BRIDGE ALTERNATIVE REPORT

Snider Bridge and Roadway Improvements from Susan Circle to Shady Lane

City of Lucas

Prepared for: City of Lucas

Prepared by:

Lakes Engineering, Inc.

A BCC Engineering Company

July 2020

TABLE OF CONTENTS

1. 2. 2.1. 2.2. 3. 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. STRUCTURAL DESIGN CRITERIA......11 4. 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 5. 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8.

5.9.

6.

SECTION

PAGE

APPENDICES

- APPENDIX A: Alternatives Cost Comparison
- APPENDIX B: Existing Culvert Inspection Report
- APPENDIX C: References

EXHIBITS

EXHIBIT A: Existing Right-Of-Way & Easement Plan

Lakes Engineering, Inc.

1. EXECUTIVE SUMMARY

Lakes Engineering, Inc. has prepared this Bridge Alternative Report (BAR) for the proposed Snider Bridge and Roadway Improvements from Susan Circle to Shady Lane. The intent of this report is to give the City of Lucas a comprehensive analysis of the different options and costs to replace Snider Road crossing over White Rock Creek. It provides our recommendations of the best alternative that will deliver, to the City of Lucas residents, the most value, best economy, and least impact to the public for these improvements. Snider Lane Culvert over White Rock Creek is located approximately 0.3 miles east of Winningkoff Road. Snider Lane crosses the creek with triple 8-ft by 8-ft concrete box culverts within the floodplain and the roadway is below the flood elevation. White Rock Creek has historically overtopped Snider Lane frequently from the culvert crossing to Shady Lane. The aging culvert opening is not adequate for larger storm events, gets clogged easily with large debris, and has caused closure of the roadway many times. The debris build up contributes to the flooding requires the City to provide regular recurring maintenance. Flooding and overtopping of Snider Lane is a safety hazard for the residents and road users of the vicinity area. Replacing the culvert with a bridge above the flood elevation will provide an adequate opening, which will resolve the clogging and overtopping issues and may lower the water surface elevation locally. Replacing the existing crossing with a new culvert does not solve the clogging issue and would need to be sized much larger than any available precast culvert available to raise the roadway above the flood elevation. A new culvert would need to be cast in place, cost similar to a bridge, and not provide the sustainability of a bridge structure. For these reasons, a culvert replacement option was not evaluated. We have evaluated many bridge types and materials, provide a comparison, and recommend solutions, within this report.

This report identifies the project in terms of needs, purpose, and recommended solution. This report also provides design criteria and parameters, description of bridge superstructure options, and evaluates the alternatives according to the following:

- A. Horizontal/Vertical Alignments
- B. Right-of-Way/Easement
- C. Access Impact
- D. Intersection Impact
- E. Bridge Superstructure Options
- F. Method of Construction

The major elements discussed above are summarized below:

- A. The proposed Horizontal Alignment of, Snider Lane bridge over White Rock Creek will be shifted slightly to the south of the existing Snider Lane alignment smoothing the curves and to provide better visibility.
- B. Most of the right-of-way within the project limits has been dedicated. However, there is a parcel at the south side of the bridge crossing owned by the United States Army Corps of Engineers that will require a temporary construction easement permit to build the proposed improvements.

Snider Lane has existing 20ft utility easements on both sides of the roadway from Winningkoff Road to White Rock Creek.

C. There is one (1) utility service driveway and one (1) equestrian trail access within the project limits on Snider Lane that will be impacted. It is recommended that both the utility driveway and trail access be relocated near Natha Court. An in-depth evaluation for the utility driveway and trail

access locations will be performed in the final design phase. Access must be provided for all property owners during the duration of construction.

- D. The intersection of Snider Lane and Shady Lane will be impacted by the recommended vertical alignment. The recommended vertical alignment will raise the intersection of Snider Lane and Shady Lane approximately 5 feet from the existing top of pavement to the proposed top of pavement with retaining walls along both sides of Snider Lane and Shady Lane. This intersection will be evaluated in detail during the Preliminary or Final Design.
- E. Seven (7) bridge superstructure alternatives are presented, and option 3 is the most cost-effective superstructure option considered. Option 3 offers overall cost-savings, despite having the largest vertical profile raise compared to the other options. Therefore, option 3 is the most feasible and is the recommended bridge superstructure alternative. This recommended alternative has the following characteristics:
 - 100ft single-span bridge with 30-degree skew
 - Four (4) TxDOT Prestressed Concrete I-Girders (TX46)
 - 8.5in thick cast-in-place reinforced concrete deck and 4in thick prestressed concrete deck panels
 - Aesthetics similar to the Blondy Jhune bridges
 - The recommended vertical alignment associated with option 3 will raise the pavement elevation at the crossing approximately 12 feet from the existing top of pavement and will have retaining walls at all four corners of the bridge.
- F. The recommended method of construction is complete roadway closure and detour. The intersection of Shady Lane may be constructed in phases to avoid a complete closure.

2. INTRODUCTION

This Bridge Alternatives Report (BAR) is developed to define the parameters which affect the selection of the superstructure and substructure for the proposed bridge and provide alternatives with a recommendation. Issues addressed herein include geometric constraints, horizontal and vertical clearance requirements, utility conflicts, drainage issues, evaluation of span arrangements, evaluation of superstructure and substructure alternatives, aesthetics, traffic control, construction sequencing and construction cost.

It is not the intent for this BAR to define the precise geometry of all structural elements, but rather to provide information in sufficient detail to fairly assess the relative impacts of the various alternatives and establish basic parameters needed to proceed to the final design phase.

2.1. Project Background

Snider Lane crosses White Rock Creek approximately 0.6 miles east Winningkoff Road and approximately 1 mile west of Lavon Lake within the City of Lucas, located in Collin County, Texas. The existing culvert crossing is comprised of three concrete boxes with 8 feet by 8 feet openings and is approximately 31 feet long with the roadway directly on top of the boxes. It is estimated that the culvert was constructed around 1990 and does not appear to have been rehabilitated since construction other than slope protection addition. The crossing has a roadway width of approximately 29 feet and carries one lane of traffic in each direction with no shoulder width on either side.

Based on an inspection report performed by Lakes Engineering on July 11, 2019 (refer to Appendix B), the current condition of the culvert is functionally obsolete with a sufficiency rating of 93 (rated by NBIS procedure). It is important to note that functionally obsolete does not carry the meaning of functionally unsafe, at the time of this report. The field inspection found the following deficiencies:

- 1. Various diagonal cracks on approach slab 1 and 2
- 2. 6" settlement of approach slab 1 at the southwest corner
- 3. 2.5 settlement of approach slab 2 at the southeast corner
- 4. Lateral crack across the full width of the roadway on deck span 1
- 5. Light scaring on deck span 2
- 6. Concrete riprap settled 9" at abutment 4 southeast corner
- 7. Toe exposed, chipping and undermining of riprap at abutment 4 southeast corner
- 8. Exposed bottom slab toe with 18" scour and undermining at south channel south outfall
- 9. Exposed bottom slab toe with 5" scour at north channel northeast corner
- 10. Moderate bank erosion at north and south channels
- 11.75% delaminated on southwest face of abutment 1
- 12. 7" x 24" x 3" spall at second railing post on span 1 south headwall
- 13. 15" x 3" spall at both railing post on span 2 south headwall
- 14. Full width hairline crack at the beginning of span 3 north headwall
- 15. Scaring and gouging from debris at northwest corner of abutment 1
- 16. Scaring and gouging from debris at northeast corner of abutment 4
- 17. 0.010" full height crack with efflorescence on abutment 1
- 18. 0.020" full diagonal crack on abutment 4
- 19. 0.025" full height crack on wall 2 and wall 3

- 20. Various spalls on north side of wall 3
- 21. Slope protection appears to have settle 8" southwest corner of abutment 1
- 22. No slope protection at northwest corner of abutment 1 and northeast corner of abutment 4

The waterway opening appears to be inadequate. It is reported that White Rock Creek overtops Snider Lane multiple times a year, causing traffic delays and disruptions. A gate with a "ROAD FLOODED" sign is posted on each approach of the culvert that is closed by the City of Lucas when overtopping occurs.

Snider Lane culvert over White Rock Creek has a weight limit of 10 tons with signage located near Shady lane.

Existing condition photos are shown below.

