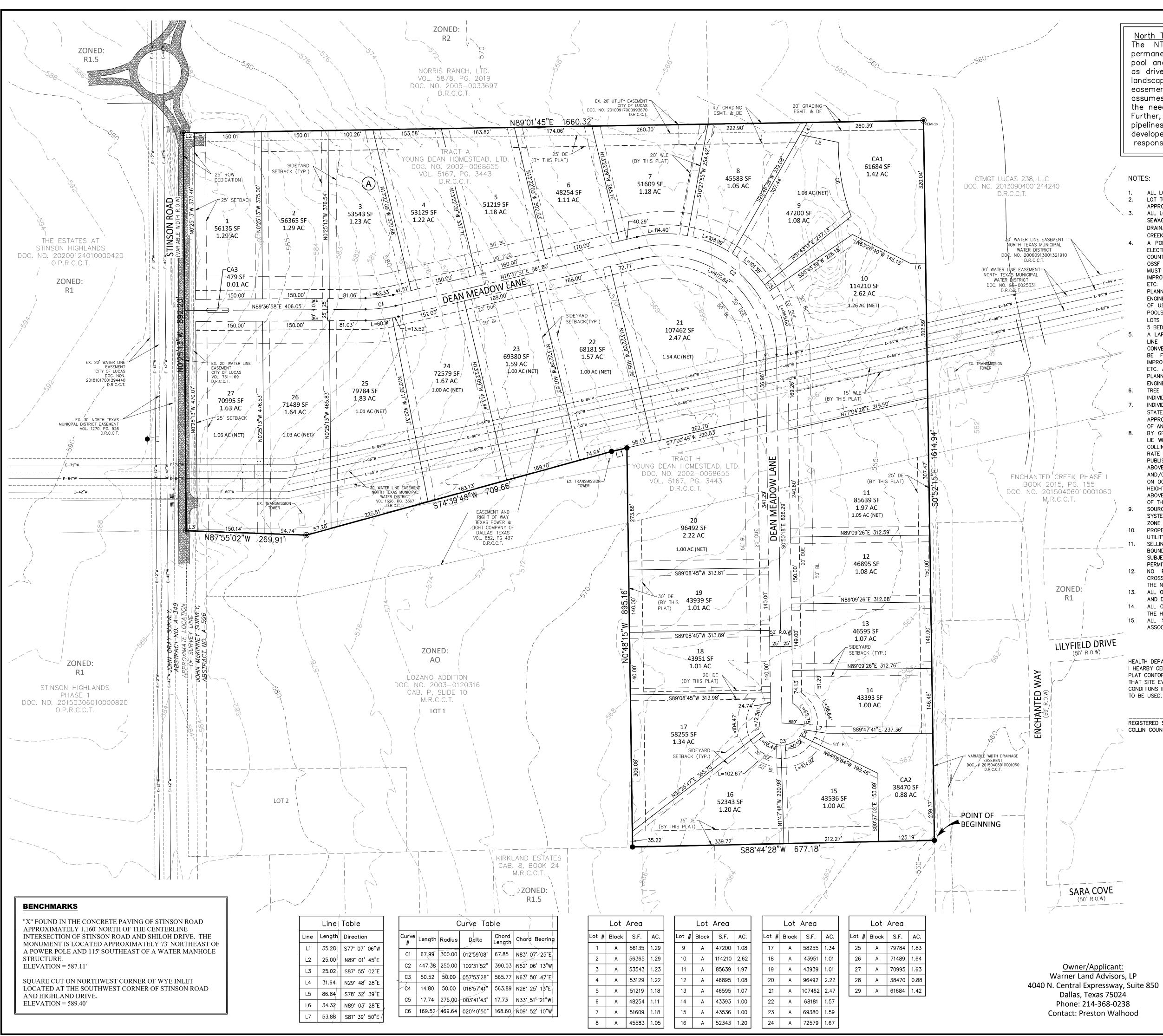
WARNER LAND ADVISORS, LP. 4040 N. CENTRAL EXPRESSWAY, SUITE 850 DALLAS, TEXAS 75024 PHONE (214) 368-0238 CONTACT: PRESTON WALHOOD

ENGINEER/SURVEYOR/LANDSCAPE ARCHITECT: JOHNSON VOLK CONSULTING, INC. 704 CENTRAL PARKWAY EAST, SUITE 1200 PLANO, TEXAS 75074 PHONE: (972) 201-3100 CONTACT: TOM DAYTON

# **CONSTRUCTION PLANS** FOR DEAN FARMS AT STINSON HIGHLAND

27 RESIDENTIAL LOT SUBDIVISION AN ADDITION TO THE CITY OF LUCAS COLLIN COUNTY, TEXAS 44.084 ACRES




VICINITY MAP N.T.S.

## September 2022

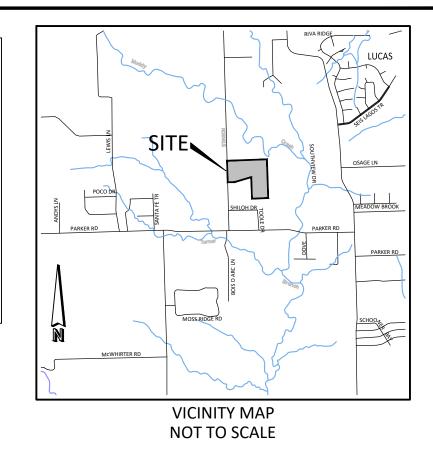




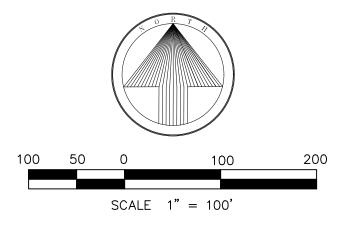
REFERENCE NORTH TEXAS MUNICIPAL WATER DISTRICT NOTES ON SHEET 20.



North Texas Municipal Water District (NTMWD) Note: The NTMWD easement restricts construction of permanent structures such as foundations, walls, pool and permanent storage buildings. Items such as driveways, fences, sprinkler systems and normal landscaping plans that encroach on the NTMWD easements are allowed. However, the NTMWD assumes no responsibility for damage resulting from the need to repair or maintain the NTWMD pipelines Further, any cost for repair for damage to the pipelines resulting from construction by the developer, contractor or owner will be the responsibility of the developer, contractor or owner.


#### NOTES:

- ALL LOTS MUST USE ALTERNATIVE TYPE ON-SITE SEWAGE FACILITIES. LOT TO LOT DRAINAGE IS NOT PERMITTED WITHOUT ENGINEERING SECTION
- APPROVAL. ALL LOTS MUST MAINTAIN STATE-MANDATED SETBACK OF ALL ON-SITE SEWAGE FACILITY COMPONENTS FROM ANY/ALL EASEMENTS AND DRAINAGE AREAS, WATER DISTRIBUTION LINES, SHARP BREAKS AND/OR CREEKS/RIVERS/PONDS, ETC.
- 4. A PORTION OF LOTS 10, 11, 20-27, BLOCK A, ARE WITHIN A 250' ELECTRICAL LINE EASEMENT. THESE LOTS DO NOT CONFIRM TO COLLIN COUNTY OSSF REGULATIONS. THE EASEMENT MAY NOT BE USED FOR OSSF CONVEYANCE, STORAGE OR DISPOSAL AND REQUIRED SETBACKS MUST BE FOLLOWED. DUE TO SETBACK RESTRICTIONS, NO SURFACE IMPROVEMENTS, IMPERVIOUS COVER, OUTBUILDINGS, SWIMMING POOLS, ETC. ARE ALLOWED ON SAID LOTS WITHOUT A PRE-CONSTRUCTION PLANNING MEETING WITH A REGISTERED SANITARIAN/PROFESSIONAL ENGINEER AND COLLIN COUNTY DEVELOPMENTS SERVICES. NOTE: LACK OF USEABLE LOT MAY PRECLUDE SAID LOTS FROM HAVING SWIMMING POOLS AND/OR OUTBUILDINGS. ADDITIONALLY, DWELLING SIZE ON SAID LOTS MAY BE LIMITED TO A MAXIMUM OF 5,500 SQUARE FEET AND/OR 5 BEDROOMS.
- A LARGE PORTION OF LOTS 11 & 20 ARE WITHIN A 250' ELECTRICAL LINE EASEMENT. THE EASEMENT MANY NOT BE USED FOR OSSF CONVEYANCE, STORAGE OR DISPOSAL AND REQUIRED SETBACKS MUST BE FOLLOWED. DUE TO SETBACK RESTRICTIONS, NO SURFACE IMPROVEMENTS, IMPERVIOUS COVER, OUTBUILDINGS, SWIMMING POOLS, ETC. ARE ALLOWED ON LOTS 11 & 20 WITHOUT A PRE-CONSTRUCTION PLANNING MEETING WITH A REGISTERED SANITARIAN/PROFESSIONAL ENGINEER AND COLLIN COUNTY DEVELOPMENT SERVICES. TREE REMOVAL AND/OR GRADING FOR OSSF MAY BE REQUIRED ON
- INDIVIDUAL LOTS. INDIVIDUAL SITE EVALUATIONS AND OSSF DESIGN PLANS (MEETING ALL STATE AND COUNTY REQUIREMENTS) MUST BE SUBMITTED TO AND APPROVED BY COLLIN COUNTY FOR EACH LOT PRIOR TO CONSTRUCTION
- OF ANY OSSF SYSTEM. BY GRAPHICAL PLOTTING, THE PARCEL DESCRIBED HEREON DOES NOT LIE WITHIN A SPECIAL FLOOD HAZARD AREAS, AS DELINEATED ON THE COLLIN COUNTY, TEXAS AND INCORPORATED AREAS, FLOOD INSURANCE RATE MAP, MAP NUMBER 48085C045 J, DATED JUNE 02, 2009, AS PUBLISHED BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY. THE ABOVE FLOOD STATEMENT DOES NOT IMPLY THAT THE PROPERTY AND/OR STRUCTURES WILL BE FREE FROM FLOODING OR FLOOD DAMAGE. ON OCCASION, THE GREATER FLOODS CAN AND WILL OCCUR AND FLOOD HEIGHTS MAY BE INCREASED BY MAN MADE OR NATURAL CAUSES. THE ABOVE FLOOD STATEMENT SHALL NOT CREATE LIABILITY ON THE PART OF THE SURVEYOR.
- SOURCE BEARING IS BASED ON TEXAS STATE PLANE COORDINATE SYSTEM. PROJECTION: STATE PLANE NAD83 TEXAS NORTH CENTRAL ZONE 4204, LAMBERT CONFORMAL CONIC (TX83-NCF).
- 10. PROPERTY OWNERS TO MAINTAIN PROPERTY INCLUDING DRAINAGE AND UTILITY EASEMENTS TO THE EDGE OF PAVEMENT. SELLING A PORTION OF ANY LOT WITHIN THIS ADDITION BY METES AND BOUNDS IS A VIOLATION OF STATE LAW AND CITY ORDINANCE AND IS
- SUBJECT TO FINES AND WITHHOLDING OF UTILITIES AND BUILDING PERMITS. NO PERMANENT STRUCTURES, WALLS, TRESS, UTILITIES, EXCEPT 12 CROSSING AT APPROXIMATELY 90 DEGREES SHALL BE PERMITTED WITHIN
- THE NTWMD EASEMENTS IN LOTS 10, 21-27, BLOCK A. ALL OPEN SPACE LOTS (CA1, CA2 & CA3) SHALL BE ACCESS, UTILITY AND DRAINAGE EASEMENTS.
- ALL OPEN SPACE LOTS (CA1, CA2 & CA3) SHALL BE MAINTAINED BY 14. THE HOMEOWNERS ASSOCIATION.
- ALL STREET LIGHTS SHALL BE MAINTAINED BY THE HOMEOWNERS ASSOCIATION


#### HEALTH DEPARTMENT CERTIFICATION

I HEARBY CERTIFY THAT THE ON-SITE SEWAGE FACILITIES DESCRIBED ON THIS PLAT CONFORM TO THE APPLICABLE OSSF LAWS OF THE STATE OF TEXAS, THAT SITE EVALUATIONS HAVE BEEN SUBMITTED REPRESENTING THE SITE CONDITIONS IN THE AREA IN WHICH ON-SITE SEWAGE FACILITIES ARE PLANNED TO BE USED.

REGISTERED SANITARIAN OR DESIGNATED REPRESENTATIVE COLLIN COUNTY DEVELOPMENT SERVICES



|              | LEGEND                                                                              |
|--------------|-------------------------------------------------------------------------------------|
| •            | Point of Curvature or Tangency on<br>Center Line                                    |
| •            | 1/2" iron rod w/ yellow plastic cap<br>stamped "JVC" set (unless otherwise noted)   |
| ۲            | 1/2" iron rod found w/ yellow plastic cap<br>stamped "JVC" (unless otherwise noted) |
| AC           | Acre                                                                                |
| BL           | Building Line                                                                       |
| C1           | Curve No.                                                                           |
| <u>ଜ</u>     | Center Line                                                                         |
| <cm></cm>    | Control Monument                                                                    |
| DE           | Drainage Easement                                                                   |
| Esmt         | Easement                                                                            |
| L1           | Line No.                                                                            |
| C1           | Curve No.                                                                           |
| SF           | Square Feet                                                                         |
| UE           | Utility Easement                                                                    |
| WLE          | Water Line Easement                                                                 |
| U.T.E.       | Utility & Telecommunications Easement                                               |
| P.O.E.       | Positive Overflow Easement                                                          |
| W.M.E.       | Wall Maintenance Easement                                                           |
| 0.P.R.C.C.T. | = Official Public Records of Collin County, Texas                                   |
| D.R.C.C.T. = | = Deed Records of Collin County, Texas                                              |



#### PURPOSE OF PLAT

THE PURPOSE OF THIS PLAT IS TO CREATE 27 RESIDENTIAL LOTS FROM A 44.084 ACRE TRACT OF LAND

## PRELIMINARY PLAT **DEAN FARMS AT STINSON HIGHLAND**

LOTS 1-27, CA1 & CA2, BLOCK A 27 SINGLE FAMILY LOTS & 2 COMMON SPACES 44.084 ACRES OUT OF THE JOHN MCKINNEY SURVEY, ABSTRACT NO. 596 CITY OF LUCAS COLLIN COUNTY, TEXAS EXIST. ZONING: R1

> September 27, 2022 SHEET 1 OF 2

Engineer/Surveyor: Johnson Volk Consulting, Inc. 704 Central Parkway East, Suite 1200 Plano, Texas 75074 Phone: 972-201-3102 Ryan.Renolds@johnsonvolk.com TBPELS FIRM NO. 10194033

CONSULTING TBPELS: Engineering Firm No. 11962 / Land Surveying Firm No. 10194033 704 Central Parkway East | Suite 1200 | Plano, TX 75074 | 972.201.3100

JOHNSON VOLK

OWNER'S CERTIFICATION & DEDICATION: STATE OF TEXAS

COUNTY OF COLLIN

BEING a tract of land situated in the JOHN MCKINNEY SURVEY, ABSTRACT NO. 596, City of Lucas, Collin County, Texas and being all of those tracts of land described as Tract A and Tract H in Deed to Young Dean Homestead, Ltd., as recorded in Document No. 2002-0068655 (Volume 5167, Page 3443), Deed Records, Collin County, Texas and being more particularly described as follows:

BEGINNING at a 1/2 inch iron rod found in the west line of ENCHANTED CREEK PHASE 1, an Addition to the City of Lucas, Collin County, Texas according to the Plat thereof recorded in Book 2015, Page 155 (Document No. 20150406010001060), Map Records, Collin County, Texas for the common southeast corner of said Tract H and northeast corner of KIRKLAND ESTATES, an Addition to the City of Lucas, Collin County, Texas according to the Plat thereof recorded in Cabinet 8, Book 24, Map Records, Collin County, Texas;

THENCE South 88 degrees 44 minutes 28 seconds West, leaving said west line and with the common south line of said Tract H and north line of said KIRKLAND ESTATES Addition, a distance of 677.18 feet to a 1/2 inch iron rod found for the common southwest corner of said Tract H and southeast corner of Lot 2 of LOZANO ADDITION, an Addition to the City of Lucas, Collin County, Texas according to the Plat thereof recorded in Cabinet P, Slide 10 (Document No. 2003-0120316), Map Records, Collin County, Texas;

THENCE North 00 degrees 48 minutes 15 seconds West, leaving said common line and with the common west line of said Tract H and east line of said Lot 2, a distance of 895.16 feet to a 1/2 inch iron rod found in the south line of said Tract A for the common northwest corner of said Tract H and northeast corner of said Lot 2;

THENCE South 77 degrees 07 minutes 06 seconds West, leaving said common line and with the common south line of said Tract A and north line of said Lot 2, a distance of 35.28 feet to a 1/2 inch iron rod found for corner;

THENCE South 74 degrees 39 minutes 48 seconds West, continuing with said common line, a distance of 709.66 feet to a 1/2 inch iron rod with a yellow plastic cap stamped "JVC" set for corner;

THENCE North 87 degrees 55 minutes 02 seconds West, continuing with said common line, a distance of 269.91 feet to an "X" set in concrete for the southwest corner of said Tract A;

THENCE North 00 degrees 25 minutes 13 seconds West, leaving said common line, a distance of 892.20 feet to a 1/2 inch iron rod with a yellow plastic cap stamped "JVC" set for the common northwest corner of said Tract A and southwest corner of that tract of land described in deed to Norris Ranch, Ltd., as recorded in Volume 5878, page 2019 (Document No. 2005-0033697), Deed Records, Collin County, Texas;

THENCE North 89 degrees 01 minutes 45 seconds East, a distance of 1,660.32 feet to a 1/2 inch iron rod with a red plastic cap stamped "KHA" found for the northeast corner of said Tract A;

THENCE South 00 degrees 52 minutes 15 seconds East, a distance of 1,614.94 feet to the POINT OF BEGINNING and containing 44.084 acres of land, more or less.

#### NOW THEREFORE, KNOW ALL MEN BY THESE PRESENTS:

That WARNER LAND ADVISORS, LP., does hereby bind themselves and their heirs, assignees and successors of title this plat designating the hereinabove described property as DEAN FARMS AT STINSON HIGHLAND, an addition to the City of Lucas, and does hereby dedicate to the use of the public forever any streets, alleys, right-of-way or easements shown thereon, and does hereby reserve the easement strips shown on this plat for the purposes stated and for the mutual use and accommodation of garbage collection agencies and all utilities desiring to use or using same. Any public utility shall have the right to remove and keep removed all or part of any buildings, fences, trees, shrubs, or other growths or improvements that in any way endanger or interfere with construction, maintenance or efficiency of its respective systems on any of these easement strips, and any public utility shall at all times have the right of ingress or egress to and from and upon the said easement strips for purpose of constructing, reconstructing, inspecting, patrolling, without the necessity at any time of procuring the permission of anyone. Additionally, WARNER LAND ADVISORS, LP., certifies that it is the sole owner of the dedicated property and that no other's interest is attached to this property unless otherwise indicated on the required Mortgage Holder Certification that is included on this plat. Furthermore, as the owner of the property described herein, and in consideration of establishing the subdivision described herein, it agrees to the following:

- Every owner of fee simple title to every individual lot within the subdivision shall be a member of the homeowners' association;
- The homeowners' association shall have the authority to collect membership fees;
- As applicable as it pertains to conditions shown herein, the homeowners' association shall be responsible for the maintenance of all common areas, screening walls, landscaped areas, private streets and alleys. • The homeowners' association shall grant the City the right of access to any areas to abate any nuisances on
- such areas and attach a lien upon each individual lot for the prorated cost of abatement. • The homeowners' association shall indemnify and hold the City harmless from any and all costs, expenses, suits,
- demand, liabilities, damages, or otherwise, including attorney fees and costs of suit, in connection with the City's maintenance of common areas.
- The homeowners' association shall, where additional rights-of-way has been dedicated for the purpose of providing landscaping, additional areas for sidewalks, walls or other amenities, enter into a license agreement with the City and shall be responsible for the installation and maintenance of all landscape areas in the public rights—of way.

This plat approved subject to all platting ordinances, rules, regulations and resolutions of the City of Lucas, Texas.

WARNER LAND ADVISORS, LP.

BY: Warner Capital, LLC By: Stephen L. Sallman, Manager

STATE OF TEXAS COUNTY OF COLLIN

Before me, the undersigned authority, a Notary Public in and of the State of Texas, on this day personally appeared WARNER LAND ADVISORS, LP., known to me to be the person whose name is subscribed to the foregoing instrument and acknowledged to me that he executed the same for the purpose and consideration therein stated.

Given under my hand and seal of office, this \_\_\_\_ day of \_\_\_\_\_, 20\_\_\_,

Notary public in and for the State of Texas

My Commission Expires

SURVEYOR'S CERTIFICATE:

THAT I, Ryan S. Reynolds, do hereby certify, that I prepared this plat from an actual on the ground survey of the land as described and that the corner monuments shown thereon were properly placed under my personal supervision in accordance with the Platting Rules and Regulations of the City of Lucas Planning and Zoning Commission.

PRELIMINARY, THIS DOCUMENT SHALL NOT BE RECORDED FOR ANY PURPOSE AND SHALL NOT BE USED OR VIEWED OR RELIED UPON AS A FINAL SURVEY DOCUMENT.

RYAN S. REYNOLDS. R.P.L.S.

STATE OF TEXAS § COUNTY OF COLLIN §

Given under my hand and seal of office, this \_\_\_\_ day of \_\_\_\_\_, 20\_\_\_.

Notary public for and in the State of Texas

My commission expires: \_\_\_\_\_

#### NOW, THEREFORE KNOW ALL MEN BY THESE PRESENTS:

Texas Registered Professional Land Surveyor No. 6385.

CERTIFICATE OF APPROVAL:

This plat is hereby approved by the Planning and Zoning Commission of the City of Lucas, Texas. This plat approved subject to all platting ordinances, rules, regulations and resolutions of the City of Lucas, Texas.

| Dusty Kuykendall<br>Chair, Planning and Zoning Commission | Date     |
|-----------------------------------------------------------|----------|
| ATTEST:                                                   |          |
| Signature                                                 | <br>Date |

\_\_\_\_\_ \_\_\_\_\_ Name & Title Date

The Director of Public Works of the City of Lucas, Texas hereby certifies that to the besf of his/her knowledge or belief, this subdivision plat conforms to all requirements of the Code of Ordinances and with engineering construction standards and processes adopted by the City of Lucas, Texas as to which his/her approval is required.

Before me, the undersigned authority, a Notary Public in and for the said County and State, on this day personally appeared \_\_\_\_\_\_, known to me to be the person whose name is subscribed to the foregoing instrument and acknowledged to me that he/she executed the same for the purpose and considerations therein expressed.

Director of Public Works

Scott Holden, PE

The Development Services Director of the City of Lucas, Texas hereby certifies that to the besf of his/her knowledge or belief, this subdivision plat conforms to all requirements of the Code of Ordinances or as many have been amended or modified, as allowed, by the Planning and Zoning Commission as to which his/her approval required.

Date

\_\_\_\_\_ Joseph Hilbourn Director of Development Services

NOTES:

- ALL LOTS MUST USE ALTERNATIVE TYPE ON-SITE SEWAGE FACILITIES. LOT TO LOT DRAINAGE IS NOT PERMITTED WITHOUT ENGINEERING SECTION
- APPROVAL 3. ALL LOTS MUST MAINTAIN STATE-MANDATED SETBACK OF ALL ON-SITE SEWAGE FACILITY COMPONENTS FROM ANY/ALL EASEMENTS AND DRAINAGE AREAS, WATER DISTRIBUTION LINES. SHARP BREAKS AND/OR CREEKS/RIVERS/PONDS. ETC.
- 4. A PORTION OF LOTS 10, 11, 20-27, BLOCK A, ARE WITHIN A 250' ELECTRICAL LINE EASEMENT. THESE LOTS DO NOT CONFIRM TO COLLIN COUNTY OSSF REGULATIONS. THE EASEMENT MAY NOT BE USED FOR OSSF CONVEYANCE, STORAGE OR DISPOSAL AND REQUIRED SETBACKS MUST BE FOLLOWED. DUE TO SETBACK RESTRICTIONS, NO SURFACE IMPROVEMENTS, IMPERVIOUS COVER, OUTBUILDINGS, SWIMMING POOLS, ETC. ARE ALLOWED ON SAID LOTS WITHOUT A PRE-CONSTRUCTION PLANNING MEETING WITH A REGISTERED SANITARIAN/PROFESSIONAL ENGINEER AND COLLIN COUNTY DEVELOPMENTS SERVICES. NOTE: LACK OF USEABLE LOT MAY PRECLUDE SAID LOTS FROM HAVING SWIMMING POOLS AND/OR OUTBUILDINGS. ADDITIONALLY, DWELLING SIZE ON SAID LOTS MAY BE LIMITED TO A MAXIMUM OF 5,500 SQUARE FEET AND/OR 5 BEDROOMS.
- 5. A LARGE PORTION OF LOTS 11 & 20 ARE WITHIN A 250' ELECTRICAL LINE EASEMENT. THE EASEMENT MANY NOT BE USED FOR OSSF CONVEYANCE. STORAGE OR DISPOSAL AND REQUIRED SETBACKS MUST BE FOLLOWED. DUE TO SETBACK RESTRICTIONS, NO SURFACE IMPROVEMENTS, IMPERVIOUS COVER, OUTBUILDINGS, SWIMMING POOLS, ETC. ARE ALLOWED ON LOTS 11 & 20 WITHOUT A PRE-CONSTRUCTION PLANNING MEETING WITH A REGISTERED SANITARIAN/PROFESSIONAL ENGINEER AND COLLIN COUNTY DEVELOPMENT SERVICES
- TREE REMOVAL AND/OR GRADING FOR OSSF MAY BE REQUIRED ON INDIVIDUAL 6. LOTS. INDIVIDUAL SITE EVALUATIONS AND OSSF DESIGN PLANS (MEETING ALL STATE AND 7.
- COUNTY REQUIREMENTS) MUST BE SUBMITTED TO AND APPROVED BY COLLIN COUNTY FOR EACH LOT PRIOR TO CONSTRUCTION OF ANY OSSF SYSTEM.
- BY GRAPHICAL PLOTTING, THE PARCEL DESCRIBED HEREON DOES NOT LIE WITHIN A SPECIAL FLOOD HAZARD AREAS. AS DELINEATED ON THE COLLIN COUNTY. TEXAS AND INCORPORATED AREAS. FLOOD INSURANCE RATE MAP. MAP NUMBER 48085C045 J, DATED JUNE 02, 2009, AS PUBLISHED BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY. THE ABOVE FLOOD STATEMENT DOES NOT IMPLY THAT THE PROPERTY AND/OR STRUCTURES WILL BE FREE FROM FLOODING OR FLOOD DAMAGE. ON OCCASION, THE GREATER FLOODS CAN AND WILL OCCUR AND FLOOD HEIGHTS MAY BE INCREASED BY MAN MADE OR NATURAL CAUSES. THE ABOVE FLOOD STATEMENT SHALL NOT CREATE LIABILITY ON THE PART OF THE SURVEYOR.
- SOURCE BEARING IS BASED ON TEXAS STATE PLANE COORDINATE SYSTEM. PROJECTION: STATE PLANE NAD83 TEXAS NORTH CENTRAL ZONE 4204, LAMBERT CONFORMAL CONIC (TX83-NCF).
- 10. PROPERTY OWNERS TO MAINTAIN PROPERTY INCLUDING DRAINAGE AND UTILITY EASEMENTS TO THE EDGE OF PAVEMENT. SELLING A PORTION OF ANY LOT WITHIN THIS ADDITION BY METES AND BOUNDS IS
- A VIOLATION OF STATE LAW AND CITY ORDINANCE AND IS SUBJECT TO FINES AND WITHHOLDING OF UTILITIES AND BUILDING PERMITS. 12. NO PERMANENT STRUCTURES, WALLS, TRESS, UTILITIES, EXCEPT CROSSING AT
- APPROXIMATELY 90 DEGREES SHALL BE PERMITTED WITHIN THE NTWMD EASEMENTS IN LOTS 10, 21-27, BLOCK A. 13. ALL OPEN SPACE LOTS (CA1, CA2 & CA3) SHALL BE ACCESS, UTILITY AND
- DRAINAGE EASEMENTS. 14. ALL OPEN SPACE LOTS (CA1, CA23 & CA3) SHALL BE MAINTAINED BY THE
- HOMEOWNERS ASSOCIATION 15. ALL STREET LIGHTS SHALL BE MAINTAINED BY THE HOMEOWNERS ASSOCIATION.

#### HEALTH DEPARTMENT CERTIFICATION

I HEARBY CERTIFY THAT THE ON-SITE SEWAGE FACILITIES DESCRIBED ON THIS PLAT CONFORM TO THE APPLICABLE OSSF LAWS OF THE STATE OF TEXAS, THAT SITE EVALUATIONS HAVE BEEN SUBMITTED REPRESENTING THE SITE CONDITIONS IN THE AREA IN WHICH ON-SITE SEWAGE FACILITIES ARE PLANNED TO BE USED.

REGISTERED SANITARIAN OR DESIGNATED REPRESENTATIVE COLLIN COUNTY DEVELOPMENT SERVICES

#### PURPOSE OF PLAT

THE PURPOSE OF THIS PLAT IS TO CREATE 27 RESIDENTIAL LOTS FROM A 44.084 ACRE TRACT OF LAND

## PRELIMINARY PLAT **DEAN FARMS AT** STINSON HIGHLAND

LOTS 1-27, CA1 & CA2, BLOCK A 27 SINGLE FAMILY LOTS & 2 COMMON SPACES 44.084 ACRES OUT OF THE JOHN MCKINNEY SURVEY, ABSTRACT NO. 596 CITY OF LUCAS COLLIN COUNTY, TEXAS EXIST. ZONING: R1

> September 27, 2022 SHEET 2 OF 2

Engineer/Surveyor: Johnson Volk Consulting, Inc. 704 Central Parkway East, Suite 1200 Plano, Texas 75074 Phone: 972-201-3102 Ryan.Renolds@johnsonvolk.com TBPELS FIRM NO. 10194033

JOHNSON VOLK CONSULTING TBPELS: Engineering Firm No. 11962 / Land Surveying Firm No. 10194033 704 Central Parkway East | Suite 1200 | Plano, TX 75074 | 972,201,3100

Date

\_\_\_\_\_

PAVING NOTES

1. CONCRETE FOR ALL STREETS AND PRIVATE DEVELOPMENTS SHALL BE IN ACCORDANCE WITH NCTCOG, FOURTH EDITION OR AS AMENDED CLASS "C" CONCRETE (SIX SACK 3,600 P.S.I.) ITEM 303.3.4.2(a) AND ITEM 303.5.6.2 HAND.

2. REINFORCING STEEL SHALL BE DEFORMED BARS NO. NO. 4 BARS ON 18 INCH CENTERS. REINFORCING SHALL BE IN BOTH DIRECTIONS ON CENTER. REINFORCING STEEL SHALL BE IN ACCORDANCE WITH ASTM 615, 616 AND 617.

3. ALL REINFORCING STEEL SHALL BE TIED (100%). REINFORCING STEEL SHALL BE SET ON PLASTIC CHAIRS. BAR LAPS SHALL BE MINIMUM 30 DIAMETERS. NO STEEL SHALL BE PLACED UNTIL THE SUBGRADE HAS BEEN TESTED AND PASSED.

4. EXPANSION JOINTS SHALL BE SPACED EVERY 600 FEET, AT ALL INTERSECTIONS AND CHANGES IN DIRECTION OF PAVING. ALLEYS SHALL HAVE A MINIMUM OF TWO EXPANSION JOINTS.

5. SAWED TRANSVERSE DUMMY JOINTS SHALL BE SPACED EVERY 15 FEET OR 1.25 TIMES LONGITUDINAL JOINT SPACING WHICHEVER IS LESS. SAWING SHALL OCCUR WITHIN 5 TO 12 HOURS AFTER THE POUR INCLUDING SEALING.

6. SUBGRADE UNDER PAVEMENTS SHALL BE IN ACCORDANCE WITH GEOTECH REPORT NO. G220942 FURNISHED BY ALPHA TESTING ON JULY 19, 2022.

7. LIME TRIMMINGS ARE NOT ACCEPTABLE FOR ANY USE.

8. ALL FILL SHALL BE COMPACTED BY MECHANICAL METHODS. MAXIMUM LOOSE LIFT FOR COMPACTION SHALL BE 8 INCHES. ALL LIFTS SHALL BE TESTED FOR DENSITY BY AN INDEPENDENT LABORATORY APPROVED BY THE CITY. DENSITY REQUIREMENT SHALL BE AS SHOWN ON THE PLANS FOR THE TYPE OF MATERIAL CALLED FOR IN THE PLANS.

9. ALL DISTURBED AREAS OF ROADWAY WORK SHALL HAVE GRASS ESTABLISHED IMMEDIATELY. GRASS SHALL MEET THE REQUIREMENTS OF ITEM 202, LANDSCAPING, OF NCTCOG SPECIFICATIONS, FOURTH EDITION OR AS AMENDED.

10. ALL AREAS TO BE EXCAVATED OR FILLED SHALL HAVE EROSION CONTROL PLACED PRIOR TO COMMENCING EARTHWORK. EROSION CONTROL DEVICES SHALL BE MAINTAINED THROUGHOUT THE PROJECT IN ACCORDANCE WITH NCTCOG ITEM 201, FOURTH EDITION OR AS AMENDED.

11. NO VEHICLES SHALL BE PERMITTED ON CONCRETE PAVEMENT WITHOUT APPROVAL FROM THE CITY. THE CITY WILL MAKE DETERMINATION BASED ON CONCRETE BREAK REPORT.

12. CONCRETE MIX DESIGN SHALL BE SUBMITTED FOR REVIEW PRIOR TO PRE-CONSTRUCTION MEETING. REVISE THE FIRST PARAGRAPH OF NCTCOG SPEC. 303.2.1.3 COARSE AGGREGATE TO READ "CRUSHED LIMESTONE SHALL CONSTITUTE 100% OF THE COARSE AGGREGATE.

13. ALL AREAS NOT UNDER PAVING, INCLUDING ALL FRANCHISE UTILITY EASEMENTS, SHALL BE COMPACTED TO A DENSITY OF NOT LESS THAN 92 PERCENT OF THE MAXIMUM DENSITY.

14. ANY CURB AND/OR STREET SECTION REMOVED FOR THE CONSTRUCTION OF A PRIVATE DRIVEWAY SHALL NOT BE REMOVED PRIOR TO 7 DAYS OF CONSTRUCTION OF THE DRIVEWAY. IF THE DRIVEWAY IS NOT CONSTRUCTED WITHIN THIS TIME FRAME AND EXCAVATION HAS BEEN MADE, EXCAVATION SHALL BE REPLACED UNTIL SUCH TIME CONSTRUCTION COMMENCES.

15. MAXIMUM TEMPERATURE OF THE CONCRETE FOR PLACEMENT SHALL BE IN ACCORDANCE WITH ITEM 303.5.5.2. OF THE NCTCOG STANDARD SPECIFICATIONS.

16. PAVING EQUIPMENT REQUIRED SHALL BE AS SPECIFIED IN NCTCOG 2017 EDITION UNDER ITEM 303.4.

17. WATER INJECTION OF SUBGRADE BY CITY ENGINEER APPROVAL ONLY.

### STORM SEWER

1. THE FLOOR OF THE EXCAVATION FOR INLET BOX MUST PROVIDE A FIRM, LEVEL BED FOR THE BASE SECTION TO REST UPON.

2. A MINIMUM OF 6 INCHES OF 1"DIAMETER (MAXIMUM) ROCK OR GRAVEL SHALL BE USED TO PREPARE THE BEDDING TO FINAL GRADE OR IN LIEU OF THIS, AT LEAST 6 INCHES OF 2-SACK CEMENT STABILIZED SAND SHALL BE USED TO PREPARE THE BEDDING TO GRADE. CEMENT STABILIZED SAND SHALL BE ALLOWED TO SET BY KEEPING HOLE PUMPED DRY.

3. AFTER PIPE HAS BEEN LAID ON PROPER BEDDING, BACKFILLING TO COMMENCE WITH 8"MAXIMUM LOOSE LIFTS MECHANICALLY COMPACTED TO 95% STANDARD PROCTOR UNDER ROADWAY OR 12"MAXIMUM LOOSE LIFT BEHIND CURB. MAXIMUM SIZE ROCK IN BACKFILL SHALL NOT EXCEED 4 INCHES IN DIAMETER.

- 4. PRECAST INLETS MUST BE APPROVED BY THE CITY.
- 5. CONCRETE TO BE MINIMUM 4200 P.S.I.
- 6. LOCKING DEVICE IS REQUIRED ON ALL STORM SEWER LIDS.
- 7. "NO DUMPING" WARNING PLAQUE TO BE INSTALLED ON ALL STANDARD AND RECESSED INLETS.
- 8. CONCRETE CAST-IN-PLACE INLETS SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 4,200 P.S.I. @ 28 DAYS.

9. EXISTING STORM SEWER PIPE AND/OR LATERALS SHALL BE LOCATED PRIOR TO SETTING OR CONSTRUCTING INLET BOXES. IF ADJUSTMENT IN GRADE OF LATERAL IS REQUIRED, A REVISED DESIGN BY THE ENGINEER OF RECORD SHALL BE SUBMITTED TO THE CITY FOR APPROVAL.

10. REINFORCED CONCRETE PIPE CLASS III IS APPROVED WITHIN THE CITY.

11. COLOR TV INSPECTION SHALL BE COMPLETED ON THE STORM SEWER IN THE PRESENCE OF CITY REPRESENTATIVE AND THE ORIGINAL MEDIA SHALL BE GIVEN TO THE CITY AT THE COMPLETION OF THE INSPECTION.

#### STREET SIGN SPECIFICATIONS

STREET NAME SIGNS FOR ALL INTERSECTIONS BY THE CONSTRUCTION OF A SUBDIVISION SHALL BE FURNISHED AND INSTALLED BY THE DEVELOPER. THE INSTALLATION OF THE STREET SIGNS MUST BE PRIOR TO THE FINAL ACCEPTANCE OF THE SUBDIVISION. THE LEGEND SHALL CONTAIN THE NAME OF THE STREET, ANY SUFFIX AS DESIGNATED ON THE PLAT, AND THE BLOCK NUMBER AS ASSIGNED BY THE CITY. THE SIGN FACE SHALL BE HIP PRISMATIC WHITE W/BLUE EC FILM WITH CITY LOGO. THE SIGN PLATE SHALL BE 9 INCHES TALL AND 0.080 INCHES THICK FLAT BLADE ALUMINUM DRILLED. THE STREET NAME SHALL BE 6 INCH UPPER CASE LETTERS. THE SUFFIX AND BLOCK LETTERS SHALL BE 3 INCHES. ALL LETTERS SHALL BE WHITE. THE SIGNS SHALL BE MOUNTED ON A 2 INCH BY 12 FOOT SQUARE POST WITH A 2.25 INCH BY 36 INCH SQUARE GROUND ANCHOR AND 2.5 INCH BY 18 INCH SLEEVE. THE ANCHOR POST SHALL BE DRIVEN INTO THE GROUND AT A DEPTH OF 30 INCHES. THE STREET NAME SHALL BE MOUNTED 10 FEET FROM THE TOP OF THE CURB MEASURED TO THE BOTTOM OF THE LOWEST SIGN. SIGNS SHALL BE MOUNTED ON SQUARE POSTS USING DRIVE RIVETS, WASHER, SPACE AND CHERRY MATE RIVETS TO ATTACH ENDS OF SIGN TOGETHER.

ALL STREET LIGHTS SHALL BE MAINTAINED BY THE HOMEOWNERS ASSOCIATION.

#### WATER

1. ALL WATER LINE CROSSINGS OF SANITARY SEWER LINES SHALL BE AS SHOWN IN THE PLANS AND MEET TCEQ REQUIREMENTS.

2. PIPES 12 INCHES IN DIAMETER AND SMALLER SHALL BE POLYVINYL CHLORIDE (P.V.C.) MEETING THE REQUIREMENTS OF AWWA C900 DR 18 OR DUCTILE IRON PIPE (D.I.P.) MEETING THE REQUIREMENTS OF AWWA C 151 CLASS 50 PIPE. ALL D.I.P. SHALL BE WRAPPED WITH A POLYETHYLENE LINER.

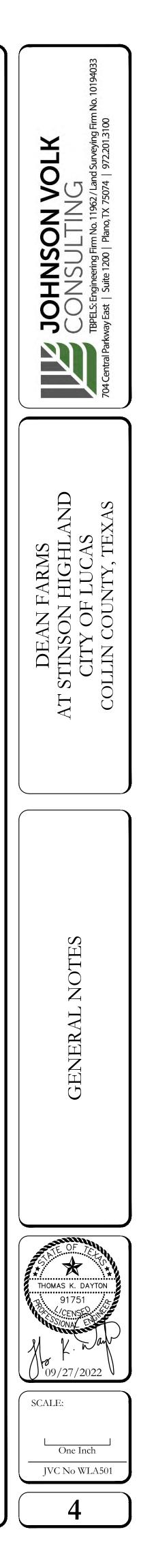
3. FOR PIPES LARGER THAN 12 INCHES IN DIAMETER, THE PIPE SHALL BE REINFORCED CONCRETE CYLINDER PIPE (AWWA C301 OR AWWA C303), DUCTILE IRON PIPE (AWWA C151 CLASS 50) OR POLYVINYL CHLORIDE PIPE UP TO 18 INCHES MEETING THE REQUIREMENTS OF AWWA C905 - 235 P.S.I. RATED PIPE.

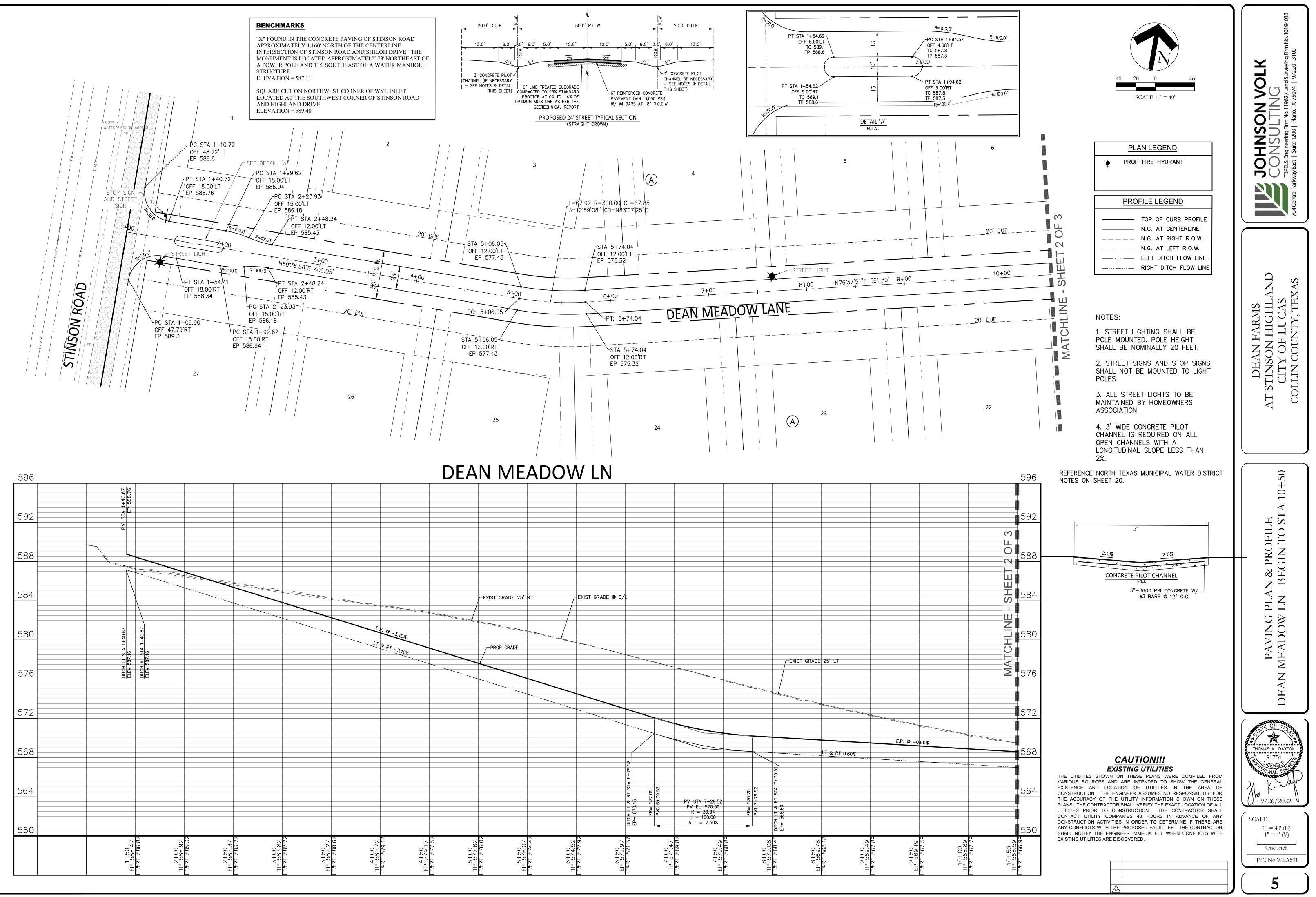
4. ALL VALVES ON PIPES 12 INCHES AND SMALLER SHALL BE RESILIENT SEALED WEDGE VALVES (AWWA C509).

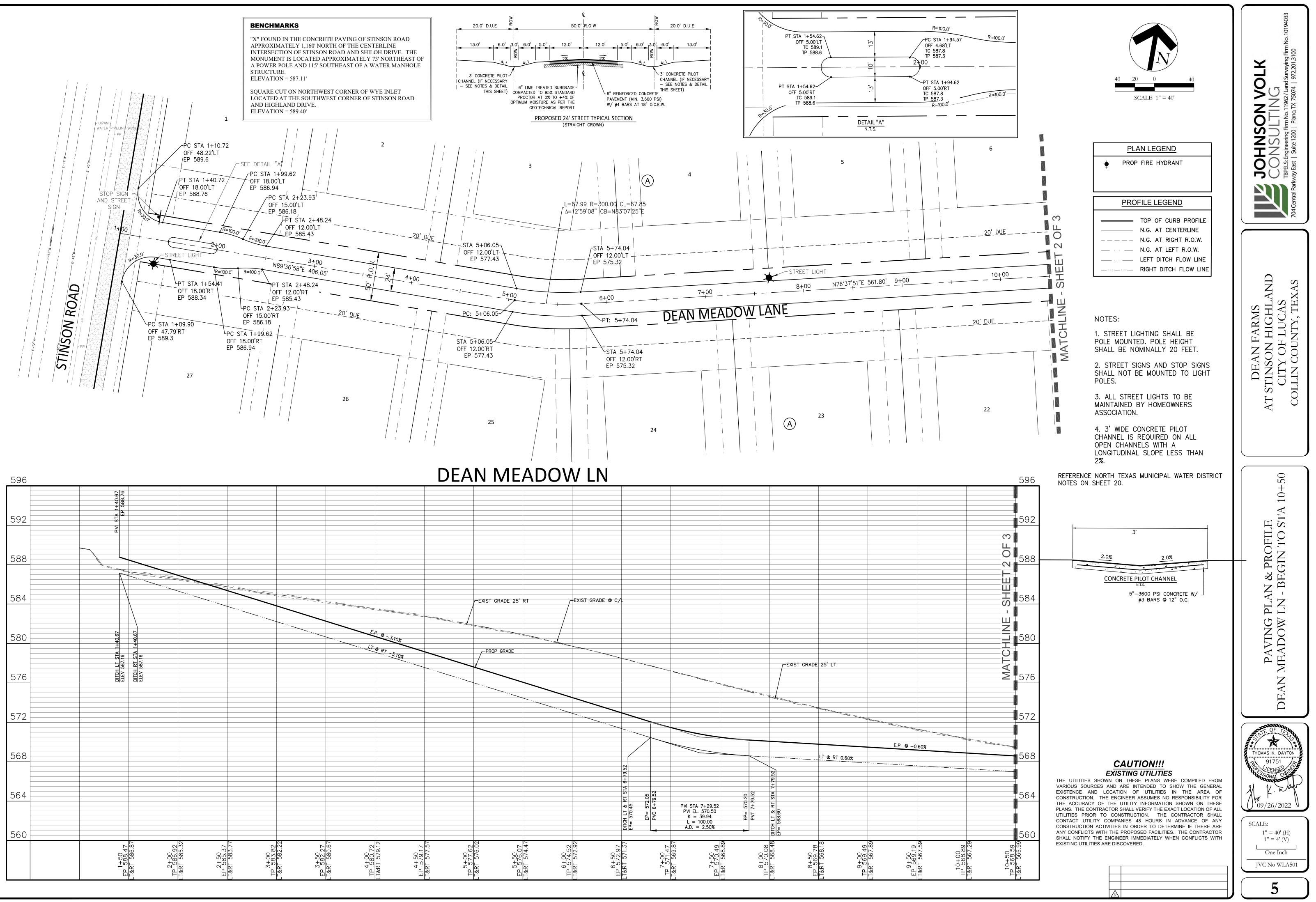
5. ALL VALVES ON PIPES LARGER THAN 12 INCHES BUT SMALLER THAN 30 INCHES SHALL BE BUTTERFLY VALVES (AWWA C504) OR WEDGE VALVES (AWWA C509).

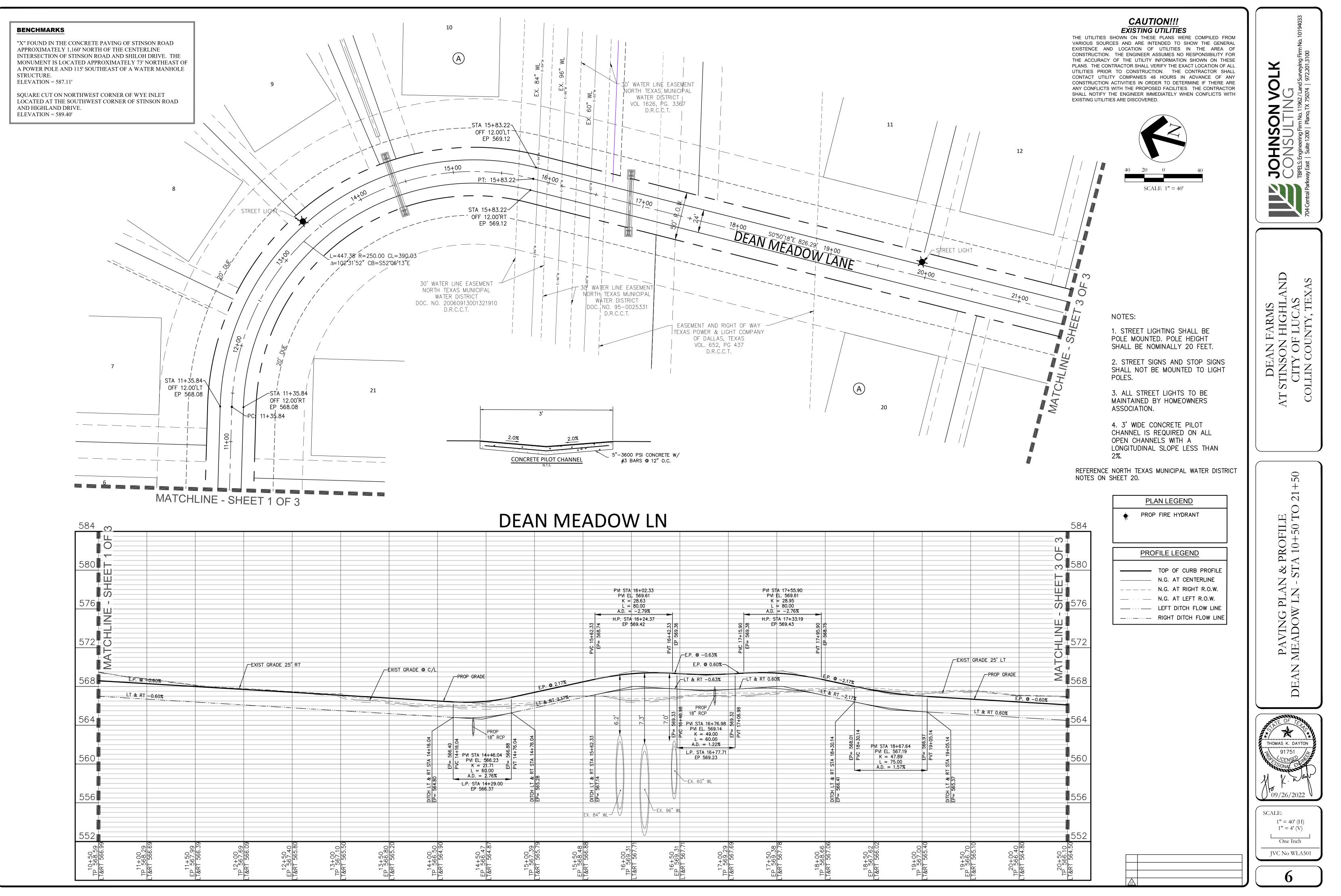
6. ALL VALVES ON PIPES 30 INCHES AND LARGER SHALL BE BUTTERFLY VALVES (AWWA C504).

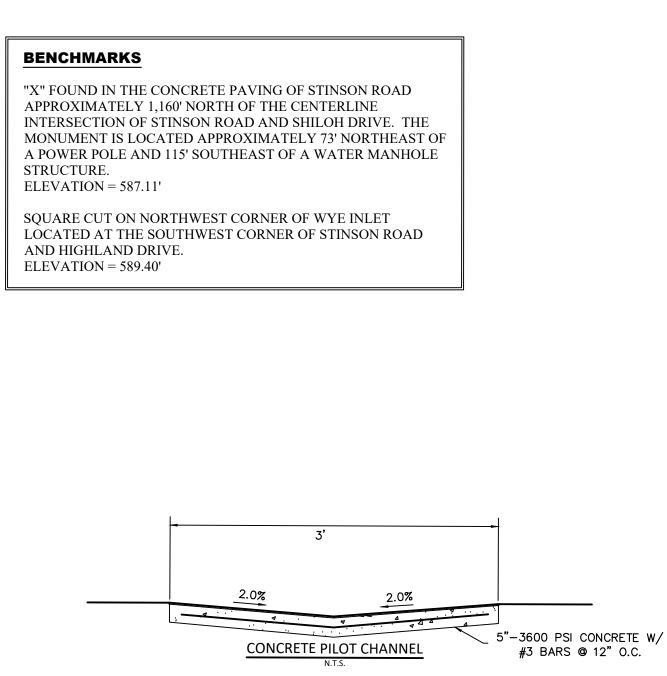
7. EMBEDMENT SHALL BE AS SHOWN IN THE PLANS. BACKFILL WITHIN THE LIMITS OF EXISTING AND PROPOSED PAVEMENT SHALL BE COMPACTED TO 95% STANDARD PROCTOR. OUTSIDE PAVEMENT (EXISTING OR PROPOSED) SHALL BE COMPACTED TO MINIMUM OF 92% STANDARD PROCTOR. ALL COMPACTION SHALL BE BY MECHANICAL METHODS.

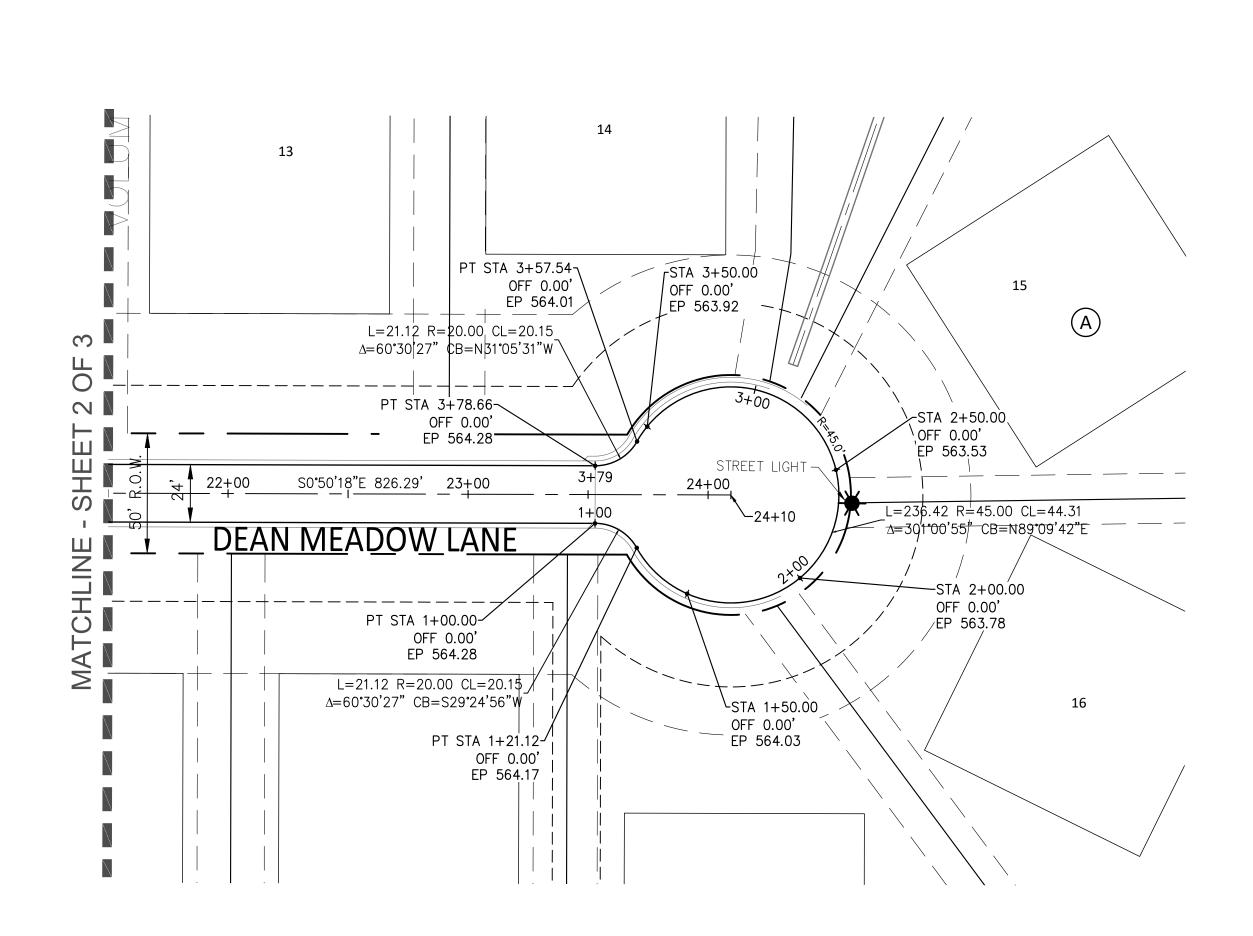

8. WATER LINES SHALL BE PRESSURE TESTED IN ACCORDANCE WITH NCTCOG ITEM 506. ALL WATER LINES SHALL BE SWABBED IN THE PRESENCE OF THE INSPECTOR PRIOR TO BACKFILLING.

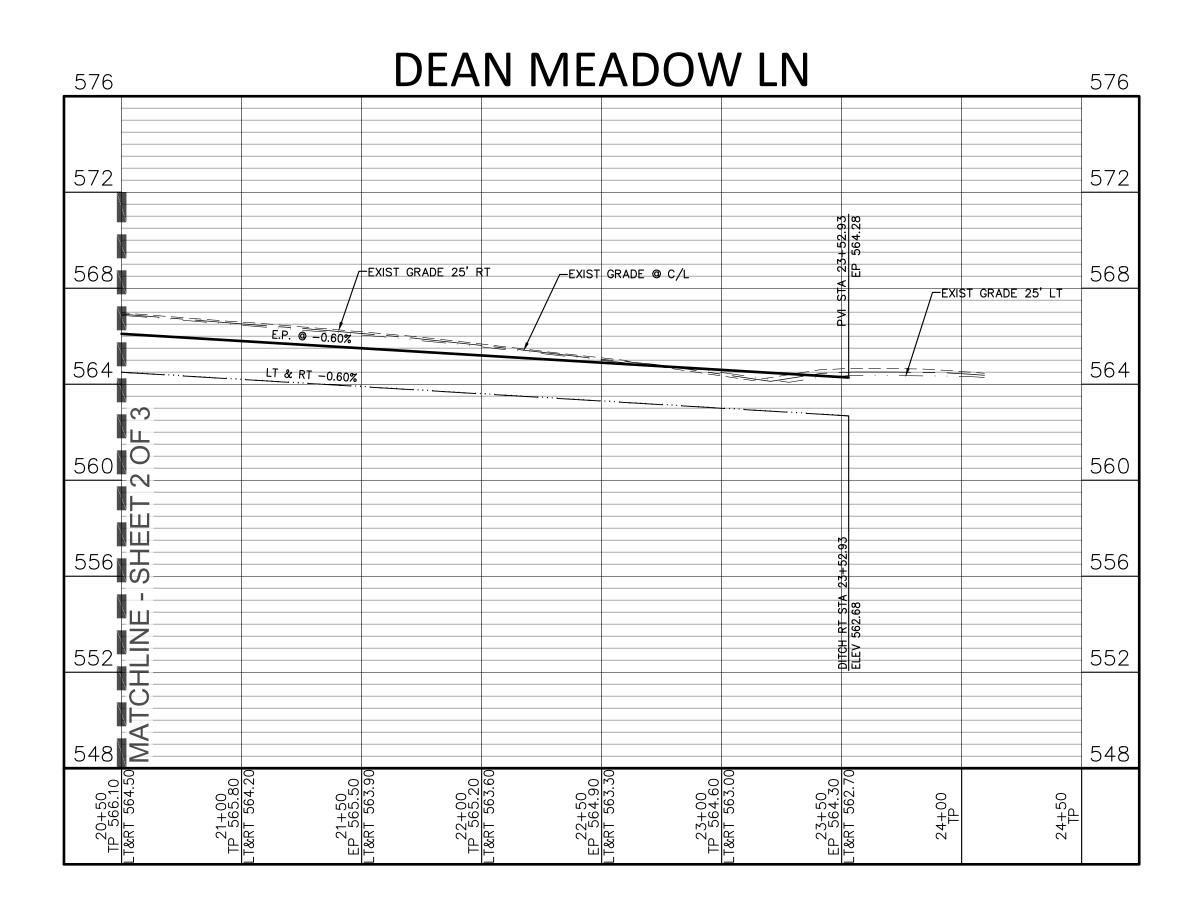

9. ALL HORIZONTAL AND VERTICAL BENDS SHALL BE BLOCKED.

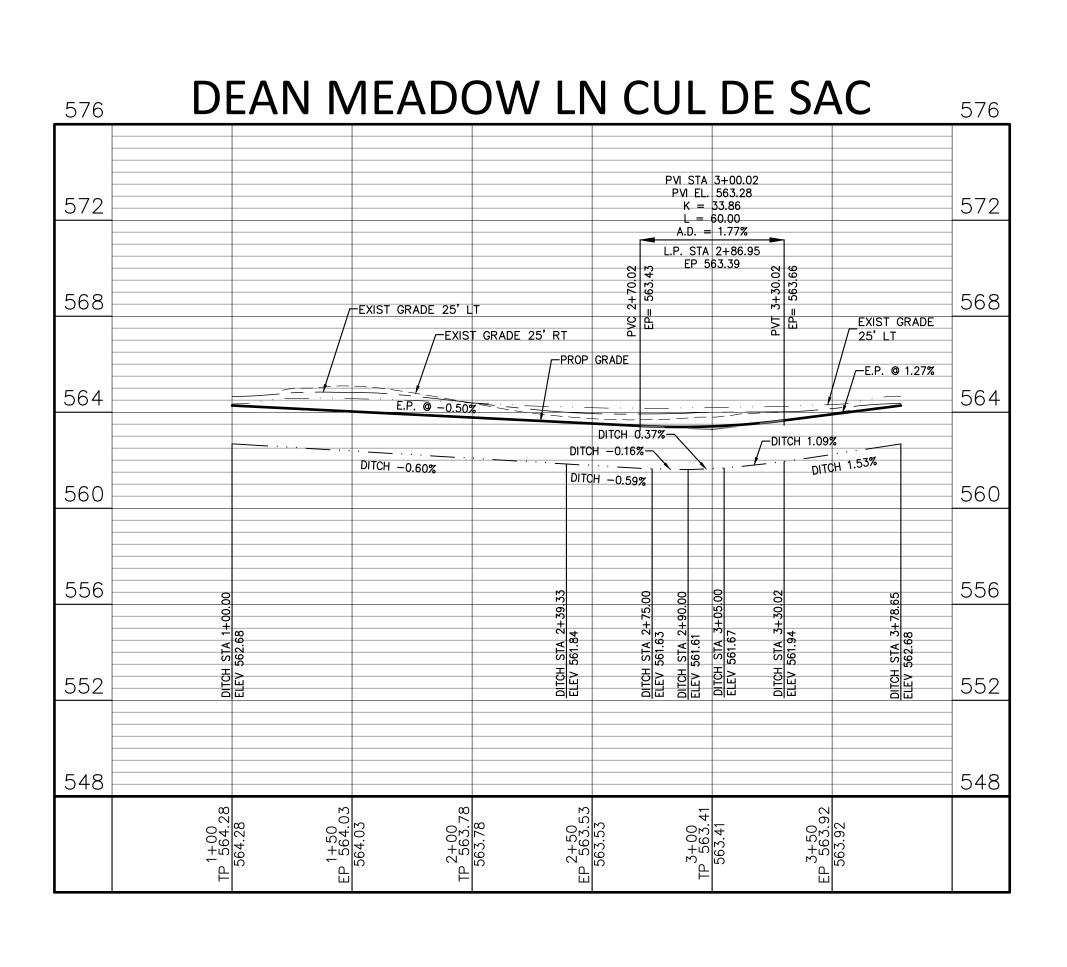

10. ALL FITTINGS SHALL INCLUDE MEGALUG CONNECTORS


11. ALL FIRE HYDRANTS SHALL BE INSTALLED WITH A 24" x 24" SQUARE REINFORCED CONCRETE PAD.


12. ALL WATER LINES SHALL BE SWABBED IN THE PRESENCE OF THE INSPECTOR PRIOR TO BACKFILL.

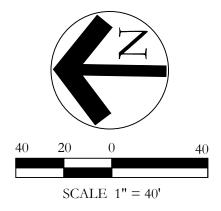










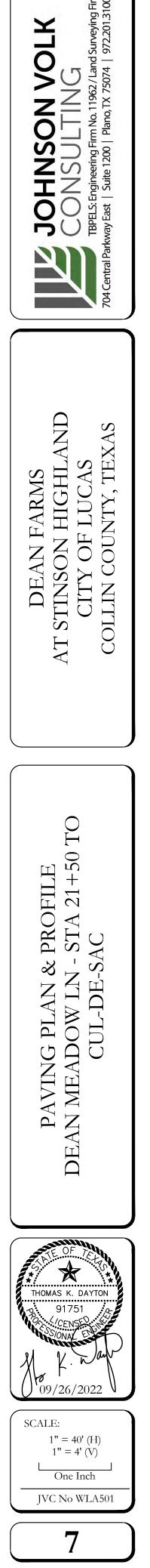

### CAUTION!!! EXISTING UTILITIES

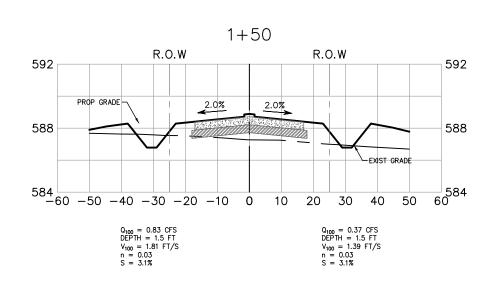
THE UTILITIES SHOWN ON THESE PLANS WERE COMPILED FROM VARIOUS SOURCES AND ARE INTENDED TO SHOW THE GENERAL EXISTENCE AND LOCATION OF UTILITIES IN THE AREA OF CONSTRUCTION. THE ENGINEER ASSUMES NO RESPONSIBILITY FOR THE ACCURACY OF THE UTILITY INFORMATION SHOWN ON THESE PLANS. THE CONTRACTOR SHALL VERIFY THE EXACT LOCATION OF ALL UTILITIES PRIOR TO CONSTRUCTION. THE CONTRACTOR SHALL CONTACT UTILITY COMPANIES 48 HOURS IN ADVANCE OF ANY CONSTRUCTION ACTIVITIES IN ORDER TO DETERMINE IF THERE ARE ANY CONFLICTS WITH THE PROPOSED FACILITIES. THE CONTRACTOR SHALL NOTIFY THE ENGINEER IMMEDIATELY WHEN CONFLICTS WITH EXISTING UTILITIES ARE DISCOVERED.

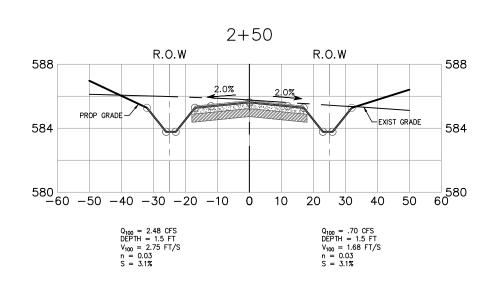


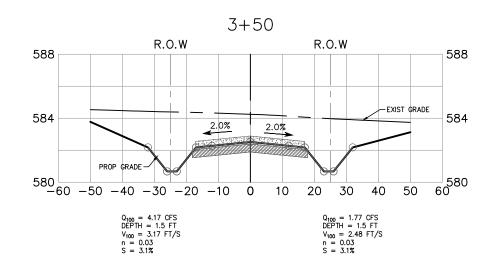
| <u>PL</u> A | AN LEGEND                                     |
|-------------|-----------------------------------------------|
| -∯ PROP     | FIRE HYDRANT                                  |
| PROI        | FILE LEGEND                                   |
|             |                                               |
|             | TOP OF CURB PROFILE<br>N.G. AT CENTERLINE     |
|             | N.G. AT RIGHT R.O.W.                          |
| · ·         | N.G. AT LEFT R.O.W.                           |
|             | LEFT DITCH FLOW LINE<br>RIGHT DITCH FLOW LINE |

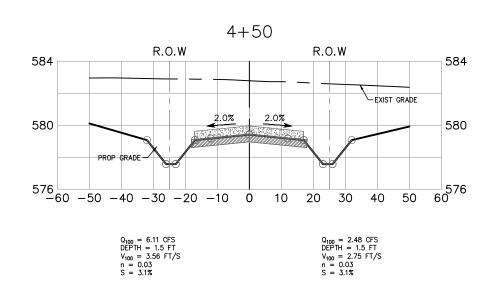
#### NOTES:

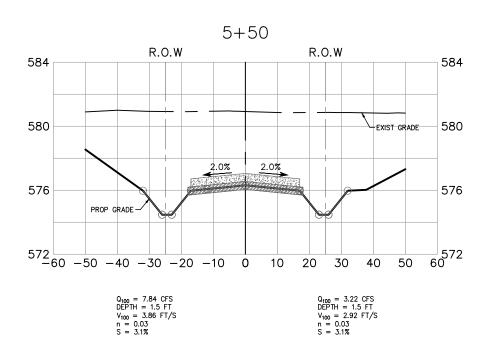

1. STREET LIGHTING SHALL BE POLE MOUNTED. POLE HEIGHT SHALL BE NOMINALLY 20 FEET.


2. STREET SIGNS AND STOP SIGNS SHALL NOT BE MOUNTED TO LIGHT POLES.

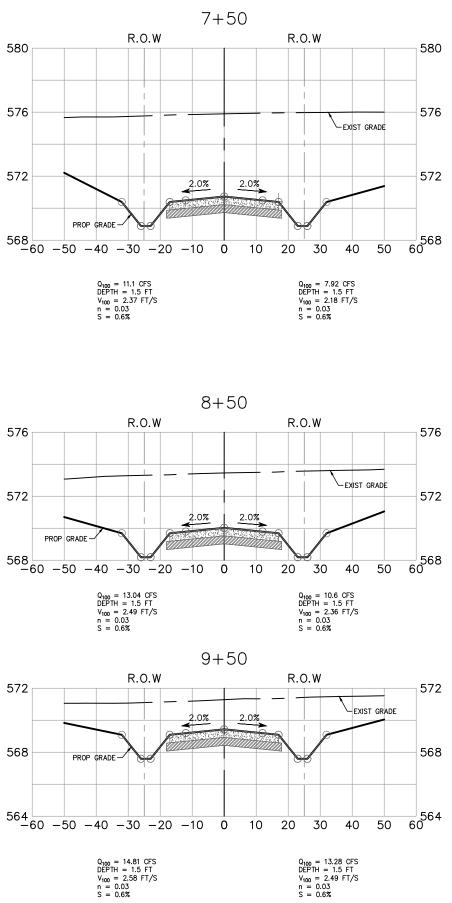

3. ALL STREET LIGHTS TO BE MAINTAINED BY HOMEOWNERS ASSOCIATION.

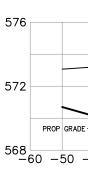

4. 3' WIDE CONCRETE PILOT CHANNEL IS REQUIRED ON ALL OPEN CHANNELS WITH A LONGITUDINAL SLOPE LESS THAN 2%.


REFERENCE NORTH TEXAS MUNICIPAL WATER DISTRICT NOTES ON SHEET 20.



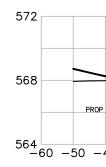


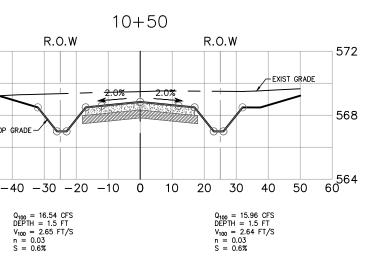



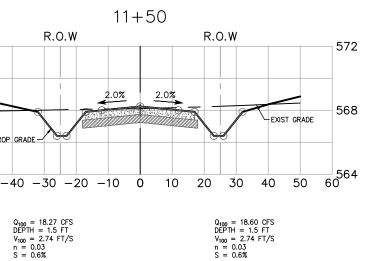


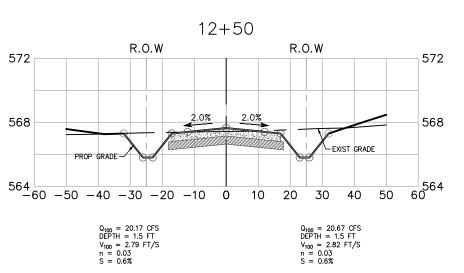


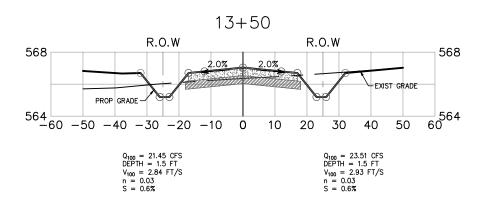



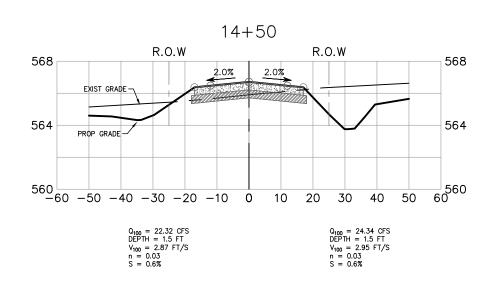


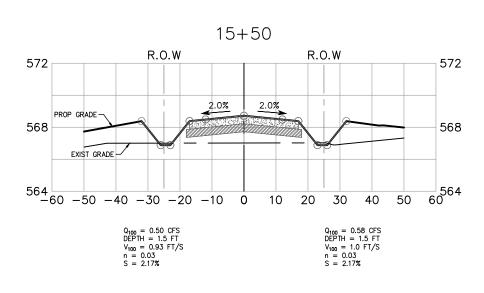



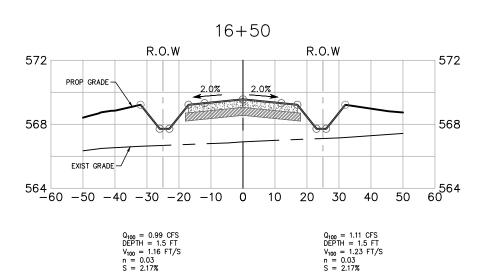



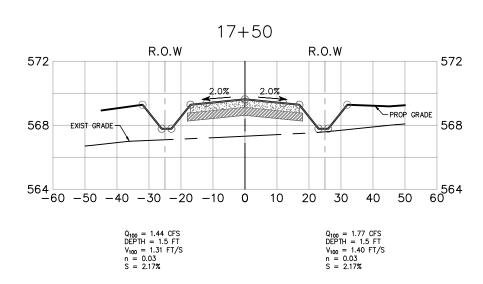


| 572       |    |    |          |    |
|-----------|----|----|----------|----|
|           |    |    |          |    |
|           |    | -  | <u> </u> | _  |
| 568       |    |    |          |    |
| 508       |    |    | PR       | OP |
|           |    |    |          |    |
| 564<br>-6 | 80 | 5  | 0        |    |
| -0        | 50 | -0 | 0        | _  |

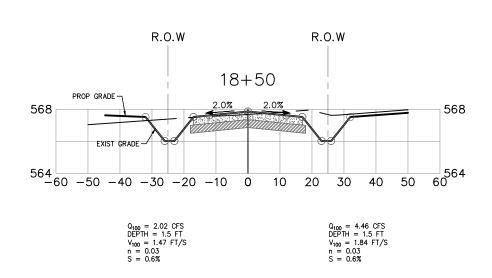


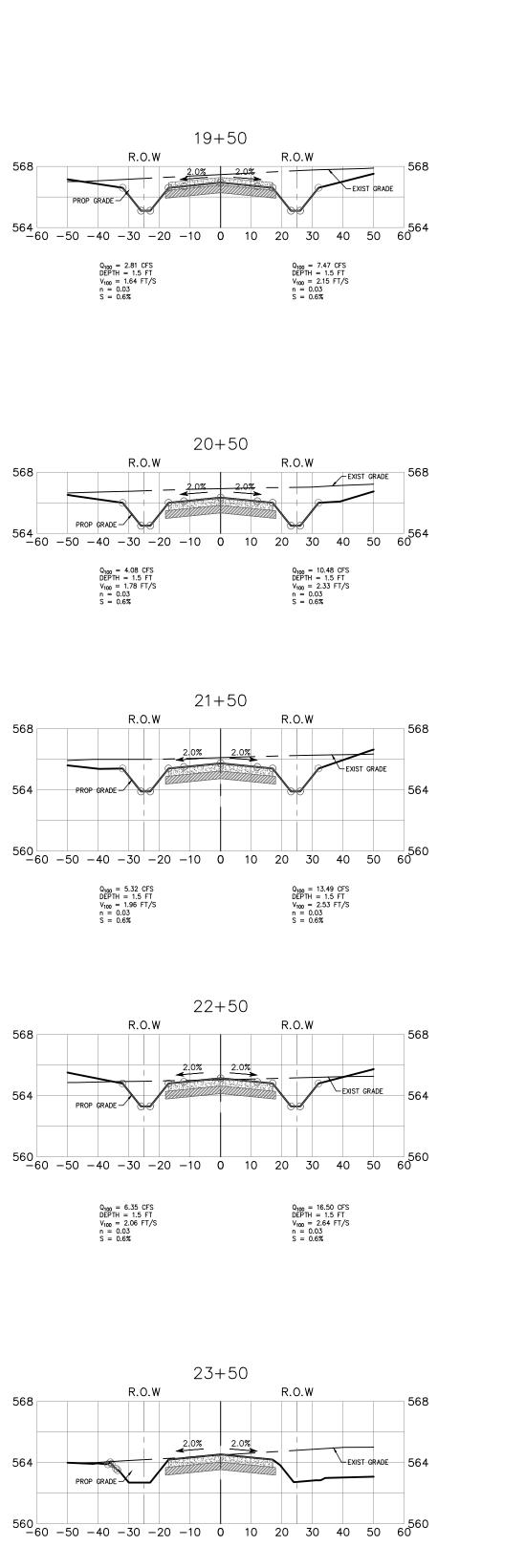


572



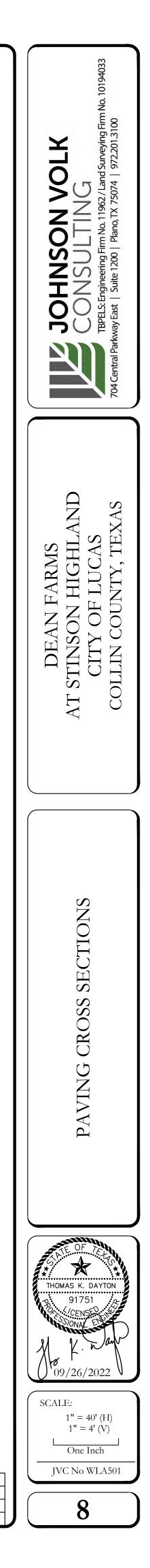



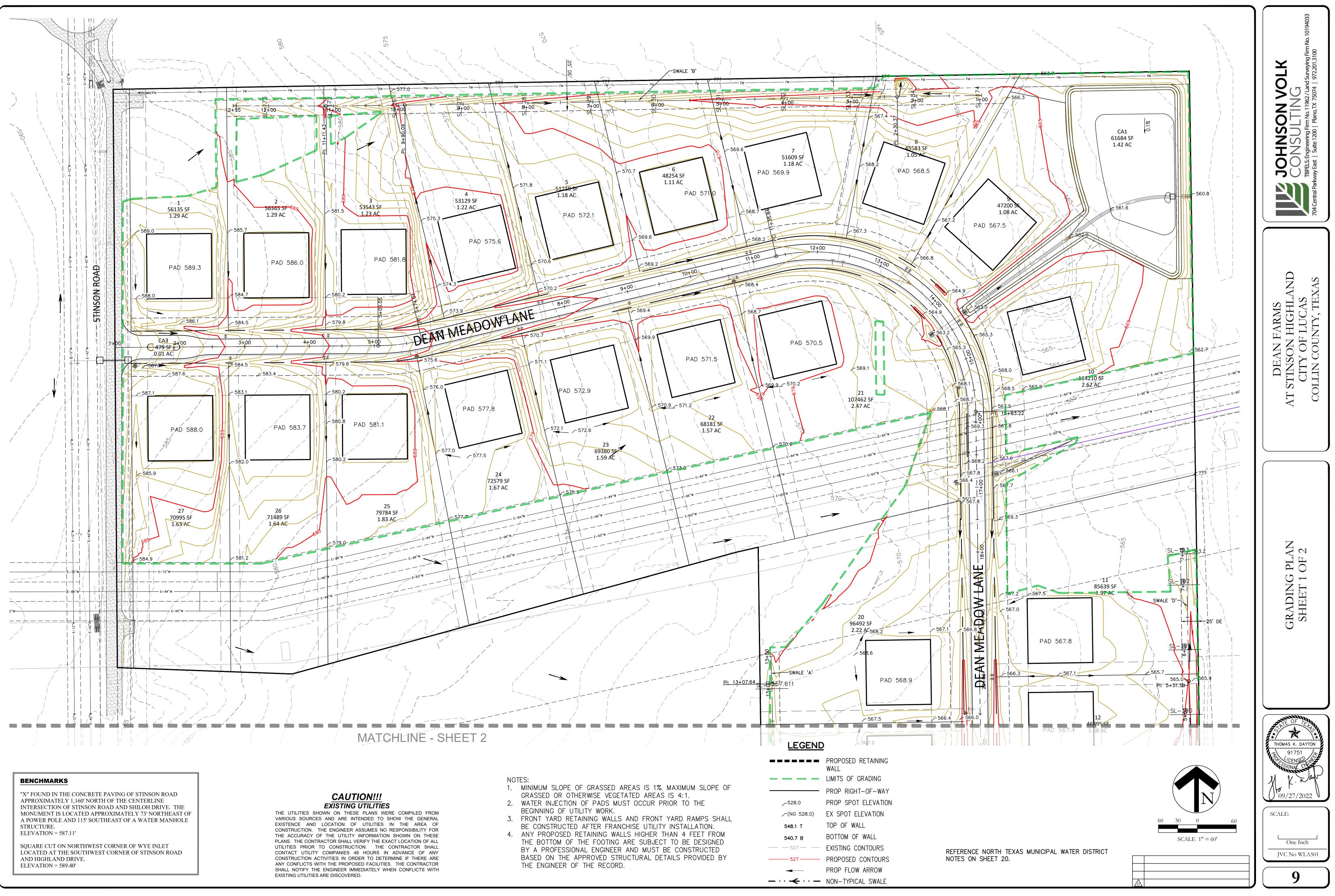



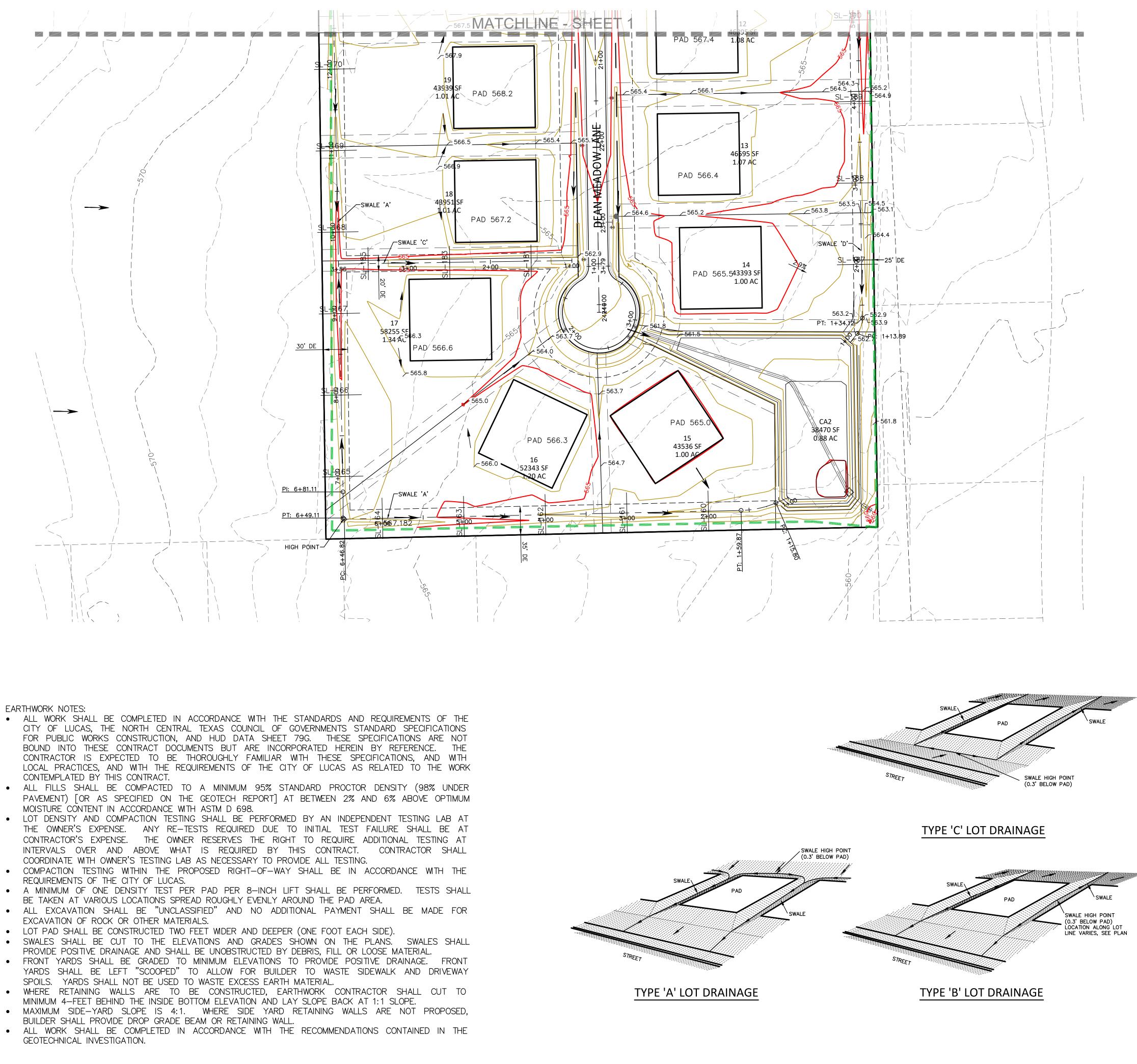








 $\begin{array}{l} {\sf Q}_{100} = \ 73.31 \ {\sf CFS} \\ {\sf DEPTH} = \ 1.5 \ {\sf FT} \\ {\sf V}_{100} = \ 3.77 \ {\sf FT/S} \\ {\sf n} = \ 0.03 \\ {\sf S} = \ 0.5\% \end{array}$ 

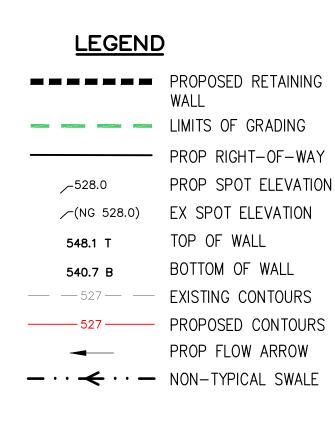


REFERENCE NORTH TEXAS MUNICIPAL WATER DISTRICT NOTES ON SHEET 20.








#### EARTHWORK NOTES:

- ALL WORK SHALL BE COMPLETED IN ACCORDANCE WITH THE STANDARDS AND REQUIREMENTS OF THE
- ALL FILLS SHALL BE COMPACTED TO A MINIMUM 95% STANDARD PROCTOR DENSITY (98% UNDER
- LOT DENSITY AND COMPACTION TESTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING LAB AT
- COMPACTION TESTING WITHIN THE PROPOSED RIGHT-OF-WAY SHALL BE IN ACCORDANCE WITH THE

- SWALES SHALL BE CUT TO THE ELEVATIONS AND GRADES SHOWN ON THE PLANS. SWALES SHALL
- FRONT YARDS SHALL BE GRADED TO MINIMUM ELEVATIONS TO PROVIDE POSITIVE DRAINAGE. FRONT
- WHERE RETAINING WALLS ARE TO BE CONSTRUCTED, EARTHWORK CONTRACTOR SHALL CUT TO
- MAXIMUM SIDE-YARD SLOPE IS 4:1. WHERE SIDE YARD RETAINING WALLS ARE NOT PROPOSED,
- ALL WORK SHALL BE COMPLETED IN ACCORDANCE WITH THE RECOMMENDATIONS CONTAINED IN THE

## CAUTION!!! EXISTING UTILITIES

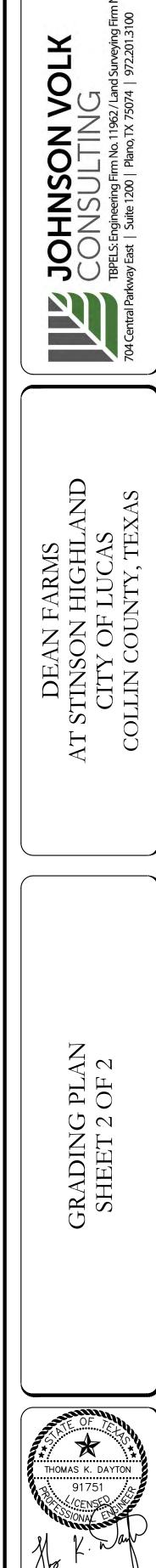
THE UTILITIES SHOWN ON THESE PLANS WERE COMPILED FROM VARIOUS SOURCES AND ARE INTENDED TO SHOW THE GENERAL EXISTENCE AND LOCATION OF UTILITIES IN THE AREA OF CONSTRUCTION. THE ENGINEER ASSUMES NO RESPONSIBILITY FOR THE ACCURACY OF THE UTILITY INFORMATION SHOWN ON THESE PLANS. THE CONTRACTOR SHALL VERIFY THE EXACT LOCATION OF ALL UTILITIES PRIOR TO CONSTRUCTION. THE CONTRACTOR SHALL CONTACT UTILITY COMPANIES 48 HOURS IN ADVANCE OF ANY CONSTRUCTION ACTIVITIES IN ORDER TO DETERMINE IF THERE ARE ANY CONFLICTS WITH THE PROPOSED FACILITIES. THE CONTRACTOR SHALL NOTIFY THE ENGINEER IMMEDIATELY WHEN CONFLICTS WITH EXISTING UTILITIES ARE DISCOVERED.

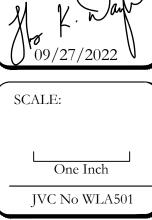


### NOTES:

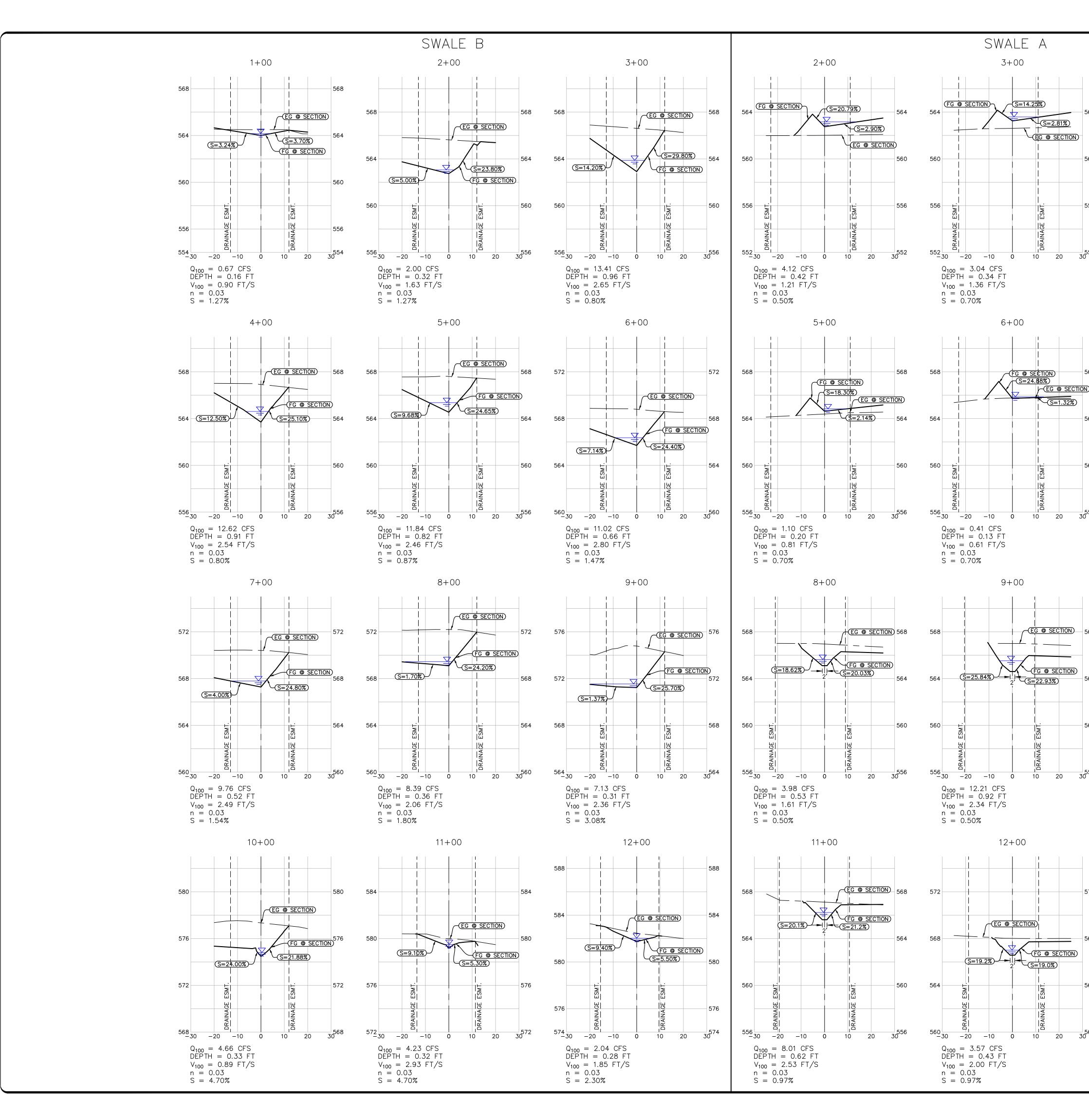
SCALE 1'' = 60'

- 1. MINIMUM SLOPE OF GRASSED AREAS IS 1%. MAXIMUM SLOPE OF GRASSED OR OTHERWISE VEGETATED AREAS IS 4:1.
- 2. WATER INJECTION OF PADS MUST OCCUR PRIOR TO THE BEGINNING OF UTILITY WORK.
- 3. FRONT YARD RETAINING WALLS AND FRONT YARD RAMPS SHALL BE CONSTRUCTED AFTER FRANCHISE UTILITY INSTALLATION.
- 4. ANY PROPOSED RETAINING WALLS HIGHER THAN 4 FEET FROM THE BOTTOM OF THE FOOTING ARE SUBJECT TO BE DESIGNED BY A PROFESSIONAL ENGINEER AND MUST BE CONSTRUCTED BASED ON THE APPROVED STRUCTURAL DETAILS PROVIDED BY THE ENGINEER OF THE RECORD.