Approach- Looking East

Approach - Looking West

Upstream Headwall

Downstream Headwall

Snider Bridge and Roadway Improvements from Susan Circle to Shady Lane Bridge Alternative Report

Upstream – During A Storm Event

Downstream – During A Storm Event

At Shady Lane – During A Storm Event

At Snider Lane Culvert – During A Storm Event

2.2. Project Objective

The intent of this project is to address the existing and future operational and safety conditions of Snider Lane over White Rock Creek. Because the age and current condition, the project proposes to replace the culvert with a new structure that is sufficiently durable and resilient to environmental effects, and flooding. The structure must be sustainable, minimize maintenance requirements and provide a safe and rideable corridor for the traveling public.

The project will involve the construction of a new bridge to carry Snider Lane over White Rock Creek located in the City of Lucas, Collin County, Texas. See **Figure 1 – Project Location Map.**

Figure 2 – Project Location Map

3. GEOMETRIC DESIGN

3.1. Geometric Criteria

Snider Lane is a low-speed, local road. It is classified as a low-speed, minor collector and is under the jurisdiction of the City of Lucas. Snider Lane has a posted speed limit of 35 mph. Snider Lane widens at the culvert over White Rock Creek.

Roadway Design Parameters

- Functional Classification: Rural/Minor Collector
- Design Speed: 35 mph
- Minimum Travel Lane Width: 12 ft.

Design Specifications

- American Association of State Highway and Transportation Officials (AASHTO) A Policy on Geometric Design of Highways and Streets "The Green Book" (2018), 7th Edition with latest Interim Revisions
- Texas Manual on Uniform Traffic Control Devices (October 2014)
- TxDOT Roadway Design Manual (April 2018)
- TxDOT Hydraulic Design Manual (September 2019)
- TxDOT Environmental Handbook (November 2019)
- TxDOT Bridge Project Development Manual (March 2018)

Horizontal Clearance

In accordance with the TxDOT Bridge Project Development Manual, Chapter 3, Section 1, bridges over water shall have substructure supports located within the horizontal clearance requirements as follows:

- A maximum of 2:1 embankment slope in a direction normal to the abutment cap.
- Side slopes should be normal to the roadway and no steeper than 3:1.
- Use stone riprap (preferred) or concrete riprap under the bridge and wrap around the abutment.

Embankment slope and stone riprap will be considered for the proposed bridge evaluation.

Vertical Clearance

According to Federal Emergency Management Agency (FEMA), the Base Flood Elevation (BFE), which is the current flood elevation, is at EL. 515.00. Based on TxDOT Hydraulic Design Manual a minimum 2'-0" freeboard, additional clearance above the flood elevation, is required. In order to prevent Snider Lane from future flooding, providing a minimum 2'-0" above the BFE should be provided. The minimum Low Member Elevation (bottom of the bearing pad) shall be equal or exceed an elevation of 517.00. However, by replacing the culvert with a bridge, the current flood elevation may be lower. An in-depth Hydrology and Hydraulic study shall be performed in Preliminary or Final Design.

The intent of the design is to provide the minimum vertical clearance. This is proposed to be achieved by a combination of minimization of the proposed structure depth and raising the vertical profile.

3.2. Horizontal and Vertical Alignment

Horizontal Alignment

The existing horizontal alignment of Snider Lane, within the limits of the culvert over the White Rock Creek, is on a tangent segment separated by two curves that do not meet current design standards. Only one alternative is presented for the proposed alignment.

Proposed Horizontal Alignment, Snider Lane bridge over White Rock Creek will be shifted slightly to the south of the existing Snider Lane alignment in order to correct the substandard curves. Additionally, this alignment will improve sight distance and visibility at Shady Lane.

Proposed Horizontal Alignment is shown in Figure 2 – Proposed Horizontal Alignment below.

Figure 2 – Proposed Horizontal Alignment

Vertical Alignment/Profile

White Rock has historically frequently overtopped Snider Lane. Raising the top of the roadway to be above the designated flood elevation is recommended throughout the corridor. It is also recommended that the low member elevation of the bridge be a minimum of 2'-0" above the current 100-year flood elevation. Several bridge superstructure alternatives (see section 5.4) were evaluated with the intent to minimize raising the vertical profile, which reduce the limits of the project, impact to property driveway access, and additional roadway embankment.

3.3. Right-of-Way

The City of Lucas has established a 50 feet prescriptive right-of-way being 25 feet offset each side of the existing centerline of the roads. There is a 90 feet dedicated right-of-way along Snider Lane from Winningkoff Road to the west end of the proposed bridge. At White Rock Creek crossing there is one (1) parcel north of Snider Lane that has a 50 feet dedicated right-of-way from the centerline and one (1) parcel on the south of Snider Lane that have a prescriptive right-of-way from the centerline of Snider Lane. East of the proposed bridge, there is one (1) parcel on the north of Snider Lane that has a 35 feet dedicated right-of-way from the centerline of Snider Lane. East of the proposed bridge, there is one (1) parcel on the north of Snider Lane that has a 35 feet dedicated right-of-way from the centerline of Snider Lane. The proposed Horizontal Alignment at the bridge will require a temporary construction easement from one (1) parcel. Therefore, to build the bridge improvements a permit is required from the United States Army Corps of Engineers property to obtain a total of 44,365 square feet of temporary construction easement. See Exhibit A for reference.

3.4. Easement

The City of Lucas has 20 feet of water/utility easement offset from the existing right-of-way on both sides of Snider Lane from Winningkoff Road to White Rock Creek crossing. There are two (2) parcels on the north of Snider Lane and west of Shady Lane that do not have a water/utility easement on record. Also, there is (1) parcel on the north of Snider Lane and East of Shady Lane that does not have a water/utility easement on record. We recommend the acquisition of a 20-ft utility/drainage easement from the above three (3) parcels along Snider Lane. This project will require the relocation of several franchise utilities and those could be accommodated within the proposed easement area, separated from the roadway improvements.

3.5. Access Impact

There is one (1) utility service driveway and one (1) equestrian trail access within the project limits on Snider Lane that will be impacted. It is recommended both the utility driveway and trail access be relocated near Natha Court. An in-depth evaluation for the utility driveway and trail access locations will be performed in the final design phase. Access must be provided for all property owners during the duration of construction. Temporary driveways may be required.

3.6. Intersection Impact

Shady Lane at Snider Lane intersection will be impacted due to the proposed vertical alignment raise. The recommended vertical alignment will raise the intersection of approximately 5 feet from the existing top of pavement to the proposed top of pavement. Retaining walls are recommended to limit right of way acquisition. An in-depth retaining wall and intersection sight distance evaluation will be performed in the final design phase.

4. STRUCTURAL DESIGN CRITERIA

4.1. Specifications

The design of the structural elements of this project shall be in full compliance with AASHTO and TxDOT Bridge Design Manual - LRFD. The structure shall be designed in accordance with the TxDOT standard practices and procedures. The design shall comply with the latest edition of the following design specifications:

General Specifications:

• Texas Department of Transportation (TxDOT) Standard Specifications for Construction and Maintenance of Highways, Streets and Bridge, 2014

Design Standards and Specifications:

- American Association of State Highway and Transportation Officials (AASHTO) LRFD Bridge Design Specifications (2017), 8th Edition with latest Interim Revisions
- TxDOT Bridge Project Development Manual (March 2018)
- TxDOT Bridge Design Manual LRFD (July 2018)
- TxDOT Bridge Railing Manual (September 2019)
- TxDOT Bridge Standard Details Drawings

Design Methodology

All structural components shall be designed in accordance with Load and Resistance Factor (LRFD) design methodology. The design life for bridge structures is 75 years per AASHTO LRFD and TxDOT design criteria.

4.2. Bridge Loading

The following design loads were utilized in the evaluation of the superstructure and substructure alternatives:

Dead Loads:

Unit weights in accordance with the TxDOT Sta	andards and the AASHTO LRFD Bridge Design
Specifications were utilized.	
Concrete, Structural	
Asphalt Concrete Pavement Overlay	(Applicable to prestressed slab unit alternative)
Future Wearing Surface	
Soil, Compacted120 pcf	
Vertical-Faced Concrete Parapet	(TxDOT Traffic Railing Type T411)
Bridge Deck Sacrificial Thickness1/2 in.	$(\frac{1}{2})^{*}$ sacrificial deck thickness for grinding and grooving was accounted for as dead load but was

not utilized for bridge deck section properties).