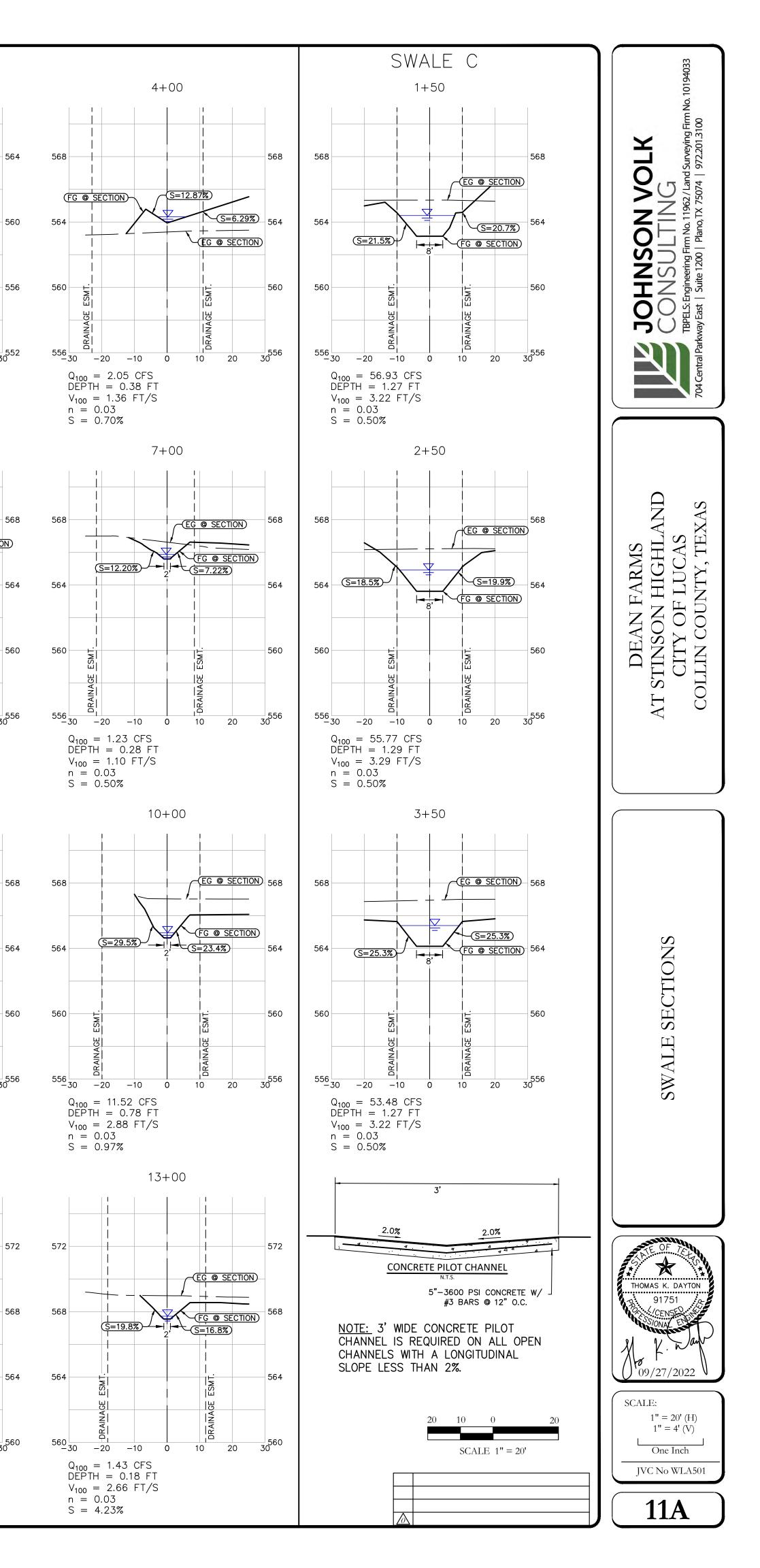

| LOT NUMBER | PAD ELEVATION | <b>ELEVATION AT STREET</b> |
|------------|---------------|----------------------------|
| 1          | 589.3         | 587.1                      |
| 2          | 586.0         | 582.0                      |
| 3          | 581.8         | 577.4                      |
| 4          | 575.6         | 571.6                      |
| 5          | 572.1         | 569.8                      |
| 6          | 571           | 568.8                      |
| 7          | 569.9         | 567.8                      |
| 8          | 568.5         | 567.2                      |
| 9          | 567.5         | 566.6                      |
| 10         | 567.8         | 567.5                      |
| 11         | 567.8         | 566.8                      |
| 12         | 567.4         | 566.0                      |
| 13         | 566.4         | 565.1                      |
| 14         | 565.5         | 564.2                      |
| 15         | 565.0         | 563.5                      |
| 16         | 566.3         | 563.7                      |
| 17         | 566.6         | 564.0                      |
| 18         | 567.2         | 564.8                      |
| 19         | 568.2         | 565.6                      |
| 20         | 568.9         | 566.5                      |
| 21         | 570.5         | 568.1                      |
| 22         | 571.5         | 569.0                      |
| 23         | 572.9         | 570.0                      |
| 24         | 577.8         | 573.2                      |
| 25         | 581.1         | 577.5                      |
| 26         | 583.7         | 582.3                      |
| 27         | 588.0         | 587.2                      |

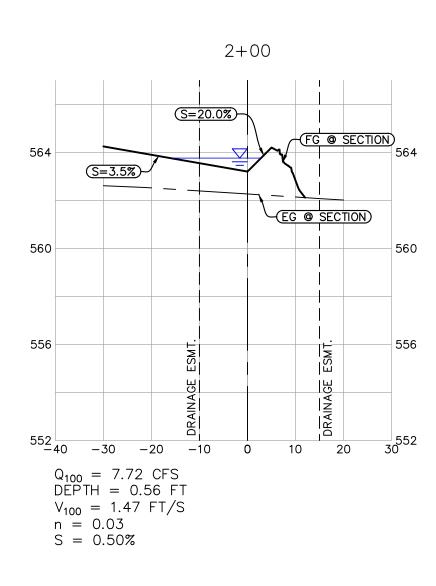

#### BENCHMARKS

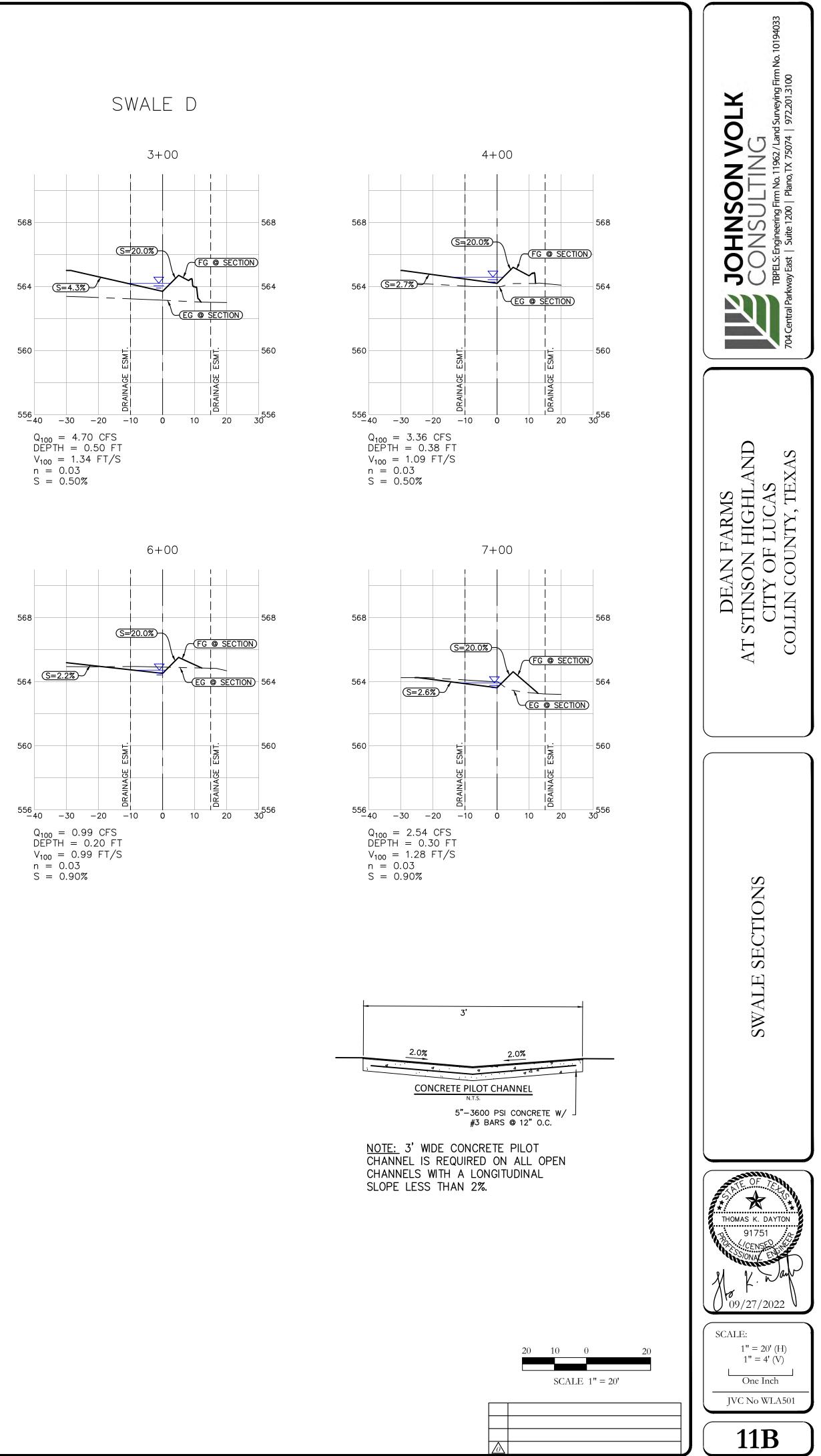
"X" FOUND IN THE CONCRETE PAVING OF STINSON ROAD APPROXIMATELY 1,160' NORTH OF THE CENTERLINE INTERSECTION OF STINSON ROAD AND SHILOH DRIVE. THE MONUMENT IS LOCATED APPROXIMATELY 73' NORTHEAST OF A POWER POLE AND 115' SOUTHEAST OF A WATER MANHOLE STRUCTURE. ELEVATION = 587.11'

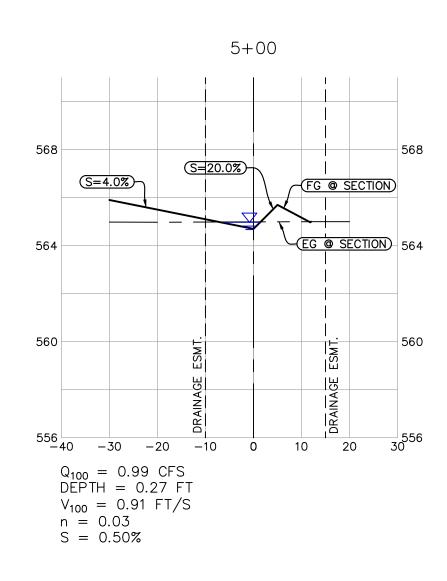

SQUARE CUT ON NORTHWEST CORNER OF WYE INLET LOCATED AT THE SOUTHWEST CORNER OF STINSON ROAD AND HIGHLAND DRIVE. ELEVATION = 589.40'

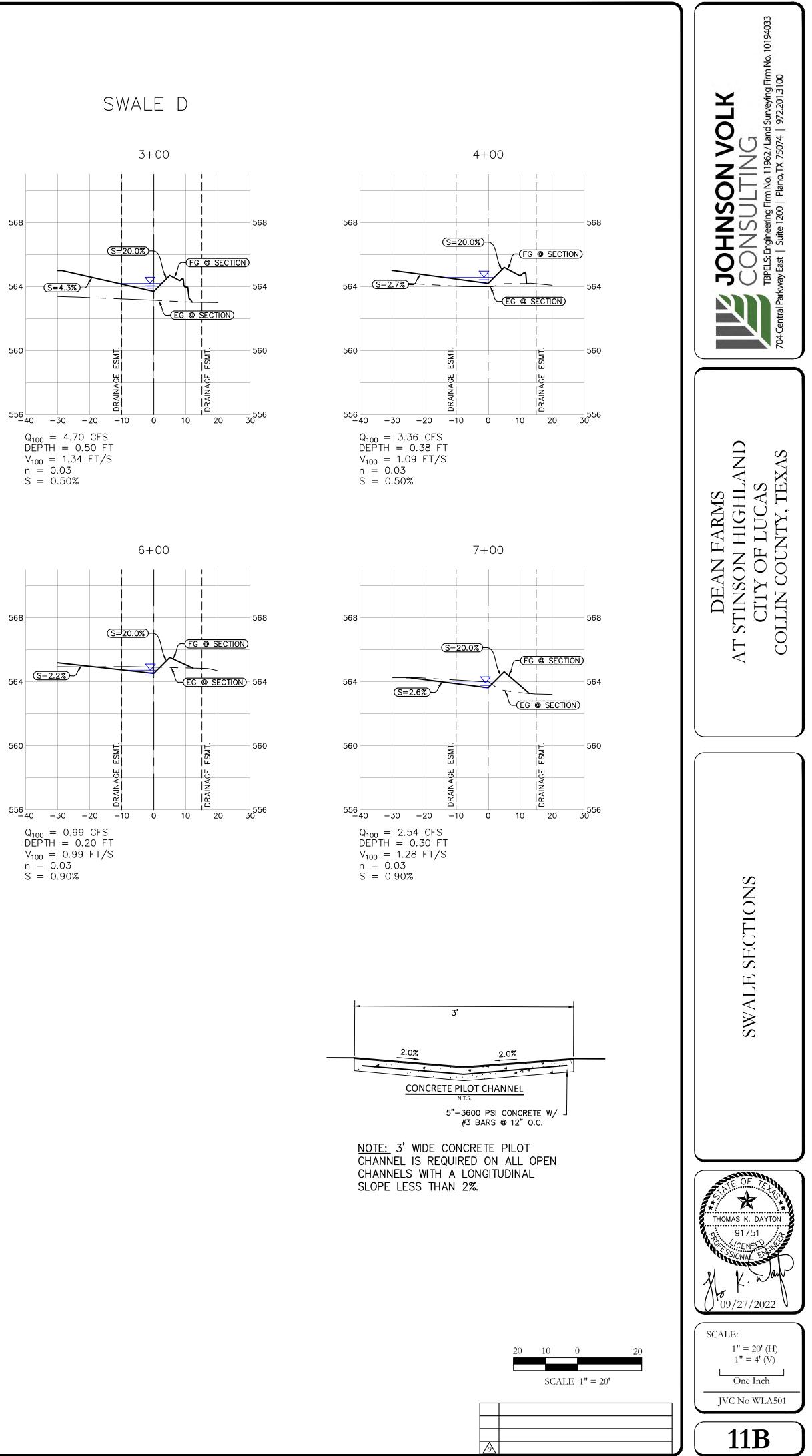
REFERENCE NORTH TEXAS MUNICIPAL WATER DISTRICT NOTES ON SHEET 20.

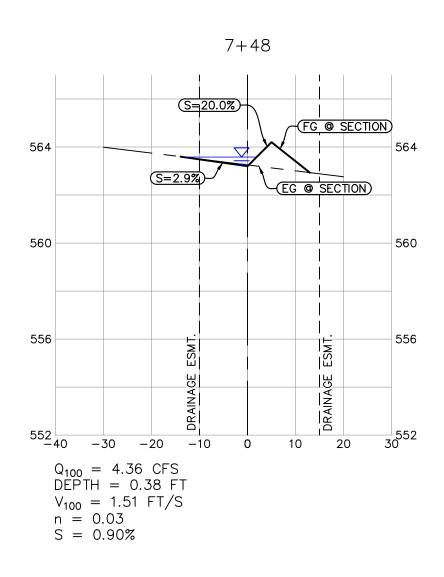


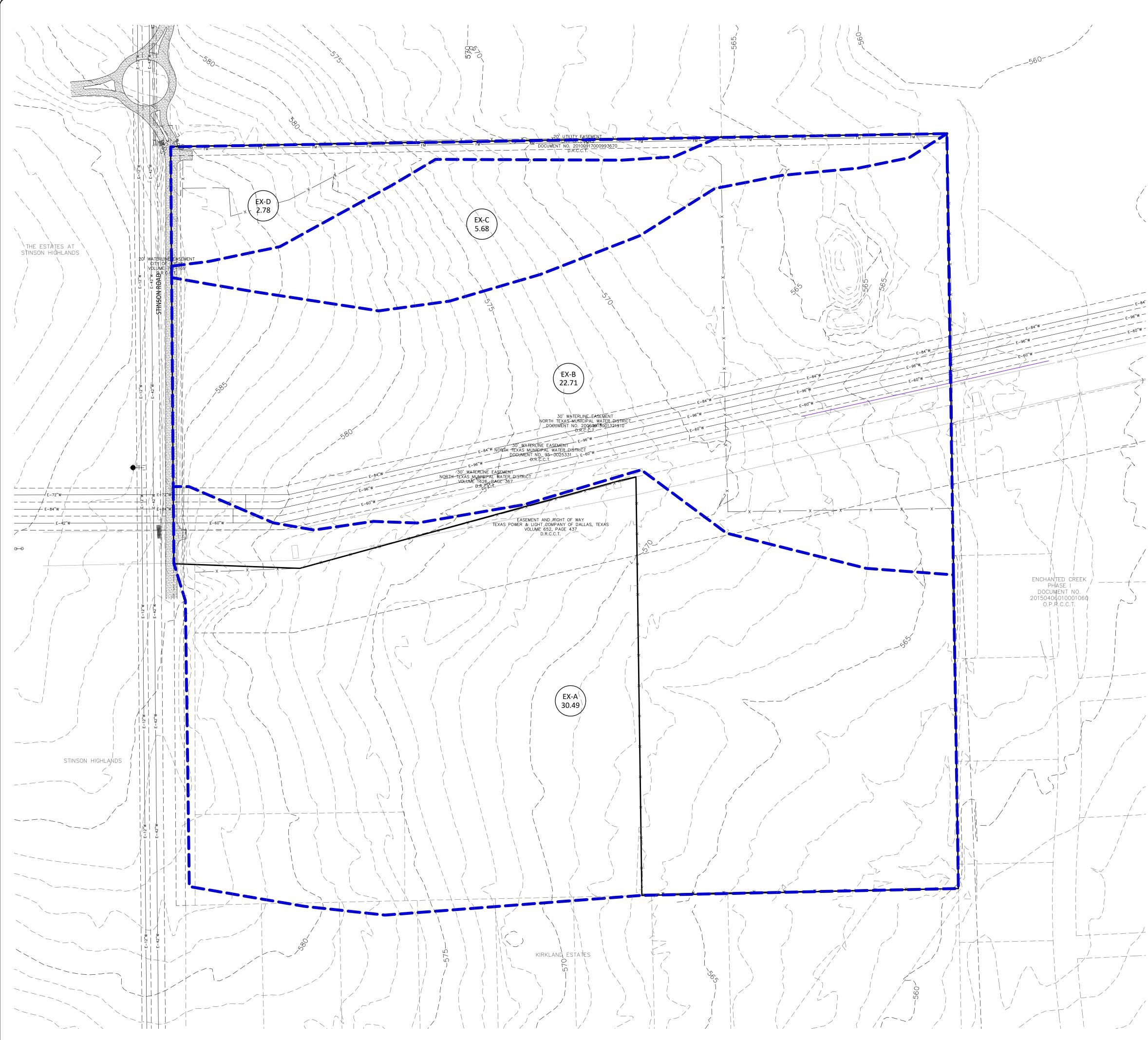





10

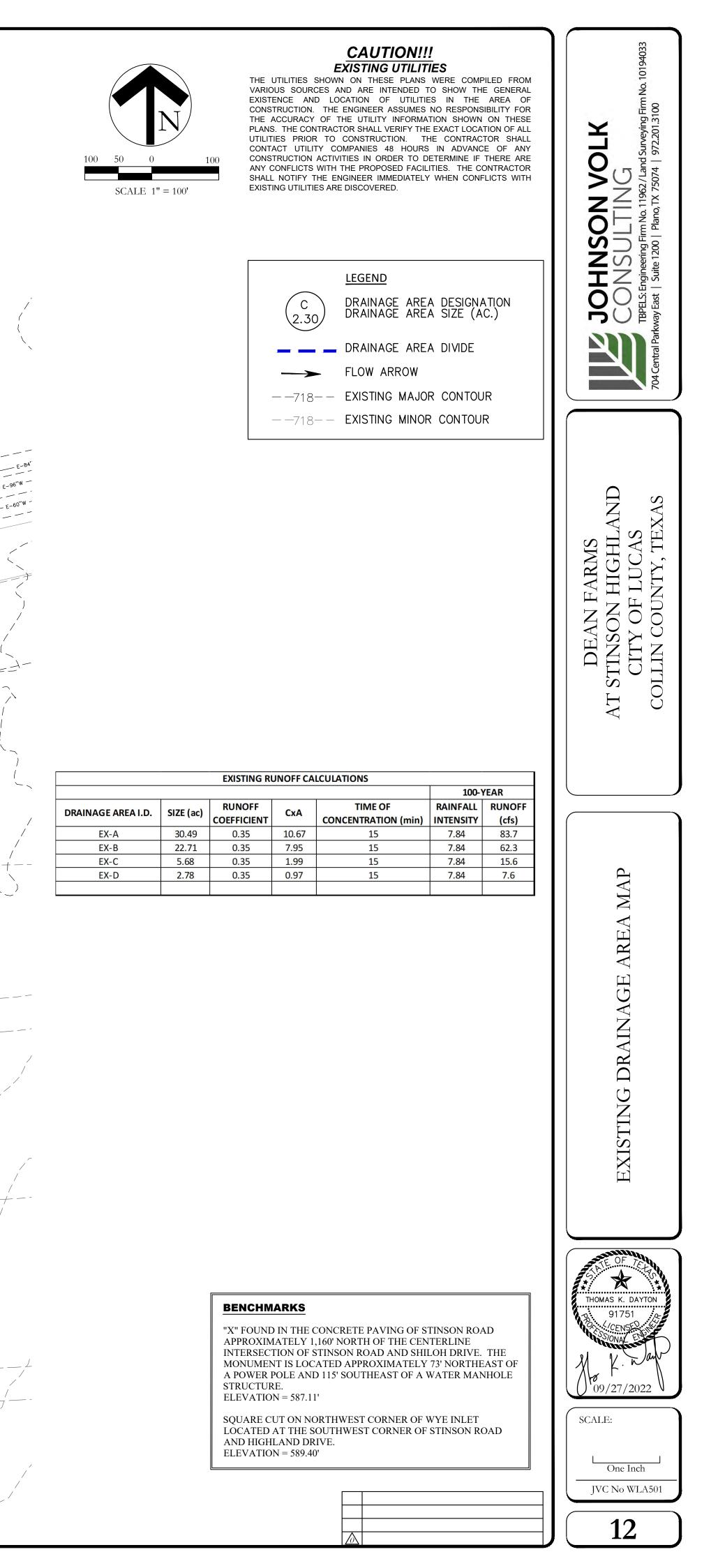




ivil 3d projects/wla - warner land advisors/wla501 - homestead at stinson highland/jvc plans/dwg/sheets/construction plans/wla501 - channel sections.dw



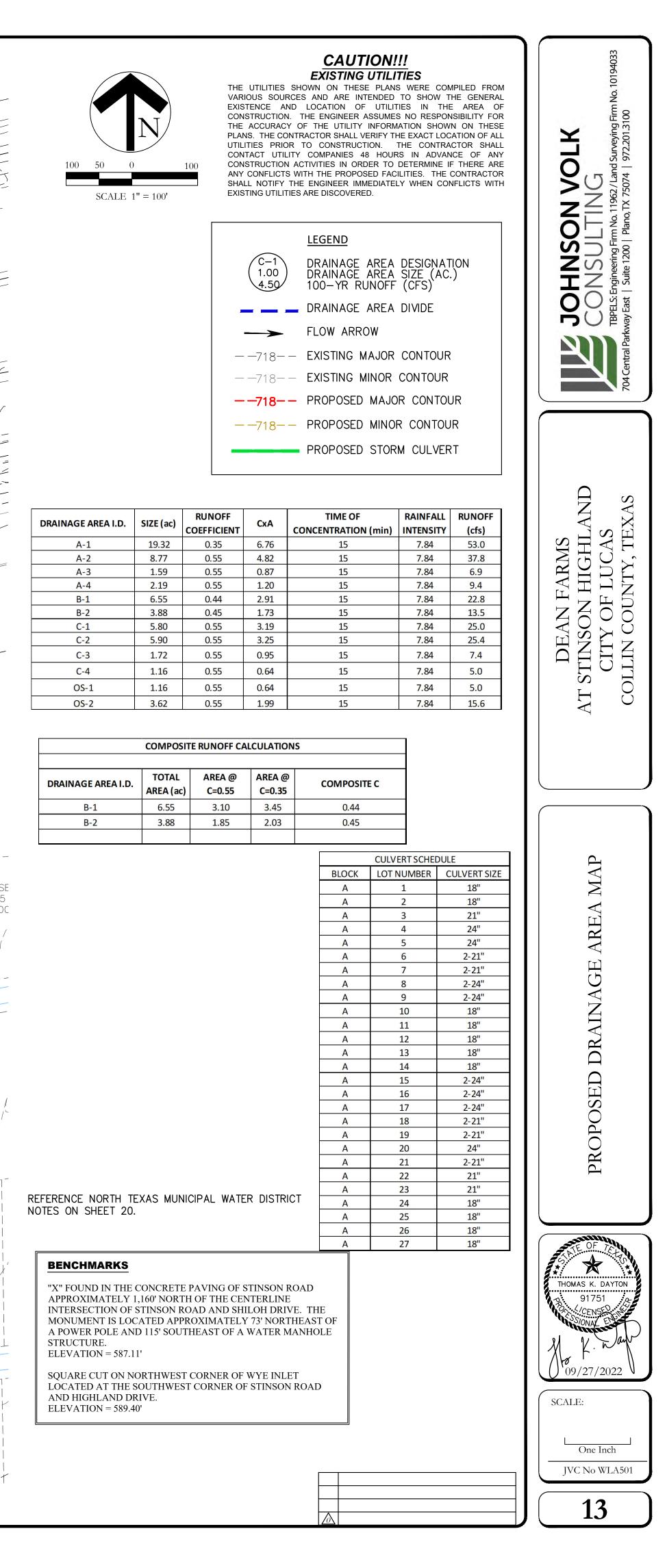



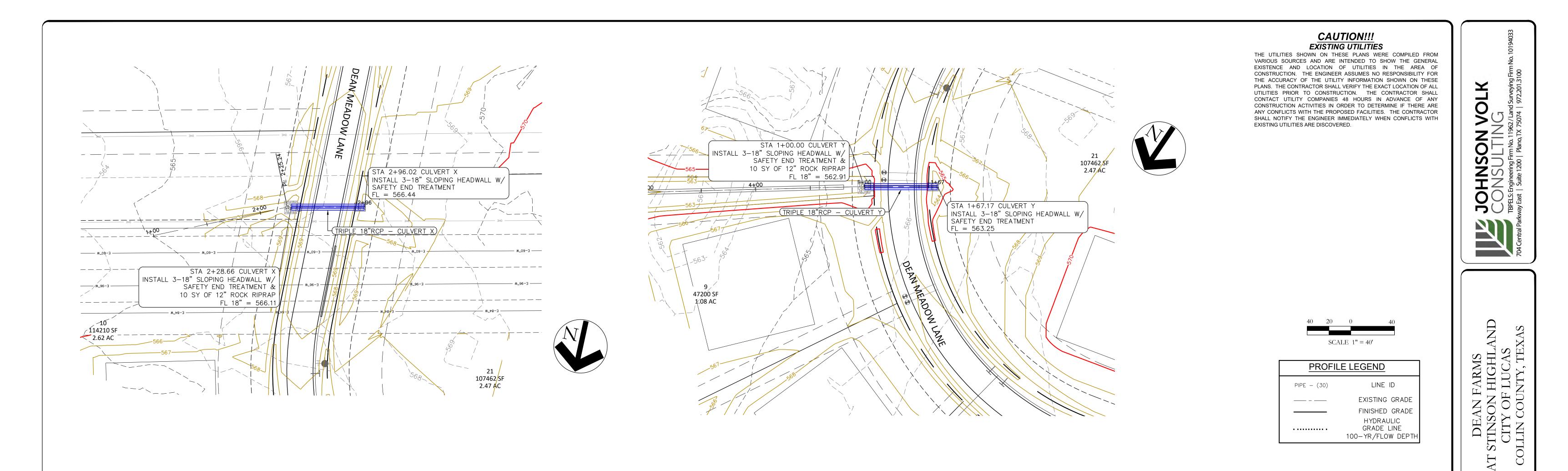


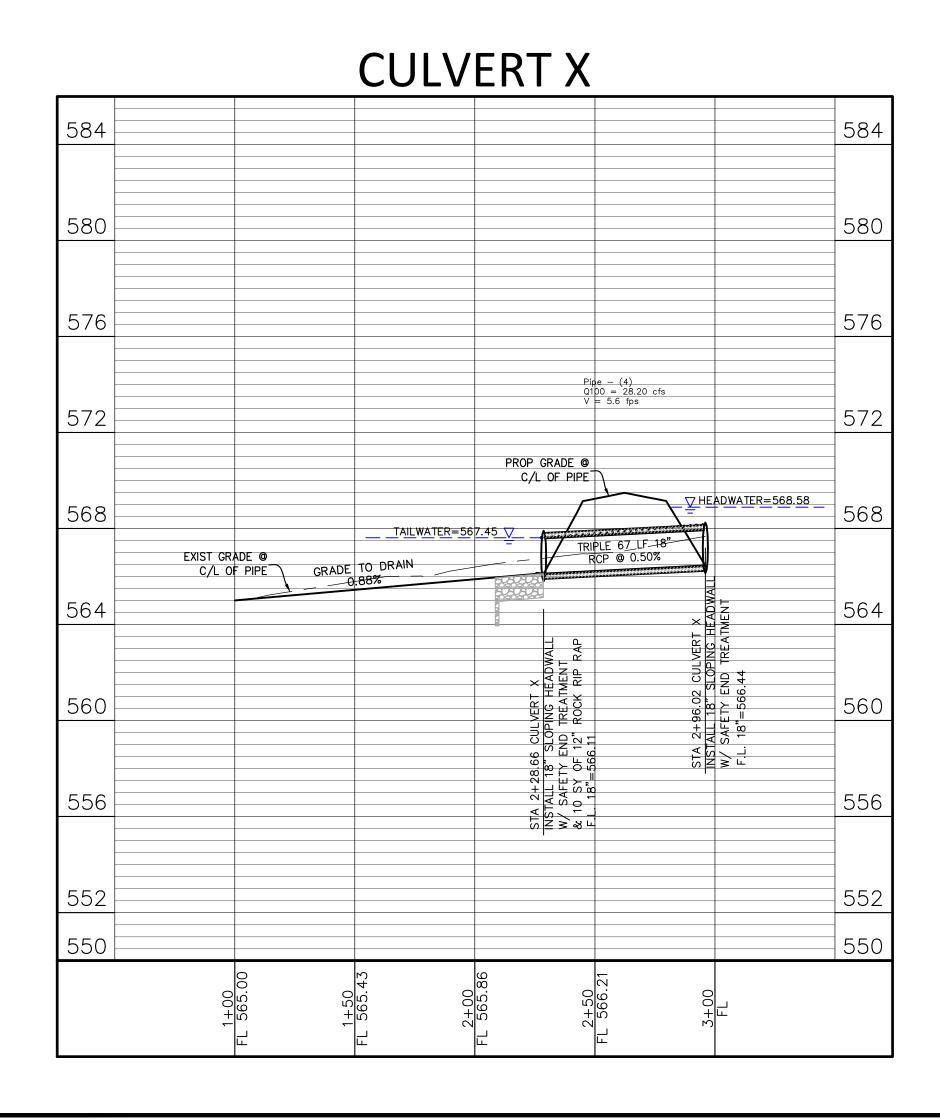





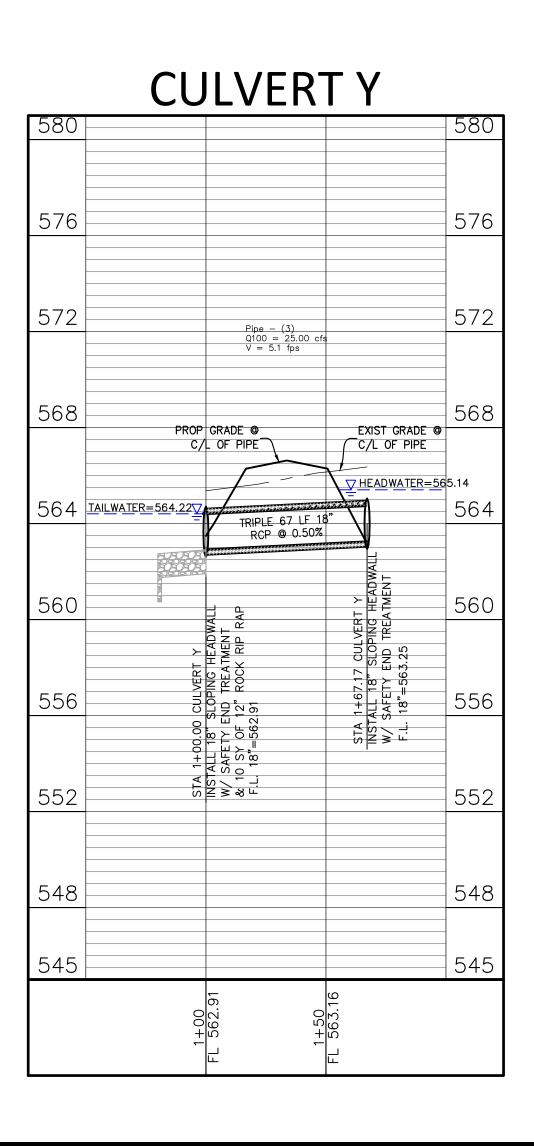




d projects/wla - warner land advisors/wla501 - homestead at stinson highland/jvc plans/dwg/sheets/construction plans/wla501 - existing dam.dwg







il 3d projects/wla - warner land advisors/wla501 - homestead at stinson highland/jvc plans/dwg/sheets/construction plans/wla501 - proposed dam.dwg







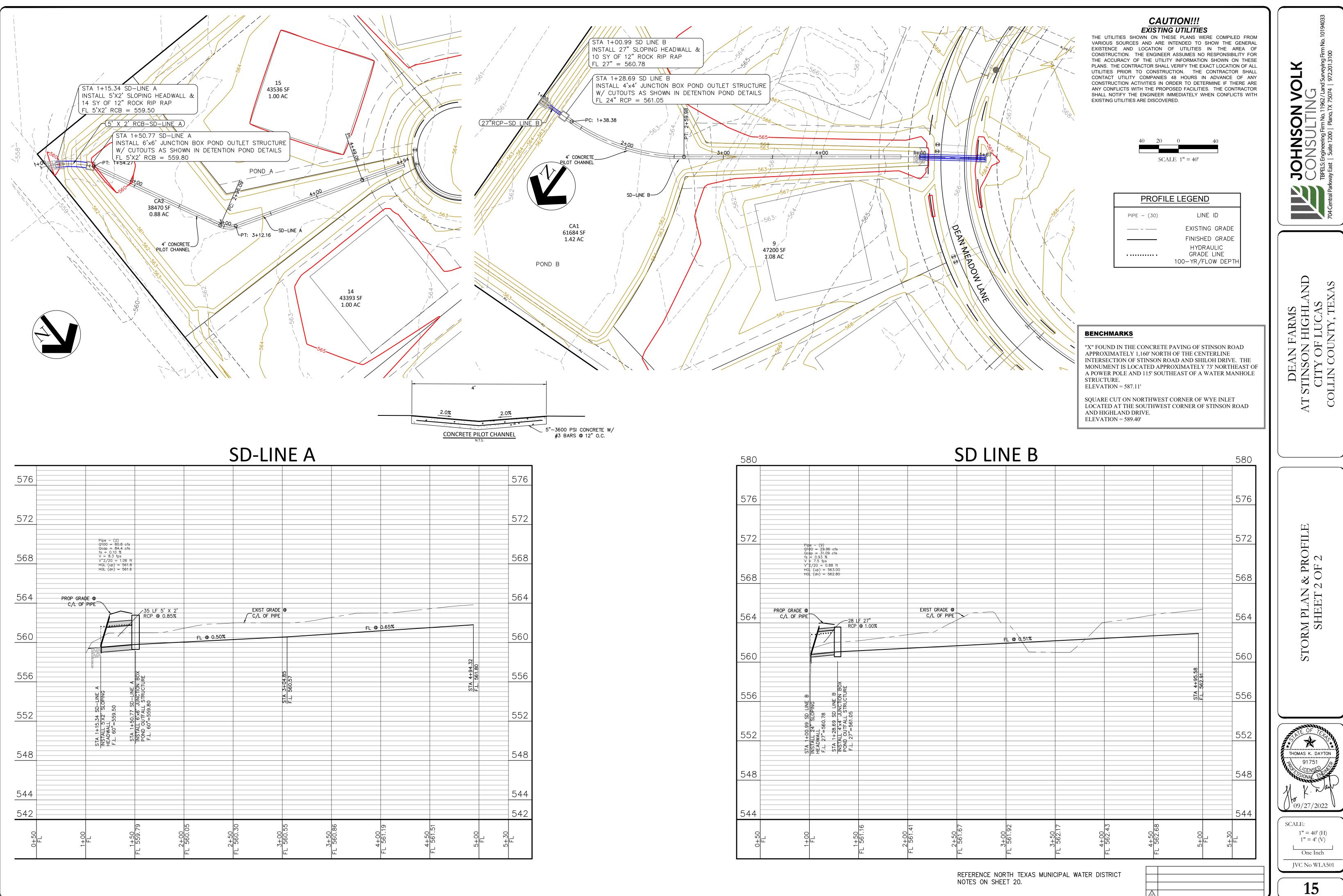
il 3d projects\wla - warner land advisors\wla501 - homestead at stinson highland\jvc plans\dwg\sheets\construction plans\wla501 - storm.dwg



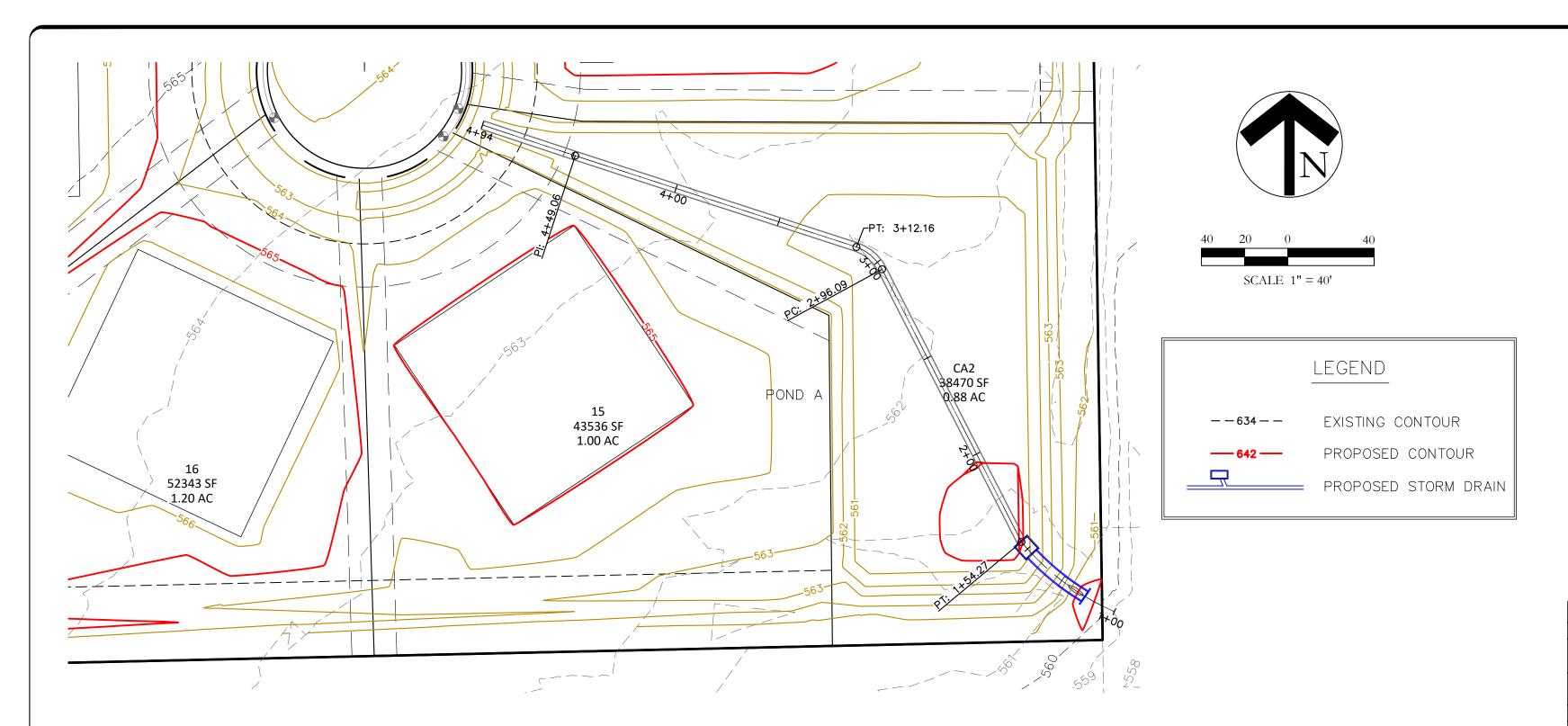
#### BENCHMARKS

"X" FOUND IN THE CONCRETE PAVING OF STINSON ROAD APPROXIMATELY 1,160' NORTH OF THE CENTERLINE INTERSECTION OF STINSON ROAD AND SHILOH DRIVE. THE MONUMENT IS LOCATED APPROXIMATELY 73' NORTHEAST OF A POWER POLE AND 115' SOUTHEAST OF A WATER MANHOLE STRUCTURE. ELEVATION = 587.11'

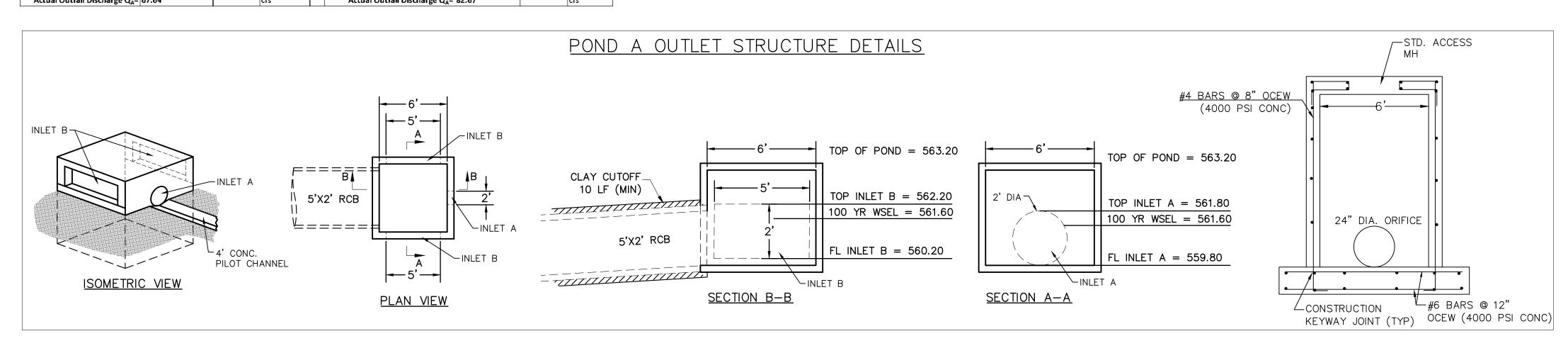
SQUARE CUT ON NORTHWEST CORNER OF WYE INLET LOCATED AT THE SOUTHWEST CORNER OF STINSON ROAD AND HIGHLAND DRIVE. ELEVATION = 589.40'


REFERENCE NORTH TEXAS MUNICIPAL WATER DISTRICT NOTES ON SHEET 20.

| THOMAS K. DAYTON<br>91751<br>91751<br>920<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751<br>91751 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCALE:<br>1" = 40' (H)<br>1" = 4' (V)<br>One Inch<br>JVC No WLA501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |


μ

1 & PROFIL 1 OF 2


STORM PLAN & SHEET 1



3d projects\wla - warner land advisors\wla501 - homestead at stinson highland\jvc plans\dwg\sheets\construction plans\wla501 - storm.dw



|                                                |                               |                                                 |                          |       | DETENTION | N POND "A  | " 2 YEAR VO  | OLUME CO | MPUTATIO   | N-MODIFIED   | RATIONAL        | METHOD       |         | A-2 15                   | 0.55            | 6.44            | 8.77         | 4.82          | 31.1            |                 | A-2 15                 | 0.55<br>0.55   | 7.84<br>7.84      | 8.77<br>1.5 <del>9</del> | 4.82<br>0.87 | 37.8<br>6.9      |                |
|------------------------------------------------|-------------------------------|-------------------------------------------------|--------------------------|-------|-----------|------------|--------------|----------|------------|--------------|-----------------|--------------|---------|--------------------------|-----------------|-----------------|--------------|---------------|-----------------|-----------------|------------------------|----------------|-------------------|--------------------------|--------------|------------------|----------------|
|                                                | <b>ΔΕΤΕΝΤΙΩΝ ΡΩΝΟ "Δ" ΟΠΤ</b> | FALL ORIFICE & WEIR SIZING                      |                          | Td    | Тс        |            |              | Α        | Q          | Vin          | Vout            | Vreq V       | eq      | A-3 15                   | 0.55            | 6.44            | 1.59         | 0.87          | 5.6<br>7.8      |                 | Δ-Δ 15                 | 0.55           | 7.84              | 2.19                     | 1.20         | 9.4              |                |
|                                                | STORM EVENT                   | 10-YEAR STORM EVE                               | fent                     | (min) | (min)     | С          | (in/hr)      | (acre)   | (cfs)      | (cf)         | (cf)            | (cf) (ac     |         |                          | 0.55            | 6.44            | 2.19         | 1.20<br>13.66 | 7.8<br>88.0     |                 | TOTAL DETAINED         | 0.55           | 7.04              | 31.87                    |              | ).4<br>107.1     |                |
| The required storage for 2-year(CF)            |                               | The required storage for 10-year(CF)            | = 16,318.28              | 10    | 15        | 0.43       | 4.76         | 31.87    | 65.0       | 39,025.81    | 31,614.32       | 7,411.49 0   | 17      | TOTAL DETAINED           |                 |                 | 31.87        | 10/00         | 88.0            | ·               |                        | DEVELO         | PED DETENTION P   |                          |              | 107.1            |                |
| 2 year water surface elevation (ft)            | = 561.18                      | 10 year water surface elevation (ft)            | = 561.35                 | 15    | 15        | 0.43       | 3.95         | 31.87    | 54.0       | 48,577.30    | 37,937.18       | 10,640.12 0  |         |                          | DEVELOPE        | D DETENTION P   | OND BYPASS D | DISCHARGE     |                 |                 |                        |                |                   | A A                      |              | 0                |                |
| Max Flow rate allowable, $Q_M = 42.2$          | 1 1                           | Max Flow rate allowable, $Q_M = 58.69$          |                          | 20    | 15        | 0.43       | 3.44         | 31.87    | 47.0       | 56,353.88    | 44,260.05       | ,            | 28      | DRAINAGE TC              | С               | I <sub>25</sub> | A            | CA            | Q <sub>25</sub> |                 | DRAINAGE TC            | С              | 100               | A<br>(1.111)             | CA           | Q <sub>100</sub> |                |
| Inlet A 24" Diameter Circle                    |                               | Inlet A 24" Diameter Circle                     |                          | 25    |           | 0.43       | 3.05         | 31.87    | 41.7       | 62,494.75    | 50,582.91       | ,            | 27      | AREA (min)               | -               | (in/hr)         | (acre)       | (acre)        | (cfs)           |                 | AREA (min)             |                | (in/hr)           | (acre)                   | (acre)       | (cfs)            |                |
|                                                |                               |                                                 | 0. 51/2-101/2            | 30    | 15        | 0.43       | 2.75         | 31.87    | 37.6       | 67,636.42    | 56,905.77       | ,            | 25      |                          |                 |                 |              |               |                 |                 |                        |                |                   |                          |              |                  |                |
| Sizing discharger regulator, orifice           | Q=CA(2gH) <sup>1/2</sup>      | Sizing discharger regulator, orifice            | Q=CA(2gH) <sup>1/2</sup> | 35    | 15        | 0.43       | 2.51         | 31.87    | 34.3       | 72,060.98    | 63,228.64       | ,            | 20      | TOTAL BYPASS             |                 |                 | 0.00         | 0.00          | 0.00            |                 | TOTAL BYPASS           |                |                   | 0.00                     | 0.00         | 0.00             |                |
| Orifice C= 0.67                                |                               | Orifice C= 0.67<br>Elev.(ft)= 559.80            |                          | 40    | 15        | 0.43       | 2.31         | 31.87    | 31.6       | 75,947.42    | 69,551.50       | 6,395.92 0   |         |                          |                 |                 |              |               |                 |                 |                        |                |                   |                          |              |                  |                |
| Elev.(ft)= 559.80<br>Pipe Dia(ft)= 2.00        |                               | Pipe Dia(ft)= 2.00                              |                          | 45    | 15        | 0.43       | 2.15         | 31.87    | 29.4       | 79,415.92    | 75,874.37       | 3,541.55 0   |         | DETENTIO                 | N POND "A" 2    | 25 YEAR ALL     |              | RELEASE CO    | MPUTATION       | N II            | DETENTIO               | N POND "A"     | 100 YEAR AL       | LOWABLE RI               | ELEASE COMI  | UTATION          |                |
| Area(sf)= 3.141592654                          |                               | Area(sf)= 3.141592654                           |                          | 50    | 15        | 0.43       | 2.01         | 31.87    | 27.5       | 82,550.82    | 82,197.23       | 353.59 0     |         |                          |                 | PEAK IN         |              |               |                 |                 |                        |                | PEAK IN           | IFLOW                    |              |                  |                |
| g(ft/s) 32.2                                   |                               | g(ft/s) 32.2                                    |                          |       | 15        | 0.45       | 2.01         | 51.07    | 27.5       |              | VE REQUIRED:    | 12,093.84 CF |         |                          |                 | Tc (min)        | 1 (in/hr)    |               | A (acre)        | Q (cfs)         |                        |                | Tc (min)          | L(in/br)                 | C A          | (acre)           | Q (cfs)        |
| D(ft) = 1.38                                   |                               | D(ft) = 1.55                                    |                          |       |           |            |              |          |            |              | VIE REQUIRED:   | 447.92 CY    |         |                          |                 | 15.00           | 6.44         | 0.43          | 31.87           | 88.0            |                        |                | 15.00             | 7.84                     |              |                  | 107.1          |
|                                                |                               |                                                 |                          |       |           |            |              |          |            | VOLUME PRO   |                 | 1,390.62 CY  |         |                          |                 | PRE DEVELOPEI   |              | 0.45          | 51.67           | 0.00            |                        |                | PRE DEVELOPEI     |                          |              |                  |                |
| Q= 10.47                                       |                               | Q= 12.56                                        |                          |       |           |            |              |          |            | VOLUIVIE PRC |                 | 1,390.02 C1  |         |                          |                 |                 |              |               | A ( )           | 0 (-f-)         |                        |                | Tc (min)          | l (in/hr)                | <u>с</u> А   | (acre)           | Q (cfs)        |
| Inlet B 10'x2' Rectangle                       |                               | Inlet B 10'x2' Rectangle                        |                          | [     |           |            |              |          |            |              |                 |              |         |                          |                 | Tc (min)        | l (in/hr)    |               | A (acre)        | Q (cfs)         |                        |                | 15.00             | 7.84                     |              |                  | 83.7           |
| Sizing discharger regulator, weir              | 0=CLH <sup>3/2</sup>          | Sizing discharger regulator, orifice            | $Q=CA(2gH)^{1/2}$        |       | DETENTION | I POND "A' | " 10 YEAR V  | OLUME CO | MPUTATIO   | N-MODIFIED   | RATIONAL        | METHOD       |         |                          |                 | 15.00           | 6.44         | 0.35          | 30.49           | 68.7            |                        |                | DETENTION P       |                          | 0.00         | 50.45            | 03.7           |
| Elev.(ft)= 560.20                              | ft                            | Elev.(ft)= 560.20                               |                          | Td    | Тс        |            |              | Α        | Q          | Vin          | Vout            | Vreq V       | eq      |                          |                 | DETENTION P     |              |               |                 |                 |                        |                |                   |                          | C A          | (apro)           |                |
| H(ft) = 0.98                                   | ft                            | H(ft) = 1.15                                    |                          | (min) | (min)     | C          | (in/hr)      | (acre)   | (cfs)      | (cf)         | (cf)            |              | e-ft)   |                          |                 | Tc (min)        | 1 (in/hr)    | C             | A (acre)        | Q (cfs)         |                        |                | Tc (min)<br>15.00 | l (in/hr)<br><b>7.84</b> |              | (acre) 0.00      | Q (cfs)<br>0.0 |
| C= 3.00                                        |                               | Area (sf)= 20.00                                |                          | 10    | 15        | 0.43       | 6.65         | 31.87    | 90.9       | 54,521.36    | 44,019.94       | 10,501.42 0  | 24      |                          |                 | 15.00           | 6.44         | 0.00          | 0.00            | 0.0             |                        |                | 12.00             | 7.84                     | 0.00         | 0.00             |                |
| L (ft)= 10.00                                  |                               | L (ft)= 10.00                                   |                          | 15    | 15        | 0.43       | 5.50         | 31.87    | 75.2       | 67,639.28    | 52,823.93       | 14,815.35 0  | 34      | EXISTING UNDETAINED DISC |                 |                 |              |               |                 | 68.7            | EXISTING UNDETAINED DI |                |                   |                          |              |                  | 83.7           |
|                                                |                               |                                                 |                          | 20    | 15        | 0.43       | 4.75         | 31.87    | 65.0       | 77,946.19    | 61,627.91       | 16,318.28 0  | 3/      | DEVELOPED DETENTION PO   |                 |                 |              |               |                 | 0.0             | DEVELOPED DETENTION P  |                |                   |                          |              |                  | 0.0            |
| Q= 29.10                                       | cfs                           | Q= 42.07                                        | cfs                      | 25    | 15        | 0.43       | 4.22         | 31.87    | 57.7       | 86,505.41    | 70,431.90       | 16,073.51 0  | 37      | MAX ALLOWABLE RELEASE I  | RATE FROM DETEN | NTION POND      |              |               |                 | 68.7            | MAX ALLOWABLE RELEASE  | E RATE FROM DE | TENTION POND      |                          |              |                  | 83.7           |
| Actual Outfall Discharge Q <sub>A</sub> = 39.5 | .57 cfs                       | Actual Outfall Discharge Q <sub>A</sub> = 54.64 | cfs                      | 30    | 15        | 0.43       | 3.81         | 31.87    | 52.1       | 93,727.12    | 79,235.89       | 14,491.23 0  | 33      |                          |                 |                 |              |               |                 |                 |                        |                |                   |                          |              |                  |                |
|                                                |                               |                                                 |                          | 35    | 15        | 0.43       | 3.48         | 31.87    | 47.6       | 99,987.16    | 88,039.88       | 11,947.28 0  | 27      |                          |                 |                 |              |               |                 |                 |                        |                |                   |                          |              |                  |                |
| 25-YEAR                                        | R STORM EVENT                 | 100-YEAR STORM EV                               | VENT                     | 40    | 15        | 0.43       | 3.22         | 31.87    | 44.0       | 105,523.37   | 96,843.86       | 8,679.51 0   |         |                          |                 |                 |              |               |                 |                 |                        | I –            |                   |                          |              |                  |                |
| The required storage for 25-year(CF            | ,                             | The required storage for 100-year(CF)           | = 22,389.32              |       |           |            |              |          |            | MAX VOLUN    | ME REQUIRED:    | 16,318.28 CF |         |                          |                 |                 |              |               |                 |                 |                        | C              | DETENTION         |                          | OLUME CO     | MPUTATIO         | DN             |
| 25 year water surface elevation (ft)           | ) = 561.45                    | 100 year water surface elevation (ft)           | = 561.60                 |       |           |            |              |          |            | MAX VOLUN    | VIE REQUIRED:   | 604.38 CY    |         |                          |                 |                 |              |               |                 |                 |                        | CONTOUR        | CONTOUR           | NCREMENTAL               | т            | OTAL VOLUMI      | _              |
| Max Flow rate, Q(CFS) = 68.7                   | 3.7 cfs                       | Max Flow rate, Q(CFS) = 83.66                   | cfs                      |       |           |            |              |          |            | VOLUME PRO   | OVIDED (3 FT):  | 1,390.62 CY  |         |                          |                 |                 |              |               |                 |                 |                        | ELEV           | AREA              | VOLUME                   | 1            |                  | -              |
| Inlet A 24" Diameter Circle                    |                               | Inlet A 24" Diameter Circle                     |                          |       |           |            |              |          |            |              |                 |              |         | C                        | DETENTION P     | OND "A" 10      | )0 YEAR DE   | SIGN-MOD      | IFIED RATION    | NAL METHO       | D                      | (ft)           | (sf)              | (cf)                     | (cf)         | (cy)             | (acre-ft)      |
| Sizing discharger regulator, orifice           | Q=CA(2gH) <sup>1/2</sup>      | Sizing discharger regulator, orifice            | Q=CA(2gH) <sup>1/2</sup> |       | DETENTIO  |            |              |          |            |              |                 | MAETHOD      |         | Td Tc                    | -               | I               | Α            | Q             | Vin             | Vout            | Vreq Vreq              | 560.00         | 1,429.07          | -                        | -            | -                | 0.00           |
| Orifice C= 0.67                                |                               | Orifice C= 0.67                                 |                          |       | DETENTION | N POND "A  | 1" 25 YEAR \ |          | DIMPUTATIO | ON-MODIFIED  | J RATIONAL      | LIMETHOD     |         | (min) (min)              | C               | (in/hr)         | (acre)       | (cfs)         | (cf)            | (cf)            | (cf) (acre-ft)         | 560.50         | 10,723.30         | 3,038.09                 | 3,038.09     | 112.52           | 0.00           |
| Elev.(ft)= 559.80                              |                               | Elev.(ft)= 559.80                               |                          | Td    | Тс        | C          | I            | Α        | Q          | Vin          | Vout            | Vreq         | /req    | 10 15                    | 0.43            | 9.53            | 31.87        | 130.2         | 78,133.61       | 62,748.42       | 15,385.19 0.35         |                |                   |                          | -            |                  | 0.07           |
| Pipe Dia(ft)= 2.00                             |                               | Pipe Dia(ft)= 2.00                              |                          | (min) | (min)     |            | (in/hr)      | (acre)   | (cfs)      | (cf)         | (cf)            | (cf) (a      | cre-ft) | 15 15                    | 0.43            | 7.84            | 31.87        | 107.1         | 96,416.71       | -               | 21,118.61 0.48         | 561.50         | 23,202.40         | 16,962.85                | 20,000.94    | 740.78           | 0.46           |
| Area(sf)= 3.141592654                          |                               | Area(sf)= 3.141592654                           |                          | 10    | 15        | 0.43       | 7.80         | 31.87    | 106.6      | 63,949.86    | 51,543.35       | 12,406.52    | 0.28    | 20 15                    | 0.43            | 6.72            | 31.87        | 91.9          | 110,237.11      | -               | 22,389.32 0.51         | 562.20         | 26,928.63         | 17,545.86                | 37,546.80    | 1,390.62         | 0.86           |
| g(ft/s) 32.2                                   |                               | g(ft/s) 32.2                                    |                          | 15    | 15        | 0.43       | 6.44         | 31.87    | 88.0       | 79,199.44    | 61,852.01       | 17,347.43    | 0.40    | 25 15                    | 0.43            | 5.97            | 31.87        | 81.6          | 122,426.77      |                 | 22,029.30 0.51         | 563.20         | 9,750.91          | 18,339.77                | 38,340.71    | 1,420.03         | 0.88           |
| D(ft)= 1.65                                    |                               | D(ft)= 1.80                                     |                          | 20    | 15        | 0.43       | 5.55         | 31.87    | 75.8       | 90,963.23    | 72,160.68       | 18,802.55    | 0.43    | 30 15                    | 0.43            | 5.40            | 31.87        | 73.8          | 132,817.92      |                 | 19,870.76 0.46         |                |                   |                          |              |                  |                |
| 0-12.64                                        |                               | 0-15.06                                         |                          | 25    | 15        | 0.43       | 4.93         | 31.87    | 67.3       | 100,970.00   | 82,469.35       | 18,500.65    | ).42    | 35 15                    | 0.43            | 4.95            | 31.87        | 67.6          | ,<br>141,912.32 |                 | ,<br>16,415.48 0.38    | Dry Pond Ele   | vation:           |                          |              | 560.00           | ft             |
| Q= 13.64<br>Inlet B 10'x2' Rectangle           |                               | Q= 15.06<br>Inlet B 10'x2' Rectangle            |                          | 30    | 15        | 0.43       | 4.45         | 31.87    | 60.8       | 109,442.61   | 92,778.02       | 16,664.59    | 0.38    | 40 15                    | 0.43            | 4.57            | 31.87        | 62.5          | 150,026.42      |                 | 11,979.90 0.28         | 100 yr WSE:    |                   |                          |              | 561.60           | ft             |
|                                                | <u> </u>                      |                                                 | 0.64/2-101/2             | 35    | 15        | 0.43       | 4.07         | 31.87    | 55.6       | 116,811.32   | 103,086.69      | 13,724.63    | 0.32    | 45 15                    | 0.43            | 4.27            | 31.87        | 58.3          | 157,372.47      |                 | 6,776.26 0.16          | 25 yr WSE:     |                   |                          |              | 561.45           | ft             |
| Sizing discharger regulator, orifice           | Q=CA(2gH) <sup>1/2</sup>      | Sizing discharger regulator, orifice            | Q=CA(2gH) <sup>1/2</sup> | 40    | 15        | 0.43       | 3.76         | 31.87    | 51.4       | 123,348.04   | 113,395.36      | 9,952.68     | ).23    | 50 15                    | 0.43            | 4.00            | 31.87        | 54.7          |                 | 163,145.89      | 953.80 0.02            | 10 yr WSE:     |                   |                          |              | 561.35           | н<br>н         |
| Elev.(ft) = $560.20$                           |                               | Elev.(ft)= 560.20                               |                          |       |           |            |              |          |            | MAX VOLU     | JME REQUIRED:   | 18,802.55 CF |         |                          |                 |                 |              |               |                 | JME REQUIRED:   | 22,389.32 CF           |                |                   |                          |              |                  | н<br>6         |
| H (ft)= $1.25$                                 |                               | H(ft) = 1.40                                    |                          |       |           |            |              |          |            | MAX VOLU     | JME REQUIRED:   | 696.39 CY    |         |                          |                 |                 |              |               |                 | JME REQUIRED:   | 829.23 CY              | 2 yr WSE:      |                   |                          |              | 561.18           | π              |
| Area (sf)= 20.00<br>L (ft)= 10.00              |                               | Area (sf)= 20.00<br>L (ft)= 10.00               |                          |       |           |            |              |          |            | VOLUME PF    | ROVIDED (3 FT): | 1,390.62 CY  |         |                          |                 |                 |              |               |                 | ROVIDED (3 FT): | 1,390.62 CY            | Pond Top:      |                   |                          |              | 563.20           | ft             |
|                                                |                               |                                                 |                          |       |           |            |              |          |            |              |                 |              |         |                          |                 |                 |              |               |                 |                 |                        | Freeboard 10   | 30 yr:            |                          |              | 1.60             | ft             |
| Q= 54.00                                       | cfs                           | Q= 67.61                                        | cfs                      |       |           |            |              |          |            |              |                 |              |         |                          |                 |                 |              |               |                 |                 |                        |                |                   |                          |              |                  |                |
| Actual Outfall Discharge $Q_A = 67.6$          | 64 of s                       | Actual Outfall Discharge Q <sub>A</sub> = 82.67 | cis                      |       |           |            |              |          |            |              |                 |              |         |                          |                 |                 |              |               |                 |                 |                        |                |                   |                          |              |                  |                |
|                                                |                               | Actual Outlan Obularge QA- 02.07                |                          |       |           |            |              |          |            |              |                 |              |         |                          |                 |                 |              |               |                 |                 |                        |                |                   |                          |              |                  |                |

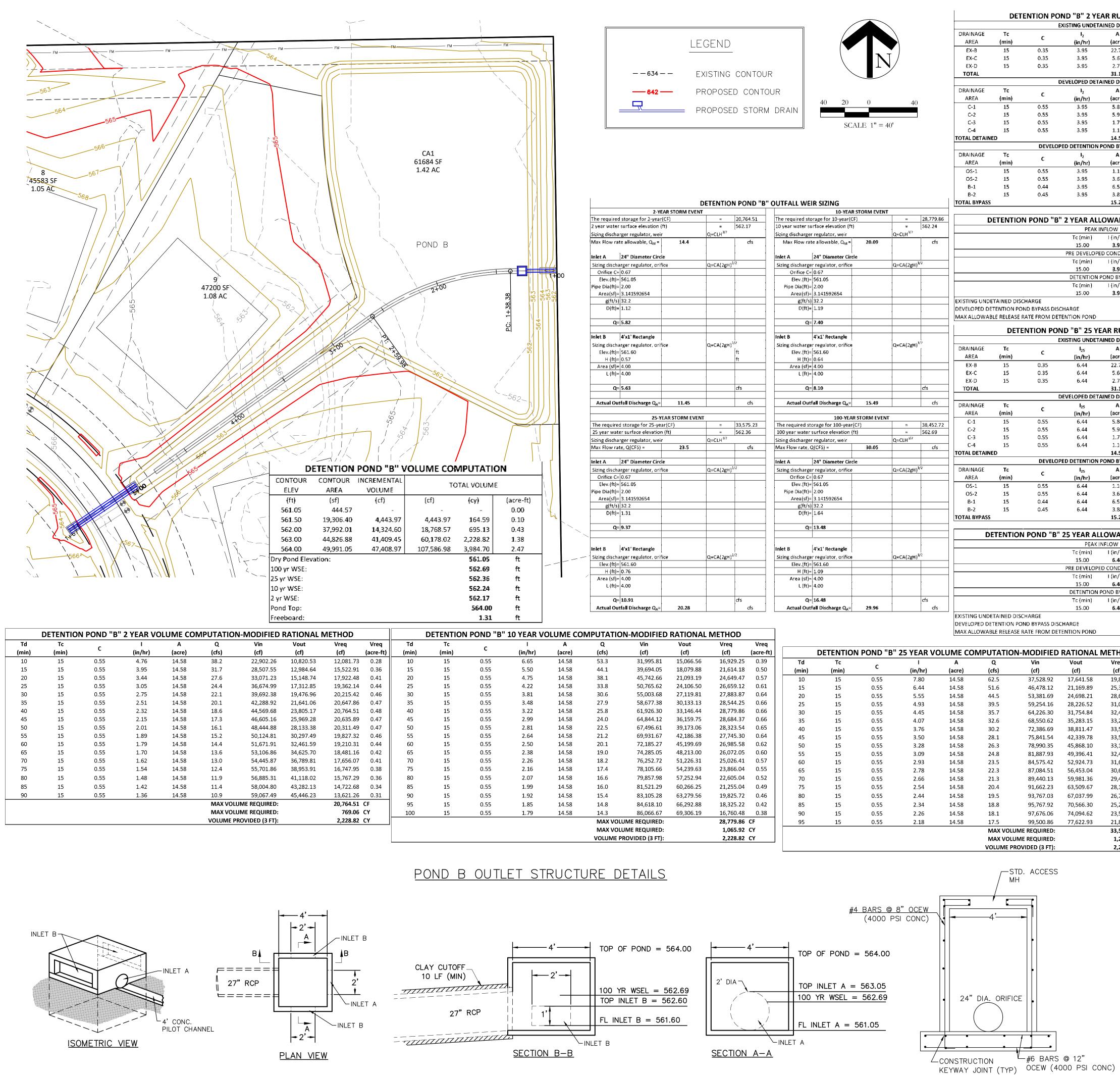


| "A" 2 YEAR VOLUME COMPUTATION-MODIFIED RATIONAL METHOD |  |
|--------------------------------------------------------|--|
|--------------------------------------------------------|--|

| [             | DETE          |                                | ND "A" 2 YE               |                    |              | TATION                |                    |                             | DETE         |              | ND "A" 10 Y                 |                     |              | TATION                    |                    |
|---------------|---------------|--------------------------------|---------------------------|--------------------|--------------|-----------------------|--------------------|-----------------------------|--------------|--------------|-----------------------------|---------------------|--------------|---------------------------|--------------------|
| DRAINAGE      | Тс            | E                              | l <sub>2</sub>            | AINED DISCHAR      | CA           | Q2                    |                    | DRAINAGE                    | Тс           |              |                             | A                   | CA           | Q <sub>10</sub>           |                    |
| AREA          | (min)         | С                              | ء<br>(in/hr)              | (acre)             | (acre)       | (cfs)                 | DRAINS TO          | AREA                        | (min)        | C            | (in/hr)                     | (acre)              | (acre)       | (cfs)                     | DRAINS TO          |
| EX-A          | 15            | 0.35                           | 3.95                      | 30.49              | 10.67        | 42.2                  |                    | EX-A                        | 15           | 0.35         | 5.50                        | 30.49               | 10.67        | 58.7                      |                    |
| TOTAL         |               |                                |                           | 30.49              | 10.67        | 42.2                  |                    | TOTAL                       |              |              |                             | 30.49               | 10.67        | 58.7                      |                    |
|               |               | D                              | EVELOPED DET              | AINED DISCHAR      |              |                       |                    |                             |              | [            | DEVELOPED DET               | AINED DISCHAR       |              |                           |                    |
| DRAINAGE      | Tc            | с                              | l <sub>2</sub>            | A                  | CA           | Q <sub>2</sub>        |                    | DRAINAGE                    | TC           | с            | ۱ <sub>10</sub>             | A                   | CA           | Q <sub>10</sub>           |                    |
| AREA          | (min)         |                                | (in/hr)                   | (acre)             | (acre)       | (cfs)                 |                    | AREA                        | (min)        |              | (in/hr)                     | (acre)              | (acre)       | (cfs)                     |                    |
| A-1<br>A-2    | 15<br>15      | 0.35<br>0.55                   | 3.95<br>3.95              | 19.32<br>8.77      | 6.76<br>4.82 | 26.7<br>19.1          |                    | A-1<br>A-2                  | 15<br>15     | 0.35<br>0.55 | 5.50<br>5.50                | 19.32<br>8.77       | 6.76<br>4.82 | 37.2<br>26.5              |                    |
| A-2<br>A-3    | 15            | 0.55                           | 3.95                      | 8.77<br>1.59       | 4.82<br>0.87 | 3.5                   |                    | A-2<br>A-3                  | 15           | 0.55         | 5.50                        | 1.59                | 4.82<br>0.87 | 4.8                       |                    |
| A-4           | 15            | 0.55                           | 3.95                      | 2.19               | 1.20         | 4.8                   |                    | A-4                         | 15           | 0.55         | 5.50                        | 2.19                | 1.20         | 6.6                       |                    |
| TOTAL DETAIN  | IED           |                                |                           | 31.87              | 13.66        | 54.0                  |                    | TOTAL DETAINE               | ED           |              |                             | 31.87               | 13.66        | 75.2                      |                    |
|               |               | DEVELOP                        | ED DETENTION              | POND BYPASS D      | ISCHARGE     |                       |                    |                             |              | DEVELOF      | PED DETENTION               | POND BYPASS         | DISCHARGE    |                           |                    |
| DRAINAGE      | Tc            | с                              | l <sub>z</sub>            | А                  | CA           | Qz                    |                    | DRAINAGE                    | Тс           | с            | ۱ <sub>10</sub>             | А                   | CA           | Q <sub>10</sub>           |                    |
| AREA          | (min)         | <u>ر</u>                       | (in/hr)                   | (acre)             | (acre)       | (cfs)                 |                    | AREA                        | (min)        | ر<br>ب       | (in/hr)                     | (acre)              | (acre)       | (cfs)                     |                    |
| TOTAL BYPASS  |               |                                |                           | 0.00               | 0.00         | 0.00                  |                    | TOTAL BYPASS                |              |              |                             | 0.00                | 0.00         | 0.00                      |                    |
|               |               |                                |                           | 0.00               | 0.00         | 0.00                  |                    |                             |              |              |                             |                     |              |                           |                    |
| D             | DETENTION     | I POND "A"                     | 2 YEAR ALL                |                    | ELEASE CO    | OMPUTATIC             | )N                 | DE                          | TENTION      | POND "A"     | 10 YEAR AL                  |                     | RELEASE CO   | OMPUTATIO                 | ON                 |
|               |               |                                | Tc (min)                  | NFLOW<br>I (in/hr) | С            | A (acre)              | Q (cfs)            |                             |              |              | Tc (min)                    | INFLOW<br>L (in/hr) | c            | A (acre)                  | Q (cfs)            |
|               |               |                                | 15.00                     | 3.95               | 0.43         | A (acre)<br>31.87     | Q (crs)<br>54.0    |                             |              |              | 15.00                       | 5.50                | 0.43         | 31.87                     | 75.2               |
|               |               |                                |                           | ED CONDITIONS      |              | 51.07                 | 5 7.0              |                             |              |              |                             | ED CONDITIONS       |              |                           |                    |
|               |               |                                | Tc (min)                  | l (in/hr)          | С            | A (acre)              | Q (cfs)            |                             |              |              | Tc (min)                    | l (in/hr)           | С            | A (acre)                  | Q (cfs)            |
|               |               |                                | 15.00                     | 3.95               | 0.35         | 30.49                 | 42.2               |                             |              |              | 15.00                       | 5.50                | 0.35         | 30.49                     | 58.7               |
|               |               |                                | DETENTION                 | POND BYPASS        |              |                       |                    |                             |              |              | DETENTION                   | POND BYPASS         |              |                           |                    |
|               |               |                                | Tc (min)                  | E(in/hr)           | С            | A (acre)              | Q (cfs)            |                             |              |              | Tc (min)                    | E(in/hr)            | C            | A (acre)                  | Q (cfs)            |
|               |               |                                | 15.00                     | 3.95               | 0.00         | 0.00                  | 0.0                |                             |              |              | 15.00                       | 5.50                | 0.00         | 0.00                      | 0.0                |
| EXISTING UNDE |               |                                |                           |                    |              |                       | 42.2               | EXISTING UNDE               |              |              |                             |                     |              |                           | 58.7               |
|               |               | ND BYPASS DISC<br>ATE FROM DET |                           |                    |              |                       | 0.0<br><b>42.2</b> | DEVELOPED DE<br>MAX ALLOWAB |              |              |                             |                     |              |                           | 0.0<br><b>58.7</b> |
|               | DLE KELEASE K |                                | ENTION POIND              |                    |              |                       | 42.2               |                             | LE NELEAJE N |              | ENHON FOND                  |                     |              |                           | 30.7               |
|               | DETE          | NTION POR                      | ND "A" 25 Y               | EAR RUNOF          | F COMPU      | TATION                |                    |                             | DETE         | NTION POP    | ND "A" 100 Y                | YEAR RUNO           | FF COMPL     | JTATION                   |                    |
|               |               | E                              | XISTING UNDET             | AINED DISCHAR      | GE           |                       |                    |                             |              |              | EXISTING UNDE               | FAINED DISCHA       | RGE          |                           |                    |
| DRAINAGE      | Tc            | <u> </u>                       | I <sub>25</sub>           | Α                  | CA           | Q <sub>25</sub>       | DRAINS TO          | DRAINAGE                    | Тc           | с            | I <sub>100</sub>            | A                   | CA           | Q <sub>100</sub>          | DRAINS T           |
| AREA          | (min)         | C                              | (in/hr)                   | (acre)             | (acre)       | (cfs)                 | DRAINS TO          | AREA                        | (min)        |              | (in/hr)                     | (acre)              | (acre)       | (cfs)                     | Dibanto i          |
| EX-A          | 15            | 0.35                           | 6.44                      | 30.49              | 10.67        | 68.7                  |                    | EX-A                        | 15           | 0.35         | 7.84                        | 30.49               | 10.67        | 83.7                      |                    |
| TOTAL         |               |                                |                           | 30.49              | 10.67        | 68.7                  |                    | TOTAL                       |              |              |                             | 30.49               | 10.67        | 83.7                      |                    |
|               |               |                                | DEVELOPED DET             | -                  |              |                       |                    | DRAINAGE                    | Тс           |              | DEVELOPED DET               |                     | CA           |                           |                    |
| DRAINAGE      | Tc<br>(min)   | с                              | ا <sub>25</sub>           | A<br>(=)           | CA           | Q <sub>25</sub>       |                    | AREA                        | (min)        | С            | ا <sub>100</sub><br>(in/hr) | A<br>(acre)         | (acre)       | Q <sub>100</sub><br>(cfs) |                    |
| AREA          | (min)         | 0.35                           | (in/hr)                   | (acre)             | (acre)       | (cfs)                 |                    | A-1                         | 15           | 0.35         | 7.84                        | 19.32               | 6.76         | 53.0                      |                    |
| A-1<br>A-2    | 15<br>15      | 0.35<br>0.55                   | 6.44<br>6.44              | 19.32<br>8.77      | 6.76<br>4.82 | 43.5<br>3 <b>1</b> .1 |                    | A-1<br>A-2                  | 15           | 0.55         | 7.84                        | 8.77                | 4.82         | 37.8                      |                    |
| A-2<br>A-3    | 15            | 0.55                           | 6.44                      | 1.59               | 4.82<br>0.87 | 5.6                   |                    | A-3                         | 15           | 0.55         | 7.84                        | 1.59                | 0.87         | 6.9                       |                    |
| A-4           | 15            | 0.55                           | 6.44                      | 2.19               | 1.20         | 7.8                   |                    | A-4                         | 15           | 0.55         | 7.84                        | 2.19                | 1.20         | 9.4                       |                    |
| OTAL DETAINE  | ED            |                                |                           | 31.87              | 13.66        | 88.0                  |                    | TOTAL DETAIN                | ED           |              |                             | 31.87               | 13.66        | 107.1                     |                    |
|               |               | DEVELOP                        | PED DETENTION             | POND BYPASS        |              |                       |                    |                             |              | DEVELO       | PED DETENTION               |                     |              |                           |                    |
|               | Tc<br>(min)   | с                              | <sub>25</sub><br>(in (ha) | A                  | CA<br>(acro) | Q <sub>25</sub>       |                    | DRAINAGE<br>AREA            | Tc<br>(min)  | с            | l <sub>100</sub><br>(in/hr) | A<br>(acre)         | CA<br>(acre) | Q <sub>100</sub><br>(cfs) |                    |
| AREA          | (min)         |                                | (in/hr)                   | (acre)             | (acre)       | (cfs)                 |                    |                             |              |              | (00/01)                     | laciel              | facies       | (03)                      |                    |
| OTAL BYPASS   |               |                                |                           | 0.00               | 0.00         | 0.00                  |                    | TOTAL BYPASS                |              |              |                             | 0.00                | 0.00         | 0.00                      |                    |
| D             | ETENTION      | POND "A"                       | 25 YEAR AL                |                    | RELEASE C    | OMPUTATI              | ON                 | DE                          | TENTION      | POND "A"     | 100 YEAR A                  | LLOWABLE            | RELEASE (    |                           | ION                |
|               | /             |                                |                           | INFLOW             |              |                       |                    |                             |              |              | PEAK                        | INFLOW              |              |                           |                    |
|               |               |                                | Tc (min)                  | t (in/hr)          | C            | A (acre)              | Q (cfs)            |                             |              |              | Tc (min)                    | l (in/hr)           | С            | A (acre)                  | Q (cfs)            |
|               |               |                                | 15.00                     | 6.44               | 0.43         | 31.87                 | 88.0               | ┨┝────                      |              |              | 15.00                       | 7.84                | 0.43         | 31.87                     | 107.1              |
|               |               |                                |                           | ED CONDITIONS      |              |                       |                    | ┨┝────                      |              |              |                             | ED CONDITION:       |              | <b>•</b> <i>I</i> •       | ~ * * *            |
|               |               |                                | Tc (min)                  | l (in/hr)          | C            | A (acre)              | Q (cfs)            |                             |              |              | Tc (min)<br>15.00           | l (in/hr)<br>7 94   | C<br>0.25    | A (acre)                  | Q (cfs)            |
|               |               |                                | 15.00                     | 6.44               | 0.35         | 30.49                 | 68.7               | ┨┝────                      |              |              | 15.00                       | 7.84                | 0.35         | 30.49                     | 83.7               |
|               |               |                                |                           | POND BYPASS        |              | A 1 1                 | 0.45               | ┨╞────                      |              |              | Tc (min)                    | I (in/hr)           | с            | A (acre)                  | Q (cfs)            |
|               |               |                                | Tc (min)<br>15.00         | l (in/hr)<br>6.44  | C            | A (acre)<br>0.00      | Q (cfs)<br>0.0     |                             |              |              | 15.00                       | 7.84                | 0.00         | A (acre)<br>0.00          | 0.0                |
|               | ETAINED DISCI |                                | 15.00                     | 6.44               | 0.00         | 0.00                  | 68.7               |                             | ETAINED DISC | HARGE        | 10.00                       | 7.0 <del>4</del>    | 5.00         | 0.00                      | 83.7               |
| XIVING TRUCE  |               |                                |                           |                    |              |                       | 0.0                | DEVELOPED DE                |              |              | CHARGE                      |                     |              |                           | 0.0                |
| EVELOPED DE   | TENTION PON   | ID BYPASS DISC                 | HAKUE                     |                    |              |                       |                    |                             |              |              |                             |                     |              |                           |                    |

|                 | ATION               |                       |                          | ID "A" 10 YE      |               | DETER         |                                              |                 | ATION              |                       |                          | ND "A" 2 YE       |                          | DETE         |                     |
|-----------------|---------------------|-----------------------|--------------------------|-------------------|---------------|---------------|----------------------------------------------|-----------------|--------------------|-----------------------|--------------------------|-------------------|--------------------------|--------------|---------------------|
|                 | Q <sub>10</sub>     | CA                    |                          |                   | E.            | Tc            | DRAINAGE                                     |                 | Q2                 | CA                    |                          |                   | E/                       | Тс           | DRAINAGE            |
| DRAINS TO       | (cfs)               | (acre)                | (acre)                   | (in/hr)           | ¢             | (min)         | AREA                                         | DRAINS TO       | (cfs)              | (acre)                | (acre)                   | (in/hr)           | C                        | (min)        | AREA                |
|                 | 58.7                | 10.67                 | 30.49                    | 5.50              | 0.35          | 15            | EX-A                                         |                 | 42.2               | 10.67                 | 30.49                    | 3.95              | 0.35                     | 15           | EX-A                |
|                 | 58.7                | 10.67                 | 30.49                    |                   |               |               | TOTAL                                        |                 | 42.2               | 10.67                 | 30.49                    | EVELOPED DETA     |                          |              | TOTAL               |
|                 | Q <sub>10</sub>     | CA                    | A                        | EVELOPED DET      | L             | Тс            | DRAINAGE                                     |                 | Q2                 | CA                    | AINED DISCHAR            | EVELOPED DETA     | וט                       | Тс           | DRAINAGE            |
|                 | (cfs)               | (acre)                | (acre)                   | ا<br>(in/hr)      | C             | (min)         | AREA                                         |                 | (cfs)              | (acre)                | (acre)                   | י<br>(in/hr)      | С                        | (min)        | AREA                |
|                 | 37.2                | 6.76                  | 19.32                    | 5.50              | 0.35          | 15            | A-1                                          |                 | 26.7               | 6.76                  | 19.32                    | 3.95              | 0.35                     | 15           | A-1                 |
|                 | 26.5                | 4.82                  | 8.77                     | 5.50              | 0.55          | 15            | A-2                                          |                 | 19.1               | 4.82                  | 8.77                     | 3.95              | 0.55                     | 15           | A-2                 |
|                 | 4.8                 | 0.87                  | 1.59                     | 5.50              | 0.55          | 15            | A-3                                          |                 | 3.5                | 0.87                  | 1.59                     | 3.95              | 0.55                     | 15           | A-3                 |
|                 | 6.6<br><b>75.2</b>  | 1.20<br><b>13.66</b>  | 2.19<br><b>31.87</b>     | 5.50              | 0.55          | 15<br>D       | A-4<br>TOTAL DETAINE                         |                 | 4.8<br><b>54.0</b> | 1.20<br><b>13.66</b>  | 2.19<br><b>31.87</b>     | 3.95              | 0.55                     | 15<br>D      | A-4<br>OTAL DETAIN  |
|                 | 73.2                |                       |                          | ED DETENTION      | DEVELOP       |               | TOTAL DETAIL                                 |                 | J4.0               |                       |                          | ED DETENTION      | DEVELOPE                 |              |                     |
|                 | Q <sub>10</sub>     | CA                    | A                        | ۱ <sub>10</sub>   |               | Тс            | DRAINAGE                                     |                 | Qz                 | CA                    | А                        | I <sub>2</sub>    | <u> </u>                 | Tc           | DRAINAGE            |
|                 | (cfs)               | (acre)                | (acre)                   | (in/hr)           | C             | (min)         | AREA                                         |                 | (cfs)              | (acre)                | (acre)                   | (in/hr)           | С                        | (min)        | AREA                |
|                 | 0.00                | 0.00                  | 0.00                     |                   |               |               |                                              |                 |                    |                       |                          |                   |                          |              |                     |
|                 | 0.00                | 0.00                  | 0.00                     |                   |               |               | TOTAL BYPASS                                 |                 | 0.00               | 0.00                  | 0.00                     |                   |                          |              | OTAL BYPASS         |
| N               | ΟΜΡυτατιο           | ELEASE CC             | LOWABLE R                | 10 YEAR AL        | POND "A"      | TENTION       | DE                                           | N               | ΜΡυτατιο           | ELEASE CO             | OWABLE R                 | 2 YEAR ALL        | POND "A"                 | ETENTION     | D                   |
|                 |                     |                       |                          | PEAK I            |               |               |                                              |                 |                    |                       |                          | PEAK II           |                          |              |                     |
| Q (cfs)<br>75.2 | A (acre)<br>31.87   | C<br>0.43             | l (in/hr)<br><b>5.50</b> | Tc (min)<br>15.00 |               |               |                                              | Q (cfs)<br>54.0 | A (acre)<br>31.87  | C<br>0.43             | ⊺(in/hr)<br><b>3.95</b>  | Tc (min)<br>15.00 |                          |              |                     |
| 15.2            | 31.07               | 0.43                  |                          | PRE DEVELOPE      |               |               |                                              | 54.U            | 51.0/              |                       |                          | PRE DEVELOPE      |                          |              |                     |
| Q (cfs)         | A (acre)            | С                     | l (in/hr)                | Tc (min)          |               |               |                                              | Q (cfs)         | A (acre)           | С                     | l (in/hr)                | Tc (min)          |                          |              |                     |
| 58.7            | 30.49               | 0.35                  | 5.50                     | 15.00             |               |               |                                              | 42.2            | 30.49              | 0.35                  | 3. <del>9</del> 5        | 15.00             |                          |              |                     |
|                 |                     |                       | POND BYPASS              |                   |               |               |                                              |                 |                    |                       | POND BYPASS              |                   |                          |              |                     |
| Q (cfs)<br>0.0  | A (acre)<br>0.00    | C<br>0.00             | ∣(in/hr)<br><b>5.50</b>  | Tc (min)<br>15.00 |               |               |                                              | Q (cfs)<br>0.0  | A (acre)<br>0.00   | C<br>0.00             | ⊺(in/hr)<br><b>3.95</b>  | Tc (min)<br>15.00 |                          |              |                     |
| 58.7            | 0.00                | 0.00                  | 3.30                     | 10.00             | IARGE         | TAINED DISCH  | EXISTING UNDE                                | 42.2            | 0.00               | 0.00                  | 2.23                     | 15.00             | HARGE                    | TAINED DISC  | XISTING UNDE        |
| 0.0             |                     |                       |                          | HARGE             | D BYPASS DISC | FENTION PON   | DEVELOPED DET                                | 0.0             |                    |                       |                          | HARGE             | D BYPASS DISC            | TENTION PON  | EVELOPED DE         |
| 58.7            |                     |                       |                          | ENTION POND       | TE FROM DET   | LE RELEASE RA | MAX ALLOWAB                                  | 42.2            |                    |                       |                          | ENTION POND       | ATE FROM DETE            | LE RELEASE R | AAX ALLOWAE         |
|                 | TATION              | FF COMPU              | EAR RUNO                 | ID "A" 100 Y      |               | DETEN         |                                              |                 | ΓΔΤΙΩΝ             |                       |                          | ID "A" 25 YE      |                          | DETE         |                     |
|                 |                     |                       |                          | XISTING UNDET     |               |               |                                              |                 |                    |                       |                          | XISTING UNDET/    |                          |              |                     |
| DRAINS          | Q <sub>100</sub>    | CA                    | Α                        | I <sub>100</sub>  | с             | Тс            | DRAINAGE                                     |                 | Q <sub>25</sub>    | CA                    | A                        | I <sub>25</sub>   |                          | Tc           | DRAINAGE            |
|                 | (cfs)               | (acre)                | (acre)                   | (in/hr)           |               | (min)         | AREA                                         | DRAINS TO       | (cfs)              | (acre)                | (acre)                   | (in/hr)           | С                        | (min)        | AREA                |
|                 | 83.7<br><b>83.7</b> | 10.67<br><b>10.67</b> | 30.49<br><b>30.49</b>    | 7.84              | 0.35          | 15            | EX-A<br>TOTAL                                |                 | 68.7               | 10.67                 | 30.49                    | 6.44              | 0.35                     | 15           | EX-A                |
|                 | 03.7                |                       |                          | DEVELOPED DET     |               |               |                                              |                 | 68.7               | 10.67                 | 30.49                    | EVELOPED DET/     | D                        |              | TOTAL               |
|                 | Q <sub>100</sub>    | CA                    | Α                        | I <sub>100</sub>  |               | Тс            | DRAINAGE                                     |                 | Q <sub>25</sub>    | CA                    | A                        | l <sub>25</sub>   |                          | Tc           | DRAINAGE            |
|                 | (cfs)               | (acre)                | (acre)                   | (in/hr)           | C             | (min)         | AREA                                         |                 | (cfs)              | (acre)                | (acre)                   | (in/hr)           | C                        | (min)        | AREA                |
|                 | 53.0                | 6.76                  | 19.32                    | 7.84              | 0.35          | 15            | A-1                                          |                 | 43.5               | 6.76                  | 19.32                    | 6.44              | 0.35                     | 15           | A-1                 |
|                 | 37.8                | 4.82                  | 8.77                     | 7.84              | 0.55          | 15            | A-2                                          |                 | 31.1               | 4.82                  | 8.77                     | 6.44              | 0.55                     | 15           | A-2                 |
|                 | 6.9<br>9.4          | 0.87<br>1.20          | 1.59<br>2.19             | 7.84<br>7.84      | 0.55<br>0.55  | 15<br>15      | A-3<br>A-4                                   |                 | 5.6<br>7.8         | 0.87                  | 1.59<br>2.19             | 6.44<br>6.44      | 0.55                     | 15<br>15     | A-3                 |
|                 | 107.1               | 13.66                 | 31.87                    | 7101              | 0.00          |               |                                              |                 | 88.0               | 1.20<br>1 <b>3.66</b> | 31.87                    | 0.44              | 0.55                     |              | A-4<br>OTAL DETAINE |
|                 |                     | DISCHARGE             | POND BYPASS I            | PED DETENTION     | DEVELO        |               | -                                            |                 |                    |                       |                          | ED DETENTION      | DEVELOPI                 | -            |                     |
|                 | Q <sub>100</sub>    | CA                    | A                        | I <sub>100</sub>  | с             | Tc            | DRAINAGE                                     |                 | Q <sub>25</sub>    | CA                    | A                        | I <sub>25</sub>   | с                        | Tc           | DRAINAGE            |
|                 | (cfs)               | (acre)                | (acre)                   | (in/hr)           | -             | (min)         | AREA                                         |                 | (cfs)              | (acre)                | (acre)                   | (in/hr)           | Ļ                        | (min)        | AREA                |
|                 | 0.00                | 0.00                  | 0.00                     |                   |               |               | TOTAL BYPASS                                 |                 | 0.00               | 0.00                  | 0.00                     |                   |                          |              | OTAL BYPASS         |
|                 |                     |                       |                          |                   |               |               | ]                                            |                 |                    |                       |                          |                   |                          |              |                     |
| UN              | OMPUTATI            | KELEASE C             | NFLOW                    |                   | PUND "A"      | TENTION       |                                              | ON              | OMPUTATIO          | RELEASE CO            |                          | 25 YEAR AL        | POND "A"                 | ETENTION     | D                   |
| Q (cfs)         | A (acre)            | с                     | l (in/hr)                | Tc (min)          |               |               | -                                            | Q (cfs)         | A (acre)           | C                     | NFLOW                    | Tc (min)          |                          |              |                     |
| 107.1           | 31.87               | 0.43                  | 7.84                     | 15.00             |               |               |                                              | 88.0            | 31.87              | 0.43                  | l (in/hr)<br><b>6.44</b> | 15.00             |                          |              |                     |
|                 |                     |                       | ED CONDITIONS            | PRE DEVELOP       |               |               |                                              |                 |                    |                       |                          | PRE DEVELOPE      |                          |              |                     |
| Q (cfs)         | A (acre)            | C                     | l (in/hr)                | Tc (min)          |               |               |                                              | Q (cfs)         | A (acre)           | С                     | l (in/hr)                | Tc (min)          |                          |              |                     |
| 83.7            | 30.49               | 0.35                  | 7.84<br>POND BYPASS      | 15.00             |               |               |                                              | 68.7            | 30.49              | 0.35                  | 6.44                     | 15.00             |                          |              |                     |
|                 | A (acre)            | с                     | I (in/hr)                | Tc (min)          |               |               | ┨┝────                                       | 0 (afa)         | Alamat             |                       | POND BYPASS              |                   |                          |              |                     |
| D (cfc)         | n (acie)            |                       |                          | 15.00             |               |               |                                              | Q (cfs)<br>0.0  | A (acre)<br>0.00   | C<br>0.00             | l (in/hr)<br><b>6.44</b> | Tc (min)<br>15.00 |                          |              |                     |
| Q (cfs)<br>0.0  | 0.00                | 0.00                  | 7.84                     | 12.00             |               |               |                                              |                 | 0,00               |                       | ~                        | 20.00             |                          |              |                     |
|                 | 0.00                | 0.00                  | 7.84                     | 15.00             | IARGE         | TAINED DISCH  | EXISTING UNDE                                | 68.7            |                    |                       |                          |                   | HARGE                    | TAINED DISCH | RISTING UNDE        |
|                 | 0.00                | 0.00                  | 7.84                     | HARGE             | D BYPASS DISC | TENTION PON   | EXISTING UNDE<br>DEVELOPED DE<br>MAX ALLOWAB |                 |                    |                       |                          | HARGE             | HARGE<br>ID BYPASS DISCH |              |                     |

|                              | DETE          |                        |                       | AR RUNOF                 |                       | ΓΑΤΙΟΝ                  |                 |                  | DETE         |              | ND "A" 10 Y               |                          |                       | TATION              |                |
|------------------------------|---------------|------------------------|-----------------------|--------------------------|-----------------------|-------------------------|-----------------|------------------|--------------|--------------|---------------------------|--------------------------|-----------------------|---------------------|----------------|
| DRAINAGE                     | Tc            | с                      | lz                    | А                        | CA                    | Q2                      | DRAINS TO       | DRAINAGE         | Tc           | с            | ۱ <sub>10</sub>           | Α                        | CA                    | Q <sub>10</sub>     | DRAINS TO      |
| AREA                         | (min)         |                        | (in/hr)               | (acre)                   | (acre)                | (cfs)                   | DRAINS TO       | AREA             | (min)        |              | (in/hr)                   | (acre)                   | (acre)                | (cfs)               | DIVATING TO    |
| EX-A<br><b>TOTAL</b>         | 15            | 0.35                   | 3.95                  | 30.49<br><b>30.49</b>    | 10.67<br><b>10.67</b> | 42.2<br><b>42.2</b>     |                 | EX-A<br>TOTAL    | 15           | 0.35         | 5.50                      | 30.49<br><b>30.49</b>    | 10.67<br><b>10.67</b> | 58.7<br><b>58.7</b> |                |
| TOTAL                        |               | C                      | EVELOPED DET          | AINED DISCHAR            |                       | 42.2                    |                 | TOTAL            |              |              | DEVELOPED DET             |                          |                       | 2017                |                |
| DRAINAGE                     | Tc            |                        | l <sub>2</sub>        | Α                        | CA                    | Q2                      |                 | DRAINAGE         | Tc           |              | ۱ <sub>10</sub>           | Α                        | CA                    | Q <sub>10</sub>     |                |
| AREA                         | (min)         | С                      | (in/hr)               | (acre)                   | (acre)                | (cfs)                   |                 | AREA             | (min)        | ¢            | (in/hr)                   | (acre)                   | (acre)                | (cfs)               |                |
| A-1                          | 15            | 0.35                   | 3.95                  | 19.32                    | 6.76                  | 26.7                    |                 | A-1              | 15           | 0.35         | 5.50                      | 19.32                    | 6.76                  | 37.2                |                |
| A-2<br>A-3                   | 15<br>15      | 0.55<br>0.55           | 3.95<br>3.95          | 8.77<br>1.59             | 4.82<br>0.87          | 19.1<br>3.5             |                 | A-2<br>A-3       | 15<br>15     | 0.55<br>0.55 | 5.50<br>5.50              | 8.77<br>1.59             | 4.82<br>0.87          | 26.5<br>4.8         |                |
| A-3<br>A-4                   | 15            | 0.55                   | 3.95                  | 2.19                     | 1.20                  | 4.8                     |                 | A-4              | 15           | 0.55         | 5.50                      | 2.19                     | 1.20                  | 4.8<br>6.6          |                |
| TOTAL DETAIN                 | ED            |                        |                       | 31.87                    | 13.66                 | 54.0                    |                 | TOTAL DETAINE    | D            |              |                           | 31.87                    | 13.66                 | 75.2                |                |
|                              |               | DEVELOP                | ED DETENTION          | POND BYPASS D            |                       |                         |                 |                  |              | DEVELOP      | PED DETENTION             | POND BYPASS              |                       |                     |                |
| DRAINAGE<br>AREA             | Tc<br>(min)   | с                      | l <sub>2</sub>        | A                        | CA<br>(acro)          |                         |                 | DRAINAGE<br>AREA | Tc<br>(min)  | С            | <sub>10</sub><br>(in (ha) | A<br>(acro)              | CA<br>(acro)          | Q <sub>10</sub>     |                |
| ANEA                         | (mm)          |                        | (in/hr)               | (acre)                   | (acre)                | (cfs)                   |                 | ANEA             | (11111)      |              | (in/hr)                   | (acre)                   | (acre)                | (cfs)               |                |
| TOTAL BYPASS                 |               |                        |                       | 0.00                     | 0.00                  | 0.00                    |                 | TOTAL BYPASS     |              |              |                           | 0.00                     | 0.00                  | 0.00                |                |
| D                            | ETENTION      | I POND "A'             | ' 2 YEAR AL           | LOWABLE R                | ELEASE CO             |                         | N               | DE               | TENTION      | POND "A"     | 10 YEAR AL                |                          | RELEASE CO            |                     | ON             |
|                              |               |                        |                       | INFLOW                   |                       |                         |                 |                  |              |              |                           | NFLOW                    |                       |                     |                |
|                              |               |                        | Tc (min)              | ∣(in/hr)                 | C                     | A (acre)                | Q (cfs)         |                  |              |              | Tc (min)                  | l (in/hr)                | C                     | A (acre)            | Q (cfs)        |
|                              |               |                        | 15.00<br>PRE DEVELOPI | 3.95<br>ED CONDITIONS    | 0.43                  | 31.87                   | 54.0            |                  |              |              | 15.00<br>PRE DEVELOPI     | 5.50<br>ED CONDITIONS    | 0.43                  | 31.87               | 75.2           |
|                              |               |                        | Tc (min)              | L (in/hr)                | с                     | A (acre)                | Q (cfs)         |                  |              |              | Tc (min)                  | L (in/hr)                | С                     | A (acre)            | Q (cfs)        |
|                              |               |                        | 15.00                 | 3.95                     | 0.35                  | 30.49                   | 42.2            |                  |              |              | 15.00                     | 5.50                     | 0.35                  | 30.49               | 58.7           |
|                              |               |                        |                       | POND BYPASS              |                       |                         |                 |                  |              |              |                           | POND BYPASS              |                       |                     |                |
|                              |               |                        | Tc (min)              | l (in/hr)                | C                     | A (acre)                | Q (cfs)         |                  |              |              | Tc (min)<br>15.00         | ⊺(in/hr)<br><b>5.50</b>  | C<br>0.00             | A (acre)<br>0.00    | Q (cfs)<br>0.0 |
| XISTING UNDE                 |               | HARGE                  | 15.00                 | 3.95                     | 0.00                  | 0.00                    | 0.0             | EXISTING UNDE    | TAINED DISC  | HARGE        | 15.00                     | 5.50                     | 0.00                  | 0.00                | 58.7           |
|                              |               |                        | HARGE                 |                          |                       |                         | 0.0             | DEVELOPED DE     |              |              | CHARGE                    |                          |                       |                     | 0.0            |
| MAX ALLOWAB                  | BLE RELEASE R | ATE FROM DET           | ENTION POND           |                          |                       |                         | 42.2            | MAX ALLOWAB      | LE RELEASE R | ATE FROM DET | ENTION POND               |                          |                       |                     | 58.7           |
|                              | DETE          |                        | UD "A" 25 V           | EAR RUNOF                |                       |                         |                 | 1                | DETE         | NTION PON    | ND "A" 100 Y              | YEAR RUNO                | FF COMPL              | JTATION             |                |
|                              |               |                        |                       | AINED DISCHAR            |                       |                         |                 | -                |              |              | EXISTING UNDE             |                          |                       |                     |                |
| DRAINAGE                     | Tc            |                        | <sub>25</sub>         | A                        | CA                    | Q <sub>25</sub>         |                 | DRAINAGE         | Тс           | с            | I <sub>100</sub>          | Α                        | CA                    | Q <sub>100</sub>    | DRAINS 1       |
| AREA                         | (min)         | С                      | (in/hr)               | (acre)                   | (acre)                | (cfs)                   | DRAINS TO       | AREA             | (min)        |              | (in/hr)                   | (acre)                   | (acre)                | (cfs)               | DIVANO         |
| EX-A                         | 15            | 0.35                   | 6.44                  | 30.49                    | 10.67                 | 68.7                    |                 | EX-A             | 15           | 0.35         | 7.84                      | 30.49                    | 10.67                 | 83.7                |                |
| TOTAL                        |               | r                      |                       | 30.49<br>AINED DISCHAR   | 10.67                 | 68.7                    |                 | TOTAL            |              |              | DEVELOPED DET             | 30.49<br>TAINED DISCHAI  | 10.67<br>RGF          | 83.7                |                |
| DRAINAGE                     | Тс            | L                      |                       |                          | CA                    | Q <sub>25</sub>         |                 | DRAINAGE         | Тс           |              | I <sub>100</sub>          | A                        | CA                    | Q <sub>100</sub>    |                |
| AREA                         | (min)         | С                      | (in/hr)               | (acre)                   | (acre)                | (cfs)                   |                 | AREA             | (min)        | С            | (in/hr)                   | (acre)                   | (acre)                | (cfs)               |                |
| A-1                          | 15            | 0.35                   | 6.44                  | 19.32                    | 6.76                  | 43.5                    |                 | A-1              | 15           | 0.35         | 7.84                      | 19.32                    | 6.76                  | 53.0                |                |
| A-2                          | 15            | 0.55                   | 6.44                  | 8.77                     | 4.82                  | 3 <b>1</b> .1           |                 | A-2              | 15           | 0.55         | 7.84                      | 8.77                     | 4.82                  | 37.8                |                |
| A-3                          | 15            | 0.55                   | 6.44                  | 1.59                     | 0.87                  | 5.6                     |                 | A-3<br>A-4       | 15<br>15     | 0.55<br>0.55 | 7.84<br>7.84              | 1.59<br>2.19             | 0.87<br>1.20          | 6.9<br>9.4          |                |
| A-4<br>OTAL DETAINE          | 15            | 0.55                   | 6.44                  | 2.19<br><b>31.87</b>     | 1.20<br><b>13.66</b>  | 7.8<br><b>88.0</b>      |                 |                  |              | 0.55         | 7.04                      | 31.87                    | 1.20<br>13.66         | 9.4<br>107.1        |                |
| UTTE DETAINE                 |               | DEVELOP                | PED DETENTION         | POND BYPASS              |                       | 50.0                    |                 |                  |              | DEVELO       | PED DETENTION             |                          |                       |                     |                |
| DRAINAGE                     | Tc            |                        | I <sub>25</sub>       | A                        | CA                    | Q <sub>25</sub>         |                 | DRAINAGE         | Тс           | С            | l <sub>100</sub>          | А                        | CA                    | Q <sub>100</sub>    |                |
| AREA                         | (min)         | C                      | (in/hr)               | (acre)                   | (acre)                | (cfs)                   |                 | AREA             | (min)        | ر<br>ر       | (in/hr)                   | (acre)                   | (acre)                | (cfs)               |                |
| OTAL BYPASS                  |               |                        |                       | 0.00                     | 0.00                  | 0.00                    |                 | TOTAL BYPASS     |              |              |                           | 0.00                     | 0.00                  | 0.00                |                |
| DI                           | ETENTION      | POND "A"               |                       |                          | RELEASE C             | OMPUTATIO               | DN              | DE               | TENTION      | POND "A"     | 100 YEAR A                |                          | RELEASE               | COMPUTAT            | ION            |
|                              |               |                        |                       | INFLOW                   |                       | <b>x</b> f <sup>1</sup> | 010             |                  |              |              | PEAK<br>Tc (min)          | INFLOW<br>I (in/hr)      | с                     | A (acre)            | Q (cfs)        |
|                              |               |                        | Tc (min)<br>15.00     | l (in/hr)<br><b>6.44</b> | C<br>0.43             | A (acre)<br>31.87       | Q (cfs)<br>88.0 |                  |              |              | 15.00                     | 7.84                     | 0.43                  | 31.87               | 107.1          |
|                              |               |                        |                       | ED CONDITIONS            |                       | 51.07                   | 50.7            |                  |              |              |                           | ED CONDITION             |                       |                     |                |
|                              |               |                        | Tc (min)              | l (in/hr)                | С                     | A (acre)                | Q (cfs)         | 1                |              |              | Tc (min)                  | l (in/hr)                | С                     | A (acre)            | Q (cfs)        |
|                              |               |                        | 15.00                 | 6.44                     | 0.35                  | 30.49                   | 68.7            | ┨┝────           |              |              | 15.00                     | 7.84                     | 0.35                  | 30.49               | 83.7           |
|                              |               |                        |                       | POND BYPASS              |                       |                         |                 |                  |              |              |                           | POND BYPASS              | с                     | A famal             | O laf-         |
|                              |               |                        | Tc (min)<br>15.00     | l (in/hr)<br><b>6.44</b> | C<br>0.00             | A (acre)<br>0.00        | Q (cfs)<br>0.0  |                  |              |              | Tc (min)<br>15.00         | l (in/hr)<br><b>7.84</b> | 0.00                  | A (acre)<br>0.00    | Q (cfs)<br>0.0 |
|                              |               |                        | 12.00                 | 0.44                     | 0.00                  | 0.00                    |                 |                  |              | THADCE       | 19,00                     |                          | 0.00                  | 0.00                | 83.7           |
|                              |               | ARGE                   |                       |                          |                       |                         | 68.7            | EXISTING UNDE    | TAINED DISC  | LIANGE       |                           |                          |                       |                     | QQ.,           |
| XISTING UNDE<br>DEVELOPED DE |               | IARGE<br>D BYPASS DISC | HARGE                 |                          |                       |                         | 68.7<br>0.0     | DEVELOPED DE     |              |              | CHARGE                    |                          |                       |                     | 0.0            |


REFERENCE NORTH TEXAS MUNICIPAL WATER DISTRICT NOTES ON SHEET 20.