Live Loads

Vehicular Loading: HL-93

Wind Loads

Wind loads will be calculated in accordance with AASHTO LRFD Bridge Design Specifications.

Vessel Collision

Not applicable.

Lakes Engineering, Inc.

Seismic Criteria

According to TxDOT Bridge Design Manual, bridges and structure in Texas do not require analysis for seismic loading due to the low seismic hazard as shown in AASHTO Article 3.10.2. TxDOT Bridge Standards and conventional bridge configurations have been evaluated for seismic effects and do not require further analysis.

4.3. Environmental Classification

Non-Severe: De-icing agents are not frequently used and contact with salt-water spray is not possible.

4.4. Materials

The following material properties shall be utilized in the design of the structures:

Concrete

Concrete shall be specified in accordance with TxDOT Standard Specifications.

Class	Minimum 28-day Compressive Strength (psi)	Location			
	Superstructure				
C (HPC if needed)	3,600	Traffic Railings			
S (HPC if needed)	4,000	Decks and Approach Slabs,			
H (HPC if needed)	5,500	Prestressed Deck Slab Units			
	Substructure				
С	3,600	Abutments, Bent and Wingwalls			
C (Drilled Shaft)	3,600	Drilled Shafts			
C (Driven Pile)	3,600	Driven Piles			

Reinforcing Steel

Reinforcement shall be ASTM A615, Grade 60 deformed carbon-steel bar. All superstructure reinforcement shall be epoxy coated or galvanized.

Prestressing Steel

Prestressing strands shall conform to ASTM A416, Grade 270, low-relaxation strands. Stress-relieved strands will not be used.

4.5. Permit

The following regulatory and permitting agencies may have interest and/or jurisdiction requiring permits to perform the proposed bridge replacement:

- City of Lucas
- Texas Commission on Environmental Quality (TCEQ)
- United States Environmental Protection Agency (EPA)
- Federal Emergency Management Agency (FEMA)
- United State Army Corp of Engineers (USACE)

4.6. Aesthetics

The proposed bridge will not have any non-standard aesthetic requirements. However, the bridge aesthetics may be similar to the Blondy Jhune bridges.

4.7. Utilities

Based on field surveying performed by Surveying and Mapping, LLC (SAM) in April 2020, existing overhead and underground utilities were noted at various locations. Further investigation will need to be conducted as the project progresses to identify the exact facility locations. The following companies operate within the project limits:

- City of Lucas Public Utilities 8" water line located along the south side of Snider Lane and 3" water lines tapped at Susan Circle, Natha Court and Shady Lane.
- Grayson Collin Electric Underground facilities on the south side of Snider lane.
- AT&T Fiber Underground facilities located along the south side of Snider lane
- AT&T Telephone Underground facilities located along the North side of Snider lane
- Frontier Telephone Underground facilities located along the south side of Snider lane.
- Suddenlink CATV Underground facilities along the east side of Susan Circle and west side of Natha Court.

There are five (5) Utility Agency Owners (UAO) with facilities within the project limits and additional utility coordination will be performed in preliminary and final design phases. The table below lists utility agency owners, utility contact data, and potential for required relocations.

Existing Utilities						
	Utility Agency Owner	Facilities	Contact Person	Phone/Email	Relocation Potential	
1	City of Lucas	Water	Jeremy Bogle	469-628-8586	Y	
2	Grayson Collin	Electric	Michael Lauer	mlauer@gcec.net	Y	
3	AT&T	Fiber	Joanie Baker	972-649-8759	Y	
4	AT&T	Telephone	Joanie Baker	972-649-8759	Y	
5	Frontier	Telephone	David Lemons	972-578-3212	Y	
6	Suddenlink	CATV	N/A	N/A	Ν	

Bridge Mounted Utilities

The existing culvert structure does not carry any utilities. No utilities are proposed for attachment to the bridge. It is recommended that conduit be placed in each bridge railing for future use of utility passthrough.

Overhead Utilities

Shared-use utility poles run longitudinally near the west and east fascia of the proposed bridge, carrying electrical, and telephone/cable. These electric/telephone overhead utilities will need to be adjusted to meet the vertical clearance requirements. This will need to be discussed with the Franchise Utility owners and they will adjust or relocate according to their standards.

Construction activities will need to address temporary support or relocation of these utilities.

5. BRIDGE ALTERNATIVES

5.1. Span Arrangement Alternatives

An approximate minimum overall bridge length of 100'-0" is required to span over White Rock Creek. This would locate the begin and end bridge outside of the existing banks of White Rock Creek and would provide a 2H:1V slope embankment at each abutment. The proposed abutments would be placed approximately at the edge of White Rock Creek top of bank to minimize future scour potential. The proposed bridge replacement structure must comply with the vertical clearance requirement discussed in Section 3 above.

Single-Span Bridge Option

A single-span bridge option is considered for the culvert structure replacement to maximize the bridge opening for optimum hydraulics. This option is less likely to minimize vertical profile raise; however, it offers the most cost-effective option by minimizing substructure costs. As such, this option appears to be the most feasible.

The proposed Plan for Horizontal Alignment 1 is shown in **Figure 3 – Plan View** below.

Figure 3 - Bridge Plan

The proposed Elevation for Horizontal Alignment 1 is shown in Figure 4 – Elevation View below.

Figure 4 - Bridge Elevation

Two-Span Bridge Option

A two-span bridge is another option to minimize vertical profile raise; however, this option is less feasible as it would locate an intermediate bent in the middle of the White Rock Creek's, which would require additional future maintenance, introduces high scour potential, and impedes the hydraulic opening. Having an intermediate bent increases the overall construction cost above a similar length single-span bridge in this particular situation and is not considered economical. As such, a two-span bridge was not further evaluated.

Three-Span Bridge Option

A three-span bridge is another option to minimize vertical profile raise; however, this option is not feasible as it would locate two intermediate bents near the edge of the White Rock Creek's embankments, which increase the negative impacts mentioned above in the two-span option. As such, a three-span bridge was not further evaluated.

Recommendation

A single-span bridge configuration is recommended for the replacement structure.

5.2. Bridge Skew

White Rock Creek is on an approximate 30-degree skew to Snider Lane; therefore, the bridge abutments will have a 30-degree skew.

5.3. Typical Section

The existing roadway approach typical sections have two (2) approximately 10 feet paved asphalt travel lanes and no shoulders on either side. The roadway widens over the White Rock Creek culvert crossing. The existing typical section of Snider Lane at the White Rock Creek culvert has two (2) approximately 14'-6" concrete paved travel lanes, no shoulders on either side, and a substandard guard rail. Flood gates are located before and after the culvert.

The existing typical section of Snider Lane over White Rock Creek is shown in **Figure 5 – Existing Typical Section** below.

Figure 5 – Snider Lane Typical Section at White Rock Creek

Proposed Typical Section 1:

Based on TxDOT Statewide Planning Map, Snider Lane has an annual average daily traffic (AADT) count of 211 in 2018 and an estimated AADT count of 342 in 2038. Based on the TxDOT Roadway Design Manual (April 2018), the proposed Snider Lane's typical section is to follow a Rural Two-Way Highway design. The proposed roadway typical section provides two (2) 12'-0" travel lanes and a 4'-0" unpaved shoulder in each direction. Travel lanes and shoulders provide a cross-slope of 0.02 ft/ft and 0.06 ft/ft. respectively. The proposed bridge typical section provides two (2) 12'-0" travel lanes and a 4'-0" shoulder in each direction. Travel lanes and shoulders provide a constant cross-slope of 0.02 ft/ft. Based on TxDOT Bridge Railing Manual (September 2019), 45 mph or less is considered as low speed, and a bridge railing that is a minimum Test Level 2 (TL-2) is required. There are three (3) types of bridge railings that have a minimum TL-2 rating, such as T631LS, T411, and C411. There are no sidewalks present on Snider Lane, therefore, type C411 is not suitable. Type T631LS is a w-beam supported on steel posts and needs to be replaced after an impact. Type T411 is a continuous concrete railing that has 6" wide windows spaced every 18", center to center, with a nominal 2'-8" height and 1'-0' width. The recommended bridge railing is type T411. Type T411 is less likely to require replacement after impact and offers better aesthetics, Texas Classic, over type T631LS. The proposed bridge typical section will have an out-to-out bridge width of 34'-0".

The proposed bridge typical section is shown in Figure 6 – Proposed Bridge Typical Section 1 below.

Figure 6 - Proposed Bridge Typical Section 1

Proposed Typical Section 2:

The City of Lucas has requested an ADT design of 20,000 be considered for Snider Lane to accommodate potential future traffic increases. Based on the TxDOT Roadway Design Manual (April 2018), the proposed Snider Lane's typical section is to follow a Rural Two-Way Highway design. The proposed roadway typical section provides two (2) 12'-0" travel lanes and an 8'-0" unpaved shoulder in each direction. Travel lanes and shoulders provide a cross-slope of 0.02 ft/ft and 0.06 ft/ft, respectively. The proposed bridge typical section provides two (2) 12'-0" travel lanes and an 8'-0" shoulder in each direction. Travel lanes and shoulders provide a constant cross-slope of 0.02 ft/ft. Based on TxDOT Bridge Railing Manual (September 2019), 45 mph or less is considered as low speed, and a bridge railing that is a minimum Test Level 2 (TL-2) is required. There are three (3) types of bridge railings that have a minimum TL-2 rating, such as T631LS, T411, and C411. There are no sidewalks present on Snider Lane, therefore, type C411 is not suitable. Type T631LS is a w-beam supported on steel posts and needs to be replaced after an impact. Type T411 is a continuous concrete railing that has 6" wide windows spaced every 18", center to center, with a nominal 2'-8" height and 1'-0' width. The recommended bridge railing is type T411. Type T411 is less likely to require replacement after impact and offers better aesthetics, Texas Classic, over type T631LS. The proposed bridge typical section will have an out-to-out bridge width of 42'-0".

The proposed bridge typical section is shown in Figure 7 – Proposed Bridge Typical Section 2 below.

Figure 7 - Proposed Bridge Typical Section 2

Recommendation

The advantages of Bridge Typical Section 1 over Bridge Typical Section 2 are listed below.

- Lower overall construction cost
- Does not require Right-of-Way or easement acquisition from USACE on the south side of Snider Lane
- Less impact to driveways, turnouts and intersections

The disadvantages of Bridge Typical Section 1 over Bridge Typical Section 2 are listed below.

- Does not allows construction in phases or at least one lane open to traffic
- Less shoulder width
- Does not meet design standards for 20,000 ADT (Average Daily Traffic)

Proposed Bridge Typical Section 2 would require right-of-way acquisition and increased overall construction cost. A significant key disadvantage of Bridge Typical Section 1 over Bridge Typical Section 2 is that it does not meet the design standards for an ADT of 20,000. According to TxDOT Roadway Design Manual for a collector two-lane rural highway with an ADT more than 2,000 it is recommended to have a minimum of 8 feet shoulder. Snider Lane serves a small community with property size of 1 acre or more. It is not expected that this area will be developed with high density lots as most properties along Snider Lane are developed. Because of the large increase in bridge width required to meet design criteria for an ADT of 20,000, the cost increase for the Bridge Typical Section 2 is large. Bridge Typical Section 1 is functional and meets the needs of the community and the wider bridge typical section does not appear to provide a significant advantage to offset the overall cost increase; therefore, Bridge Typical Section 1 is recommended.

5.4. Superstructure Alternatives

The superstructure alternatives have been selected to satisfy the minimum horizontal and vertical clearance, hydraulic requirements, and constructability. Many superstructure alternatives were considered and evaluated based on the recommended Horizontal Alignment as discussed in section 3.2 above.

Seven superstructure alternatives were considered and evaluated for Snider Lane Bridge over White Rock Creek. The overall bridge length is 100'-0". TxDOT Prestressed Concrete Slab Beam and Decked Slab Beams were evaluated and eliminated due to capacity limitations at this span length. A steel through-truss superstructure was considered to minimize superstructure depth. The advantages to a through-truss superstructure are generally realized in long spans where prestressed concrete does not perform well or the members become very large. Since the span is relatively short, the structure depth for a through-truss is not less than other alternatives considered. Further, the structure depth is not a limiting factor since the roadway must be raised significantly to remain above the 100-year flood elevation. Therefore, the steel through-truss was eliminated. The remaining four superstructure alternatives are described below, options 1 through 4.

Each superstructure alternative presented below considers the recommended proposed Bridge Typical Section 1 as discussed in Section 5.3 above.

Option 1: TxDOT Prestressed Concrete Box Beams (5B34 &4B34)

This superstructure alternative consists of replacing the existing culvert structure with a single-span bridge utilizing six (6) TxDOT Prestressed Concrete Box Beams (5B34) and one (1) TxDOT Prestressed Concrete Box Beam (4B34) with a minimum of 5" thick Cast-in-Place (CIP) reinforced concrete deck. The proposed superstructure depth is 39". This shallow superstructure depth in conjunction with a modified vertical profile results in the lowest vertical profile raise over White Rock Creek and places the bottom of the bridge bearing elevation to be above the 100-year flood storm. Option 1 proposes a 10.88' vertical profile raise and is the second most cost-effective superstructure alternative. Refer to Appendix A for the options cost comparison.

The proposed TxDOT Prestressed Concrete Box Beams (5B34 & 4B34) typical section is shown in **Figure 8 – TxDOT Prestressed Concrete Box Beams (5B34 & 4B34) Typical Section** below.

Figure 8 - TxDOT Prestressed Concrete Box Beams (5B34 & 4B34) Typical Section

Option 2: TxDOT Prestressed Concrete XBeams (5XB40)

This superstructure alternative consists of replacing the existing culvert structure with a single-span bridge utilizing four (4) TxDOT Prestressed Concrete XBeams (5XB40) with an 8" thick Cast-in-Place (CIP) reinforced concrete deck. The proposed superstructure depth is 50". This shallow superstructure depth in conjunction with a modified vertical profile results in the second lowest vertical profile raise over White Rock Creek and places the bottom of the bridge bearing elevation to be above the 100-year flood storm. Option 2 proposes an 11.80' vertical profile raise and is the third most cost-effective superstructure alternative. Refer to Appendix A for the options cost comparison.

The proposed TxDOT Prestressed Concrete XBeams (5XB40) typical section is shown in **Figure 9 – TxDOT Prestressed Concrete XBeams (5XB40) Typical Section** below.

Figure 9 - TxDOT Prestressed Concrete XBeams (5XB40) Typical Section

Option 3: TxDOT Prestressed Concrete I-Girders (TX46)

This superstructure alternative consists of replacing the existing culvert structure with a single-span bridge utilizing four (4) TxDOT Prestressed Concrete I-Girders (TX46) with an 8.5" thick Cast-in-Place (CIP) reinforced concrete deck and 4" thick prestressed concrete deck panels. The proposed superstructure depth is 56.5". This superstructure depth in conjunction with a modified vertical profile results in the highest vertical profile raise over White Rock Creek and places the bottom of the bridge bearing elevation to be above the 100-year flood storm. Option 3 proposes a 12.34' vertical profile raise and is the most cost-effective superstructure alternative. Refer to Appendix A for the options cost comparison.

The proposed TxDOT Prestressed Concrete I-Girders (TX46) typical shown in **Figure 10 – TxDOT Prestressed Concrete I-Girders (TX46) Typical Section** below.

Figure 10 - TxDOT Prestressed Concrete I-Girders (TX46) Typical Section

Snider Bridge and Roadway Improvements from Susan Circle to Shady Lane Bridge Alternative Report

Option 4A: Steel Plate Girders (40"X1/2" Web) or Option 4B: Steel Rolled Beams (W40X211)

This superstructure alternative consists of replacing the existing culvert structure with a single-span bridge utilizing five (5) Steel Plate Girders (40"X1/2" Web) or five (5) Steel Rolled Beams (W40X211), both with an 8.5" thick Cast-in-Place (CIP) reinforced concrete deck. The proposed superstructure depth is 53" for plate girders and 50" for rolled beams. These superstructure depths in conjunction with a modified vertical profile result in the third lowest vertical profile raise for plate girders and second lowest vertical profile raise for rolled beams over White Rock Creek and place the bottom of the bridge bearing elevation to be above the 100-year flood storm. Option 4A & 4B propose a 12.03' vertical profile raise for plate girders and 11.79' vertical profile raise for rolled beams and are both the least cost-effective superstructure alternatives. Refer to Appendix A for the options cost comparison.