#### BENCHMARKS

"X" FOUND IN THE CONCRETE PAVING OF STINSON ROAD APPROXIMATELY 1,160' NORTH OF THE CENTERLINE INTERSECTION OF STINSON ROAD AND SHILOH DRIVE. THE MONUMENT IS LOCATED APPROXIMATELY 73' NORTHEAST OF A POWER POLE AND 115' SOUTHEAST OF A WATER MANHOLE STRUCTURE. ELEVATION = 587.11'

SQUARE CUT ON NORTHWEST CORNER OF WYE INLET LOCATED AT THE SOUTHWEST CORNER OF STINSON ROAD AND HIGHLAND DRIVE. ELEVATION = 589.40'

| JOHNSON VOLK         JOHNSON VOLK         DONSULTING         TBPELS: Engineering Firm No. 11962 / Land Surveying Firm No. 10194033         704 Central Parkway East   Suite 1200   Plano, TX 75074   972.201.3100 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| DEAN FARMS<br>AT STINSON HIGHLAND<br>CITY OF LUCAS<br>COLLIN COUNTY, TEXAS                                                                                                                                        |  |
| DETENTION POND A                                                                                                                                                                                                  |  |
| SCALE:<br>1" = 40' (H)<br>1" = 4' (V)<br>JVC No WLA501                                                                                                                                                            |  |



|                                                                                                                                                                                                                                             |                                                                                                                                                                           |                                                                              | DETENTION PC                        | OND "B" 2 YE                        |                                            |                                  | TATION                      |                      |                               | DETE                        |                         | ND "B" 10 YE                     |                                        | COMPUTATIC                       | )N                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------------|----------------------------------|-----------------------------|----------------------|-------------------------------|-----------------------------|-------------------------|----------------------------------|----------------------------------------|----------------------------------|-------------------------------------------------------------------------------------|
| LEGEND                                                                                                                                                                                                                                      |                                                                                                                                                                           | DRAINAGE To<br>AREA (mi                                                      | c C                                 | l <sub>2</sub><br>(in/hr)           | A<br>(acre)                                | CA<br>(acre)                     | (cfs)                       | RAINS TO             | DRAINAGE<br>AREA              | Tc<br>(min)                 | c                       | l <sub>10</sub><br>(in/hr)       | Α                                      | CA (                             | Q <sub>10</sub> DRAINS TO<br>cfs)                                                   |
|                                                                                                                                                                                                                                             |                                                                                                                                                                           | EX-B 15<br>EX-C 15                                                           | 5 0.35                              | 3.95<br>3.95                        | 22.71<br>5.68                              | 7.95<br>1.99                     | 31.4<br>7.9                 |                      | EX-B<br>EX-C                  | 15<br>15                    | 0.35<br>0.35            | 5.50<br>5.50                     | 5.68                                   | 1.99 1                           | 13.7<br>10.9                                                                        |
| 634 EXISTING CONTOL                                                                                                                                                                                                                         | JR                                                                                                                                                                        | EX-D 15<br>TOTAL                                                             |                                     | 3.95<br>DEVELOPED DET               | 2.78<br>31.17<br>AINED DISCHAR             | 0.97<br>10.91                    | 3.8<br><b>43.1</b>          |                      | EX-D<br>TOTAL                 | 15                          | 0.35                    | 5.50<br>DEVELOPED DETA           |                                        | 10.91 6                          | 5.4<br>60.0                                                                         |
|                                                                                                                                                                                                                                             |                                                                                                                                                                           | DRAINAGE To<br>AREA (mit                                                     |                                     | I <sub>2</sub><br>(in/hr)           | A<br>A<br>(acre)                           | CA<br>(acre)                     | Q <sub>2</sub><br>(cfs)     |                      | DRAINAGE<br>AREA              | Tc<br>(min)                 | c                       | l <sub>10</sub><br>lin/hr)       | Α                                      | CA 0                             | Q <sub>10</sub><br>cfs)                                                             |
| PROPOSED STORM                                                                                                                                                                                                                              | M DRAIN 40 20 0 40                                                                                                                                                        | C-1 15<br>C-2 15                                                             | 5 0.55                              | 3.95<br>3.95                        | 5.80<br>5.90                               | 3.19<br>3.25                     | 12.6<br>12.8                |                      | C-1<br>C-2                    | 15<br>15                    | 0.55<br>0.55            | 5.50<br>5.50                     | 5.80                                   | 3.19 1                           | .7.5<br>.7.8                                                                        |
|                                                                                                                                                                                                                                             | SCALE 1" = 40'                                                                                                                                                            | C-3 15<br>C-4 15                                                             | 5 0.55                              | 3.95<br>3.95<br>3.95                | 1.72<br>1.16                               | 0.95<br>0.64                     | 3.7<br>2.5                  |                      | C-3<br>C-4                    | 15<br>15<br>15              | 0.55<br>0.55            | 5.50<br>5.50<br>5.50             | 1.72<br>1.16                           | 0.95 .<br>0.64                   | 5.2<br>3.5                                                                          |
|                                                                                                                                                                                                                                             |                                                                                                                                                                           | TOTAL DETAINED                                                               |                                     | PED DETENTION                       | 14.58<br>POND BYPASS D                     | 8.02<br>DISCHARGE                | 31.68                       |                      | TOTAL DETAIN                  | ED                          |                         | PED DETENTION P                  | 14.58                                  | 8.02 4                           | 4.10                                                                                |
|                                                                                                                                                                                                                                             |                                                                                                                                                                           | DRAINAGE To<br>AREA (mit                                                     | n) C                                | l <sub>2</sub><br>(in/hr)           | A<br>(acre)                                | CA<br>(acre)                     | Q <sub>2</sub><br>(cfs)     |                      | DRAINAGE<br>AREA              | Tc<br>(min)                 | С                       | ا <sub>ءہ</sub><br>(in/hr)       |                                        | (acre) (                         | Q <sub>10</sub><br>cfs)                                                             |
|                                                                                                                                                                                                                                             |                                                                                                                                                                           | OS-1 15<br>OS-2 15                                                           | 5 0.55                              | 3.95<br>3.95                        | 1.16<br>3.62                               | 0.64<br>1.99                     | 2.5<br>7.9                  |                      | OS-1<br>OS-2                  | 15<br>15                    | 0.55                    | 5.50<br>5.50                     | 3.62                                   | 1.99 1                           | 3.5<br>1.0                                                                          |
|                                                                                                                                                                                                                                             | 8" OUTFALL WEIR SIZING                                                                                                                                                    | B-1 15<br>B-2 15<br>TOTAL BYPASS                                             |                                     | 3.95<br>3.95                        | 6.55<br>3.88<br><b>15.21</b>               | 2.88<br>1.75<br><b>7.26</b>      | 11.4<br>6.9<br><b>28.7</b>  |                      | B-1<br>B-2<br>TOTAL BYPASS    | 15<br>15                    | 0.44<br>0.45            | 5.50<br>5.50                     | 6.55<br>3.88<br><b>15.21</b>           | 1.75 9                           | .5.9<br>9.6<br><b>39.9</b>                                                          |
| 2-YEAR STORM EVENTThe required storage for 2-year(CF)=20,764.51                                                                                                                                                                             | 10-YEAR STORM EVENT           The required storage for 10-year(CF)         =         28,779.86                                                                            |                                                                              | ITION POND "B                       | " 2 YEAR ALI                        |                                            |                                  |                             |                      | r                             |                             | POND "B"                | 10 YEAR ALL                      |                                        | LEASE COMPL                      |                                                                                     |
| 2 year water surface elevation (ft) = 562.17<br>Sizing discharger regulator, weir Q=CLH <sup>3/2</sup>                                                                                                                                      | 10 year water surface elevation (ft)=552.24Sizing discharger regulator, weirQ=CLH                                                                                         |                                                                              |                                     |                                     | INFLOW                                     | C                                |                             | Q (cfs)              |                               | <b>b f b</b> i <b>v</b> i v |                         | PEAK IN<br>Tc (min)              |                                        |                                  | acre) Q (cfs)                                                                       |
| Max Flow rate allowable, Q <sub>M</sub> = 14.4 cfs                                                                                                                                                                                          | Max Flow rate allowable, Q <sub>M</sub> = 20.09 cfs                                                                                                                       |                                                                              |                                     | 15.00                               | 3.95<br>ED CONDITIONS                      | 0.55                             | 14.58                       | 31.68                |                               |                             |                         | 15.00<br>PRE DEVELOPEE           | 5.50<br>CONDITIONS                     | 0.55 14                          | 4.58 44.10                                                                          |
| Sizing discharger regulator, orifice     Q=CA(2gH) <sup>1/2</sup> Orifice C= 0.67                                                                                                                                                           | Sizing discharger regulator, orifice     Q=CA(2gH) <sup>1/2</sup> Orifice C=     0.67                                                                                     |                                                                              |                                     | Tc (min)<br>15.00                   | l (in/hr)<br><b>3.95</b>                   | C<br>0.35                        | A (acre)<br>31.17           | Q (cfs)<br>43.1      |                               |                             |                         | Tc (mín)<br>15.00                |                                        |                                  | acre) Q (cfs)<br>1.17 60.0                                                          |
| Elev.(ft)= 561.05<br>Pipe Dia(ft)= 2.00                                                                                                                                                                                                     | Elev.(ft)= 561.05<br>Pipe Dia(ft)= 2.00                                                                                                                                   |                                                                              |                                     | Tc (min)                            | POND BYPASS                                | C                                | • •                         | Q (cfs)              |                               |                             |                         | DETENTION P<br>Tc (min)          | l (in/hr)                              | •                                | acre) Q (cfs)                                                                       |
| Area(sf)=         3.141592654           g(ft/s)         32.2           D(ft)=         1.12                                                                                                                                                  | Area(sf)=         3.141592654           g(ft/s)         32.2           D(ft)=         1.19                                                                                | EXISTING UNDETAINE<br>DEVELOPED DETENTIO                                     |                                     | 15.00                               | 3.95                                       | 0.48                             | 15.21                       | 28.7<br>43.1<br>28.7 | EXISTING UNDE<br>DEVELOPED DE |                             |                         | 15.00                            | 5.50                                   | 0.48 1                           | 5.21 39.9<br>60.0<br>39.9                                                           |
| Q= 5.82                                                                                                                                                                                                                                     | Q= 7.40                                                                                                                                                                   | MAX ALLOWABLE REL                                                            | EASE RATE FROM DE                   | TENTION POND                        |                                            |                                  |                             | 28.7<br>14.4         | MAX ALLOWAB                   | BLE RELEASE R               | ATE FROM DET            | TENTION POND                     |                                        |                                  | 20.1                                                                                |
| Inlet B 4'x1' Rectangle Q=CA(2gH) <sup>1/2</sup>                                                                                                                                                                                            | Inlet B     4'x1' Rectangle       Sizing discharger regulator, orifice     Q=CA(2gH) <sup>1/2</sup>                                                                       |                                                                              |                                     | ND "B" 25 YI                        |                                            | RGE                              |                             |                      |                               |                             |                         | EXISTING UNDETA                  |                                        |                                  |                                                                                     |
| Elev.(ft)= 561.60 ft<br>H (ft)= 0.57 ft                                                                                                                                                                                                     | Elev.(ft)= 561.60<br>H (ft)= 0.64                                                                                                                                         | DRAINAGE To<br>AREA (min                                                     | n} C                                | l <sub>25</sub><br>(in/hr)          | A<br>(acre)                                | C * C <sub>f</sub> * A<br>(acre) | (cfs)                       | RAINS TO             | DRAINAGE<br>AREA              | Tc<br>(min)                 | <b>C</b>                | l <sub>100</sub><br>(in/hr)      |                                        | (acre) (e                        | Q <sub>100</sub> DRAINS TO<br>cfs)                                                  |
| Area (sf)= 4.00<br>L (ft)= 4.00                                                                                                                                                                                                             | Area (sf)= 4.00<br>L (ft)= 4.00                                                                                                                                           | EX-B 15<br>EX-C 15                                                           | 5 0.35                              | 6.44<br>6.44                        | 22.71<br>5.68                              | 7.95<br>1.99                     | 51.2<br>12.8                |                      | EX-B<br>EX-C<br>EX-D          | 15<br>15<br>15              | 0.35<br>0.35<br>0.35    | 7.84<br>7.84<br>7.84             | 22.71<br>5.68<br>2.78                  | 1.99 1                           | 52.3<br>15.6<br>7.6                                                                 |
| Q= 5.63 cfs                                                                                                                                                                                                                                 | Q= 8.10 cfs                                                                                                                                                               | EX-D 15<br>T <b>OTAL</b>                                                     |                                     | 6.44                                | 2.78<br><b>31.17</b><br>AINED DISCHAR      | 0.97<br>10.91<br>RGE             | 6.3<br><b>70.3</b>          |                      | TOTAL                         | 15                          |                         | 7.84                             | 31.17                                  | 10.91 8                          | 7.6<br>35.5                                                                         |
| Actual Outfall Discharge Q <sub>A</sub> = 11.45 cfs                                                                                                                                                                                         | Actual Outfall Discharge Q <sub>A</sub> = 15.49 cfs                                                                                                                       | DRAINAGE To<br>AREA (min                                                     |                                     | l <sub>25</sub><br>(in/hr)          | A<br>A<br>(acre)                           | C * C <sub>f</sub> * A<br>(acre) | Q <sub>25</sub><br>(cfs)    |                      | DRAINAGE<br>AREA              | Tc<br>(min)                 | с                       | I <sub>100</sub><br>(in/hr)      | A                                      | CA C                             | Q <sub>100</sub><br>cfs)                                                            |
| 25-YEAR STORM EVENTThe required storage for 25-year(CF)=33,575.2325 year water surface elevation (ft)=562.36                                                                                                                                | 100-YEAR STORM EVENT           The required storage for 100-year(CF)         =         38,452.72           100 year water surface elevation (ft)         =         562.69 | C-1 15<br>C-2 15                                                             | 5 0.55                              | 6.44<br>6.44                        | 5.80<br>5.90                               | 3.19<br>3.25                     | 20.5 20.9                   |                      | C-1<br>C-2                    | 15<br>15<br>15              | 0.55<br>0.55            | 7.84                             | 5.80<br>5.90                           | 3.19 2                           | 25.0<br>25.4                                                                        |
| 25 year water surface elevation (ft)     =     562.36       Sizing discharger regulator, weir     Q=CLH <sup>3/2</sup> Max Flow rate, Q(CFS) =     23.5     cfs                                                                             | 100 year water surface elevation (tt)     =     562.69       Sizing discharger regulator, weir     Q=CLH <sup>3/2</sup> Max Flow rate, Q(CFS) =     30.05     cfs         | C-3 15<br>C-4 15                                                             | 5 0.55                              | 6.44<br>6.44                        | 1.72<br>1.16                               | 0.95<br>0.64                     | 6.1<br>4.1                  |                      | C-3<br>C-4                    | 15<br>15                    | 0.55<br>0.55            | 7.84<br>7.84                     | 1.72<br>1.16                           | 0.95<br>0.64                     | 7.4<br>5.0                                                                          |
| Inlet A 24" Diameter Circle                                                                                                                                                                                                                 | Inlet A 24" Diameter Circle                                                                                                                                               | TOTAL DETAINED                                                               |                                     | PED DETENTION                       | 14.58<br>POND BYPASS D                     |                                  | 51. <del>6</del> 4          |                      | TOTAL DETAIN                  |                             | DEVELOI                 | PED DETENTION P                  | 14.58<br>OND BYPASS DIS                | HARGE                            | 52.9                                                                                |
| Sizing discharger regulator, orifice     Q=CA(2gH) <sup>1/2</sup> Orifice C=     0.67       Eley (ft)=     561.05                                                                                                                           | Sizing discharger regulator, orifice     Q=CA(2gH) <sup>1/2</sup> Orifice C=     0.67       Elay (ft)=     561.05                                                         | DRAINAGE To<br>AREA (min                                                     | n} C                                | l <sub>zs</sub><br>(in/hr)          | A<br>(acre)                                | C * C <sub>f</sub> * A<br>(acre) | Q <sub>25</sub><br>(cfs)    |                      | DRAINAGE<br>AREA              | Tc<br>(min)                 | C                       | l <sub>100</sub><br>(in/hr)      |                                        | (acre) (i                        | Q <sub>100</sub><br>cfs)                                                            |
| Elev.(ft)= 561.05<br>Pipe Dia(ft)= 2.00<br>Area(sf)= 3.141592654                                                                                                                                                                            | Elev.(ft)= 561.05<br>Pipe Dia(ft)= 2.00<br>Area(sf)= 3.141592654                                                                                                          | OS-1 15<br>OS-2 15<br>B-1 15                                                 | 5 0.55                              | 6.44<br>6.44                        | 1.16<br>3.62                               | 0.64<br>1.99                     | 4.1<br>12.8                 |                      | OS-1<br>OS-2<br>B-1           | 15<br>15<br>15              | 0.55<br>0.50<br>0.44    | 7.84<br>7.84<br>7.84             | 1.16<br>3.62<br>6.55                   | 1.81 1                           | 5.0<br>14.2<br>22.6                                                                 |
| g(ft/s) 32.2<br>D(ft)= 1.31                                                                                                                                                                                                                 | g(ft/s) 32.2<br>D(ft)= 1.64                                                                                                                                               | B-1 15<br>B-2 15<br>TOTAL BYPASS                                             |                                     | 6.44<br>6.44                        | 6.55<br>3.88<br><b>15.21</b>               | 2.88<br>1.75<br><b>7.26</b>      | 18.6<br>11.2<br><b>46.7</b> |                      | B-1<br>B-2<br>TOTAL BYPASS    | 15                          | 0.44<br>0.45            | 7.84<br>7.84                     | 5.55<br>3.88<br><b>15.21</b>           | 1.75 1                           | 13.7<br>5.48                                                                        |
| Q= 9.37                                                                                                                                                                                                                                     | Q= 13.48                                                                                                                                                                  |                                                                              |                                     | ' 25 YEAR AL                        |                                            |                                  |                             |                      | r                             |                             | POND "B"                | 100 YEAR AL                      |                                        |                                  |                                                                                     |
| Inlet B  4'x1' Rectangle                                                                                                                                                                                                                    | Inlet B [4'x1' Rectangle                                                                                                                                                  |                                                                              |                                     |                                     | INFLOW                                     | C                                |                             | Q (cfs)              |                               |                             |                         | PEAK IN<br>Tc (min)              |                                        |                                  | acre) Q (cfs)                                                                       |
| Sizing discharger regulator, orifice         Q=CA(2gH) <sup>1/2</sup> Elev.(ft)= 561.60                                                                                                                                                     | Sizing discharger regulator, orifice         Q=CA(2gH) <sup>1/2</sup> Elev.(ft)=         561.60           H (ft)=         1.09                                            |                                                                              |                                     | 15.00                               | 6.44<br>ED CONDITIONS                      | 0.55                             |                             | 51.64                |                               |                             |                         | 15.00<br>PRE DEVELOPEI           | 7.84                                   |                                  | 4.58 62.9                                                                           |
| H (ft)= 0.76<br>Area (sf)= 4.00<br>L (ft)= 4.00                                                                                                                                                                                             | H (tt)=         1.09           Area (sf)=         4.00           L (ft)=         4.00                                                                                     |                                                                              |                                     | Tc (min)<br>15.00                   | l (in/hr)<br><b>6.44</b>                   | C<br>0.35                        | A (acre)<br>31.17           | Q (cfs)<br>70.3      |                               |                             |                         | Tc (min)<br>15.00                | l (in/br)<br><b>7.84</b>               |                                  | acre) Q (cfs)<br>1.17 85.5                                                          |
| Q= 10.91 cfs                                                                                                                                                                                                                                | Q= 16.48 cfs                                                                                                                                                              |                                                                              |                                     | Tc (min)                            | POND BYPASS                                | C                                |                             | Q (cfs)              |                               |                             |                         | DETENTION P<br>Tc (min)<br>15.00 | OND BYPASS<br>  (in/hr)<br><b>7.84</b> | ,                                | acre) Q (cfs)<br>5.21 55.5                                                          |
| Actual Outfall Discharge Q <sub>A</sub> = 20.28 cfs                                                                                                                                                                                         | Actual Outfall Discharge Q <sub>A</sub> = 29.96 cfs                                                                                                                       | EXISTING UNDETAINE                                                           |                                     | 15.00                               | 6.44                                       | 0.48                             | 15.21                       | 46.7<br>70.3<br>46.7 | EXISTING UNDE                 |                             |                         |                                  | 7.84                                   | 0.47 1                           | 5.21 55.5<br>85.5<br>55.5                                                           |
| OMPUTATION-MODIFIED RATIONAL METHOD                                                                                                                                                                                                         |                                                                                                                                                                           | MAX ALLOWABLE REL                                                            |                                     |                                     |                                            |                                  |                             | 23.5                 | MAX ALLOWAE                   |                             |                         |                                  |                                        |                                  | 30.1                                                                                |
| Q         Vin         Vout         Vreq         Vreq           (cfs)         (cf)         (cf)         (cf)         (acre-           53.3         31,995.81         15,066.56         16,929.25         0.39                                | -ft) DETENTION POND "B" 25 YEAR VOLU                                                                                                                                      |                                                                              |                                     |                                     | _                                          |                                  |                             |                      | NTION POP                     | ND "B" 10                   | O YEAR DE               | ESIGN-MODI                       |                                        | NAL METHO                        |                                                                                     |
| 33.3         31,993.81         13,000.30         10,923.23         0.33           44.1         39,694.05         18,079.88         21,614.18         0.50           38.1         45,742.66         21,093.19         24,649.47         0.57 | 0 (min) (min) (in/hr) (                                                                                                                                                   | A Q<br>(acre) (cfs)<br>14.58 62.5                                            | Vin<br>(cf)<br>37,528.92            | Vout<br>(cf)<br>17,641.58           | Vreq<br>(cf)<br>19,887.35                  | Vreq<br>(acre-ft)<br>0.46        | (min) (m                    | Tc<br>nin)<br>15     | <b>C</b><br>0.55              | ہ<br>(in/hr)<br>11.90       | A<br>(acre)<br>14.58    | Q<br>(cfs)<br>95.4               | Vin<br>(cf)<br>28,627.83               | Vout<br>(cf)<br>18,032.78        | Vreq         Vreq           (cf)         (acre-ft)           10,595.05         0.24 |
| 33.8         50,765.62         24,106.50         26,659.12         0.61           30.6         55,003.68         27,119.81         27,883.87         0.64                                                                                   | 1 15 15 0.55 6.44                                                                                                                                                         | 14.58         62.5           14.58         51.6           14.58         44.5 | 46,478.12<br>53,381.69              | 21,169.89<br>24,698.21              | 25,308.23<br>28,683.49                     | 0.48<br>0.58<br>0.66             | 10 1                        | 15<br>15<br>15       | 0.55<br>0.55<br>0.55          | 9.53<br>7.84                | 14.58<br>14.58<br>14.58 | 93.4<br>76.4<br>62.9             | 45,852.64<br>56,582.06                 | 22,540.98<br>27,049.18           | 23,311.66 0.54<br>29,532.89 0.68                                                    |
| 27.9         58,677.38         30,133.13         28,544.25         0.66           25.8         61,926.30         33,146.44         28,779.86         0.66                                                                                   | 6 25 15 0.55 4.93                                                                                                                                                         | 14.58     44.5       14.58     39.5       14.58     35.7                     | 59,254.16<br>64,226.30              | 24,098.21<br>28,226.52<br>31,754.84 | 31,027.64<br>32,471.47                     | 0.88<br>0.71<br>0.75             | 20 1                        | 15<br>15<br>15       | 0.55<br>0.55<br>0.55          | 6.72<br>5.97                | 14.58<br>14.58<br>14.58 | 53.9<br>47.9                     | 64,692.55<br>71,846.04                 | 31,557.37<br>36,065.57           | 33,135.18 0.76<br>35,780.48 0.82                                                    |
| 24.0         64,844.12         36,159.75         28,684.37         0.66           22.5         67,496.61         39,173.06         28,323.54         0.65                                                                                   | 6 35 15 0.55 4.07                                                                                                                                                         | 14.58     35.7       14.58     32.6       14.58     30.2                     | 68,550.62<br>72,386.69              | 35,283.15<br>38,811.47              | 33,267.47<br>33,575.23                     | 0.75<br>0.76<br>0.77             | 30 1                        | 15<br>15<br>15       | 0.55<br>0.55<br>0.55          | 5.40<br>4.95                | 14.58<br>14.58<br>14.58 | 47.9<br>43.3<br>39.7             | 77,944.08<br>83,281.12                 | 40,573.76<br>45,081.96           | 37,370.32 0.86<br>38,199.16 0.88                                                    |
| 21.2         69,931.67         42,186.38         27,745.30         0.64           20.1         72,185.27         45,199.69         26,985.58         0.62                                                                                   | 4 45 15 0.55 3.50                                                                                                                                                         | 14.58         28.1           14.58         26.3                              | 75,841.54<br>78,990.35              | 42,339.78<br>45,868.10              | 33,501.76<br>33,122.26                     | 0.77<br>0.76                     | 40 1                        | 15<br>15<br>15       | 0.55<br>0.55<br>0.55          | 4.57<br>4.27                | 14.58<br>14.58          | 36.7<br>34.2                     | 88,042.88<br>92,353.90                 | 49,590.16<br>54,098.35           | 38,452.72 0.88<br>38,255.55 0.88                                                    |
| 19.0         74,285.05         48,213.00         26,072.05         0.60           18.2         76,252.72         51,226.31         25,026.41         0.57                                                                                   | 0 55 15 0.55 3.09                                                                                                                                                         | 14.58     24.8       14.58     23.5                                          | 81,887.93<br>84,575.42              | 49,396.41<br>52,924.73              | 32,491.52<br>31,650.69                     | 0.75<br>0.73                     | 50 1                        | 15<br>15<br>15       | 0.55<br>0.55<br>0.55          | 4.00                        | 14.58<br>14.58          | 32.1<br>30.3                     | 96,301.77<br>99,950.41                 | 58,606.55<br>63,114.74           | 37,695.22 0.87<br>36,835.67 0.85                                                    |
| 17.478,105.6654,239.6323,866.040.5516.679,857.9857,252.9422,605.040.52                                                                                                                                                                      | 5 65 15 0.55 2.78                                                                                                                                                         | 14.58     22.3       14.58     21.3                                          | 87,084.51<br>89,440.13              | 56,453.04<br>59,981.36              | 30,631.47<br>29,458.77                     | 0.70<br>0.68                     | 60 1                        | 15                   | 0.55                          | 3.58<br>3.25                | 14.58                   | 28.7                             | 103,347.95                             | 67,622.94                        | 35,725.01 0.82                                                                      |
| 16.0 81,521.29 60,266.25 21,255.04 0.49<br>15.4 83,105.28 63,279.56 19,825.72 0.46                                                                                                                                                          | 9 75 15 0.55 2.54                                                                                                                                                         | 14.58     20.4       14.58     19.5                                          | 91,662.23<br>93,767.03              | 63,509.67<br>67,037.99              | 28,152.56<br>26,729.04                     | 0.65<br>0.61                     | 75 1                        | 15<br>15             | 0.55<br>0.55                  | 3.11                        | 14.58<br>14.58          | 26.1<br>25.0                     | 109,530.37<br>112,368.04               | 76,639.33<br>81,147.53           | 32,891.04 0.76<br>31,220.51 0.72                                                    |
| 14.8         84,618.10         66,292.88         18,325.22         0.42           14.3         86,066.67         69,306.19         16,760.48         0.38                                                                                   | 2 85 15 0.55 2.34                                                                                                                                                         | 14.58     18.8       14.58     18.1                                          | 95,767.92<br>97,676.06              | 70,566.30<br>74,094.62              | 25,201.62<br>23,581.44                     | 0.58<br>0.54                     | 85 1                        | 15<br>15             | 0.55<br>0.55                  | 2.99<br>2.88                | 14.58<br>14.58          | 24.0<br>23.1                     | 115,063.67<br>117,633.09               | 85,655.72<br>90,163.92           | 29,407.94 0.68<br>27,469.17 0.63                                                    |
| MAX VOLUME REQUIRED:         28,779.86         CF           MAX VOLUME REQUIRED:         1,065.92         CY                                                                                                                                |                                                                                                                                                                           | 14.58 17.5                                                                   | 99,500.86<br>DLUME REQUIRED:        | 77,622.93                           | 23,381.44<br>21,877.93<br><b>33,575.23</b> | 0.50                             | 95 1                        | 15<br>15             | 0.55<br>0.55                  | 2.77<br>2.68                | 14.58<br>14.58          | 22.2<br>21.5                     | 120,089.55<br>122,444.25               | 94,672.12<br>99,180.31           | 25,417.43 0.58<br>23,263.94 0.53                                                    |
| VOLUME PROVIDED (3 FT):1,003.522,228.82CY                                                                                                                                                                                                   |                                                                                                                                                                           | MAX VC                                                                       | DLUME REQUIRED:<br>PROVIDED (3 FT): |                                     | 1,243.53<br>2,228.82                       | СҮ                               | 100 1                       | 10                   | 0.70                          | 2.59                        | 14.58                   | 26.5                             |                                        | 99,180.31<br><b>WE REQUIRED:</b> | 59,537.35 1.37<br>38,452.72 CF                                                      |
|                                                                                                                                                                                                                                             |                                                                                                                                                                           |                                                                              |                                     |                                     | _,0.02                                     |                                  |                             |                      |                               |                             |                         |                                  |                                        | VIE REQUIRED:<br>OVIDED (3 FT):  | 1,424.17 CY<br>2,228.82 CY                                                          |

|                                                                  |                                             |                                        |                      |                                                 |                       | DET                     |                                               |                                     | EAR RUNOFI                          |                                    | TATION                     |                         |                              | DETE                  |                         | ND "B" 10 YE               |                                         |                                     | ION                        |                         |
|------------------------------------------------------------------|---------------------------------------------|----------------------------------------|----------------------|-------------------------------------------------|-----------------------|-------------------------|-----------------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|----------------------------|-------------------------|------------------------------|-----------------------|-------------------------|----------------------------|-----------------------------------------|-------------------------------------|----------------------------|-------------------------|
|                                                                  |                                             |                                        |                      |                                                 | DRAINAGE              | Тс                      | (                                             | l <sub>2</sub>                      | A                                   | CA                                 | Q <sub>2</sub>             | DRAINS TO               | DRAINAGE                     | Тс                    | с<br>С                  | EXISTING UNDETA            | Α                                       | CA                                  | Q <sub>10</sub>            | DRAINS TO               |
|                                                                  |                                             |                                        |                      |                                                 | AREA<br>EX-B<br>EX-C  | (min)<br>15<br>15       | 0.35<br>0.35                                  | (in/hr)<br>3.95<br>3.95             | (acre)<br>22.71<br>5.68             | (acre)<br>7.95<br>1.99             | (cfs)<br>31.4<br>7.9       |                         | AREA<br>EX-B<br>EX-C         | (min)<br>15<br>15     | 0.35<br>0.35            | (in/hr)<br>5.50<br>5.50    | (acre)<br>22.71<br>5.68                 | (acre)<br>7.95<br>1.99              | (cfs)<br>43.7<br>10.9      |                         |
| g contouf                                                        | ۶                                           |                                        |                      |                                                 | EX-D<br>EX-D<br>TOTAL | 15                      | 0.35                                          | 3.95                                | 2.78<br><b>31.17</b>                | 0.97<br><b>10.91</b>               | 3.8<br><b>43.1</b>         |                         | EX-C<br>EX-D<br>TOTAL        | 15                    | 0.35                    | 5.50                       | 2.78<br><b>31.17</b>                    | 0.97<br><b>10.91</b>                | 5.4<br>60.0                |                         |
| SED CONTO                                                        | UR                                          |                                        |                      |                                                 | DRAINAGE              | Тс                      | I                                             | l <sub>2</sub>                      | A                                   | CA                                 | Q <sub>2</sub>             |                         | DRAINAGE                     | Тс                    | С                       | DEVELOPED DETA             | A                                       | CA                                  | <b>Q</b> <sub>10</sub>     |                         |
| SED STORM                                                        | DRAIN                                       | 40 20                                  | 0                    | 40                                              | AREA<br>C-1           | (min)<br>15             | 0.55                                          | (in/hr)<br>3.95                     | (acre)<br>5.80                      | (acre)<br>3.19                     | (cfs)<br>12.6              |                         | AREA<br>C-1                  | (min)<br>15           | 0.55                    | (in/hr)<br>5.50            | (acre)<br>5.80                          | (acre)<br>3.19                      | (cfs)<br>17.5              |                         |
|                                                                  |                                             | SC.                                    | ALE 1" = 4           | 0'                                              | C-2<br>C-3<br>C-4     | 15<br>15<br>15          | 0.55<br>0.55<br>0.55                          | 3.95<br>3.95<br>3.95                | 5.90<br>1.72<br>1.16                | 3.25<br>0.95<br>0.64               | 12.8<br>3.7<br>2.5         |                         | C-2<br>C-3<br>C-4            | 15<br>15<br>15        | 0.55<br>0.55<br>0.55    | 5.50<br>5.50<br>5.50       | 5.90<br>1.72<br>1.16                    | 3.25<br>0.95<br>0.64                | 17.8<br>5.2<br>3.5         |                         |
|                                                                  |                                             |                                        |                      |                                                 | TOTAL DETAIN          |                         |                                               |                                     | 14.58<br>POND BYPASS D              | 8.02                               | 31.68                      |                         | TOTAL DETAIN                 |                       |                         |                            | 14.58                                   | 8.02                                | 44.10                      |                         |
|                                                                  |                                             |                                        |                      |                                                 | DRAINAGE<br>AREA      | Tc<br>(min)             | С                                             | l <sub>2</sub><br>(in/hr)           | A<br>(acre)                         | CA<br>(acre)                       | Q <sub>2</sub><br>(cfs)    |                         | DRAINAGE<br>AREA             | Tc<br>(min)           | С                       | ا <sub>10</sub><br>(in/hr) | A<br>(acre)                             | CA<br>(acre)                        | Q <sub>10</sub><br>(cfs)   |                         |
|                                                                  |                                             |                                        |                      |                                                 | OS-1<br>OS-2          | 15<br>15                | 0.55<br>0.55                                  | 3.95<br>3.95                        | 1.16<br>3.62                        | 0.64<br>1.99                       | 2.5<br>7.9                 |                         | OS-1<br>OS-2                 | 15<br>15              | 0.55<br>0.55            | 5.50<br>5.50               | 1.16<br>3.62                            | 0.64                                | 3.5<br>11.0                |                         |
|                                                                  |                                             |                                        |                      |                                                 | B-1<br>B-2            | 15<br>15                | 0.44<br>0.45                                  | 3.95<br>3.95                        | 6. <b>55</b><br>3.88                | 2.88<br>1.75                       | 11.4<br>6.9                |                         | B-1<br>B-2                   | 15<br>15              | 0.44<br>0.45            | 5.50<br>5.50               | 6.55<br>3.88                            | 2.88<br>1.75                        | 15.9<br>9.6                |                         |
|                                                                  | OUTFALL WEIR                                | 10-YEAF                                | STORM EVENT          |                                                 | TOTAL BYPASS          |                         |                                               |                                     | 15.21                               | 7.26                               | 28.7                       |                         | TOTAL BYPASS                 |                       |                         |                            | 15.21                                   | 7.26                                | 39.9                       |                         |
| 20,764.51<br>562.17                                              | The required stora<br>10 year water surf    | face elevation (ft)                    | )                    | = 28,779.86<br>= 552.24<br>Q=CLH <sup>3/2</sup> | C                     | ETENTIC                 | N POND "B                                     |                                     | LOWABLE R                           | ELEASE C                           | ΟΜΡυτατιά                  |                         | D                            | ETENTION              | POND "B'                | 10 YEAR AL                 |                                         | LEASE COM                           | PUTATIO                    | <u>N</u>                |
| cfs                                                              | Sizing discharger r<br>Max Flow rate        | allowable, Q <sub>M</sub> =            | 20.09                | cfs                                             | -                     |                         |                                               | Tc (min)<br>15.00                   | l (in/hr)<br><b>3.95</b>            | C<br>0.55                          | A (acre)<br>14.58          | Q (cfs)<br>31.68        |                              |                       |                         | Tc (min)<br>15.00          | l (in/hr)<br><b>5.50</b>                |                                     | A (acre)<br>14.58          | Q (cfs)<br>44.10        |
| (H) <sup>1/2</sup>                                               | Inlet A 2                                   | 4" Diameter Circ<br>regulator, orifice |                      | Q=CA(2gH) <sup>1/2</sup>                        |                       |                         |                                               | Tc (min)                            | ED CONDITIONS                       | С                                  | A (acre)                   | Q (cfs)                 |                              |                       |                         | Tc (min)                   | D CONDITIONS                            |                                     | A (acre)                   | Q (cfs)                 |
|                                                                  | Orifice C= 0<br>Elev.(ft)= 5                | 0.67<br>61.05                          |                      |                                                 |                       |                         |                                               |                                     | 3.95                                | 0.35                               | 31.17                      | 43.1                    |                              |                       |                         | 15.00<br>DETENTION F       |                                         | 0.35                                | 31.17                      | 60.0                    |
|                                                                  | Pipe Dia(ft)= 2<br>Area(sf)= 3<br>g(ft/s) 3 | .141592654                             |                      |                                                 | EXISTING UND          |                         | CHARGE                                        | Tc (min)<br>15.00                   | l (in/hr)<br>3.95                   | C<br>0.48                          | A (acre)<br>15.21          | Q (cfs)<br>28.7<br>43.1 | EXISTING UND                 |                       | HARGE                   | Tc (min)<br>15.00          | l (in/hr)<br><b>5.50</b>                | 0.48                                | A (acre)<br>15.21          | Q (cfs)<br>39.9<br>60.0 |
|                                                                  | D(ft)= 1                                    |                                        |                      |                                                 | DEVELOPED DI          | TENTION PO              | ND BYPASS DIS                                 |                                     |                                     |                                    |                            | 28.7<br>14.4            | DEVELOPED DE                 | TENTION POP           | ND BYPASS DIS           | SCHARGE<br>TENTION POND    |                                         |                                     |                            | 39.9<br><b>20</b> .1    |
|                                                                  | Q= 7<br>Inlet B 4                           | '.40<br>'x1' Rectangle                 |                      |                                                 |                       | DET                     | ENTION POI                                    | ND "B" 25 Y                         | EAR RUNOF                           | F COMPL                            | ITATION                    |                         |                              |                       |                         | ND "B" 100 Y               |                                         |                                     | ΓΙΟΝ                       |                         |
| (H) <sup>1//</sup> [                                             | Sizing discharger r<br>Elev.(ft)=[5         | regulator, orifice                     |                      | Q=CA(2gH) <sup>1/2</sup>                        | DRAINAGE              | Тс                      | i                                             | I <sub>25</sub>                     | A                                   | C * C <sub>f</sub> * A             | Q <sub>25</sub>            | DRAINS TO               | DRAINAGE                     | Тс                    | С                       |                            | Α                                       | CA                                  | Q <sub>100</sub>           | DRAINS TO               |
| ft                                                               | H (ft)= 0<br>Area (sf)= 4                   | ).64<br>1.00                           |                      |                                                 | AREA<br>EX-B          | (min)<br>15             | 0.35                                          | (in/hr)<br>6.44                     | (acre)<br>22.71                     | (acre)<br>7.95                     | (cfs)<br>51.2              |                         | AREA<br>EX-B                 | (min)<br>15           | 0.35                    | (in/hr)<br>7.84            | (acre)<br>22.71                         | (acre)<br>7.95                      | (cfs)<br>62.3              |                         |
| cfs                                                              | L (ft)= 4                                   |                                        |                      | cfs                                             | EX-C<br>EX-D<br>TOTAL | 15<br>15                | 0.35<br>0.35                                  | 6.44<br>6.44                        | 5.68<br>2.78<br><b>31.17</b>        | 1.99<br>0.97<br><b>10.91</b>       | 12.8<br>6.3<br><b>70.3</b> |                         | EX-C<br>EX-D<br>TOTAL        | 15<br>15              | 0.35<br>0.35            | 7.84<br>7.84               | 5.68<br>2.78<br><b>31.17</b>            | 1.99<br>0.97<br><b>10.91</b>        | 15.6<br>7.6<br><b>85.5</b> |                         |
| cfs                                                              |                                             | II Discharge Q <sub>4</sub> =          | 15.49                | cfs                                             |                       | Тс                      | I                                             | DEVELOPED DET                       | TAINED DISCHAR                      |                                    | Q <sub>25</sub>            |                         | DRAINAGE                     | Тс                    |                         | DEVELOPED DET#             | -                                       |                                     | Q <sub>100</sub>           |                         |
|                                                                  |                                             |                                        | R STORM EVENT        |                                                 | AREA<br>C-1           | (min)<br>15             | 0.55                                          | (in/hr)<br>6.44                     | (acre)<br>5.80                      | (acre)<br>3.19                     | (cfs)<br>20.5              |                         | AREA<br>C-1                  | (min)<br>15           | 0.55                    | (in/hr)<br>7.84            | (acre)<br>5.80                          | (acre)<br>3.19                      | (cfs)<br>25.0              |                         |
| 33,575.23<br>562.36                                              | The required stor<br>100 year water su      | rface elevation (                      |                      | = 38,452.72<br>= 562.69<br>Q=CLH <sup>3/2</sup> | C-2<br>C-3            | 15<br>15<br>15          | 0.55<br>0.55                                  | 6.44<br>6.44                        | 5.90<br>1.72                        | 3.25<br>0.95                       | 20.9<br>20.9<br>6.1        |                         | C-2<br>C-3                   | 15<br>15<br>15        | 0.55<br>0.55            | 7.84<br>7.84               | 5.90<br>1.72                            | 3.25<br>0.95                        | 25.4<br>7.4                |                         |
| cfs                                                              | Sizing discharger r<br>Max Flow rate, Q()   |                                        | 30.05                | Q=CLH <sup></sup> cfs                           | C-4<br>TOTAL DETAIN   | 15<br>ED                | 0.55                                          | 6.44                                | 1.16<br><b>14.58</b>                | 0.64<br><b>8.02</b>                | 4.1<br><b>51.64</b>        |                         | C-4<br>TOTAL DETAIN          | 15                    | 0.55                    | 7.84                       | 1.16<br><b>14.58</b>                    | 0.64<br><b>8.02</b>                 | 5.0<br>62.9                |                         |
| (H) <sup>1/2</sup>                                               | Inlet A 2<br>Sizing discharger i            | 4" Diameter Circ<br>regulator, orifice | le                   | Q=CA(2gH) <sup>1/2</sup>                        | DRAINAGE              | Тс                      |                                               | PED DETENTION                       | I POND BYPASS E<br>A                | ISCHARGE<br>C * C <sub>f</sub> * A | Q <sub>25</sub>            |                         | DRAINAGE                     | Tc                    |                         |                            | POND BYPASS DIS<br>A                    | CHARGE                              | Q <sub>100</sub>           |                         |
|                                                                  | Orifice C= 0<br>Elev.(ft)= 5                | 61.05                                  |                      |                                                 | AREA<br>OS-1          | (min)<br>15             | C<br>0.55                                     | (in/hr)<br>6.44                     | (acre)<br>1.16                      | (acre)<br>0.64                     | (cfs)<br>4.1               |                         | AREA<br>OS-1                 | (min)<br>15           | 0.55                    | (in/hr)<br>7.84            | (acre)<br>1.16                          | (acre)<br>0.64                      | (cfs)<br>5.0               |                         |
|                                                                  | Pipe Dia(ft)= 2<br>Area(sf)= 3<br>g(ft/s) 3 | .141592654                             |                      |                                                 | OS-2<br>B-1           | 15<br>15                | 0.55<br>0.44                                  | 6.44<br>6.44                        | 3.62<br>6.55                        | 1.99<br>2.88                       | 12.8<br>18.6               |                         | OS-2<br>B-1                  | 15<br>15              | 0.50<br>0.44            | 7.84<br>7.84               | 3.62<br>6.55                            | 1.81<br>2.88                        | 14.2<br>22.6               |                         |
|                                                                  | D(ft)= 1                                    |                                        |                      |                                                 | B-2<br>TOTAL BYPASS   | 15                      | 0.45                                          | 6.44                                | 3.88<br><b>15.21</b>                | 1.75<br><b>7.26</b>                | 11.2<br><b>46.7</b>        |                         | B-2<br>TOTAL BYPASS          | 15                    | 0.45                    | 7.84                       | 3.88<br><b>15.21</b>                    | 1.75<br><b>7.08</b>                 | 13.7<br><b>55.48</b>       |                         |
|                                                                  | Q= 1                                        | .3.48                                  |                      |                                                 | D                     | ETENTIO                 | N POND "B"                                    |                                     |                                     | ELEASE                             | OMPUTATI                   | ON                      | Di                           | TENTION               | POND "B"                | 100 YEAR AL                |                                         | ELEASE CON                          | IPUTATIO                   | N                       |
| gH) <sup>1/2</sup>                                               | Inlet B 4<br>Sizing discharger i            | !'x1' Rectangle                        |                      | Q=CA(2gH) <sup>1/2</sup>                        |                       |                         |                                               | Tc (min)                            | INFLOW<br>I (in/hr)                 | С                                  | A (acre)                   | Q (cfs)                 |                              |                       |                         | Tc (min)                   | NFLOW<br>  (in/hr)                      |                                     | A (acre)                   | Q (cfs)                 |
|                                                                  | Elev.(ft)= 5<br>H (ft)= 1                   | 61.60<br>09                            |                      |                                                 |                       |                         |                                               |                                     | 6.44<br>PED CONDITIONS              | 0.55                               | 14.58                      | 51.64                   |                              |                       |                         |                            | 7.84<br>D CONDITIONS                    |                                     | 14.58                      | 62.9                    |
|                                                                  | Area (sf)= 4<br>L (ft)= 4                   |                                        |                      |                                                 |                       |                         |                                               | Tc (min)<br>15.00                   | I (in/hr)<br>6.44<br>I POND BYPASS  | C<br>0.35                          | A (acre)<br>31.17          | Q (cfs)<br>70.3         |                              |                       |                         | Tc (min)<br>15.00          | l (in/br)<br><b>7.84</b><br>POND BYPASS |                                     | A (acre)<br>31.17          | Q (cfs)<br>85.5         |
| cfs<br>cfs                                                       | Q= 1<br>Actual Outfal                       | .6.48<br>Il Discharge Q <sub>A</sub> = | 29.96                | cfs<br>cfs                                      |                       |                         |                                               | Tc (min)<br>15.00                   | I (in/hr)<br>6.44                   | C<br>0.48                          | A (acre)<br>15.21          | Q (cfs)<br>46.7         |                              |                       |                         | Tc (min)<br>15.00          | (in/hr)<br>7.84                         |                                     | A (acre)<br>15.21          | Q (cfs)<br>55.5         |
|                                                                  |                                             | • • [                                  |                      |                                                 | EXISTING UND          |                         | CHARGE<br>ND BYPASS DIS                       |                                     |                                     |                                    |                            | 70.3<br>46.7            | EXISTING UND<br>DEVELOPED DI |                       |                         | SCHARGE                    |                                         |                                     |                            | 85.5<br>55.5            |
| HOD<br>req Vreq                                                  |                                             |                                        |                      |                                                 | MAX ALLOWAR           | BLE RELEASE             | RATE FROM DET                                 | ENTION POND                         |                                     |                                    |                            | 23.5                    | MAX ALLOWA                   | BLE RELEASE R         | ATE FROM DE             | TENTION POND               |                                         |                                     |                            | 30.1                    |
| rf) (acre-ft<br>,929.25 0.39                                     | ;) Td                                       |                                        | N POND "             | B" 25 YEAR VOLU                                 |                       |                         | MODIFIED                                      | RATIONAL<br>Vout                    |                                     | Vreq                               | Td                         |                         | NTION POI                    | ND "B" 10             |                         | ESIGN-MOD                  | IFIED RATIO                             | NAL METH                            |                            | Vreq                    |
| ,614.18 0.50<br>,649.47 0.57                                     | (min)                                       | Tc<br>(min)<br>15                      | <b>C</b><br>0.55     | (in/hr)                                         | (acre) (              | <b>Q</b><br>cfs)<br>2.5 | (cf)                                          | (cf)                                | Vreq<br>(cf)                        | (acre-ft)                          | (min)                      | Tc<br>(min)<br>15       | <b>C</b>                     | (in/hr)               | A<br>(acre)<br>14.58    | Q<br>(cfs)<br>95.4         | (cf)                                    | (cf)                                | Vreq<br>(cf)               | (acre-ft                |
| ,659.12 0.61<br>,883.87 0.64                                     | 10<br>15<br>20                              | 15<br>15<br>15                         | 0.55<br>0.55<br>0.55 | 6.44                                            | 14.58 5               | 1.6<br>4.5              | 37,528.92<br>46,478.12<br>53,381.69           | 17,641.58<br>21,169.89<br>24,698.21 | 19,887.35<br>25,308.23<br>28,683.49 | 0.46<br>0.58<br>0.66               | 5<br>10<br>15              | 15<br>15<br>15          | 0.55<br>0.55<br>0.55         | 11.90<br>9.53<br>7.84 | 14.58<br>14.58<br>14.58 | 95.4<br>76.4<br>62.9       | 28,627.83<br>45,852.64<br>56,582.06     | 18,032.78<br>22,540.98<br>27,049.18 | 10,59<br>23,31<br>29,53    | 1.66 0.54               |
| ,544.25 0.66<br>,779.86 0.66                                     | 25                                          | 15<br>15<br>15                         | 0.55<br>0.55<br>0.55 | 4.93                                            | 14.58 3               | 9.5<br>5.7              | 59,254.16<br>64,226.30                        | 28,226.52<br>31,754.84              | 31,027.64<br>32,471.47              | 0.71<br>0.75                       | 20<br>25                   | 15<br>15<br>15          | 0.55<br>0.55<br>0.55         | 6.72<br>5.97          | 14.58<br>14.58<br>14.58 | 53.9<br>47.9               | 64,692.55<br>71,846.04                  | 31,557.37<br>36,065.57              | 33,13<br>35,78             | 5.18 0.76               |
| ,684.37 0.66<br>,323.54 0.65                                     | 35                                          | 15<br>15<br>15                         | 0.55<br>0.55<br>0.55 | 4.07                                            | 14.58 3               | 2.6<br>0.2              | 68,550.62<br>72,386.69                        | 35,283.15<br>38,811.47              | 33,267.47<br>33,575.23              | 0.76<br>0.77                       | 30<br>35                   | 15<br>15<br>15          | 0.55<br>0.55<br>0.55         | 5.40<br>4.95          | 14.58<br>14.58<br>14.58 | 43.3<br>39.7               | 77,944.08<br>83,281.12                  | 40,573.76<br>45,081.96              | 37,37<br>38,19             | 0.32 0.86               |
| ,745.30 0.64<br>,985.58 0.62                                     | 40 45 50                                    | 15<br>15<br>15                         | 0.55<br>0.55<br>0.55 | 3.50                                            | 14.58 2               | 0.2<br>8.1<br>6.3       | 72,386.69<br>75,841.54<br>78,990.35           | 42,339.78<br>45,868.10              | 33,575.23<br>33,501.76<br>33,122.26 | 0.77<br>0.77<br>0.76               | 35<br>40<br>45             | 15<br>15<br>15          | 0.55<br>0.55<br>0.55         | 4.95<br>4.57<br>4.27  | 14.58<br>14.58<br>14.58 | 39.7<br>36.7<br>34.2       | 83,281.12<br>88,042.88<br>92,353.90     | 49,590.16<br>54,098.35              | 38,45<br>38,45<br>38,25    | 2.72 0.88               |
| ,072.05 0.60<br>,026.41 0.57                                     | 55                                          | 15<br>15<br>15                         | 0.55<br>0.55<br>0.55 | 3.09                                            | 14.58 2               | 4.8<br>3.5              | 81,887.93<br>84,575.42                        | 49,396.41<br>52,924.73              | 32,491.52<br>31,650.69              | 0.75<br>0.73                       | 43<br>50<br>55             | 15<br>15<br>15          | 0.55<br>0.55<br>0.55         | 4.27<br>4.00<br>3.78  | 14.58<br>14.58<br>14.58 | 34.2<br>32.1<br>30.3       | 96,301.77<br>99,950.41                  | 58,606.55<br>63,114.74              | 36,83                      | 5.22 0.87               |
| ,866.04 0.55<br>,605.04 0.52                                     | 65                                          | 15<br>15<br>15                         | 0.55<br>0.55<br>0.55 | 2.78                                            | 14.58 2               | 2.3<br>1.3              | 87,084.51<br>89,440.13                        | 56,453.04<br>59,981.36              | 30,631.47<br>29,458.77              | 0.70<br>0.68                       | 60                         | 15                      | 0.55                         | 3.58                  | 14.58                   | 28.7                       | 103,347.95                              | 67,622.94                           | 35,72                      | 5.01 0.82               |
| ,255.04 0.49<br>,825.72 0.46                                     | 75                                          | 15<br>15<br>15                         | 0.55<br>0.55<br>0.55 | 2.54                                            | 14.58 2               | 0.4<br>9.5              | 91,662.23<br>93,767.03                        | 63,509.67<br>67,037.99              | 29,438.77<br>28,152.56<br>26,729.04 | 0.65<br>0.61                       | 70<br>75                   | 15<br>15                | 0.55<br>0.55                 | 3.25<br>3.11          | 14.58<br>14.58          | 26.1<br>25.0               | 109,530.37<br>112,368.04                | 76,639.33<br>81,147.53              | 32,89<br>31,22             | 0.51 0.72               |
| 0.46           0.42           0.42           0.43           0.46 | 85                                          | 15                                     | 0.55                 | 2.34                                            | 14.58 1               | 8.8                     | 95,767.92                                     | 70,566.30                           | 25,201.62                           | 0.58                               | 80<br>85                   | 15<br>15                | 0.55<br>0.55                 | 2.99<br>2.88          | 14.58<br>14.58          | 24.0<br>23.1               | 115,063.67<br>117,633.09                | 85,655.72<br>90,163.92              | 29,40<br>27,46             | 9.17 0.63               |
| ,779.86 CF<br>,065.92 CY                                         | 90<br>95                                    | 15<br>15                               | 0.55<br>0.55         |                                                 | 14.58 1               | 8.1<br>7.5              | 97,676.06<br>99,500.86                        | 74,094.62<br>77,622.93              | 23,581.44<br>21,877.93              | 0.54<br>0.50                       | 90<br>95                   | 15<br>15                | 0.55<br>0.55                 | 2.77<br>2.68          | 14.58<br>14.58          | 22.2<br>21.5               | 120,089.55<br>122,444.25                | 94,672.12<br>99,180.31              | 25,41<br>23,26             | 3.94 0.53               |
| ,065.92 CY<br>,228.82 CY                                         |                                             |                                        |                      |                                                 | N                     | AX VOLUN                | IE REQUIRED:<br>IE REQUIRED:<br>VIDED (3 FT): |                                     | 33,575.23<br>1,243.53<br>2,228.82   | СҮ                                 | 100                        | 10                      | 0.70                         | 2.59                  | 14.58                   | 26.5                       |                                         | 99,180.31<br>IME REQUIRED:          |                            | 7.35 1.37<br>2.72 CF    |
|                                                                  |                                             |                                        |                      |                                                 |                       | SEGIVIE PKU             | יישנט (א דון:                                 |                                     | 2,220.82                            | <u>~</u> 1                         |                            |                         |                              |                       |                         |                            |                                         | IME REQUIRED:<br>ROVIDED (3 FT):    | -                          | 4.17 CY<br>8.82 CY      |