The proposed Steel Plate Girders (40"X1/2" Web) or Steel Rolled Beams (W40X211) typical section is shown in **Figure 11 – Steel Plate Girders (40"X1/2" Web) or Steel Rolled Beams (W40X211) Typical Section** below.

Figure 11 - Steel Plate Girders (40"X1/2" Web) or Steel Rolled Beams (W40X211) Typical Section

Recommendation

Of the four options discussed above for the proposed Horizontal Alignment, Option 3 is recommended: a single-span bridge utilizing four (4) TxDOT Prestressed Concrete I-Girders (TX46) with 8.5" thick reinforced concrete deck. Option 3 does not provide the shallowest superstructure depth, nor does it minimize the vertical profile raise, but this option is the most feasible superstructure in terms of overall cost savings.

5.5. Substructure / Foundation Alternatives

A full geotechnical evaluation of the bridge site will be investigated during the final design phase to determine the suitability and capacity needed for the proposed bridge replacement. TxDOT standard for prestressed concrete I-girders allows two foundation alternatives with a cast-in-place concrete abutment cap. A specialty design may also be considered should the geotechnical evaluation recommend a non-standard substructure.

Driven Concrete Piles

TxDOT Standard allows for six (6) 18"x18" driven concrete piles per an abutment for prestressed concrete l-girders. An in-depth foundation design will be performed to verify the capacity in the final design phase.

Drilled Shafts

TxDOT Standard allows for four (4) 30" diameter drilled shafts per an abutment for prestressed concrete I-girders. An in-depth foundation design will be performed to verify the capacity in the final design phase.

Recommendation

No recommendation is provided at this time for the substructure foundation alternatives.

5.6. Retaining Walls

Retaining walls will be used on this project to minimize the encroachment of the roadway embankment and to contain the typical section footprint within the limits of the existing right-of-way. Two types of walls are considered feasible, conventional Cast-In-Place (CIP) walls and Mechanically Stabilized Earth (MSE) retaining walls. The required wall area is determined by superstructure type as well as the foundation soil conditions to determine what type of wall will be best suited for this application. An in-depth retaining wall evaluation will be performed in the final design phase.

5.7. Bridge Drainage

Bridge drainage will be evaluated in preliminary and final design phases.

5.8. Bridge Lighting

There is no streetlight system existing along Snider Lane, and there are no light poles on the existing culvert. Therefore, no lighting will be proposed for the bridge.

5.9. Construction Sequencing

Safety to motorists and pedestrians is the highest priority for the Traffic Control Plan and the plan must minimize disruption to traffic flow during the construction of these improvements. To achieve these goals several keys issues will be addressed in the development of the selected alternative:

- Maintain access to the residential community during all phases of construction.
- Communicate with all project stakeholders, including local HOAs.
- Avoid or minimize utility facility relocations.
- Minimize impacts to traffic during the construction phase.

The following two construction options have been evaluated:

Phased Construction Option

To maintain traffic along Snider Lane, phased construction was considered and evaluated. At the culvert, Snider Lane has a paved roadway width of approximately 21 ft. TxDOT requires a 1'-0" offset from the temporary barriers and a minimum 12'-0" lane. Given the required widths and width of temporary barriers, providing two lanes of traffic will be impossible, however, leaving only one westbound or eastbound lane open was considered. Also, temporary shoring will be needed due to the significant profile raise, which increases the project limit even farther due to lane shifting requirements. Initial investigations find staged construction will require either widening the bridge or shifting the horizontal alignment. Either widening the bridge or shifting the horizontal alignment to accommodate a phased construction would significantly increase the cost due to temporary shoring, traffic control items and schedule.

Complete Closure with Detour Option

Replacement of the Snider Lane Culvert of White Rock Creek can be completed in a shorter duration and with a reduced construction cost (when compared to the phased option) by implementing complete closure from Susan Circle to Shady Lane during construction and implementing a Detour. An initial detour plan will utilize East Lucas Road for west to east detours and Winningkoff Road for south to north detours. Shady Lane can be used for west to east detours only during the construction of the bridge and a portion of the roadway improvement up to Shady Lane. However, due to a change of profile at the intersection of Snider Lane and Shady Lane, Shady Lane will be closed for the construction of the remaining roadway improvement and access maintained from the north. An in-depth detour route and access plan will be evaluated in preliminary design.

Recommendation

The Complete Closure with Detour Option is recommended as this would allow for a shorter construction duration, resulting in overall construction savings.

6. ALTERNATIVE COST COMPARISON

A comparison of the estimated difference in cost of each alternative to Option 3 has been prepared. The comparison is based on certain major components of cost, such as the bridge, roadway, and retaining walls evaluated (refer to Appendix A - Alternatives Cost Comparison for more details).

The table below summarizes the bridge alternatives by percentage differences of cost for each alternative compared with Option 3 based only on superstructure types.

	Bridge Alternatives	% Difference Compared to Option 3
Option 1:	Single-Span with six-5B34 & one-4B34 Beams	38% increase
Option 2:	Single-Span with four-5XB40 Beams	58% increase
Option 3:	Single-Span with four-TX46 Beams	
Option 4A:	Single-Span with five-Plate Girder Beams	66% increase
Option 4B:	Single-Span with five-W40x211 Beams	222% increase

Based on a bridge superstructure cost estimated comparison, Option 3 is the most economical.

The table below summarizes the associated roadway profile raise of each bridge alternatives by percentage differences of cost compared with Option 3 based only on roadway fill. Profile raise is measured from the top of the existing pavement at the culvert to the top of the proposed concrete bridge deck at the beginning of the proposed bridge span. The top of the existing pavement at the culvert and at the beginning of the proposed bridge span is estimated to be at EL. 509.94.

	Roadway Profile Raise	% Difference Compared to Option 3
Option 1:	10.88 feet Profile Raise	3% decrease
Option 2:	11.80 feet Profile Raise	3% decrease
Option 3:	12.34 feet Profile Raise	
Option 4A:	12.03 feet Profile Raise	2% decrease
Option 4B:	11.79 feet Profile Raise	3% decrease

Based on the roadway profile raise cost estimated comparison, Option 1 is the most economical. However, Option 3 bridge superstructure cost offsets the cost enough from Option 1 roadway profile cost. Option 3 would be a more suitable alternative in this case.

The table below summarizes the associated retaining wall area of each bridge alternatives and roadway profile raise by percentage differences of cost compared with Option 3 based only on estimated exposed retaining wall area.

	Retaining Wall Area	% Difference Compared to Option 3
Option 1:	8709 SF	10% decrease
Option 2:	9292 SF	4% decrease
Option 3:	9637 SF	
Option 4A:	9438 SF	2% decrease
Option 4B:	9292 SF	4% decrease

Based on retaining wall cost estimated comparison, Option 1 is the most economical. However, Option 3 bridge superstructure cost offsets the cost enough from Option 1 retaining wall cost. Option 3 would be a more suitable alternative in this case.

The table below summarizes the overall alternatives by percentage differences of cost for each alternative compared with Option 3.

	Overall Alternatives	% Difference Compared to Option 3
Option 1:	Single-Span with six-5B34 & one-4B34 Beams	3% increase
Option 2:	Single-Span with four-5XB40 Beams	12% increase
Option 3:	Single-Span with four-TX46 Beams	
Option 4A:	Single-Span with five-Plate Girder Beams	15% increase
Option 4B:	Single-Span with five-W40x211 Beams	52% increase

This comparison provides a summary of the overall cost for each option. Based on the above overall alternative cost estimated comparison, Option 3 is the most economical and provides an overall cost-savings.

Recommendation

The proposed bridge typical section provides one (1) 12'-0" traveling lanes in each direction and a 4'-0" wide shoulder on each side with a 0.02 ft/ft crown, and a bridge railing type T411. The proposed roadway typical section provides one (1) paved 12'-0" traveling lanes in each direction and a 4'-0" wide shoulder on each side with a cross-slope of 0.02 ft/ft.

Given the information herein presented, it is recommended that Snider Lane Culvert be replaced with a 100'-0" single-span bridge on the proposed Horizontal Alignment with a 12.34 ft vertical profile raise, utilizing Option 3: four (4) TxDOT Prestressed Concrete I-Girders (TX46) with an 8.5" thick cast-in-place reinforced concrete deck and 4" thick prestressed concrete deck panels, supported on twelve (12) 18"x18" driven concrete piles foundation or eight (8) 36" diameter drilled shafts with a cast-in-place reinforced concrete abutment foundation. Retaining walls are recommended on all four corners of the bridge. It is recommended that construction be completed by implementing a complete roadway closure and detour.

APPENDIX A: Alternative Cost Comparison Estimate / Calculations

Bridge Typical Section 1 - Alternative Cost Comparison

Snider Bridge Roadway Improvements from Susan Circle to Shady Lane

City of Lucas

	Bridge	Typical Section 1			
Bridge Superstructure	Option 1	Option 2	Option 3	Option 4A	Option 4B
Beam Type	5B34/4B34	5XB40	TX46	Plate Girder	W40X211
BEAMS		•		•	•
beam length	99.67 lf	99.67 lf	99.67 lf	99.67 lf	99.67 lf
no. beam	7	4	4	5	5
beam unit weight (steel option only)				196 lb/lf	211 lb/lf
total beam length	697.67 lf	398.67 lf	398.67 lf	97673.33 lb	105148.33 lb
unit cost (\$/lf)	\$265.00	\$475.00	\$150.00	\$2.00 /lb	\$5.00 /lb
total cost	\$184,881.67	\$189,366.67	\$59,800.00	\$195,346.67	\$525,741.67
DECK					
deck/overlay width	34.67 lf	34.00 lf	34.00 lf	34.00 lf	34.00 lf
deck/overlay length	99.67 lf	99.67 lf	99.67 lf	99.67 lf	99.67 lf
deck thickness	5.0 in	8.0 in	8.5 in	8.5 in	8.5 in
total deck volume	53.32 cy	83.67 cy	88.90 cy	88.90 cy	88.90 cy
unit cost (\$/cy)	\$1,550.00	\$1,550.00	\$1,550.00	\$1,550.00	\$1,550.00
total cost	\$82,645.40	\$129,689.71	\$137,795.32	\$137,795.32	\$137,795.32
BEARING PADS		-			
total no. bearing pads	14 ea	8 ea	8 ea	10 ea	10 ea
unit cost (\$/each)	\$1,700.00	\$1,700.00	\$1,700.00	\$1,700.00	\$1,700.00
total cost	\$23,800.00	\$13,600.00	\$13,600.00	\$17,000.00	\$17,000.00
				-	-
Overall bridge alternative cost *	\$291,327.07	\$332,656.38	\$211,195.32	\$350,141.99	\$680,536.99
% difference Compared to Option 3	38%	58%	0%	66%	222%
		-			
Roadway Profile Fill	Option 1	Option 2	Option 3	Option 4A	Option 4B
roadway profile fill area (elevation view)	4860 sf	5171 sf	5355 sf	5249 sf	5171 sf
roadway profile fill width	34.33 ft	32 ft	32 ft	32 ft	32 ft
roadway profile fill volume	6180.25 cy	6128.55 cy	6346.19 cy	6220.63 cy	6128.55 cy
unit cost (\$/cy)	\$25.00	\$25.00	\$25.00	\$25.00	\$25.00
total cost	\$154,506.36	\$153,213.80	\$158,654.81	\$155,515.77	\$153,213.80
Overall roadway alternative cost *	\$154,506.36	\$153,213.80	\$158,654.81	\$155,515.77	\$153,213.80
% difference Compared to Option 3	-3%	-3%	0%	-2%	-3%
				1	1
Retaining Wall	Option 1	Option 2	Option 3	Option 4A	Option 4B
		r	1		
retaining wall area	4354 sf	4646 sf	4818 sf	4719 sf	4646 sf
no. retaining walls	2	2	2	2	2
total retaining wall area	8709 sf	9292 sf	9637 sf	9438 sf	9292 sf
unit cost (\$/sf)	\$50.00	\$50.00	\$50.00	\$50.00	\$50.00
total cost	CADE 440.00	\$161 599 13	\$481 830 00	¢171 000 20	\$464 500 42
total cost	\$435,440.00	Ş404,333.43	\$401,050.00	3471,003.23	3404,399.43
	\$435,440.00	Ş404,333.43	, +01,030.00	\$471,005.25	\$404,355.43
Overall retaining wall cost *	\$435,440.00 \$435,440.00	\$464,599.43	\$481,830.00	\$471,889.29	\$464,599.43

		Bridge Typical Section 1			
	Option 1 Option 2 Option 3 Option 4A Option 4				Option 4B
OVERALL ALTERNATIVE COST **	\$881,273.43	\$950,469.61	\$851,680.13	\$977,547.04	\$1,298,350.21
% difference Compared to Option 3	3%	12%	0%	15%	52%
			Recommendation		

* Does not reflect all components, and only selective variable components were used for aiding alternative selection.
 ** Overall Alternative Cost does not reflect fully estimated construction cost, and is only used for aiding alternative selection.

A BCC Engineering Company

Date: July 10, 2020

Bridge Typical Section 2 - Alternative Cost Comparison

Snider Bridge Roadway Improvements from Susan Circle to Shady Lane

City of Lucas

	Bridge	Typical Section 2			
Bridge Superstructure	Option 1	Option 2	Option 3	Option 4A	Option 4B
Beam Type	5B34/4B34	5XB40	TX46	Plate Girder	W44X262
BEAMS		•	•	•	
beam length	99.67 lf	99.67 lf	99.67 lf	99.67 lf	99.67 lf
no. beam	9	5	5	5	5
beam unit weight (steel option only)				245 lb/lf	262 lb/lf
total beam length	897.00 lf	498.33 lf	498.33 lf	122091.67 lb	130563.33 lb
unit cost (\$/lf)	\$265.00	\$475.00	\$150.00	\$2.00 /lb	\$5.00 /lb
total cost	\$237,705.00	\$236,708.33	\$74,750.00	\$244,183.33	\$652,816.67
DECK					
deck/overlay width	42.89 lf	42.00 lf	42.00 lf	42.00 lf	42.00 lf
deck/overlay length	99.67 lf	99.67 lf	99.67 lf	99.67 lf	99.67 lf
deck thickness	5.0 in	8.0 in	8.5 in	8.5 in	8.5 in
total deck volume	65.96 cy	103.36 cy	109.82 cy	109.82 cy	109.82 cy
unit cost (\$/cy)	\$1,550.00	\$1,550.00	\$1,550.00	\$1,550.00	\$1,550.00
total cost	\$102,238.92	\$160,204.94	\$170,217.75	\$170,217.75	\$170,217.75
BEARING PADS					
total no. bearing pads	18 ea	10 ea	10 ea	10 ea	10 ea
unit cost (\$/each)	\$1,700.00	\$1,700.00	\$1,700.00	\$1,700.00	\$1,700.00
total cost	\$30,600.00	\$17,000.00	\$17,000.00	\$17,000.00	\$17,000.00
Overall bridge alternative cost *	\$370,543.92	\$413,913.27	\$261,967.75	\$431,401.08	\$840,034.41
% difference Compared to Option 3	41%	58%	0%	65%	221%
Roadway Profile Fill	Option 1	Option 2	Option 3	Option 4A	Option 4B
roadway profile fill area (elevation view)	4860 sf	5171 sf	5355 sf	5249 sf	5171 sf
roadway profile fill width	42.56 ft	40 ft	40 ft	40 ft	40 ft
roadway profile fill volume	7661.57 cy	7660.69 cy	7932.74 cy	7775.79 cy	7660.69 cy
unit cost (\$/cy)	\$25.00	\$25.00	\$25.00	\$25.00	\$25.00
total cost	\$191,539.13	\$191,517.25	\$198,318.52	\$194,394.71	\$191,517.25
Overall roadway alternative cost *	\$191,539.13	\$191,517.25	\$198,318.52	\$194,394.71	\$191,517.25
% difference Compared to Option 3	-3%	-3%	0%	-2%	-3%
Retaining Wall	Option 1	Option 2	Option 3	Option 4A	Option 4B
		•			
retaining wall area	4354 sf	4646 sf	4818 sf	4719 sf	4646 sf
no. retaining walls	2	2	2	2	2
total retaining wall area	8709 sf	9292 sf	9637 sf	9438 sf	9292 sf
unit cost (\$/sf)	\$50.00	\$50.00	\$50.00	\$50.00	\$50.00
total cost	\$435,440.00	\$464,599.43	\$481,830.00	\$471,889.29	\$464,599.43
Overall retaining wall cost *	\$42E 440 00	\$464 500 42	\$/181 830 00	\$171 889 29	\$464 500 42
	<u>3433,440.00</u>	2404,333.43	9401,030.00	J=/1,00J.2J	2404,333.43
% difference Compared to Option 3	-10%	-4%	0%	-2%	-4%

		Bridge Typical Section 2			
	Option 1 Option 2 Option 3 Option 4A Option 4B				Option 4B
OVERALL ALTERNATIVE COST **	\$997,523.05	\$1,070,029.95	\$942,116.27	\$1,097,685.07	\$1,496,151.09
% difference Compared to Option 3	6%	14%	0%	17%	59%
			Recommendation		

* Does not reflect all components, and only selective variable components were used for aiding alternative selection.
 ** Overall Alternative Cost does not reflect fully estimated construction cost, and is only used for aiding alternative selection.