## Β $\square$ PON DETENTION X THOMAS K. DAYTON 91751 () 09/27/2022 SCALE: 1" = 40' (H) 1'' = 4' (V)One Inch JVC No WLA501 17

VOLK

JOHNSON CONSULTIN

AND

ARMS

DEAN

AT S'

ΓĽ,

 $\mathbf{\Omega}$ 

AS ×

TE

VTV

 $\sum_{i=1}^{n}$ 

 $\mathbf{C}$ 

COLLIN C

REFERENCE NORTH TEXAS MUNICIPAL WATER DISTRICT NOTES ON SHEET 20.

BENCHMARKS

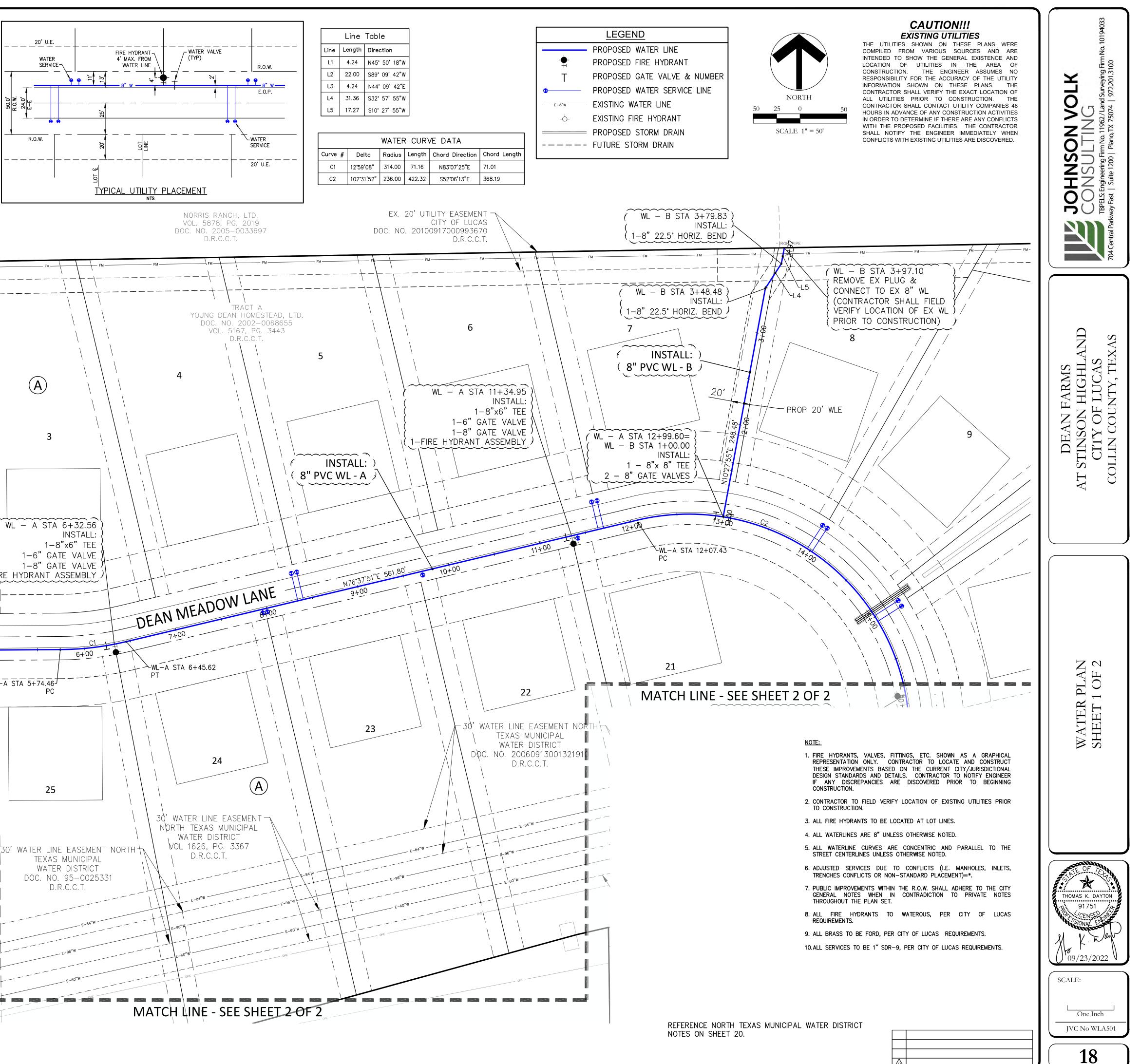
STRUCTURE.

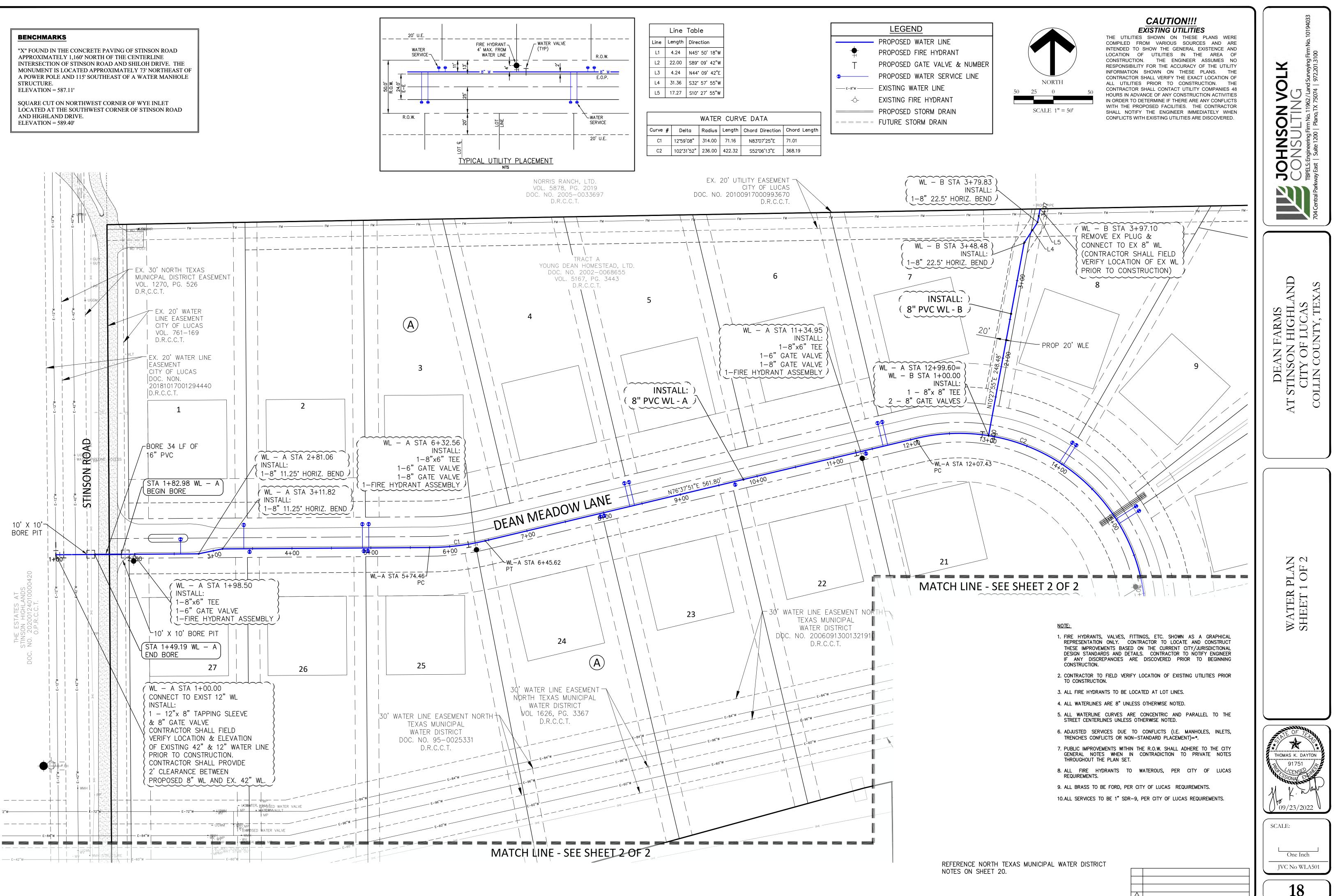
ELEVATION = 587.11'

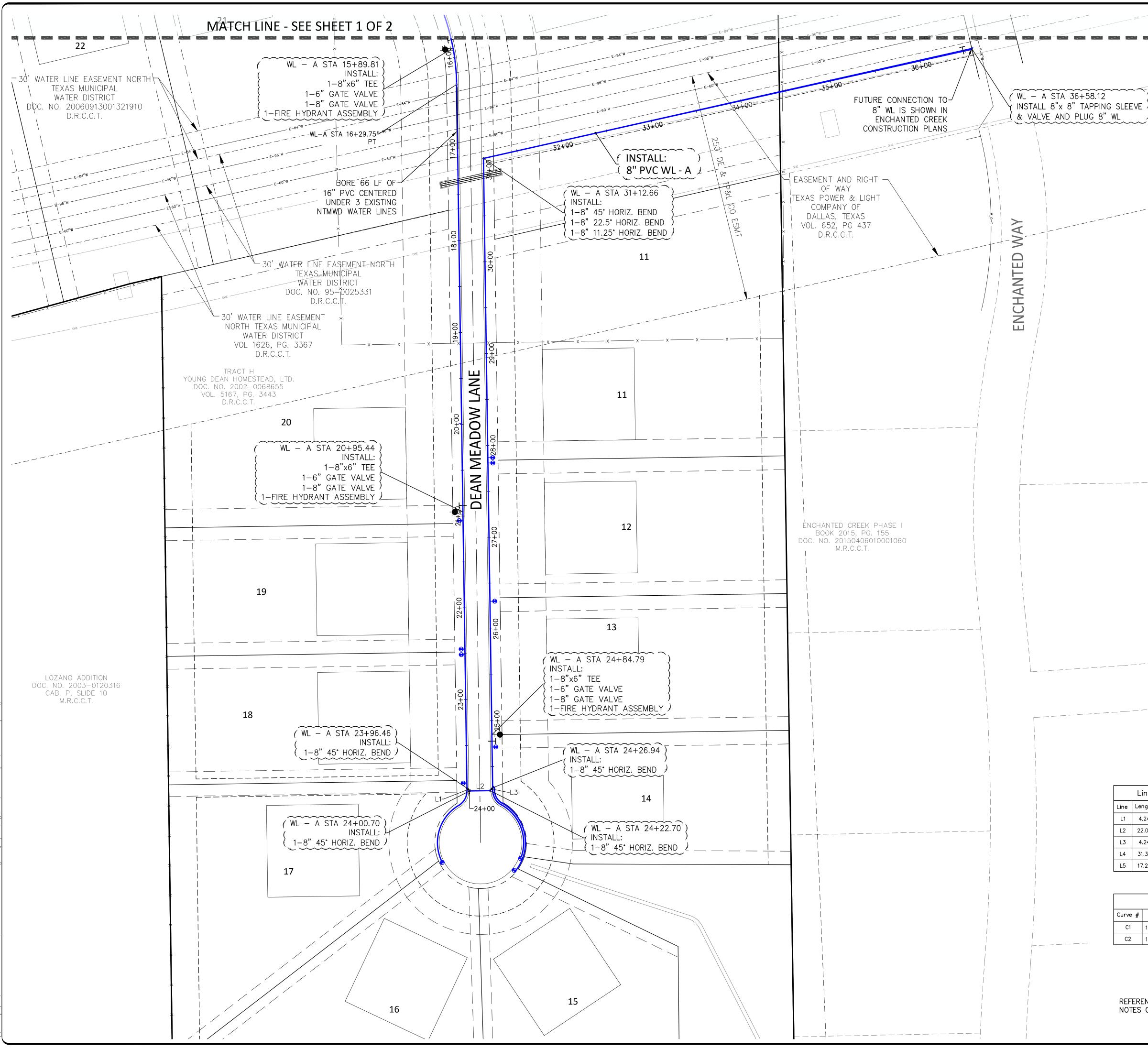
AND HIGHLAND DRIVE.

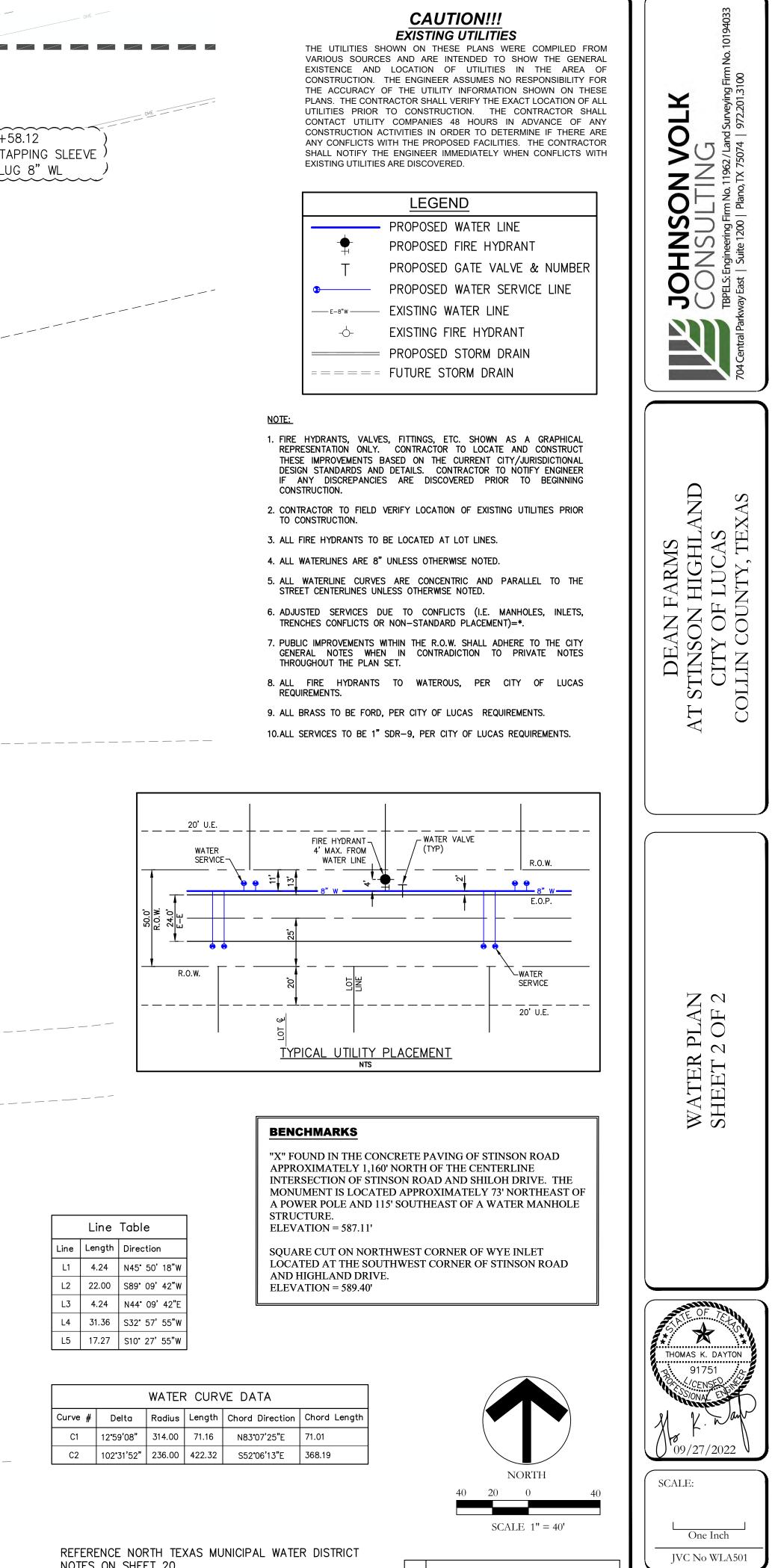
ELEVATION = 589.40'

"X" FOUND IN THE CONCRETE PAVING OF STINSON ROAD


INTERSECTION OF STINSON ROAD AND SHILOH DRIVE. THE


MONUMENT IS LOCATED APPROXIMATELY 73' NORTHEAST OF A POWER POLE AND 115' SOUTHEAST OF A WATER MANHOLE


APPROXIMATELY 1,160' NORTH OF THE CENTERLINE


SQUARE CUT ON NORTHWEST CORNER OF WYE INLET

LOCATED AT THE SOUTHWEST CORNER OF STINSON ROAD









NOTES ON SHEET 20.

19

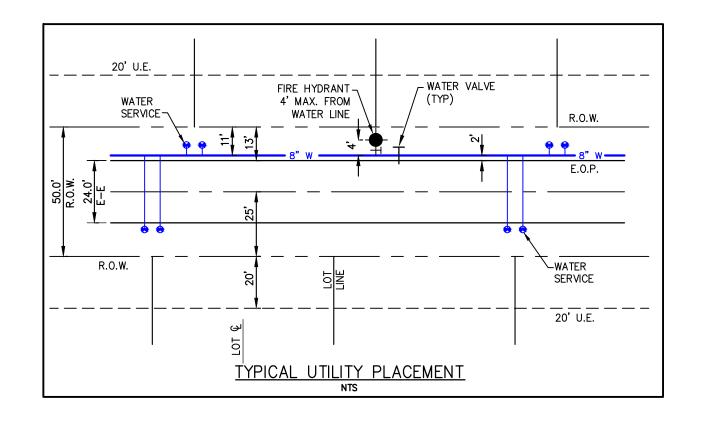
NORTH TEXAS MUNICIPAL WATER DISTRICT NOTES:

A. North Texas Municipal Water District (NTMWD) 42, 60, 84 and 96-inch water transmission pipelines are located within limits of construction.

B. Operation of heavy earthmoving equipment, compaction equipment or heavy construction equipment, such as concrete trucks, shall be restricted to specific crossing points across NTMWD easements, as approved by the NTMWD. The crossings shall be designated and verified to provide a minimum of five-feet of cover.

C. To assure that placing of significant loads over the NTMWD pipeline does not damage the existing pipeline, no materials shall be stockpiled on the NTMWD easement without authorization from the NTMWD. If the contractor desires to use NTMWD's easement for stockpile of materials, contact NTMWD Engineering at (972) 442-5405 so your plans for use of NTMWD's easement can be reviewed.

D. A minimum of 4.5 feet separation between bottom of pavement and top of NTMWD pipeline is required. In addition, if separation between bottom of pavement and top of pipeline is less than 4.5 feet, then a thickened pavement section is required.


E. Crossing of the NTMWD easement with other utilities, such as TV cable, phone, gas and electric, shall be coordinated with the NTMWD to avoid damage to the NTMWD facilities.

F. Outdoor lighting, landscaping, screening walls or other facilities shall not be installed in NTMWD easements without written approval of the NTMWD.

G. Unless otherwise shown or required, a minimum of two-foot clearance shall be provided for all utilities crossing the NTMWD pipelines. Directional bore crossings require a minimum of four-feet clearance.

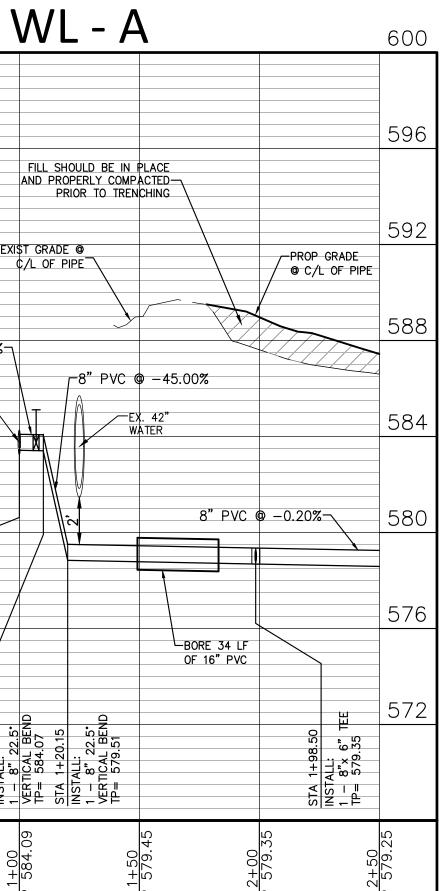
H. The contractor shall contact NTMWD Line Locates at (469) 626-4569 at least 48 hours prior to performing any work in the vicinity of the NTMWD facilities."

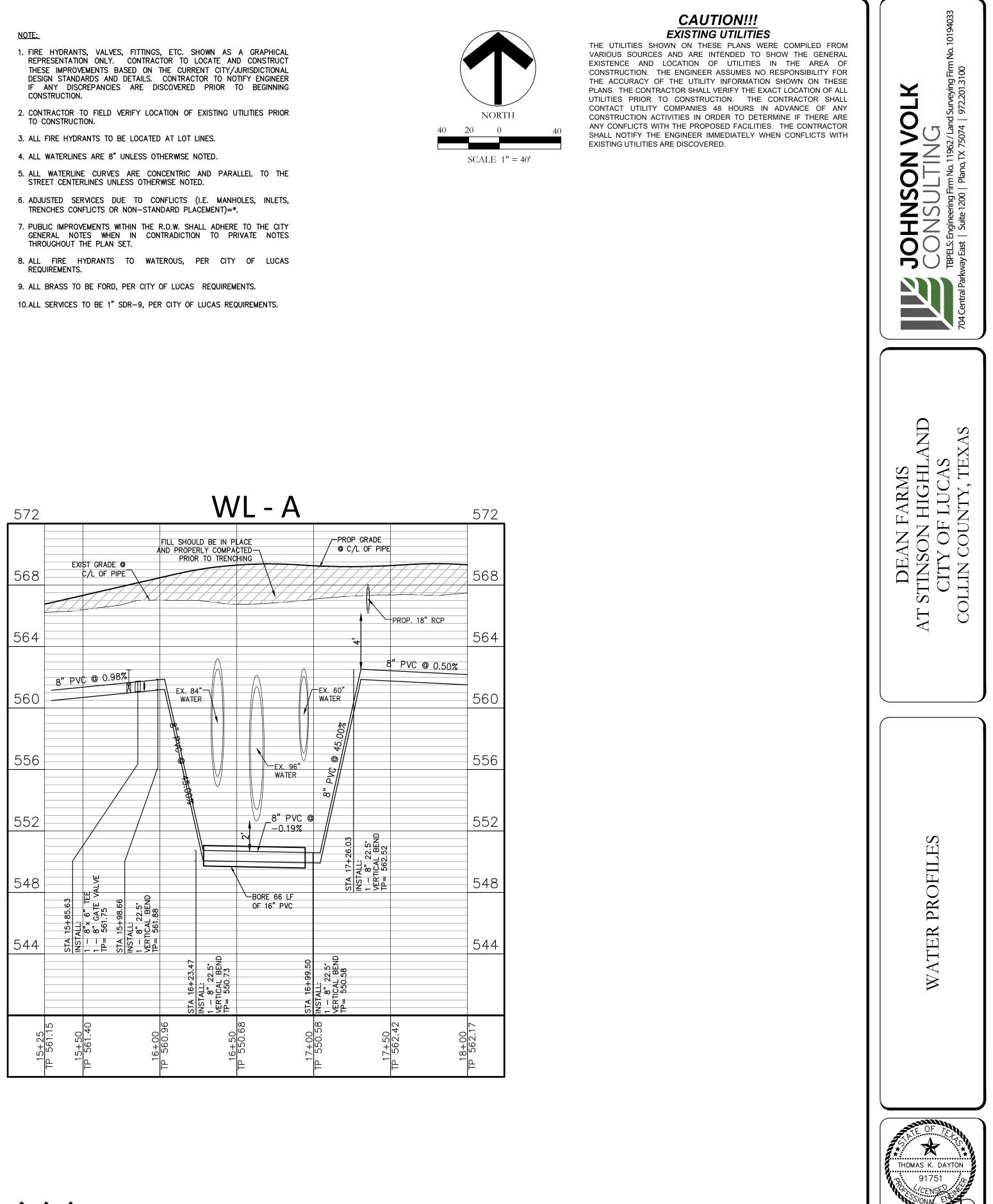
I. Contractor shall bench and shore excavation to limit amount of 42" waterline exposed to 4'.



| F  | 5                         | 5   | L ) | ц )<br>Г                      | 6.0 | 6.5 | 5   | 6   |
|----|---------------------------|-----|-----|-------------------------------|-----|-----|-----|-----|
|    | 572                       | 576 | 580 | 584                           | 588 | 592 | 596 | 600 |
| Ĵ  | STA 1+00 00               |     |     |                               |     |     |     |     |
|    | CONNECT TO EX. 12" WATER  |     |     |                               |     |     |     |     |
|    | CONTRACTOR TO FIELD       | /   |     |                               |     |     |     |     |
|    | VERIFY LOCATION PRIOR TO  |     |     |                               |     |     |     |     |
| -  | CONSTRUCTION; IF LOCATION |     |     |                               |     |     |     |     |
| -  | AND/OR ELEVATION DIFFER   | /   |     |                               |     |     |     |     |
| Τ' | FROM PLAN, CONTRACTOR SH  |     |     | Af                            |     |     |     |     |
|    | NUTLY THE ENGINEER)       | /   |     | PPR<br>DC/                    |     |     |     |     |
|    | 1 – 8" GATE VALVE         |     |     | ©<br>20XI<br>10<br>710<br>7 W |     |     |     |     |
| •  | TP= 584.09                |     |     | MA<br>N (                     |     |     |     |     |
|    |                           |     |     | TE-<br>OF                     |     |     |     |     |
|    | STA 1+10.00               |     |     |                               |     |     |     |     |
|    | INSTALL:                  | /   |     | )%-                           | E   |     |     |     |
| -  |                           | /   |     |                               |     |     |     |     |

#### BENCHMARKS


"X" FOUND IN THE CONCRETE PAVING OF STINSON ROAD APPROXIMATELY 1,160' NORTH OF THE CENTERLINE INTERSECTION OF STINSON ROAD AND SHILOH DRIVE. THE MONUMENT IS LOCATED APPROXIMATELY 73' NORTHEAST OF A POWER POLE AND 115' SOUTHEAST OF A WATER MANHOLE STRUCTURE.


ELEVATION = 587.11'

SQUARE CUT ON NORTHWEST CORNER OF WYE INLET LOCATED AT THE SOUTHWEST CORNER OF STINSON ROAD AND HIGHLAND DRIVE. ELEVATION = 589.40'

- CONSTRUCTION.

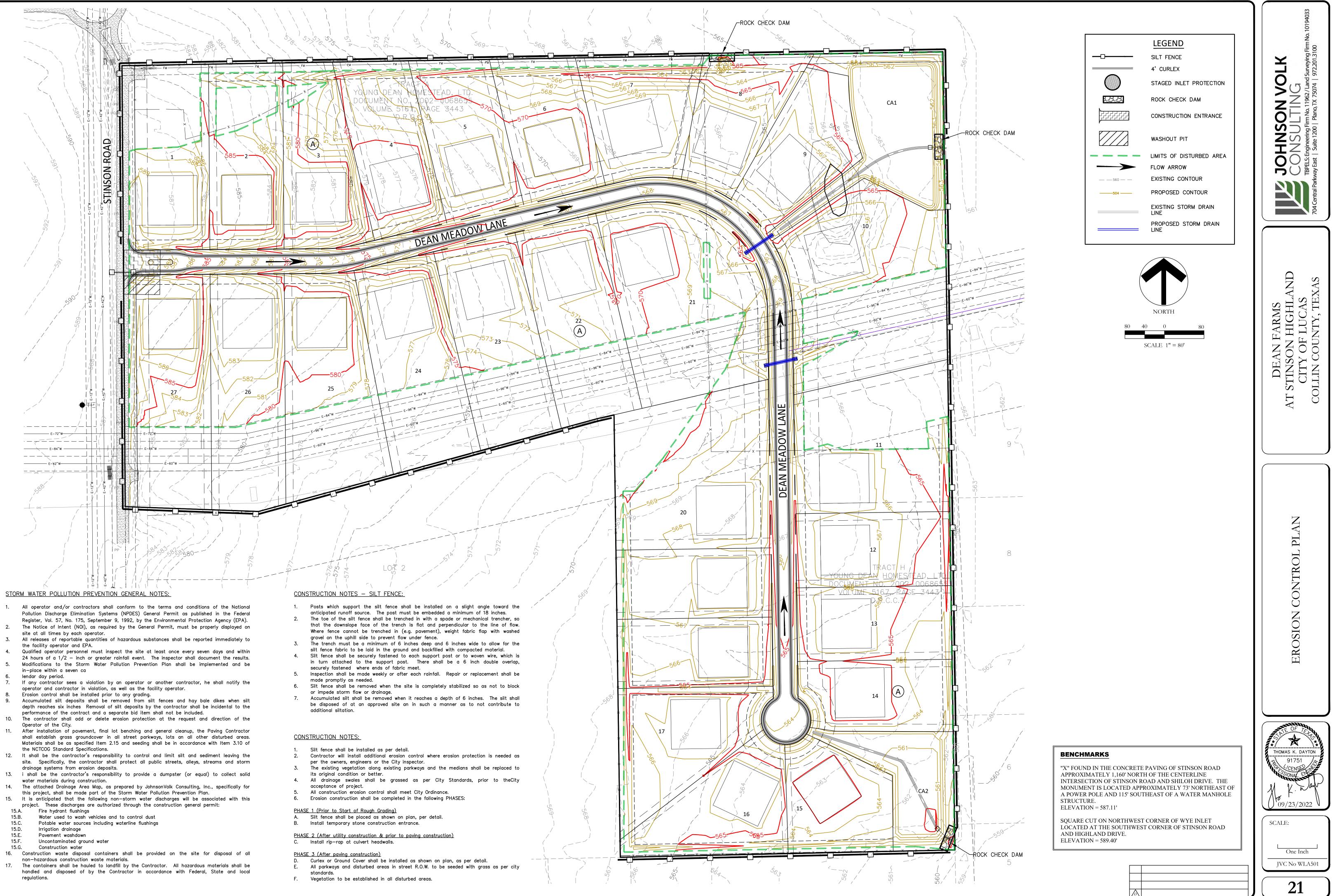
- STREET CENTERLINES UNLESS OTHERWISE NOTED.
- TRENCHES CONFLICTS OR NON-STANDARD PLACEMENT)=\*.
- THROUGHOUT THE PLAN SET.
- REQUIREMENTS.







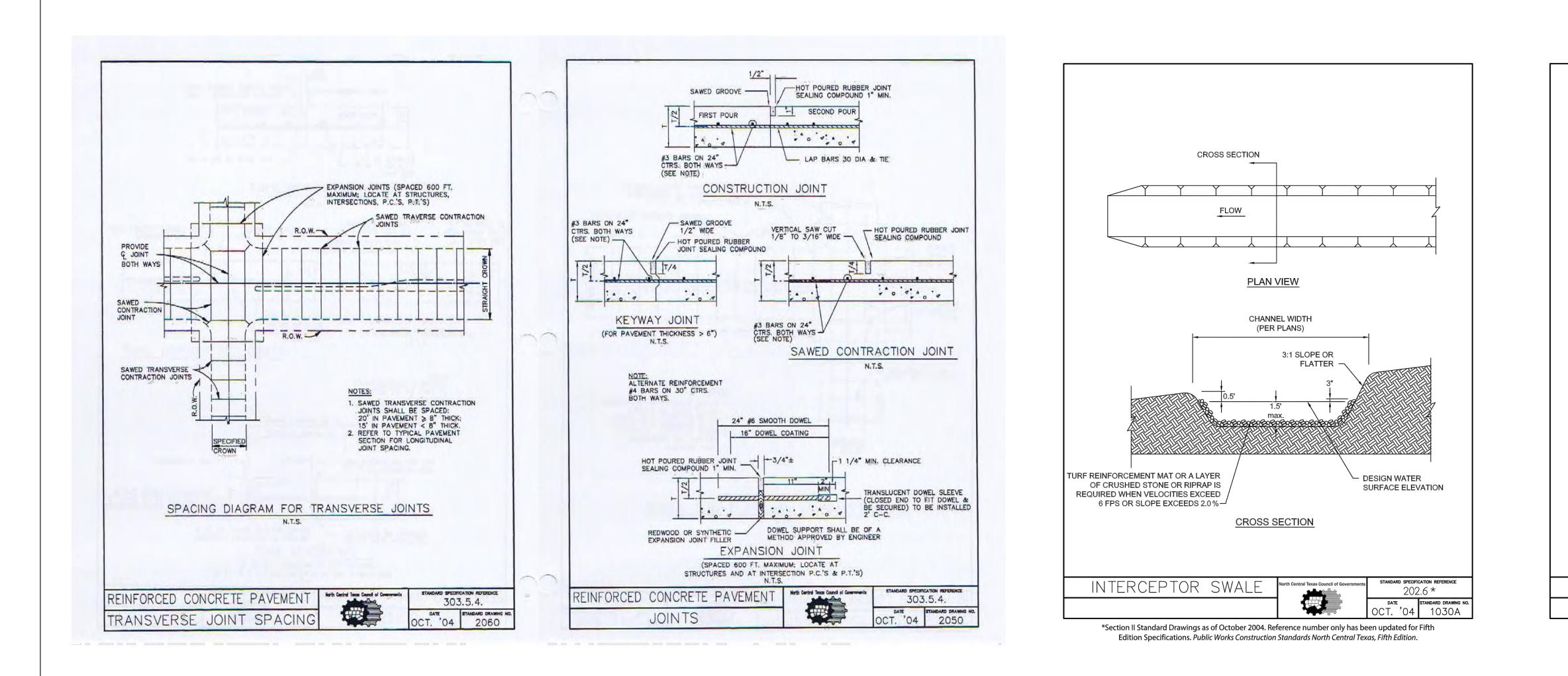
| JVC No WLA501 |
|---------------|
| 20            |
| <b>ZU</b>     |

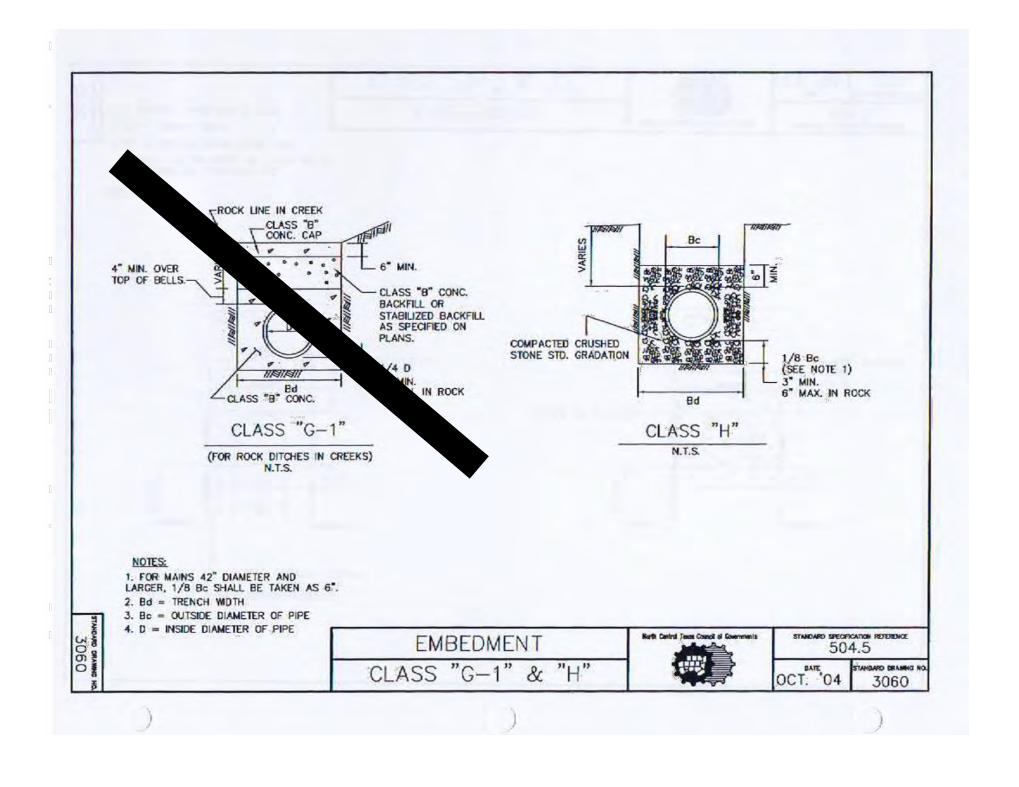

) 09/23/2022

1" = 40' (H)

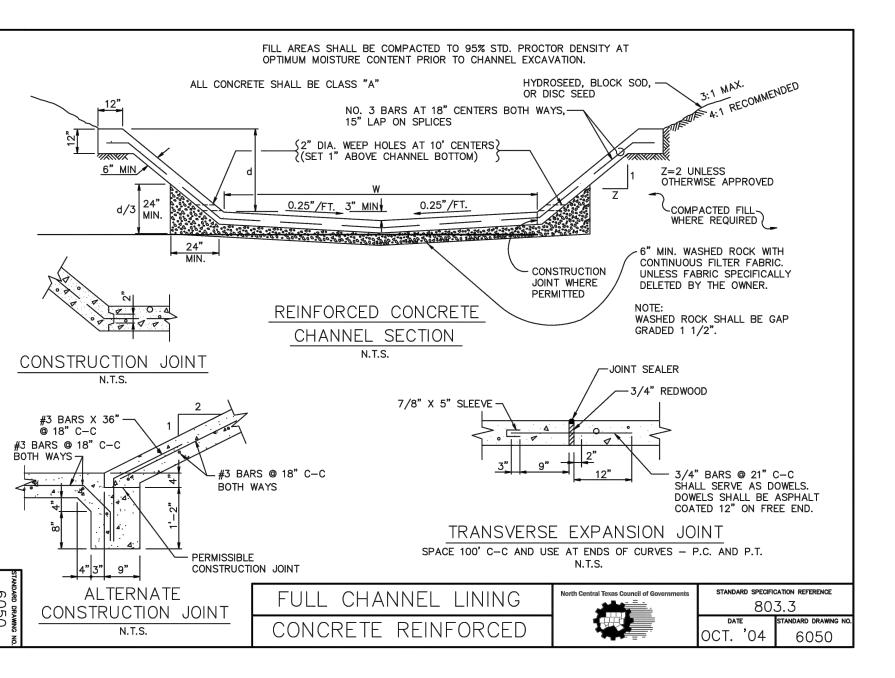
1'' = 4' (V)

One Inch


SCALE:




STORM WATER POLLUTION PREVENTION GENERAL NOTES:


- 2.
- 3.
- 4.
- 5.

- 9. 10. The contractor shall add or delete erosion protection at the request and direction of the
- 11.
- 13. i shall be the contractor's responsibility to provide a dumpster (or equal) to collect solid
- 15. It is anticipated that the following non-storm water discharges will be associated with this
- 15.B.
- 15.C.
- 15.D.
- 15.E. 15.F.
- 15.G.
- 17. The containers shall be hauled to landfill by the Contractor. All hazardous materials shall be





bd projects/wla - warner land advisors/wla501 - homestead at stinson highland/jvc plans/dwg/sheets/construction plans/wla501 - paving & storm details.



INTERCEPTOR SWALE GENERAL NOTES:

1. ALL TREES, BRUSH, STUMPS, OBSTUCTIONS AND OTHER MATERIAL SHALL BE REMOVED AND DISPOSED OF SO AS NOT TO INTERFERE WITH THE PROPER FUNCTIONING OF THE SWALE.

2. THE SWALE SHALL BE EXCAVATED OR SHAPED TO LINE, GRADE AND CROSS-SECTION AS REQUIRED TO MEET CRITERIA SPECIFIED HEREIN AND BE FREE OF BANK PROJECTIONS OR OTHER IRREGULARITIES WHICH WILL IMPEDE NORMAL FLOW.

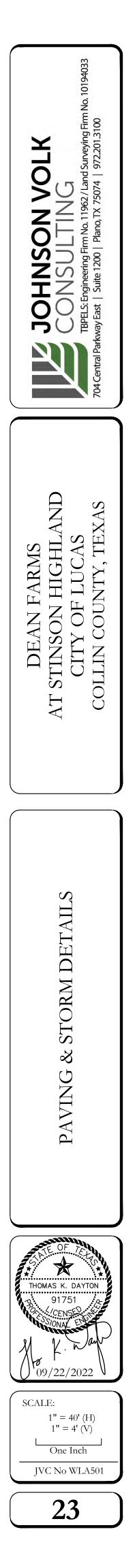
3. ALL EARTH REMOVED AND NOT NEEDED IN CONSTRUCTION SHALL BE DISPOSED OF IN AN APPROVED SPOILS SITE SO THAT IT WILL NOT INTERFERE WITH THE FUNCTIONING OF THE SWALE.