A BCC Engineering Company

Date: July 10, 2020

Bridge Typical Section 1 VS Bridge Typical Section 2 **Alternative Cost Comparison**

Snider Bridge Roadway Improvements from Susan Circle to Shady Lane

City of Lucas

	Bridge Typical Section 1	Bridge Typical Section 2
Bridge Superstructure	Option 3	Option 3
Beam Type	TX46	TX46
BEAMS		
beam length	99.67 lf	99.67 lf
no. beam	4	5
beam unit weight (steel option only)		
total beam length	398.67 lf	498.33 lf
unit cost (\$/If)	\$150.00	\$150.00
total cost	\$59,800.00	\$74,750.00
DECK		
deck/overlay width	34.00 lf	42.00 lf
deck/overlay length	99.67 lf	99.67 lf
deck thickness	8.5 in	8.5 in
total deck volume	88.90 sy	109.82 cy
unit cost (\$/cy)	\$1,550.00 / sy	\$1,550.00
total cost	\$137,795.32	\$170,217.75
BEARING PADS		
total no. bearing pads	8 ea	10 ea
unit cost (\$/each)	\$1,700.00	\$1,700.00
total cost	\$13,600.00	\$17,000.00
		•
Overall bridge alternative cost *	\$211,195.32	\$261,967.75
% difference Compared to Horizontal Alignment 2 - Option 2	0%	24%
Roadway Profile Fill	Option 3	Option 3
roadway profile fill area (elevation view)	5355 sf	5355 sf
roadway profile fill width	32 ft	40 ft
roadway profile fill volume	6346.19 cy	7932.74 cy
unit cost (\$/cy)	\$25.00	\$25.00
total cost	\$158,654.81	\$198,318.52
	6450 ST4 04	4400 040 F2
	\$158,654.81	\$198,318.52
% difference compared to Horizontal Alignment 2 - Option 2	0%	25%
Retaining Wall	Ontion 3	Ontion 3
	00000	
retaining wall area	4818 sf	4818 sf
no. retaining walls	2	2
total retaining wall area	9637 sf	9637 sf
unit cost (\$/sf)	\$50.00	\$50.00
total cost	\$481,830.00	\$481.830.00
	+ · · · · · · · · · · · ·	+
Overall retaining wall cost *	\$481,830.00	\$481,830.00
% difference Compared to Horizontal Alignment 2 - Option 2	0%	0%

	Bridge Typical Section 1	Bridge Typical Section 2
	Option 3	Option 3
OVERALL ALTERNATIVE COST **	\$851,680.13	\$942,116.27
% difference Compared to Horizontal Alignment 2 - Option 2	0%	11%
	Recommendation	

* Does not reflect all components, and only selective variable components were used for aiding alternative selection.
** Overall Alternative Cost does not reflect fully estimated construction cost, and is only used for aiding alternative selection.

A BCC Engineering Company

Date: July 10, 2020

Average Low Bid Unit Prices Based on Apr-2020

ITEM CODE	ITEM DESCRIPTION		STATEWIDE 3M COUNT	STATEWIDE 3M QUANTITY	STATEWIDE 3M AVG	STATEWIDE 12M COUNT	STATEWIDE 12M QUANTITY	STATEWIDE 12M AVG	USE
01326001	EMBANKMENT (FINAL)(ORD COMP)(TY A)	CY	3	984.00	\$21.80	24	52,683.00	\$16.08	<u>\$25.00</u>
04206014	CL C CONC (ABUT)(HPC)	CY	4	489.37	\$1,852.55	19	2,384.67	\$1,540.16	<u>\$1,550.00</u>
04236001	RETAINING WALL (MSE)	SF	2	50,652.00	\$65.56	30	1,481,765.79	\$49.61	<u>\$50.00</u>
04236008	RETAINING WALL (CAST - IN - PLACE)	SF	2	723.00	\$51.67	16	40,607.00	\$94.99	<u>\$95.00</u>
04256005	PRESTR CONC BOX BEAM (4B34)	LF	2	656.00	\$250.37	5	17,193.50	\$195.13	<u>\$265.00</u>
04256006	PRESTR CONC BOX BEAM (5B34)	LF	2	328.00	\$250.37	5	18,850.00	\$192.55	<u>\$265.00</u>
04256024	PRESTR CONC BOX BEAM (5XB34)	LF				1	1,074.00	\$371.50	<u>\$475.00</u>
04256038	PRESTR CONC GIRDER (TX46)	LF	1	8,145.00	\$150.00	23	167,490.40	\$124.46	<u>\$150.00</u>
04346024	ELASTOMERIC BEARING (E5)	EA	1	8.00	\$1,650.00	3	15.00	\$1,474.01	<u>\$1,700.00</u>
04426001	STR STEEL (PLATE GIRDER)	LB	2	3,241,667.00	\$1.57	9	19,872,961.00	\$1.57	<u>\$2.00</u>
04426004	STR STEEL (ROLLED BEAM)	LB				1	54,042.00	\$10.00	<u>\$5.00</u>

Notes:

Item "EMBANKMENT (FINAL)(ORD COMP)(TY A)" was used as "fill" for Roadway profile raise, similar to recently reconstructed project south of project limits.

Item "CL C CONC (ABUT)(HPC)" was used as "deck" - Class S, similar to a nearby project on Blondy Jhune.

Item "PRESTR CONC BOX BEAM (5XB34)" was used as "5XB40" with a mark up.

Item "ELASTOMERIC BEARING (E5)" was "assumed" use for superstructure types.

Link

APPENDIX B: Existing Culvert Inspection Report

BRIDGE SUMMARY SHEET

City: <u>Lucas</u> County:	Collin Name:NAme:NAm			Structure	#:	Route: <u>Snid</u>	er Lane	
eature Crossed: White Rock	Creek	Inspector's	Signature:			Date: 7	/11/19	
ompany Name and Company	Number:		Lakes Er	_akes Engineering, Inc. F-15243				
Selected Component Description and Rating:				Inspection Rating		/ C	perating Rating	
				(1085)	H	HS H	HS	
Concrete Multiple Box Cur	/en			6	- 2 	<u> </u>		
Backfill and protect under	grade Recommen	dations (if	applica	ıble):				
VBGF (no blockouts) and	erminals (turndowns)	at approache	s do not n	neet current s	tandards.			
Functionally obsolete. Suf	ficiency Rating = 93							
oad Posting Limits fo	or Present Condit	ion (if app	licable)	:				
nventorv	Operating		,,	•				
lbs Gross	lbs G	ross			4	5		
lbs Tandem Avle	lbs Ta	andem Avle	1	2	3 WEIGH	IT S WEIGHT LIMIITS	6	
					EIGHT IMIIT GROS	S GROSS 3S LBS	ZONED	
lbs Axle or Tand	em lbs Ax	kle or Tandem		AXLE OR TANDEM LBS	NDEM AXLE C	DR TANDEM	BRIDGE	
Sign Code	Sign	Code	OTHER	R12-2bT R1	12-2cT R12-41	Tb R12-4Tc	W12-5	
osting Recommenda	tion:							
revious Load Posting	g Recommendatio	ons:	Observ	ved Load P	osting at	Bridge:		
R12-2bT	X None			R12-2bT	Х	None		
	lbs Gross			 R12-2cT		lbs Gross		
	lbs Tandem	Axle				lbs Tande	em Axle	
	lbs Axle or T	andem		 R12-4Tc		lbs Axle c	or Tandem	
				Other (des	c):			
laterial Needed							4	
- R12-201	× N' Z			<u>\</u>	<u> </u>			
- R12-201	COMPASS			Abut 1	Abut 4			
R12-4Tc	KUNY	14 C		wall 2 wall	3			
W12-5		Advanced War	ning	■ Bridge	Bridge	Advance	d Warnin	
- Posts		(optional)		Approach	Approach	(op	tional)	
- Hardware Sets	Sign Code							
- Decals	Condition Code Maintenance Need							
. Visible & Legible D	Improper Position	G. Sian Mis	sina	K. Clean Si	ian	N. None	L	
b. Obscured by Vegetation E. C. Sign Needs Cleaning F.	Damaged Beyond Repair Sign Down	H. Siğn & P J. Clear Ve	ost Missing getation	L. Repositi M. Repositi	on Sign on Sign & Post	P. Replac S. Replac	ce Sign ce Sign & P	