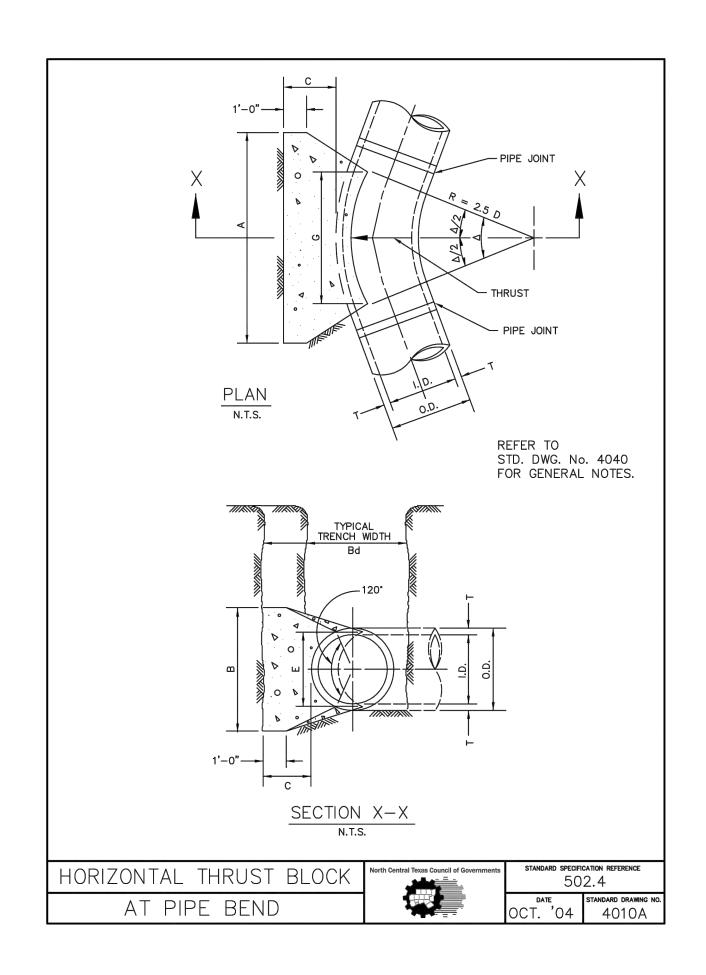
4. DIVERTED RUNOFF FROM A DISTURBED OR EXPOSED UPLAND AREA SHALL BE CONVEYED TO A SEDIMENT TRAPPING DEVICE.

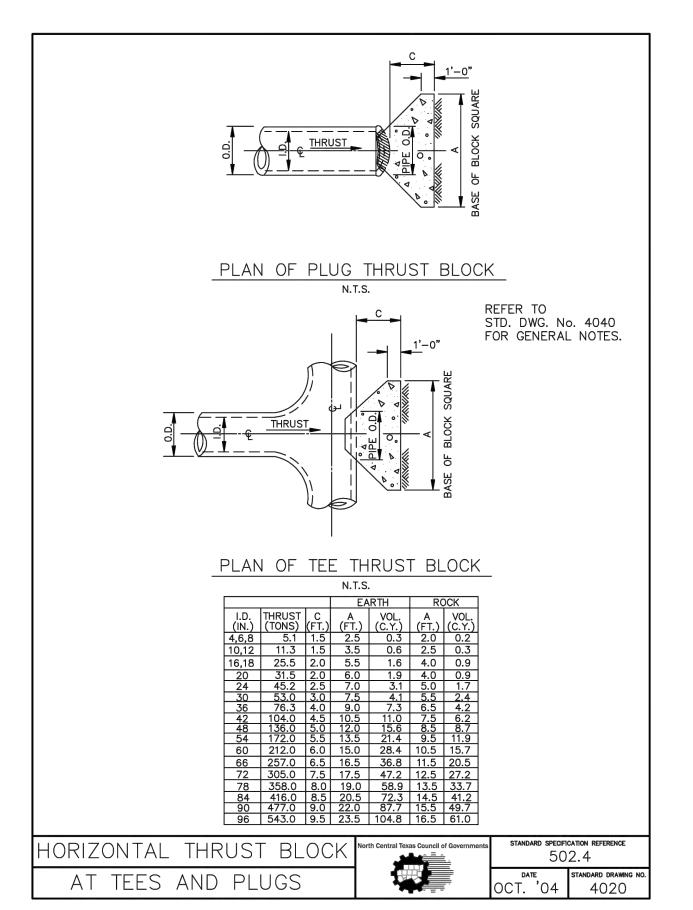
5. THE ON-SITE LOCATION MAY NEED TO BE ADJUSTED TO MEET FIELD CONDITIONS IN ORDER TO UTILIZE THE MOST SUITABLE OUTLET.

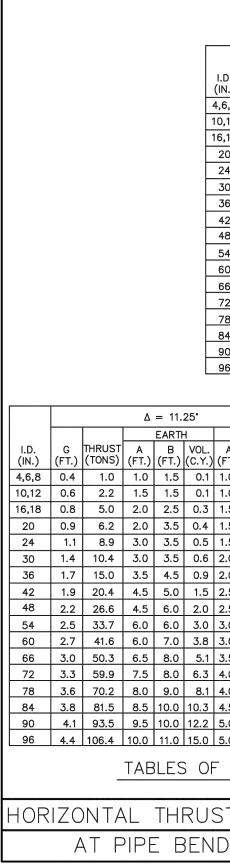
6. FOR GRADES LESS THAN 2 PERCENT AND VELOCITIES LESS THAN 6 FEET PER SECOND, THE MINIMUM REQUIRED CHANNEL STABILIZATION SHALL BE GRASS, EROSION CONTROL MATS OR MULCHING. FOR GRADES IN EXCESS OF 2 PERCENT OR VELOCITIES EXCEEDING 6 FEET PER SECOND, STABILIZATION IS REQUIRED IN THE FORM OF TURF REINFORCEMENT MATS (OR A LAYER OF CRUSHED STONE OR RIP-RAP WITH APPROPRIATE SIZE, GRADATION, AND THICKNESS AS SPECIFIED IN THE SWPPP).

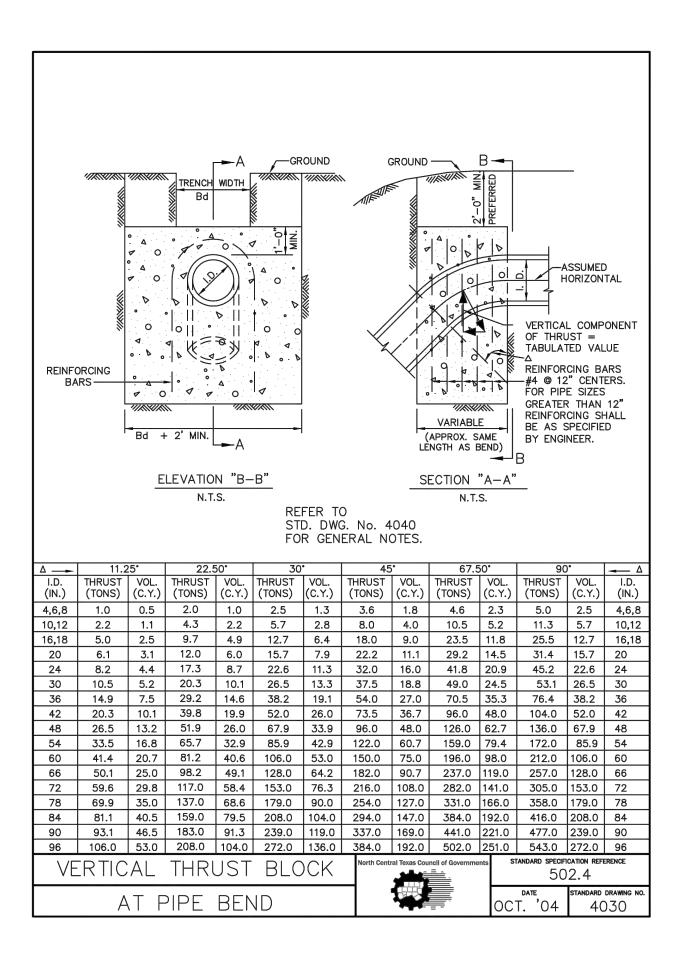
7. MINIMUM COMPACTION FOR THE SWALE SHALL BE 90 PERCENT STANDARD PROCTOR.


8. INSPECTION SHALL BE AS SPECIFIED IN THE SWPPP.


| INTERCEPTOR | SWALE | No |
|-------------|-------|----|
|             |       |    |


standard specification reference 202.6 \* date OCT. '04 1030B


\*Section II Standard Drawings as of October 2004. Reference number only has been updated for Fifth Edition Specifications. *Public Works Construction Standards North Central Texas, Fifth Edition*.


th Central Texas Council of Gove



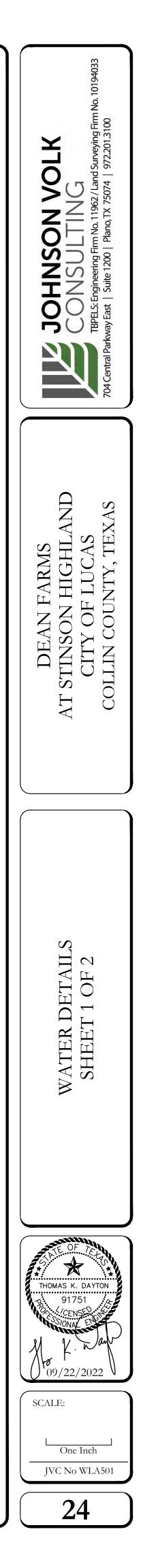


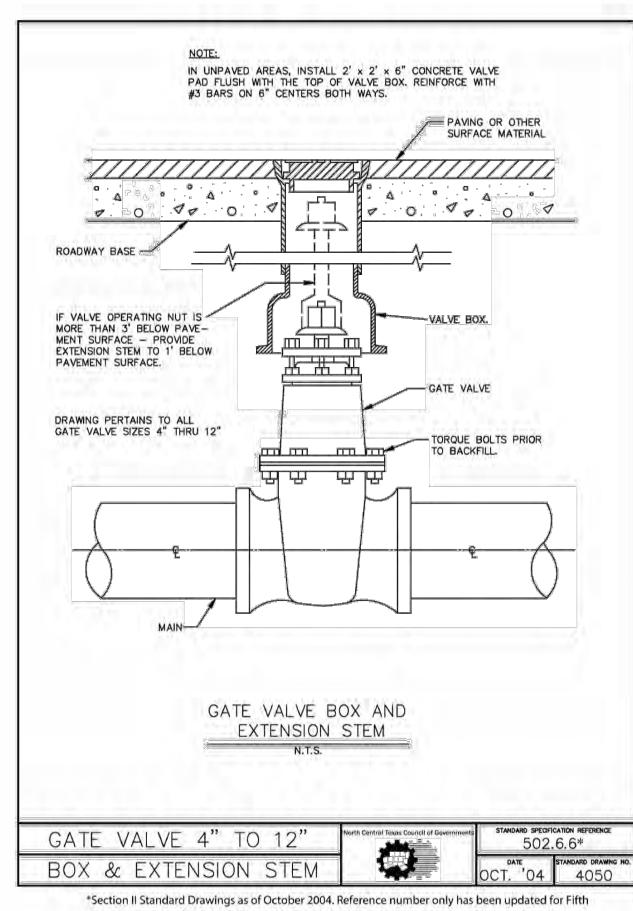


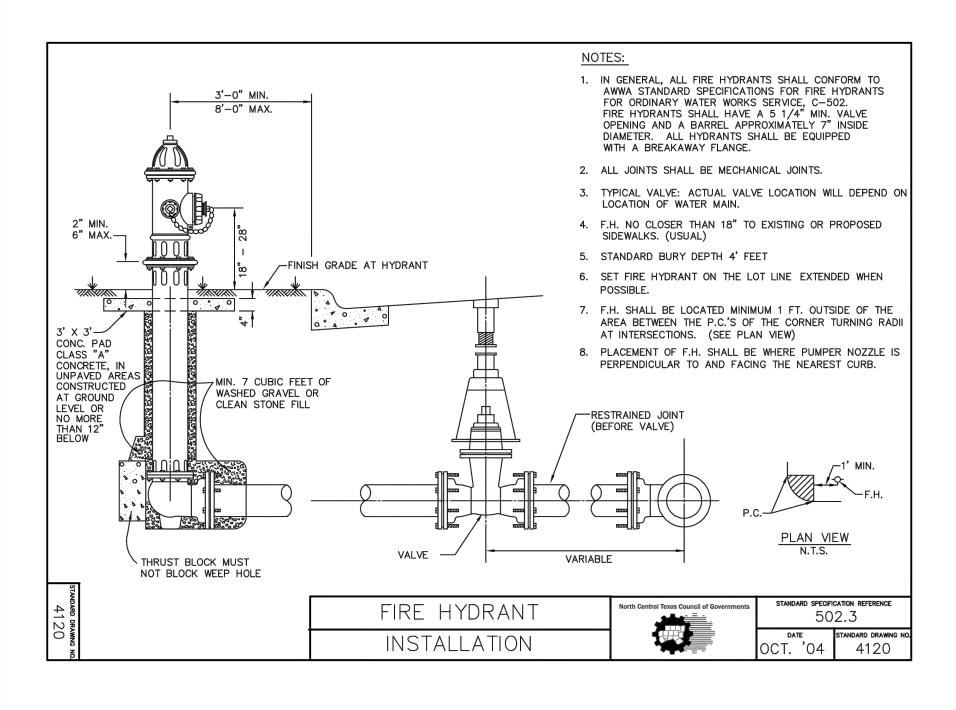




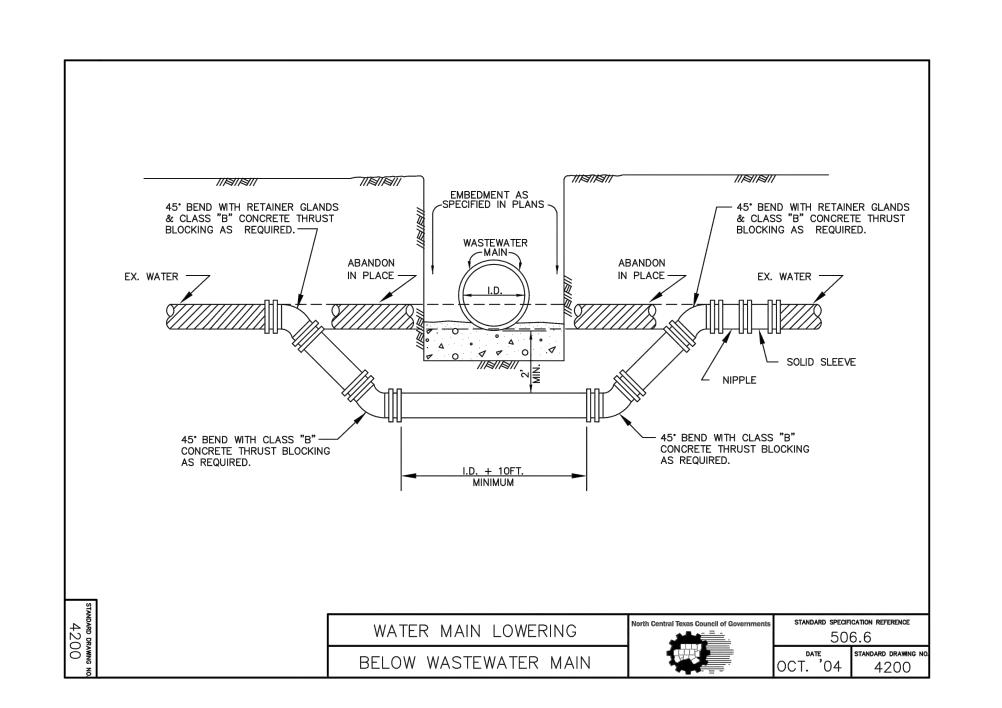
|                  | _            |                   |                            |                 |                             |                  |              |              |                |            |             |                |
|------------------|--------------|-------------------|----------------------------|-----------------|-----------------------------|------------------|--------------|--------------|----------------|------------|-------------|----------------|
| I.D.<br>IN.)     | T<br>(IN.    | .                 | △ =<br>11.25<br>C<br>(FT.) | ·   2           | ∆ ≌<br>22.50°<br>C<br>(FT.) | Е<br>(FT.)       |              |              |                |            |             |                |
| ,6,8             | 0.4          |                   | 1.5                        |                 | 1.5                         | 0.9              |              |              |                |            |             |                |
| 0,12             | 0.5          |                   | 1.5                        |                 | 1.5                         | 1.2              |              |              |                |            |             |                |
| 6,18             | 0.6          |                   | 1.5                        |                 | 1.5                         | 1.6              |              |              |                |            |             |                |
| 20               | 0.7          |                   | 1.5                        |                 | 1.5                         | 1.8              |              |              |                |            |             |                |
| 24               | 0.9          |                   | 1.5                        |                 | 1.5                         | 2.1              |              |              |                |            |             |                |
| 30               | 2.9          |                   | 1.5                        |                 | 1.9                         | 2.6              |              |              |                |            |             |                |
| 36               | 4.5          |                   | 1.5                        | _               | 2.3                         | 3.3              |              |              |                |            |             |                |
| 42               | 5.0          |                   | 1.8                        | _               | 2.6                         | 3.8              |              |              |                |            |             |                |
| 48               | 5.5          |                   | 2.0                        | -               | 3.0                         | 4.3              |              |              |                |            |             |                |
| 54<br>60         | 6.0          |                   | 2.3                        | -               | 3.4                         | 4.8              |              |              |                |            |             |                |
| 60<br>66         | 6.5<br>6.8   |                   | 2.5<br>2.8                 | +               | 3.8<br>4.1                  | 5.3<br>5.7       |              |              |                |            |             |                |
| 72               | 7.5          |                   | 3.0                        | +               | 4.5                         | 6.3              |              |              |                |            |             |                |
| <u>78</u>        | 7.5          |                   | 3.3                        |                 | 4.9                         | 6.7              |              |              |                |            |             |                |
| <u>, o</u><br>84 | 8.0          |                   | 3.5                        |                 | 5.3                         | 7.2              |              |              |                |            |             |                |
| 90               | 8.5          |                   | 3.8                        |                 | 5.6                         | 7.7              |              |              |                |            |             |                |
| 96               | 9.0          |                   | 4.0                        |                 | 6.0                         | 8.2              |              |              |                |            |             |                |
|                  |              |                   |                            |                 |                             |                  |              |              |                |            |             |                |
|                  |              |                   |                            |                 | . – –                       |                  |              |              |                |            |             |                |
|                  |              |                   |                            |                 |                             |                  | Δ =          | = 22.5       |                |            |             |                |
|                  | ROCK         |                   | ┥.                         | <b>_</b>        |                             | TUDUCT           |              | EAR          |                | •          | ROCH        |                |
| A<br>(FT.)       | В<br>(FT.)   | VOL<br>(C.Y       |                            | D.<br>N.)       | G<br>(FT.)                  | THRUST<br>(TONS) | A<br> (FT.)  | В<br>(FT.)   | VOL.<br>(C.Y.) | A<br>(FT.) | В<br>(FT.)  | VOL.<br>(C.Y.) |
| 1.0              | 1.0          | 0.1               | 4,                         | 5,8             | 0.8                         | 2.0              | 1.5          | 1.5          | 0.1            | 1.0        | 1.0         | 0.1            |
| 1.0              | 1.5          | 0.1               | 10                         | ,12             | 1.1                         | 4.4              | 2.0          | 2.5          | 0.3            | 1.5        | 1.5         | 0.1            |
| 1.5              | 2.0          | 0.2               | 16                         | ,18             | 1.6                         | 9.9              | 3.0          | 3.5          | 0.6            | 2.0        | 2.5         | 0.3            |
| 1.5              | 3.0          | 0.3               | 2                          | 0               | 1.8                         | 12.3             | 3.5          | 3.5          | 0.7            | 2.0        | 3.0         | 0.4            |
| 1.5              | 3.0          | 0.3               | 2                          | .4              | 2.2                         | 17.7             | 4.0          | 4.5          | 1.0            | 3.0        | 3.5         | 0.5            |
| 2.0              | 3.5          | 0.4               |                            | 0               | 2.7                         | 20.7             | 5.0          | 4.5          | 1.5            | 3.0        | 4.0         | 0.8            |
| 2.0              | 4.0          | 0.5               | -                          | 6               | 3.3                         | 29.8             | 5.5          | 5.5          | 2.3            | 4.0        | 4.0         | 1.3            |
| 2.5              | 5.0          | 0.8               |                            | 2               | 3.8                         | 40.5             | 7.0          | 6.0          | 3.9            | 4.5        | 5.0         | 2.1            |
| 2.5              | 6.0          | 1.1               |                            | 8               | 4.4                         | 52.9             | 8.0          | 7.0          | 5.7            | 4.5        | 6.0         | 2.8            |
| 3.0              | 6.0          | 1.4               |                            | <u>4</u>        | 4.9                         | 67.0             | 9.0          | 8.0          | 8.0            | 6.0        | 6.0         | 4.1            |
| 3.0              | 7.0          | 1.8               | +                          | 0<br>6          | 5.5                         | 82.7             | 9.5          | 9.0          | 10.6           | 6.0        | 7.0         | 5.3            |
| 3.5              | 8.0          | 2.7               |                            | 6<br>72         | 6.0                         | 100.1            | 10.5         | 10.0         | 14.1           | 6.5        | 8.0         | 7.2            |
| 4.0              | 8.0          | 3.3               |                            | '2<br>'8        | 6.6                         | 119.1            | 11.0         | 11.0         | 17.6           | 7.5        | 8.0         | 9.1            |
| 4.0<br>4 5       | 9.0          | <u>3.9</u><br>5.3 |                            | ' <u>8</u><br>4 | 7.1                         | 139.8<br>162.1   | 12.0<br>13.0 | 12.0<br>12.5 | 22.5<br>27.2   | 8.0<br>8.5 | 9.0<br>10.0 | 11.7<br>14.8   |
| 4.5<br>5.0       | 10.0<br>10.0 | 6.3               |                            | 0               | 7.6<br>8.2                  | 186.1            | 14.0         | 13.5         | 33.7           | 9.5        | 10.0        | 14.0           |
| 5.0              | 11.0         | 7.4               |                            | 6               | 8.7                         | 211.7            | 15.0         | 14.5         | 41.2           | 10.0       | 11.0        | 21.8           |
|                  |              |                   |                            |                 |                             |                  |              |              |                | 10.0       | 11.0        | 21.0           |
| D                | IMEI         | ٧S                | ION                        | S               | AN                          | D QU             | ANT          | ITIE         | S              |            |             |                |
|                  |              |                   |                            |                 |                             |                  |              |              |                |            |             |                |
| Γ                | RI           | $\frown$          | $\sim$                     | Nor             | th Central                  | Texas Council o  | f Governm    | ents         | STANDAR        |            |             | EFERENCE       |
| $\sim 1$         | н            | 1 1               | K                          | 1               |                             |                  |              | -            |                | 500        | אכ          |                |


| Т | BLOCK | North Central Texas Council of Governments | standard specification reference 502.4 |  |                               |  |  |  |
|---|-------|--------------------------------------------|----------------------------------------|--|-------------------------------|--|--|--|
| ) |       |                                            | OCT. '04                               |  | standard drawing no.<br>4010B |  |  |  |
|   |       |                                            |                                        |  |                               |  |  |  |

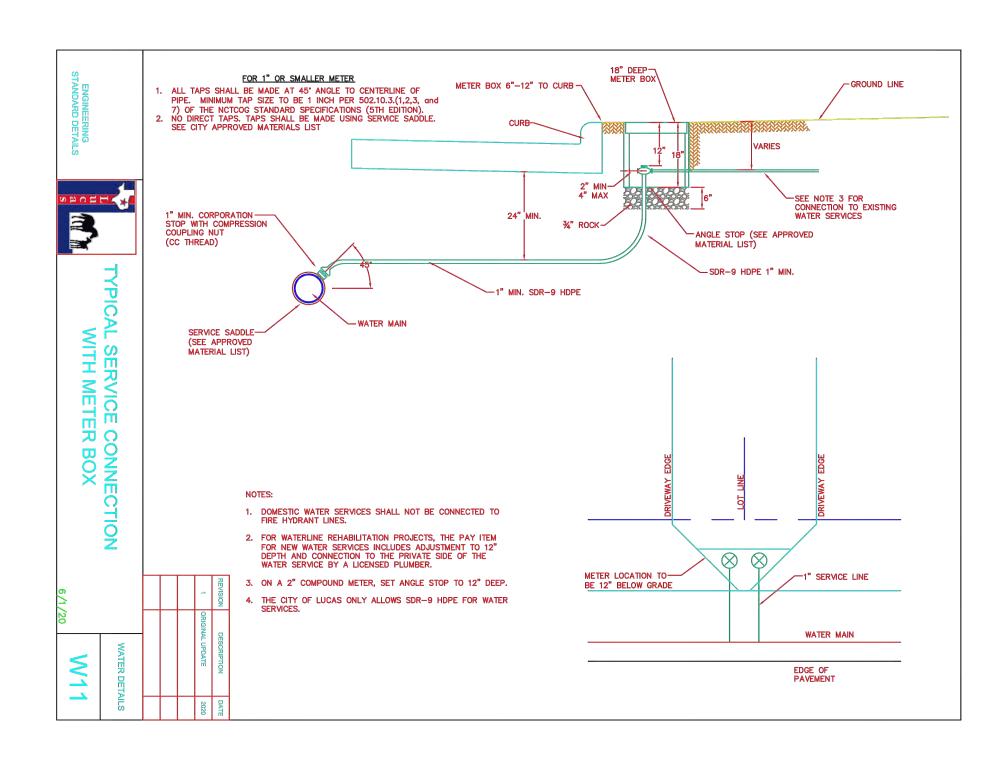

|                                                                          |                        |                  | Δ          | = 30         | •              |            |            |                |                 |            | Δ                | = 45       |            |                |            |            |                |
|--------------------------------------------------------------------------|------------------------|------------------|------------|--------------|----------------|------------|------------|----------------|-----------------|------------|------------------|------------|------------|----------------|------------|------------|----------------|
|                                                                          |                        |                  |            | EART         | H              |            | ROCK       |                |                 |            |                  |            | EAR        | гн             |            | ROCK       |                |
| I.D.<br>(IN.)                                                            | G<br>(FT.)             | THRUST<br>(TONS) | A<br>(FT.) | В<br>(FT.)   | VOL.<br>(C.Y.) | A<br>(FT.) | В<br>(FT.) | VOL.<br>(C.Y.) | I.D.<br>(IN.)   | G<br>(FT.) | THRUST<br>(TONS) | A<br>(FT.) | В<br>(FT.) | VOL.<br>(C.Y.) | A<br>(FT.) | В<br>(FT.) | VOL.<br>(C.Y.) |
| 4,6,8                                                                    | 1.0                    | 2.6              | 2.0        | 1.5          | 0.2            | 1.0        | 1.5        | 0.1            | 4,6,8           | 1.5        | 3.9              | 2.0        | 2.0        | 0.2            | 1.5        | 1.5        | 0.1            |
| 10,12                                                                    | 1.5                    | 5.9              | 2.5        | 2.5          | 0.3            | 2.0        | 1.5        | 0.2            | 10,12           | 2.2        | 8.7              | 3.5        | 2.5        | 0.5            | 2.0        | 2.5        | 0.3            |
| 16,18                                                                    | 2.2                    | 13.2             | 3.5        | 4.0          | 0.8            | 2.5        | 3.0        | 0.4            | 16,18           | 3.2        | 19.5             | 4.5        | 4.5        | 1.2            | 3.0        | 3.5        | 0.6            |
| 20                                                                       | 2.4                    | 16.3             | 4.5        | 4.0          | 1.0            | 3.0        | 3.0        | 0.5            | 20              | 3.6        | 24.1             | 5.5        | 4.5        | 1.5            | 3.5        | 3.5        | 0.7            |
| 24                                                                       | 2.9                    | 23.4             | 6.0        | 4.0          | 1.4            | 3.5        | 3.5        | 0.7            | 24              | 4.3        | 34.6             | 8.0        | 4.5        | 2.3            | 4.5        | 4.0        | 1.             |
| 30                                                                       | 3.6                    | 27.5             | 6.5        | 5.0          | 1.9            | 3.5        | 4.0        | 0.9            | 30              | 5.4        | 40.6             | 8.5        | 5.0        | 3.2            | 5.5        | 4.0        | 1.6            |
| 36                                                                       | 4.4                    | 39.5             | 7.0        | 6.0          | 3.4            | 4.5        | 4.5        | 1.6            | 36              | 6.5        | 58.5             | 10.0       | 6.0        | 5.3            | 6.5        | 4.5        | 2.6            |
| 42                                                                       | 5.1                    | 53.8             | 8.0        | 7.0          | 5.1            | 5.5        | 5.0        | 2.5            | 42              | 7.5        | 79.6             | 11.5       | 7.0        | 8.1            | 8.0        | 5.0        | 4.2            |
| 48                                                                       | 5.8                    | 70.3             | 9.0        | 8.0          | 7.4            | 6.0        | 6.0        | 3.7            | 48              | 8.6        | 104.0            | 13.0       | 8.0        | 11.9           | 9.0        | 6.0        | 6.3            |
| 54                                                                       | 6.5                    | 89.0             | 10.0       | 9.0          | 10.3           | 7.0        | 6.5        | 5.3            | 54              | 9.7        | 131.5            | 15.0       | 9.0        | 17.1           | 10.5       | 6.5        | 8.9            |
| 60                                                                       | 7.3                    | 110.0            | 11.0       | 10.0         | 13.9           | 7.5        | 7.5        | 7.3            | 60              | 10.7       | 162.4            | 16.5       | 10.0       | 23.1           | 11.0       | 7.5        | 12.0           |
| 66                                                                       | 8.0                    | 132.9            | 12.5       | 11.0         | 18.9           | 8.5        | 8.0        | 9.6            | 66              | 11.8       | 196.5            | 18.0       | 11.0       | 30.1           | 12.0       | 8.5        | 16.2           |
| 72                                                                       | 8.7                    | 158.2            | 13.5       | 12.0         | 24.0           | 9.0        | 9.0        | 12.3           | 72              | 12.9       | 233.9            | 19.5       | 12.0       | 38.6           | 14.0       | 8.5        | 20.7           |
| 78                                                                       | 9.4                    | 185.6            | 14.5       | 13.0         | 30.0           | 10.0       | 9.5        | 15.6           | 78              | 13.9       | 274.5            | 21.5       | 13.0       | 49.8           | 14.5       | 9.5        | 25.9           |
| 84                                                                       | 10.1                   | 215.3            | 15.5       | 14.0         | 37.1           | 10.5       | 10.5       | 19.5           | 84              | 15.0       | 318.4            | 23.0       | 14.0       | 61.2           | 15.5       | 10.5       | 32.6           |
| 90                                                                       | 10.9                   | 247.1            | 16.5       | 15.0         | 45.0           | 11.5       | 11.0       | 23.9           | 90              | 16.1       | 365.5            | 24.5       | 15.0       | 74.5           | 17.5       | 10.5       | 39.6           |
| 96                                                                       | 11.6                   | 281.2            | 18.0       | 16.0         | 55.5           | 12.5       | 11.5       | 28.9           | 96              | 17.1       | 415.6            | 26.0       | 16.0       | 89.5           | 18.5       | 11.5       | 48.5           |
|                                                                          |                        |                  |            | = 67<br>EART | Н              |            | ROCK       |                |                 |            |                  | = 90       | EAR        |                |            | ROCK       | 1              |
| I.D.<br>(IN.)                                                            | G<br>(FT.)             | THRUST<br>(TONS) | A<br>(FT.) | B<br>(FT.)   | VOL.<br>(C.Y.) | A<br>(FT.) | B<br>(FT.) | VOL.<br>(C.Y.) | I.D.<br>  (IN.) | G<br>(FT.) | THRUST<br>(TONS) | A<br>(FT.) | B<br>(FT.) | VOL.<br>(C.Y.) | (FT.)      | B) (FT.)   | VOL            |
| 4,6,8                                                                    | 2.1                    | 5.6              | 3.0        | 2.0          | 0.3            | 2.0        | 1.5        | 0.2            | 4,6,8           | 2.7        | 7.1              | 5.0        | 1.5        | 0.4            | 2.0        | 1 · · · /  | 0.2            |
| 10,12                                                                    | 3.1                    | 12.6             | 5.5        | 2.5          | 0.8            | 3.5        | 2.0        | 0.4            | 10,12           | 4.0        | 16.0             | 6.5        | 2.5        | 1.0            | 3.5        | 2.5        | 0.5            |
| 16,18                                                                    | 4.7                    | 28.3             | 7.5        | 4.0          | 1.9            | 5.5        | 3.0        | 0.9            | 16,18           | 6.0        | 36.0             | 9.0        | 4.0        | 2.4            | 4.5        | 4.0        | 1.0            |
| 20                                                                       | 5.2                    | 34.9             | 9.0        | 4.0          | 2.3            | 5.5        | 3.5        | 1.2            | 20              | 6.6        | 44.4             | 10.0       | 4.5        | 3.1            | 6.0        | 4.0        | 1.5            |
| 24                                                                       | 6.2                    | 50.3             | 11.5       | 4.5          | 3.5            | 6.5        | 4.0        | 1.6            | 24              | 7.9        | 64.0             | 14.5       | 4.5        | 5.0            | 8.0        | 4.0        | 2.             |
| 30                                                                       | 7.8                    | 58.9             | 12.0       | 5.0          | 4.8            | 7.5        | 4.0        | 2.2            | 30              | 9.9        | 75.0             | 15.0       | 5.0        | 6.7            | 10.0       | 4.0        | 3.3            |
| 36                                                                       | 9.4                    | 84.9             | 14.5       | 6.0          | 8.2            | 9.5        | 4.5        | 3.8            | 36              | 11.9       | 108.0            | 18.0       | 6.0        | 11.4           | 12.0       | 4.5        | 5.3            |
| 42                                                                       | 10.9                   | 115.5            | 17.0       | 7.0          | 12.8           | 11.0       | 5.5        | 6.3            | 42              | 13.9       | 147.0            | 21.0       | 7.0        | 17.8           | 14.0       | 5.5        | 8.7            |
| 48                                                                       | 12.5                   | 150.9            | 19.0       | 8.0          | 18.4           | 13.0       | 6.0        | 9.2            | 48              | 15.9       | 192.0            | 24.0       | 8.0        | 26.2           | 16.0       | 6.0        | 12.4           |
| 54                                                                       | 14.0                   | 191.0            | 21.5       | 9.0          | 26.0           | 15.0       | 6.5        | 12.9           | 54              | 17.9       | 243.0            | 27.0       | 9.0        |                | 18.0       |            | 18.1           |
| 60                                                                       | 15.6                   |                  |            | 10.0         |                |            | 7.5        | 17.6           | 60              | 19.9       | 299.8            |            | 10.0       |                | 20.0       |            | 24.0           |
| 66                                                                       | 17.1                   |                  | 26.0       | 11.0         |                |            |            | 23.0           | 66              | 21.8       | 362.8            |            | 11.0       |                | 22.0       |            | 32.5           |
| 72                                                                       | 18.7                   | 339.5            | 28.5       | 12.0         |                |            | 9.0        | 28.4           | 72              | 23.8       | 431.8            | 36.0       | 12.0       |                | 24.0       |            | 41.0           |
| 78                                                                       | 20.2                   | 398.5            |            |              | 75.7           |            |            | 37.4           | 78              | 25.7       | 506.7            | 39.0       | 13.0       | 108.2          | 26.0       | 10.0       | 53.2           |
| 84                                                                       | 21.8                   | 462.1            | 33.5       | 14.0         | 94.7           | 22.0       |            |                | 84              | 27.7       | 587.7            | 42.0       | 14.0       |                |            | 10.5       |                |
| 90                                                                       | 23.3                   |                  |            |              | 114.4          |            |            |                | 90              | 29.0       | 674.6            | 45.0       | 15.0       | 164.9          | 30.0       | 11.5       | 81.2           |
| 96                                                                       | 24.9                   | 603.6            | 38.0       | 16.0         | 138.9          | 25.5       | 12.0       | 70.0           | 96              | 31.6       | 767.5            | 48.0       | 16.0       | 199.0          | 32.0       | 12.0       | 95.1           |
|                                                                          |                        |                  | TAI        | BLE          | <u>s o</u>     | FC         | IME        | NSI            | ONS             | AN         | D QL             | IAN        | TITIE      | <u>s</u>       |            |            |                |
| HORIZONTAL THRUST BLOCK North Central Texas Council of Governments 502.4 |                        |                  |            |              |                |            |            | $\cap \cap$    | K Nort          | h Central  | Fexas Council of | Governm    | ents       | STANDAR        |            |            | FERENCE        |
| +()⊢                                                                     | HORIZONIAL HIRUSI BLUC |                  |            |              |                | 1 1 1      |            |                | -               |            |                  | 502        | 1.4        |                |            |            |                |
| 104                                                                      |                        |                  |            |              |                |            |            |                |                 |            |                  |            |            | DATE           |            | STANDAR    |                |

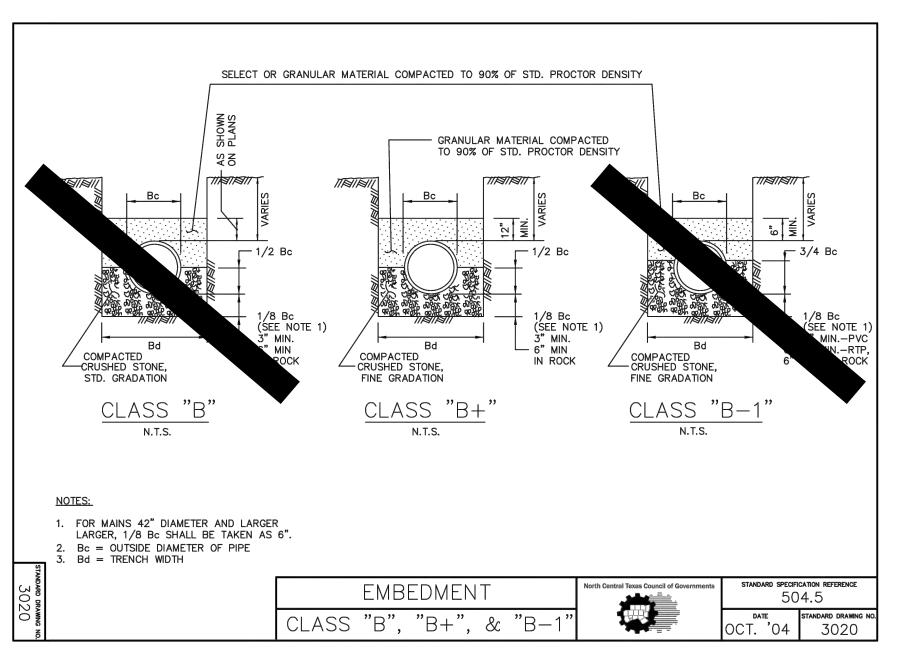

GENERAL NOTES FOR ALL THRUST BLOCKS:

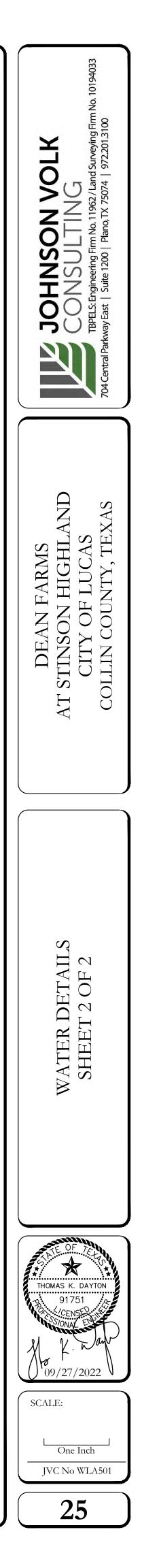
- 1. CONCRETE FOR BLOCKING SHALL BE CLASS "B".
- 2. ALL CALCULATIONS ARE BASED ON INTERNAL PRESSURE OF 200 PSI FOR DUCTILE IRON, P.V.C., AND 150 PSI FOR CONCRETE PIPE.
- 3. VOLUMES OF THRUST BLOCKS ARE NET VOLUMES OF CONCRETE TO BE FURNISHED. THE CORRESPONDING WEIGHT OF THE CONCRETE (CLASS "B") IS EQUAL TO OR GREATER THAN THE VERTICAL COMPONENT OF THE THRUST ON THE VERTICAL BEND.
- 4. WALL THICKNESS (T) ASSUMED HERE FOR ESTIMATING PURPOSES ONLY.
- 5. POUR CONCRETE FOR BLOCK AGAINST UNDISTURBED EARTH.
- 6. DIMENSIONS MAY BE VARIED AS REQUIRED BY FIELD CONDITIONS WHERE AND AS DIRECTED BY THE ENGINEER. THE VOLUME OF CONCRETE BLOCKING SHALL NOT BE LESS THAN SHOWN HERE.
- 7. THE SOIL BEARING PRESSURES ARE BASED ON 1000 LBS./S.F. IN SOIL AND 2000 LBS./S.F. IN ROCK.
- 8. USE POLYETHYLENE WRAP OR EQUAL BETWEEN CONCRETE AND BEND, TEE, OR PLUG TO PREVENT THE CONCRETE FROM STICKING TO IT.
- 9. CONCRETE SHALL NOT EXTEND BEYOND JOINTS.


| THRUST BLOCK  | North Central Texas Council of Governments | standard specification referent 502.4 | INCE |
|---------------|--------------------------------------------|---------------------------------------|------|
| GENERAL NOTES |                                            | DATE STANDARD DI<br>OCT. '04 404      |      |

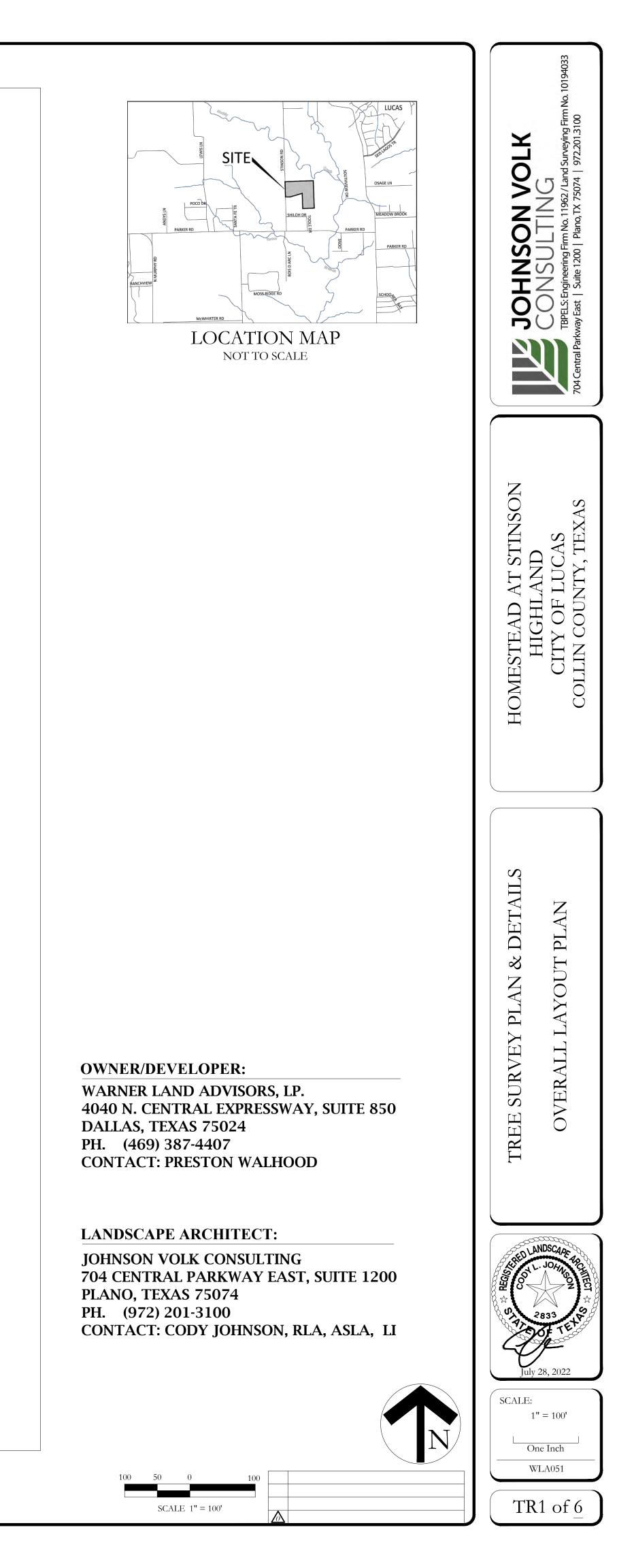


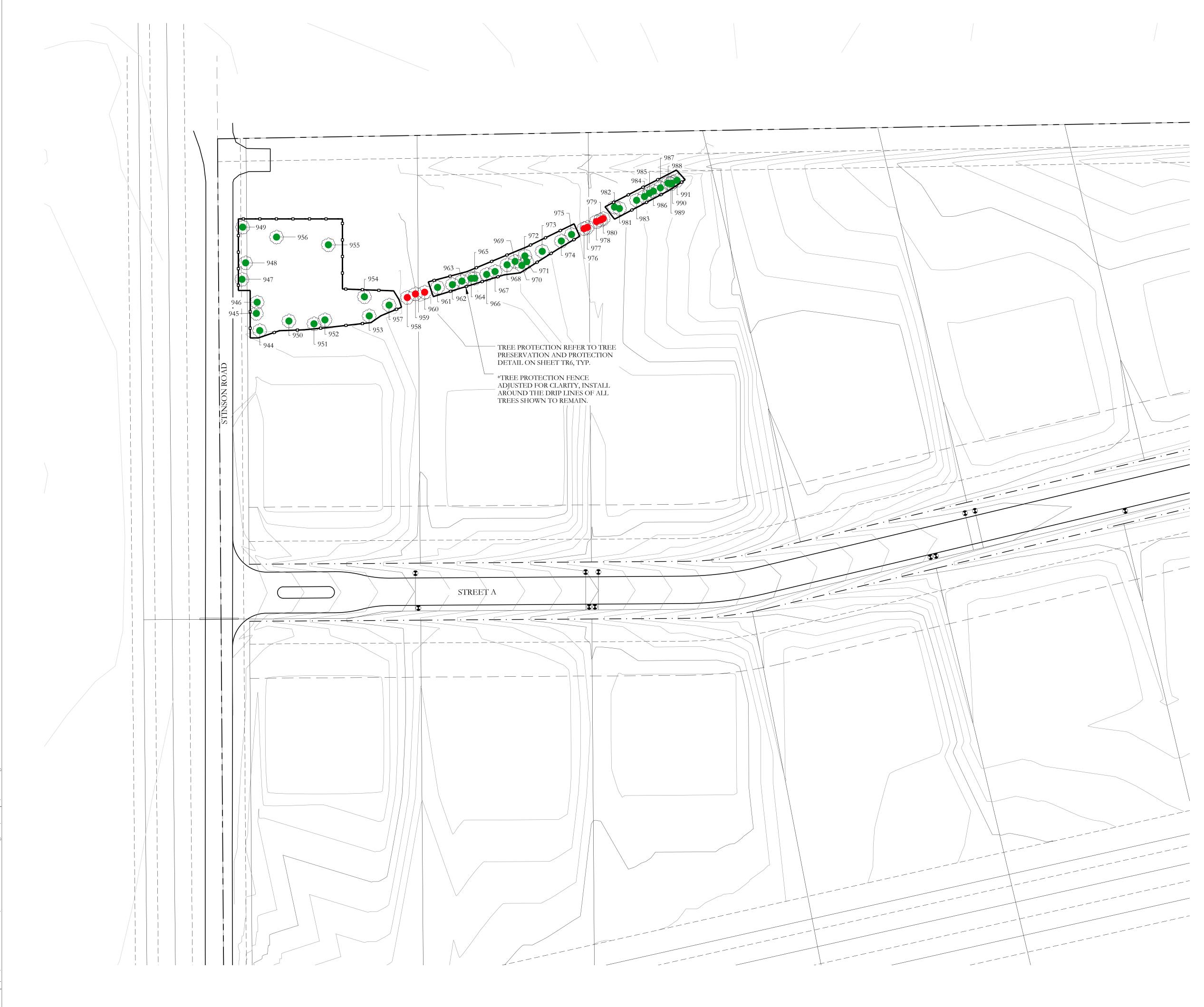




Section II Standard Drawings as of October 2004. Reference number only has been updated for Fifth Edition Specifications. Public Works Construction Standards North Central Texas, Fifth Edition.




1 3d projects\wla - warner land advisors\wla501 - homestead at stinson highland\jvc plans\dwg\sheets\construction plans\wla501 - water details



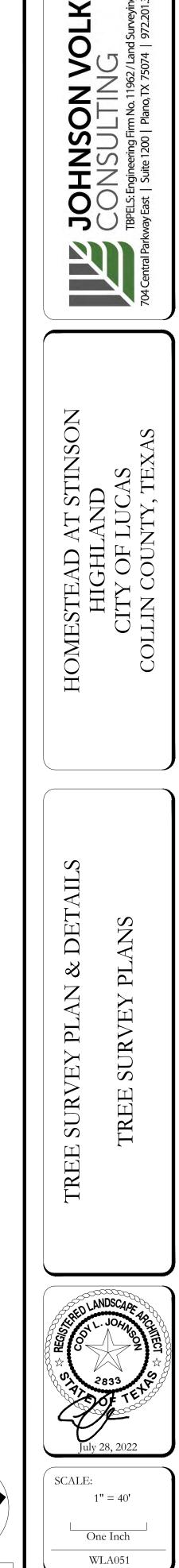




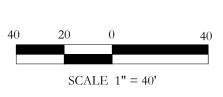




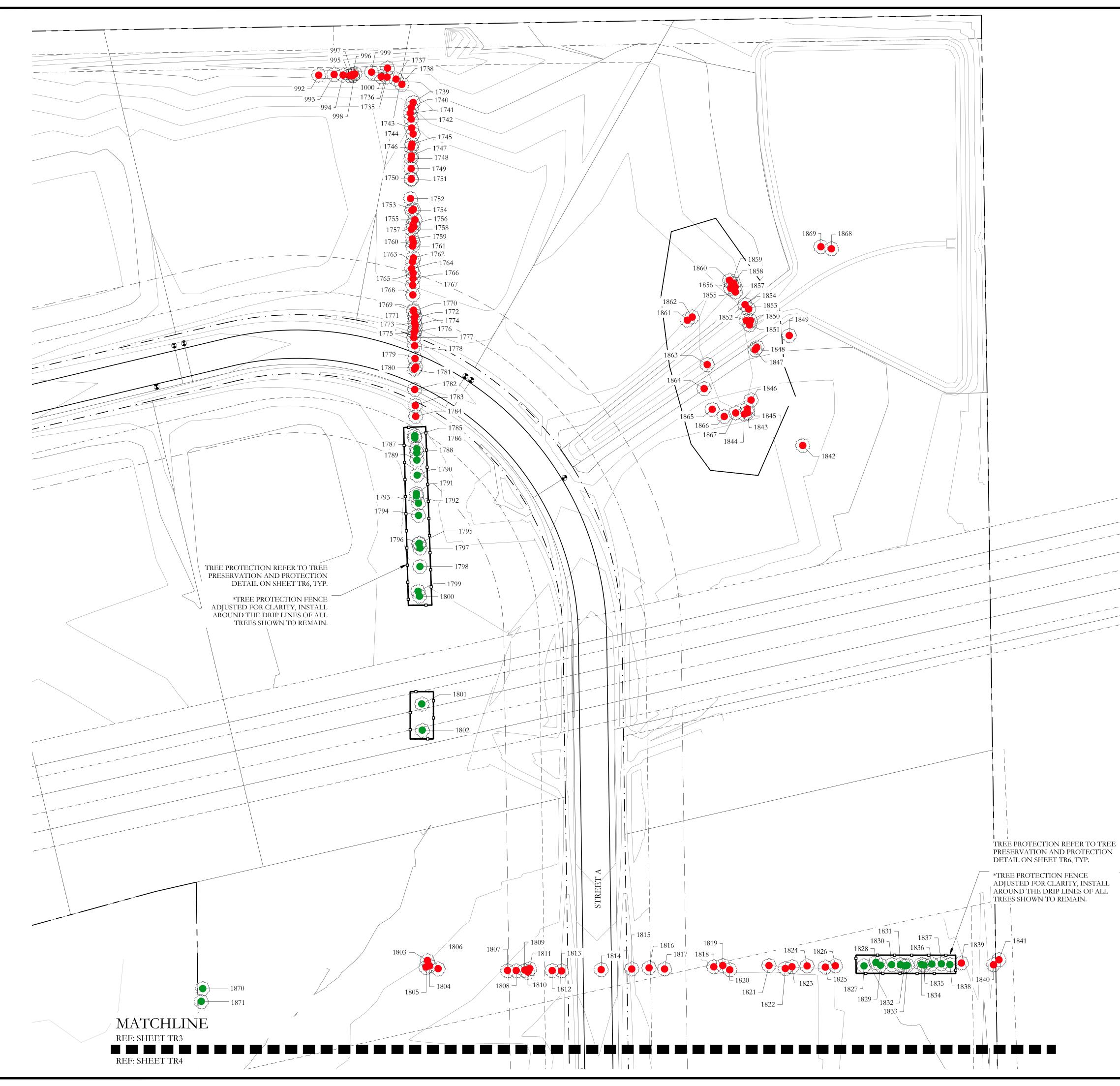



- EXISTING TREE TO BE REMOVED


\_\_\_\_2

EXISTING TREE LOCATED OFF-SITE TO REMAIN TREE PROTECTION REFER TREE PRESERVATION AND PROTECTION DETAIL ON SHEET TR2 -0----0-----


INSTALL TREE PROTECTION FENCE AROUND THE DRIP LINES OF ALL TREES SHOWN TO REMAIN. TYP.



TR2 of  $\underline{6}$ 







## LEGEND

- EXISTING TREE TO BE REMOVED
- EXISTING TREE TO REMAIN
- EXISTING TREE LOCATED OFF-SITE TO REMAIN \_\_\_\_2

TREE PROTECTION REFER TREE PRESERVATION AND PROTECTION DETAIL -0-----ON SHEET TR2

VOLK

NOSULTIN

N

**TINSON** 

HOMES

DETAILS

 $\infty$ 

PLAN

SURVEY

TREE

S AN

Γ

SURVEY

TREE

uly 28, 2022

1" = 40'

One Inch

WLA051

TR3 of 6

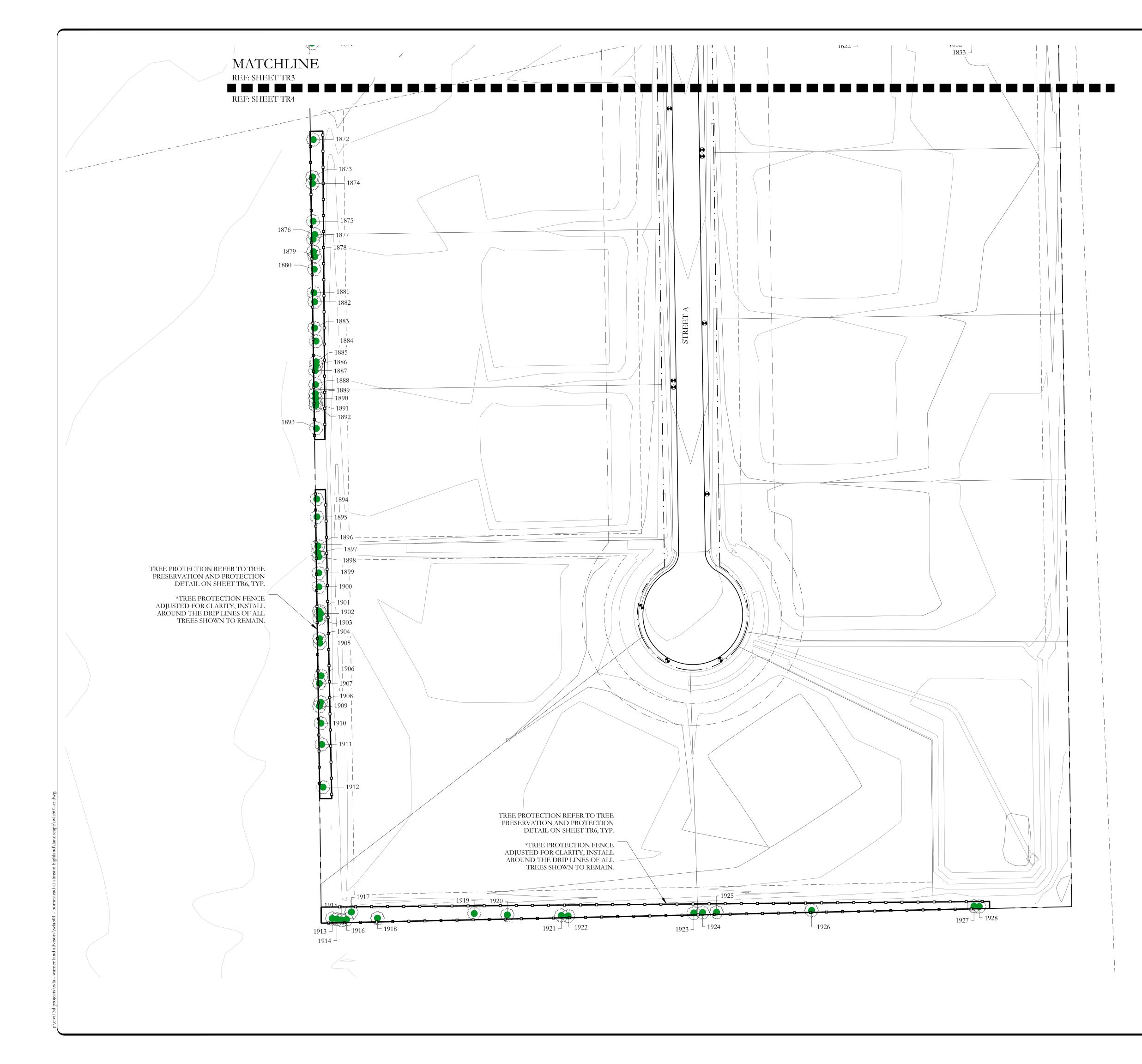
SCALE:

AS

 $\succ$ 


Ę

COL


\_

INSTALL TREE PROTECTION FENCE AROUND THE DRIP LINES OF ALL TREES SHOWN TO REMAIN. TYP.

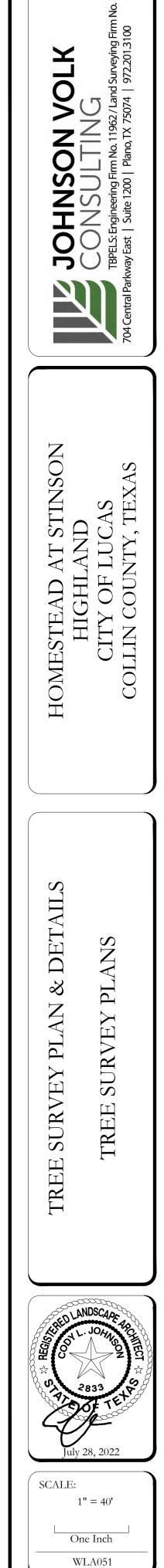




| 0 2 | 20    | 0          | 2 |
|-----|-------|------------|---|
|     |       |            |   |
|     | SCALE | 2 1" = 40' |   |



## LEGEND


| 13 | EXISTING TREE TO BE REMOVED |
|----|-----------------------------|
|----|-----------------------------|

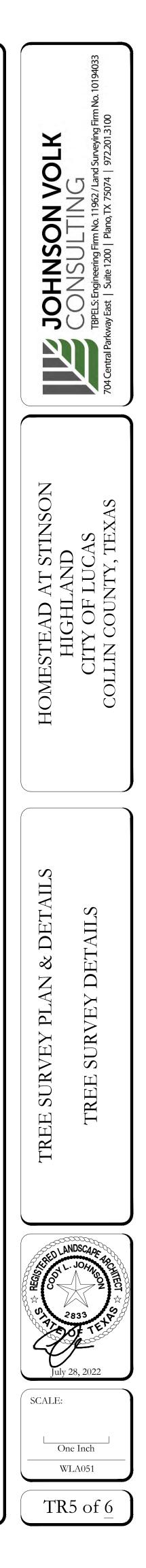
EXISTING TREE TO REMAIN



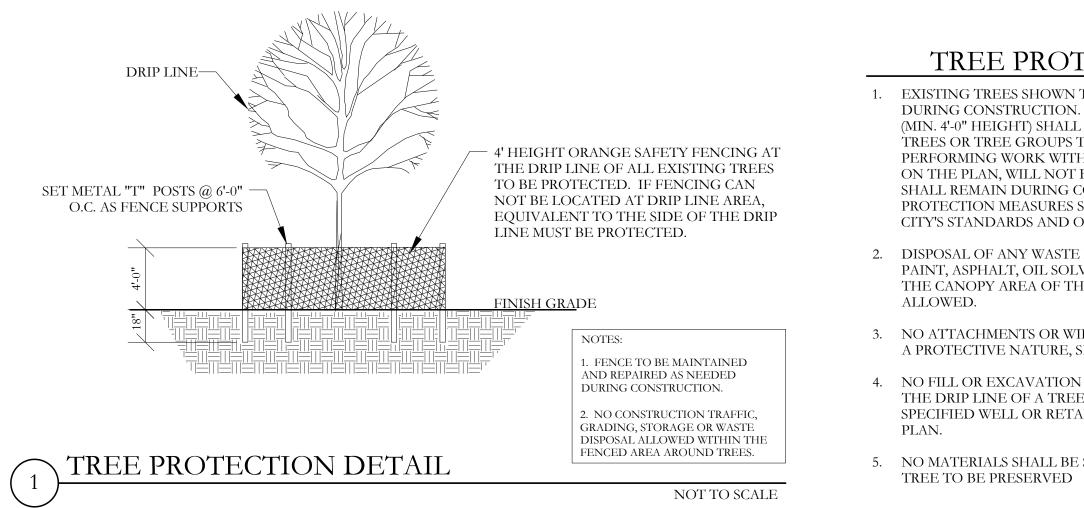
TREE PROTECTION REFER TREE PRESERVATION AND PROTECTION DETAIL ON SHEET TR6

INSTALL TREE PROTECTION FENCE AROUND THE DRIP LINES OF ALL TREES SHOWN TO REMAIN. TYP.




| N |
|---|
|   |
|   |

TR4 of 6


| 4( | ) 2 | .0 (  | ) .      |
|----|-----|-------|----------|
|    |     |       |          |
|    |     | SCALE | 1" = 40' |

| Tree ID<br>Number | Diameter at Breast<br>Height (DBH)<br>(inches) | Common Name                  | Scientific Name                            | Protected<br>Tree? | Condition          | Comment                    | Location                 | Remove or<br>Remain | Mitigation<br>Required,<br>Percentage | Mitigatio<br>Required<br>Caliper<br>Inches |
|-------------------|------------------------------------------------|------------------------------|--------------------------------------------|--------------------|--------------------|----------------------------|--------------------------|---------------------|---------------------------------------|--------------------------------------------|
| 944               | 6.0                                            | Yaupon Holly                 | Ilex vomitoria                             | Yes                | Healthy            | Multi-Trunk                | Lot                      | Remain              | 0%                                    | 0.0                                        |
| 945<br>946        | 24.0<br>27.6                                   | Pecan<br>Hackberry           | Celtis occidentalis<br>Celtis occidentalis | Yes<br>No          | Healthy<br>Healthy |                            | Lot<br>Lot               | Remain<br>Remain    | 0%                                    | 0.0                                        |
| 947               | 18.0                                           | Crape Myrtle                 | Lagerstromia                               | No                 | Healthy            | Multi-Trunk                | Lot                      | Remain              | 0%                                    | 0.0                                        |
| 948<br>949        | 13.2<br>12.0                                   | White Poplar<br>White Poplar | Populus alba<br>Populus alba               | No<br>No           | Healthy<br>Healthy | Multi-Trunk<br>Multi-Trunk | Lot<br>Lot               | Remain<br>Remain    | 0%<br>0%                              | 0.0                                        |
| 950               | 24.0                                           | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            |                            | Lot                      | Remain              | 0%                                    | 0.0                                        |
| 951<br>952        | 7.2 24.0                                       | Hackberry<br>Cedar Elm       | Celtis occidentalis<br>Ulmus crassifolia   | No<br>Yes          | Healthy<br>Healthy | Multi-Trunk                | Lot<br>Lot               | Remain<br>Remain    | 0%<br>0%                              | 0.0                                        |
| 953               | 8.4                                            | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            |                            | Lot                      | Remain              | 0%                                    | 0.0                                        |
| 954<br>955        | 34.8<br>36.0                                   | Red Oak<br>Hackberry         | Qurecus texana<br>Celtis occidentalis      | Yes<br>No          | Healthy<br>Healthy | Multi-Trunk                | Lot<br>Lot               | Remain<br>Remain    | 0%<br>0%                              | 0.0                                        |
| 956<br>957        | 20.4                                           | Pecan                        | Carya illinoinensis                        | Yes                | Healthy            |                            | Lot                      | Remain              | 0%<br>0%                              | 0.0                                        |
| 957               | 9.6<br>18.0                                    | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk                | Lot<br>Lot               | Remain<br>Remove    | 0%                                    | 0.0                                        |
| 959<br>960        | 15.6<br>12.0                                   | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk                | Lot                      | Remove<br>Remove    | 0%<br>0%                              | 0.0                                        |
| 961               | 7.2                                            | Hackberry                    | Celtis occidentalis<br>Celtis occidentalis | No                 | Healthy            |                            | Lot<br>Lot               | Remain              | 0%                                    | 0.0                                        |
| 962<br>963        | 24.0<br>16.8                                   | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk<br>Multi-Trunk | Lot                      | Remain<br>Remain    | 0%<br>0%                              | 0.0                                        |
| 964               | 8.4                                            | Hackberry                    | Celtis occidentalis<br>Celtis occidentalis | No                 | Healthy            |                            | Lot<br>Lot               | Remain              | 0%                                    | 0.0                                        |
| 965<br>966        | 36.0<br>19.2                                   | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk<br>Multi-Trunk | Lot<br>Lot               | Remain<br>Remain    | 0%<br>0%                              | 0.0                                        |
| 967               | 19.2                                           | Hackberry                    | Celtis occidentalis<br>Celtis occidentalis | No                 | Healthy            | Multi-Trunk                | Lot                      | Remain              | 0%                                    | 0.0                                        |
| 968<br>969        | 24.0                                           | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            | Multi-Trunk<br>Multi-Trunk | Lot                      | Remain<br>Remain    | 0%                                    | 0.0                                        |
| 970               | 36.0<br>7.2                                    | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy |                            | Lot<br>Lot               | Remain              | 0%                                    | 0.0                                        |
| 971<br>972        | 26.4<br>12.0                                   | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk                | Lot<br>Lot               | Remain<br>Remain    | 0%<br>0%                              | 0.0                                        |
| 973               | 24.0                                           | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            |                            | Lot<br>Lot               | Remain              | 0%                                    | 0.0                                        |
| 974<br>975        | 25.2<br>24.0                                   | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk<br>Multi-Trunk | Lot<br>Lot               | Remain<br>Remain    | 0%<br>0%                              | 0.0                                        |
| 976               | 25.2                                           | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            | Multi-Trunk<br>Multi-Trunk | Lot                      | Remove              | 0%                                    | 0.0                                        |
| 977<br>978        | 8.4<br>16.8                                    | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk                | Lot<br>Lot               | Remove<br>Remove    | 0%<br>0%                              | 0.0                                        |
| 979               | 9.6                                            | Hackberry                    | Celtis occidentalis<br>Celtis occidentalis | No                 | Healthy            |                            | Lot                      | Remove              | 0%                                    | 0.0                                        |
| 980<br>981        | 12.0<br>10.8                                   | Hackberry<br>Hackberry       | Celtis occidentalis                        | No<br>No           | Healthy            |                            | Lot                      | Remove<br>Remain    | 0%<br>0%                              | 0.0                                        |
| 982               | 18.0                                           | Hackberry                    | Celtis occidentalis<br>Celtis occidentalis | No                 | Healthy<br>Healthy | Multi-Trunk                | Lot<br>Lot               | Remain              | 0%                                    | 0.0                                        |
| 983<br>984        | 24.0<br>13.2                                   | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy |                            | Lot<br>Lot               | Remain<br>Remain    | 0%<br>0%                              | 0.0                                        |
| 985               | 13.2                                           | Hackberry                    | Celtis occidentalis<br>Celtis occidentalis | No                 | Healthy            | Multi-Trunk                | Lot                      | Remain              | 0%                                    | 0.0                                        |
| 986<br>987        | 32.4<br>34.8                                   | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk<br>Multi-Trunk | Lot<br>Lot               | Remain<br>Remain    | 0%                                    | 0.0                                        |
| 988               | 21.6                                           | Hackberry                    | Celtis occidentalis<br>Celtis occidentalis | No                 | Healthy            |                            | Lot                      | Remain              | 0%                                    | 0.0                                        |
| 989<br>990        | 12.0<br>10.8                                   | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy |                            | Lot<br>Lot               | Remain<br>Remain    | 0%<br>0%                              | 0.0                                        |
| 991               | 7.2                                            | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            |                            | Lot                      | Remain              | 0%                                    | 0.0                                        |
| 992<br>993        | 51.6<br>14.4                                   | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk                | Lot<br>Lot               | Remain<br>Remove    | 0%                                    | 0.0                                        |
| 994               | 14.4                                           | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            | Multi-Trunk                | Lot                      | Remove              | 0%                                    | 0.0                                        |
| 995<br>996        | 7.2                                            | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy |                            | Lot<br>Lot               | Remove<br>Remove    | 0%                                    | 0.0                                        |
| 997               | 7.2                                            | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            |                            | Lot                      | Remove              | 0%                                    | 0.0                                        |
| 998<br>999        | 8.4<br>18.0                                    | Cedar Elm<br>Cedar Elm       | Ulmus crassifolia<br>Ulmus crassifolia     | Yes<br>Yes         | Healthy<br>Healthy | Multi-Trunk                | Lot<br>Lot               | Remove<br>Remove    | 100%<br>100%                          | 8.4<br>18.0                                |
| 1000              | 10.8                                           | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            |                            | Lot                      | Remove              | 0%                                    | 0.0                                        |
| 1735<br>1736      | 12.0<br>7.2                                    | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy |                            | Easement<br>Easement     | Remove<br>Remove    | 0%                                    | 0.0                                        |
| 1737              | 19.2                                           | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            | Multi-Trunk                | Easement                 | Remove              | 0%                                    | 0.0                                        |
| 1738<br>1739      | 21.6<br>16.8                                   | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk<br>Multi-Trunk | Lot<br>Lot               | Remove<br>Remove    | 0%                                    | 0.0                                        |
| 1740              | 7.2                                            | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            |                            | Lot                      | Remove              | 0%                                    | 0.0                                        |
| 1741<br>1742      | 21.6<br>15.6                                   | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk                | Lot<br>Lot               | Remove<br>Remove    | 0%                                    | 0.0                                        |
| 1743              | 13.2                                           | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            |                            | Lot                      | Remove              | 0%                                    | 0.0                                        |
| 1744<br>1745      | 24.0<br>13.2                                   | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk                | Lot<br>Lot               | Remove<br>Remove    | 0%<br>0%                              | 0.0                                        |
| 1746              | 16.8                                           | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            | Multi-Trunk                | Lot                      | Remove              | 0%                                    | 0.0                                        |
| 1747<br>1748      | 8.4<br>18.0                                    | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy |                            | Lot<br>Lot               | Remove<br>Remove    | 0%                                    | 0.0                                        |
| 1749              | 20.4                                           | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            | Multi-Trunk                | Lot                      | Remove              | 0%                                    | 0.0                                        |
| 1750<br>1751      | 21.6<br>45.6                                   | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk                | Lot<br>Lot               | Remove<br>Remove    | 0%<br>0%                              | 0.0                                        |
| 1752              | 19.2                                           | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            | Multi-Trunk                | Lot                      | Remove              | 0%                                    | 0.0                                        |
| 1753<br>1754      | 8.4<br>7.2                                     | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy |                            | Lot<br>Lot               | Remove<br>Remove    | 0%                                    | 0.0                                        |
| 1755              | 18.0                                           | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            | Multi-Trunk                | Lot                      | Remove              | 0%                                    | 0.0                                        |
| 1756<br>1757      | 12.0<br>26.4                                   | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk                | Lot<br>Lot               | Remove<br>Remove    | 0%<br>0%                              | 0.0                                        |
| 1758              | 13.2                                           | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            |                            | Lot                      | Remove              | 0%<br>0%                              | 0.0                                        |
| 1759<br>1760      | 12.0<br>21.6                                   | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk                | Lot<br>Lot               | Remove<br>Remove    | 0%                                    | 0.0                                        |
| 1761<br>1762      | 9.6                                            | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            | Multi-Trunk                | Lot<br>Lot               | Remove<br>Remove    | 0%<br>0%                              | 0.0                                        |
| 1763              | 21.6<br>7.2                                    | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy |                            | Lot<br>Lot               | Remove              | 0%                                    | 0.0                                        |
| 1764<br>1765      | 8.9<br>36.0                                    | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy |                            | Lot<br>Lot               | Remove<br>Remove    | 0%<br>0%                              | 0.0                                        |
| 1766              | 19.2                                           | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            |                            | Lot                      | Remove              | 0%                                    | 0.0                                        |
| 1767              | 24.0                                           | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            | Multi-Trunk                | Lot                      | Remove              | 0%                                    | 0.0                                        |
| 1768<br>1769      | 9.6<br>8.4                                     | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy |                            | Lot<br>Lot               | Remove<br>Remove    | 0%<br>0%                              | 0.0                                        |
| 1770              | 16.8                                           | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            | Multi-Trunk                | Easement                 | Remove              | 0%                                    | 0.0                                        |
| 1771              | 19.2                                           | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            | Multi-Trunk                | Easement                 | Remove              | 0%                                    | 0.0                                        |
| 1772<br>1773      | 32.4<br>25.2                                   | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Damaged | Multi-Trunk                | Easement<br>Easement     | Remove<br>Remove    | 0%<br>0%                              | 0.0                                        |
| 1774              | 7.2                                            | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            |                            | Easement                 | Remove              | 0%                                    | 0.0                                        |
| 1775<br>1776      | 7.2                                            | Hackberry                    | Celtis occidentalis<br>Celtis occidentalis | No                 | Healthy            | M14: 77 1                  | Easement                 | Remove              | 0%<br>0%                              | 0.0                                        |
| 1776              | 15.6<br>10.8                                   | Hackberry<br>Hackberry       | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk                | Easement<br>Right-Of-Way | Remove<br>Remove    | 0%                                    | 0.0                                        |
| 1778              | 15.6                                           | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            | Multi-Trunk                | Right-Of-Way             | Remove              | 0%                                    | 0.0                                        |
| 1779<br>1780      | 12.0                                           | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            |                            | Street                   | Remove              | 0%                                    | 0.0                                        |
| 1/80              | 12.0                                           | Hackberry                    | Celtis occidentalis                        | No                 | Healthy            | 1                          | Street                   | Remove              | 0%                                    | 0.0                                        |

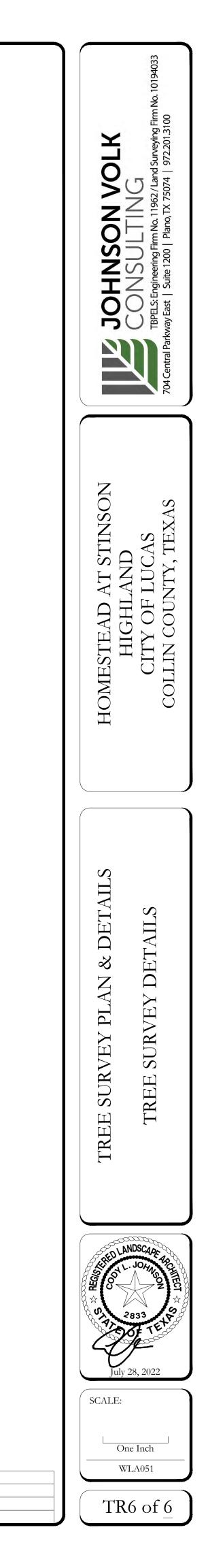
| Tree ID<br>Number | Diameter at Breast<br>Height (DBH)<br>(inches) | Common Name                      | Scientific Name                            | Protected<br>Tree? | Condition          | Comment                    | Location                 | Remove or<br>Remain | Mitigation<br>Required,<br>Percentage | Mitigation<br>Required in<br>Caliper<br>Inches |
|-------------------|------------------------------------------------|----------------------------------|--------------------------------------------|--------------------|--------------------|----------------------------|--------------------------|---------------------|---------------------------------------|------------------------------------------------|
| 1782              | 12.0                                           | Hackberry                        | Celtis occidentalis                        | No                 | Healthy            |                            | Right-Of-Way             | Remove              | 0%                                    | 0.0                                            |
| 1783<br>1784      | 30.0                                           | Hackberry                        | Celtis occidentalis<br>Celtis occidentalis | No                 | Healthy            |                            | Easement                 | Remove              | 0%                                    | 0.0                                            |
| 1784              | 12.0<br>24.0                                   | Hackberry<br>Hackberry           | Celtis occidentalis                        | No<br>No           | Healthy<br>Healthy | Multi-Trunk                | Easement<br>Lot          | Remove<br>Remain    | 0%                                    | 0.0                                            |
| 1786              | 8.4                                            | Hackberry                        | Celtis occidentalis                        | No                 | Healthy            |                            | Lot                      | Remain              | 0%                                    | 0.0                                            |
| 1787<br>1788      | 10.8<br>9.6                                    | Hackberry<br>Hackberry           | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy |                            | Lot<br>Lot               | Remain<br>Remain    | 0%                                    | 0.0                                            |
| 1789              | 7.2                                            | Hackberry                        | Celtis occidentalis                        | No                 | Healthy            |                            | Lot                      | Remain              | 0%                                    | 0.0                                            |
| 1790<br>1791      | 8.4<br>31.2                                    | Hackberry<br>Hackberry           | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk                | Lot<br>Lot               | Remain<br>Remain    | 0%                                    | 0.0                                            |
| 1791              | 12.0                                           | Hackberry                        | Celtis occidentalis                        | No                 | Healthy            |                            | Lot                      | Remain              | 0%                                    | 0.0                                            |
| 1793              | 19.2                                           | Hackberry                        | Celtis occidentalis                        | No                 | Damaged            | Multi-Trunk                | Lot                      | Remain              | 0%                                    | 0.0                                            |
| 1794<br>1795      | 38.4<br>27.6                                   | Hackberry<br>Hackberry           | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk<br>Multi-Trunk | Lot<br>Lot               | Remain<br>Remain    | 0%                                    | 0.0                                            |
| 1796              | 31.2                                           | Hackberry                        | Celtis occidentalis                        | No                 | Healthy            | Multi-Trunk                | Lot                      | Remain              | 0%                                    | 0.0                                            |
| 1797<br>1798      | 31.2<br>27.6                                   | Hackberry<br>Hackberry           | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk<br>Multi-Trunk | Lot<br>Lot               | Remain<br>Remain    | 0%                                    | 0.0                                            |
| 1799              | 13.2                                           | Hackberry                        | Celtis occidentalis                        | No                 | Healthy            |                            | Lot                      | Remain              | 0%                                    | 0.0                                            |
| 1800<br>1801      | 9.6<br>37.2                                    | Hackberry<br>Hackberry           | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk                | Lot<br>Open Space        | Remain<br>Remain    | 0%                                    | 0.0                                            |
| 1802              | 15.6                                           | Hackberry                        | Celtis occidentalis                        | No                 | Healthy            | Multi-Trunk                | Easement                 | Remain              | 0%                                    | 0.0                                            |
| 1803              | 22.8<br>7.2                                    | Hackberry                        | Celtis occidentalis                        | No                 | Healthy            | Multi-Trunk                | Open Space               | Remove              | 0%                                    | 0.0                                            |
| 1805<br>1804      | 10.8                                           | Hackberry<br>Hackberry           | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy |                            | Open Space<br>Open Space | Remove<br>Remove    | 0%<br>0%                              | 0.0                                            |
| 1806              | 9.6                                            | Hackberry                        | Celtis occidentalis                        | No                 | Healthy            |                            | Open Space               | Remove              | 0%                                    | 0.0                                            |
| 1807<br>1808      | 19.2<br>19.2                                   | Hackberry<br>Hackberry           | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk<br>Multi-Trunk | Open Space<br>Open Space | Remove<br>Remove    | 0%                                    | 0.0                                            |
| 1809              | 30.0                                           | Hackberry                        | Celtis occidentalis                        | No                 | Healthy            |                            | Open Space               | Remove              | 0%                                    | 0.0                                            |
| 1810<br>1811      | 30.0<br>7.2                                    | Hackberry<br>Hackberry           | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk                | Open Space<br>Open Space | Remove<br>Remove    | 0%                                    | 0.0                                            |
| 1811              | 9.6                                            | Hackberry<br>Hackberry           | Celtis occidentalis                        | No                 | Healthy            |                            | Easement                 | Remove              | 0%                                    | 0.0                                            |
| 1813              | 38.4                                           | Hackberry                        | Celtis occidentalis                        | No                 | Healthy            | Multi-Trunk                | Easement                 | Remove              | 0%                                    | 0.0                                            |
| 1814<br>1815      | 34.8<br>32.4                                   | Hackberry<br>Hackberry           | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk<br>Multi-Trunk | Street<br>Easement       | Remove<br>Remove    | 0%                                    | 0.0                                            |
| 1816              | 15.6                                           | Hackberry                        | Celtis occidentalis                        | No                 | Healthy            | Multi-Trunk                | Easement                 | Remove              | 0%                                    | 0.0                                            |
| 1817<br>1818      | 36.0<br>31.2                                   | Hackberry<br>Hackberry           | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk<br>Multi-Trunk | Lot<br>Lot               | Remove<br>Remove    | 0%                                    | 0.0                                            |
| 1819              | 16.8                                           | Mesquite                         | Prosopis grandulosa                        | Yes                | Healthy            |                            | Lot                      | Remove              | 100%                                  | 16.8                                           |
| 1820<br>1821      | 13.2<br>21.6                                   | Hackberry<br>Hackberry           | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy |                            | Lot<br>Lot               | Remove<br>Remove    | 0%                                    | 0.0                                            |
| 1822              | 7.2                                            | Hackberry                        | Celtis occidentalis                        | No                 | Healthy            |                            | Lot                      | Remove              | 0%                                    | 0.0                                            |
| 1823              | 7.2                                            | Hackberry                        | Celtis occidentalis<br>Celtis occidentalis | No                 | Healthy            |                            | Lot                      | Remove              | 0%                                    | 0.0                                            |
| 1824<br>1825      | 9.6                                            | Hackberry<br>Hackberry           | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy |                            | Lot<br>Lot               | Remove<br>Remove    | 0%                                    | 0.0                                            |
| 1826              | 20.4                                           | Hackberry                        | Celtis occidentalis                        | No                 | Healthy            |                            | Lot                      | Remove              | 0%                                    | 0.0                                            |
| 1827<br>1828      | 8.4<br>10.8                                    | Hackberry<br>Hackberry           | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy |                            | Lot<br>Lot               | Remain<br>Remain    | 0%                                    | 0.0                                            |
| 1829              | 9.6                                            | Hackberry                        | Celtis occidentalis                        | No                 | Healthy            |                            | Lot                      | Remain              | 0%                                    | 0.0                                            |
| 1830<br>1831      | 15.6<br>24.0                                   | Hackberry<br>Hackberry           | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk<br>Multi-Trunk | Lot<br>Lot               | Remain<br>Remain    | 0%                                    | 0.0                                            |
| 1831              | 10.8                                           | Hackberry                        | Celtis occidentalis                        | No                 | Healthy            |                            | Lot                      | Remain              | 0%                                    | 0.0                                            |
| 1833              | 9.6                                            | Hackberry                        | Celtis occidentalis                        | No                 | Healthy            |                            | Lot                      | Remain              | 0%                                    | 0.0                                            |
| 1834<br>1835      | 22.8<br>9.6                                    | Hackberry<br>Hackberry           | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy |                            | Lot<br>Lot               | Remain<br>Remain    | 0%                                    | 0.0                                            |
| 1836              | 18.0                                           | Hackberry                        | Celtis occidentalis                        | No                 | Healthy            |                            | Lot                      | Remain              | 0%                                    | 0.0                                            |
| 1837<br>1838      | 13.2<br>8.4                                    | Hackberry<br>Hackberry           | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy |                            | Lot<br>Lot               | Remain<br>Remain    | 0%                                    | 0.0                                            |
| 1839              | 12.0                                           | Hackberry                        | Celtis occidentalis                        | No                 | Healthy            | Multi-Trunk                | Lot                      | Remove              | 0%                                    | 0.0                                            |
| 1840<br>1841      | 8.4<br>20.4                                    | Hackberry<br>Hackberry           | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy |                            | Lot<br>Off-Site          | Remove<br>Remove    | 0%                                    | 0.0                                            |
| 1842              | 36.0                                           | Hackberry                        | Celtis occidentalis                        | No                 | Healthy            |                            | Lot                      | Remove              | 0%                                    | 0.0                                            |
| 1843              | 10.8                                           | Cedar Elm                        | Ulmus crassifolia                          | Yes                | Healthy            |                            | Lot                      | Remove              | 100%                                  | 10.8                                           |
| 1844<br>1845      | 30.0<br>34.8                                   | Cedar Elm<br>Cedar Elm           | Ulmus crassifolia<br>Ulmus crassifolia     | Yes<br>Yes         | Healthy<br>Healthy | Multi-Trunk<br>Multi-Trunk | Lot<br>Lot               | Remove<br>Remove    | 100%<br>100%                          | 30.0<br>34.8                                   |
| 1846              | 8.4                                            | Cedar Elm                        | Ulmus crassifolia                          | Yes                | Healthy            |                            | Lot                      | Remove              | 100%                                  | 8.4                                            |
| 1847<br>1848      | 20.4 20.4                                      | Weeping Willow<br>Weeping Willow | Salix babylonica<br>Salix babylonica       | No<br>No           | Healthy<br>Healthy |                            | Lot<br>Lot               | Remove<br>Remove    | 0%                                    | 0.0                                            |
| 1849              | 30.0                                           | Pecan                            | Carya illinoinensis                        | Yes                | Healthy            | Dead                       | Lot                      | Remove              | 0%                                    | 0.0                                            |
| 1850<br>1851      | 9.6<br>36.0                                    | Weeping Willow<br>Weeping Willow | Salix babylonica<br>Salix babylonica       | No<br>No           | Healthy<br>Healthy | Multi-Trunk                | Lot<br>Easement          | Remove<br>Remove    | 0%                                    | 0.0                                            |
| 1852              | 35.0                                           | Weeping Willow                   | Salix babylonica                           | No                 | Healthy            | Multi-Trunk                | Easement                 | Remove              | 0%                                    | 0.0                                            |
| 1853<br>1854      | 8.4<br>45.6                                    | Weeping Willow<br>Weeping Willow | Salix babylonica<br>Salix babylonica       | No<br>No           | Healthy<br>Healthy |                            | Easement<br>Easement     | Remove<br>Remove    | 0%                                    | 0.0                                            |
| 1854              | 25.2                                           | Weeping Willow<br>Weeping Willow | Salix babylonica<br>Salix babylonica       | No                 | Healthy            |                            | Lot                      | Remove              | 0%                                    | 0.0                                            |
| 1856              | 30.0                                           | Weeping Willow                   | Salix babylonica                           | No                 | Healthy            |                            | Lot                      | Remove              | 0%                                    | 0.0                                            |
| 1857<br>1858      | 24.0<br>7.2                                    | Weeping Willow<br>Weeping Willow | Salix babylonica<br>Salix babylonica       | No<br>No           | Healthy<br>Healthy | Multi-Trunk                | Lot<br>Lot               | Remove<br>Remove    | 0%                                    | 0.0                                            |
| 1859              | 8.4                                            | Weeping Willow                   | Salix babylonica                           | No                 | Healthy            |                            | Lot                      | Remove              | 0%                                    | 0.0                                            |
| 1860<br>1868      | 40.8 36.0                                      | Weeping Willow<br>Bois d'arc     | Salix babylonica<br>Maculra pomifera       | No<br>Yes          | Healthy<br>Healthy | Multi-Trunk                | Lot<br>Open Space        | Remove<br>Remove    | 0%                                    | 0.0 36.0                                       |
| 1868              | 16.8                                           | Weeping Willow                   | Salix babylonica                           | No                 | Healthy<br>Healthy |                            | Open Space<br>Open Space | Remove              | 0%                                    | 0.0                                            |
| 1861              | 8.4                                            | Weeping Willow                   | Salix babylonica                           | No                 | Healthy            |                            | Lot                      | Remove              | 0%                                    | 0.0                                            |
| 1862<br>1863      | 49.2<br>33.6                                   | Weeping Willow<br>Weeping Willow | Salix babylonica<br>Salix babylonica       | No<br>No           | Healthy<br>Healthy | Multi-Trunk                | Lot<br>Lot               | Remove<br>Remove    | 0%                                    | 0.0                                            |
| 1864              | 9.6                                            | Weeping Willow                   | Salix babylonica                           | No                 | Healthy            |                            | Lot                      | Remove              | 0%                                    | 0.0                                            |
| 1865<br>1866      | 9.6<br>9.6                                     | Weeping Willow<br>Weeping Willow | Salix babylonica<br>Salix babylonica       | No<br>No           | Healthy<br>Healthy |                            | Lot<br>Lot               | Remove<br>Remove    | 0%                                    | 0.0                                            |
| 1867              | 7.2                                            | Weeping Willow                   | Salix babylonica                           | No                 | Healthy            |                            | Lot                      | Remove              | 0%                                    | 0.0                                            |
| 1870<br>1871      | 10.8                                           | Hackberry                        | Celtis occidentalis                        | No                 | Healthy            | M14 T 1                    | Lot                      | Remove              | 0%                                    | 0.0                                            |
| 1871<br>1872      | 20.4<br>15.6                                   | Hackberry<br>Hackberry           | Celtis occidentalis<br>Celtis occidentalis | No<br>No           | Healthy<br>Healthy | Multi-Trunk<br>Multi-Trunk | Lot<br>Lot               | Remove<br>Remain    | 0%                                    | 0.0                                            |
| 1873              | 13.2                                           | Cottonwood                       | Populus deltoidies                         | Yes                | Healthy            |                            | Lot                      | Remain              | 0%                                    | 0.0                                            |
| 1874<br>1875      | 18.0<br>18.0                                   | Cottonwood<br>Cottonwood         | Populus deltoidies<br>Populus deltoidies   | Yes<br>Yes         | Healthy<br>Healthy | Multi-Trunk                | Lot<br>Lot               | Remain<br>Remain    | 0%                                    | 0.0                                            |
| 1875              | 9.6                                            | Cottonwood                       | Populus deltoidies                         | Yes                | Healthy            | Multi-Trunk                | Lot                      | Remain              | 0%                                    | 0.0                                            |



| Tree ID<br>Number        | Diameter at Breast<br>Height (DBH)<br>(inches) | Common Name                     | Scientific Name                            | Protected<br>Tree? | Condition          | Comment                    | Location   | Remove or<br>Remain | Mitigation<br>Required,<br>Percentage | Mitigation<br>Required in<br>Caliper<br>Inches |
|--------------------------|------------------------------------------------|---------------------------------|--------------------------------------------|--------------------|--------------------|----------------------------|------------|---------------------|---------------------------------------|------------------------------------------------|
| 1877                     | 7.2                                            | Cottonwood                      | Populus deltoidies                         | Yes                | Healthy            |                            | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1878                     | 12.0                                           | Cedar Elm                       | Ulmus crassifolia                          | Yes                | Healthy            |                            | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1879                     | 8.4                                            | Cottonwood                      | Populus deltoidies                         | Yes                | Healthy            | 14 A 1                     | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1880                     | 13.2                                           | Cottonwood                      | Populus deltoidies                         | Yes                | Healthy            |                            | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1881                     | 28.8                                           | Cottonwood                      | Populus deltoidies                         | Yes                | Healthy            | _                          | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1882<br>1883             | 12.0<br>12.0                                   | Cottonwood<br>Cottonwood        | Populus deltoidies<br>Populus deltoidies   | Yes<br>Yes         | Healthy<br>Healthy |                            | Lot<br>Lot | Remain<br>Remain    | 0%<br>0%                              | 0.0                                            |
| 1884                     | 12.0                                           | Cottonwood                      | Populus deltoidies                         | Yes                | Healthy            | -                          | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1885                     | 12.0                                           | Cottonwood                      | Populus deltoidies                         | Yes                | Healthy            |                            | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1886                     | 9.6                                            | Cottonwood                      | Populus deltoidies                         | Yes                | Healthy            |                            | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1887                     | 9.6                                            | Cottonwood                      | Populus deltoidies                         | Yes                | Healthy            |                            | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1888                     | 30.0                                           | Cottonwood                      | Populus deltoidies                         | Yes                | Healthy            | Multi-Trunk                | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1889                     | 7.2                                            | Cottonwood                      | Populus deltoidies                         | Yes                | Healthy            |                            | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1890                     | 24.0                                           | Cottonwood                      | Populus deltoidies                         | Yes                | Healthy            | Multi-Trunk                | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1891                     | 8.4                                            | Weeping Willow                  | Salix babylonica                           | No                 | Healthy            | 1.52                       | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1892                     | 9.6                                            | Weeping Willow                  | Salix babylonica                           | No                 | Healthy            | NOVET 1                    | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1893                     | 32.4<br>54.0                                   | Cedar Elm                       | Ulmus crassifolia<br>Ulmus crassifolia     | Yes<br>Yes         | Healthy            | Multi-Trunk                | Lot        | Remain              | 0%<br>0%                              | 0.0                                            |
| 1894<br>1895             | 16.8                                           | Cedar Elm<br>Cedar Elm          | Ulmus crassifolia<br>Ulmus crassifolia     | Yes                | Healthy<br>Healthy | Multi-Trunk<br>Multi-Trunk | Lot<br>Lot | Remain<br>Remain    | 0%                                    | 0.0                                            |
| 1896                     | 9.6                                            | Cedar Elm                       | Ulmus crassifolia                          | Yes                | Healthy            | Withd- IIthik              | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1897                     | 49.2                                           | Weeping Willow                  | Ulmus crassifolia                          | No                 | Healthy            | Multi-Trunk                | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1898                     | 51.6                                           | Cedar Elm                       | Ulmus crassifolia                          | Yes                | Healthy            | Multi-Trunk                | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1899                     | 8.4                                            | Cottonwood                      | Populus deltoidies                         | Yes                | Healthy            |                            | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1900                     | 19.2                                           | Cedar Elm                       | Ulmus crassifolia                          | Yes                | Healthy            | Multi-Trunk                | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1901                     | 24.0                                           | Cottonwood                      | Populus deltoidies                         | Yes                | Healthy            | Multi-Trunk                | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1902                     | 9.6                                            | Bois d'arc                      | Maculra pomifera                           | No                 | Healthy            |                            | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1903                     | 24.0                                           | Cottonwood                      | Populus deltoidies                         | Yes                | Healthy            | Multi-Trunk                | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1904<br>1905             | 10.8                                           | Cottonwood                      | Populus deltoidies                         | Yes                | Healthy            | -                          | Lot        | Remain              | 0%<br>0%                              | 0.0                                            |
| 1905                     | 14.4                                           | Cottonwood<br>Cottonwood        | Populus deltoidies<br>Populus deltoidies   | Yes<br>Yes         | Healthy<br>Healthy | - /                        | Lot<br>Lot | Remain<br>Remain    | 0%                                    | 0.0                                            |
| 1907                     | 18.0                                           | Cedar Elm                       | Ulmus crassifolia                          | Yes                | Healthy            | Multi-Trunk                | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1908                     | 13.2                                           | Bois d'arc                      | Maculra pomifera                           | Yes                | Healthy            |                            | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1909                     | 27.6                                           | Cottonwood                      | Populus deltoidies                         | Yes                | Healthy            | Multi-Trunk                | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1910                     | 12.0                                           | Cedar Elm                       | Ulmus crassifolia                          | Yes                | Healthy            |                            | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1911                     | 18.0                                           | Cedar Elm                       | Ulmus crassifolia                          | Yes                | Healthy            | 1.1                        | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1912                     | 36.0                                           | Bois d'arc                      | Maculra pomifera                           | Yes                | Healthy            | Multi-Trunk                | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1914                     | 8.4                                            | Pecan                           | Carya illinoinensis                        | Yes                | Healthy            |                            | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1915                     | 15.6                                           | Pecan                           | Carya illinoinensis                        | Yes                | Healthy            | Multi-Trunk                | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1916                     | 8.4                                            | Pecan                           | Carya illinoinensis                        | Yes                | Healthy            | Multi-Trunk                | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1917<br>1913             | 9.6<br>12.0                                    | Cottonwood<br>Eastern Red Cedar | Populus deltoidies<br>Juniperus virginiana | Yes<br>Yes         | Healthy<br>Healthy | Multi-Trunk                | Lot<br>Lot | Remain<br>Remain    | 0%                                    | 0.0                                            |
| 1913                     | 14.4                                           | Cedar Elm                       | Ulmus crassifolia                          | Yes                | Healthy            | Multi-Trunk                | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1919                     | 8.4                                            | Post Oak                        | Quercus stellata                           | No                 | Healthy            | Trian Trian                | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1920                     | 9.6                                            | Post Oak                        | Quercus stellata                           | No                 | Healthy            |                            | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1921                     | 25.2                                           | Post Oak                        | Quercus stellata                           | No                 | Healthy            | Multi-Trunk                | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1922                     | 9.6                                            | Post Oak                        | Quercus stellata                           | No                 | Healthy            |                            | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1923                     | 9.6                                            | Hackberry                       | Celtis occidentalis                        | No                 | Healthy            |                            | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1924                     | 10.8                                           | Cedar Elm                       | Ulmus crassifolia                          | Yes                | Healthy            |                            | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1925                     | 7.2                                            | Hackberry                       | Celtis occidentalis                        | No                 | Healthy            |                            | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1926                     | 9.6                                            | Hackberry                       | Celtis occidentalis                        | No                 | Healthy            |                            | Lot        | Remain              | 0%                                    | 0.0                                            |
| 1927<br>1928             | 8.4<br>7.2                                     | Cedar Elm<br>Cedar Elm          | Ulmus crassifolia<br>Ulmus crassifolia     | Yes<br>Yes         | Healthy<br>Healthy | -                          | Open Space | Remain              | 0%<br>0%                              | 0.0                                            |
| 4,492.3                  | 1.2                                            | Cedar Elm                       | Ulmus crassifolia                          | res                | Healthy            | -                          | Open Space | Remain              | 0%                                    | 163.2                                          |
|                          |                                                |                                 |                                            |                    |                    |                            |            |                     |                                       |                                                |
| Total Tree<br>Population |                                                |                                 |                                            |                    |                    |                            |            |                     |                                       | Total Tree<br>Replacement,<br>caliper inches   |



## TREE PROTECTION NOTES


1. EXISTING TREES SHOWN TO REMAIN ARE TO BE PROTECTED DURING CONSTRUCTION. ORANGE COATED CHAINLINK FENCING (MIN. 4'-0" HEIGHT) SHALL BE INSTALLED AT THE DRIP LINE OF ALL TREES OR TREE GROUPS TO REMAIN. PARKING OF VEHICLES OR PERFORMING WORK WITHIN THESE AREAS OTHER THAN SHOWN ON THE PLAN, WILL NOT BE ALLOWED. THE TREE PROTECTION SHALL REMAIN DURING CONSTRUCTION. OTHER TREE PROTECTION MEASURES SHALL BE IN ACCORDANCE WITH THE CITY'S STANDARDS AND ORDINANCES.

2. DISPOSAL OF ANY WASTE MATERIAL SUCH AS, BUT NOT LIMITED TO, PAINT, ASPHALT, OIL SOLVENTS, CONCRETE, MORTAR, ETC. WITHIN THE CANOPY AREA OF THE EXISTING TREES SHALL NOT BE

3. NO ATTACHMENTS OR WIRES OF ANY KIND, OTHER THAN THOSE OF A PROTECTIVE NATURE, SHALL BE ATTACHED TO ANY TREE.

4. NO FILL OR EXCAVATION OF ANY NATURE SHALL OCCUR WITHIN THE DRIP LINE OF A TREE TO BE PRESERVED, UNLESS THERE IS A SPECIFIED WELL OR RETAINING WALL SHOWN ON THE GRADING

5. NO MATERIALS SHALL BE STORED WITHIN THE DRIPLINE AREA OF A