DO NOT DISCLOSE - INFORMATION CONFIDENTIAL UNDER THE TEXAS HOMELAND SECURITY ACT Page 36 of 67 AND 23 USC SECTION 409, SAFETY SENSITIVE INFORMATION

BRIDGE INSPECTION RECORD

City: Lucas County: Collin Name: Snider Lang	e Bridge	Structure #:	Route: Snider Lane		
Description: <u>3-Barrel Concrete Box Culvert</u>					
Feature Crossed: White Rock Creek	Inspector's Sig	nature:	Date: <u>7/11/2019</u>		
Company Name and Company Number: Lakes Engine	eering, Inc. F-15	243	Inspector: Christopher Meszler, P.E.		
Ratings Defined:0 = Failed condition - bridge closed and beyond repair1 = Failing condition - bridge closed but repairable2 = Critical condition - bridge should be closed until repaired3 = Serious condition - deterioration seriously affects structura4 = Poor condition - deterioration significantly affects structura5 = Fair condition - minor deterioration of structural elements (6 = Satisfactory condition - minor deterioration of structural elements7 = Good condition - some minor problems	Il capacity Il capacity (extensive) ements (limited)				
8 = Very good condition - no problems noted 9 = Excellent condition - = Not applicable General Comment:	Enter a rating for ea lowest rating of any independent of its' a hereon or on attach	ach element of each of element of the comp associated element ra ments for all ratings	component. Component ratings should equal the ponent, except for Deck. The Deck component is atings. Fully supportive comments are to be made of 7 or below.		
Elements are numbered and measured west to east and south to north. Functionally obsolete due to waterway adequacy rating (3)					

DECK (Item 58)

1

Minimum	Description	Rating	Comments
1	Deck - Rating	N	Previously Noted:
6	Wearing Surface	7	Moderate impact damage to north railing: two posts are
6	Joints, Expansion, Open	-	missing & flex beam is dented REPAIRED (Guardrail
6	Joints, Expansion, Sealed	_	beam still dented)
6	Joints, Other	7	
6	Drainage System	-	Photo 2: Approach slab 1 southwest corner partially asphalt
6	Curbs, Sidewalks & Parapets	-	overlaid
6	Median Barrier	-	
6	Railings	6	Photo 4: Diagonal crack at southwest portion of approach
7	Railing Protective Coating	-	slab 1
7	Delineation (curve Markers)	-	
	Other		See additional comments

SUPERSTRUCTURE (Item 59)

Minimum	Description	Rating	Comments
0	Main Members - Steel		
0	Main Members - Concrete		
0	Main Members - Timber		
0	Main Members - Connections		
1	Floor System Members		
1	Floor System Connections		
5	Secondary Members		
5	Secondary Members Connections		
6	Expansion Bearings		
6	Fixed Bearings		
6	Steel Protective Coating		
	Other		
	Component Rating	N	

BRIDGE INSPECTION RECORD

City: Lucas County: Collin Name: Snider Lane Bridge Structure #: Route: Snider Lane

Minimum	Description	Rating	Comments
0	Abutment Caps		
0	Above Ground		
0	Below Ground or Foundation		
0	Backwalls and Wingwalls		
0	Intermediate Supports		
	Caps - Concrete		
	Caps - Steel		
	Caps - Timber		
	Above Ground - Concrete		
	Above Ground - Steel		
	Above Ground - Timber		
	Above Ground - Masonry		
	Below Ground or Foundation		
5	Collision Protection System		
6	Steel Protective Coating		
	Component Rating		

SUBSTRUCTURE (Item 60)

CHANNEL (Item 61)

Minimum	Description	Rating	Comments
0	Channel Banks		Previously Noted:
0	Channel Bed		(1) Minor bank erosion with exposed tree roots - NO CHG.
5	Rip Rap, Toe Walls and Aprons		(2) Moderate scour & channel degradations have exposed up
5	Dikes		to 3.5' of bottom slab toewall at upstream end & 3' of apron
5	Jetties		slab toewall (with slight undermining) at downstream end.
	Other		Moderate amount of drift caught on culvert entrance - INCR.
	Component Rating		
			See additional comments

CULVERTS (Item 62)

Minimum	Description	Rating	Comments
0	Top Slabs	7	Previously Noted:
0	Bottom Slab or Footing	7	(1) Minor spalls on north end of interior walls - NO CHG.
0	Abutments & Intermediate Supports	6	(2) Minor spalls on north headwall at post locations. Minor
5	Headwalls and Wingwalls	6	Vertical cracks with efflor. in headwalls - NO CHG.
	Other		
	Component Rating	6	Photo 16: Abutment 1 75% delaminated on southwest face
			See additional comments

BRIDGE INSPECTION RECORD

City: Lucas County: Collin Name: Snider Lane Bridge Structure #: Route: Snider Lane

APPROACHES (Item 65)

Minimum	Description	Rating	Comments
0	Embankments	6	Previously Noted:
4	Embankment Retaining Walls	-	(2) Asphalt surface is worn & cracked at approaches - NO
5	Slope Protection	5	CHG.
5	Roadway	6	(3) Minor impact damage to approach guardfence - DECR.
6	Relief Joints	-	(Repaired)
6	Drainage	-	
6	Guardfence	6	Northwest corner embankment moderate erosion
7	Delineation	-	
7	Sight Distance	7	See additional comments
	Other		
	Component Rating	5	

MISCELLANEOUS

Minimum	Description	Rating	C
7	Signs		
7	Illumination		
7	Warning Devices		
7	Utility Lines		
	Other		

TRAFFIC SAFETY (Item 36)

Description	Rating	Comments
Bridge Railing (036.1)	0	Previously Noted:
Transitions (036.2)	0	(1) No blockouts. No Turndowns - NO CHG.
Approach Guardrail (036.3)	1	
Approach Guardrail Ends (036.4)	0	General condition: substandard guardrail end treatments
		(both approaches)

APPRAISAL RATINGS

Description	Rating	Comments
Waterway Adequacy (071)	3	Evidence of flooding outside of bridge limits
Approach Roadway Alignment (072)	5	Evidence of mooding outside of orage mints
		Frequent overtopping with significant traffic delays. Minor collector

BRIDGE INSPECTION RECORD ADDITIONAL COMMENTS

City: Lucas	County: Collin	Name: Snider Lane Bridge	Structure #:	Route: Snider Lane	
Description:	B-Barrel Concrete Bo	 Culvert 			
Feature Cross	ed: White Rock Cr	eek Inspecto	r's Signature:	Da	te: 7/11/2019
Company Nar	ne and Company Nur	nber: Lakes Engineering, Inc.	F-15243	Inspector: Christophe	er Meszler, P.E.

DECK (Item 58)

Photo Num.	Comments
5	6" settlement of approach slab 1 in southwest corner
-	Hairline longitudinal & lateral cracks northwest portion of approach 1
6	Approach slab 2 southeast corner 1/8" diagonal crack
7	Approach slab 2 2-1/2" settlement south east corner
8	Span 1 lateral crack along deck full width of roadway; light scaring (likely from heavy equipment)
9	Span 2 south side light scaring (likely from heavy equipment)
-	27" guardrail height (substandard)
-	Loose nuts on 10% of railing post anchors

CHANNEL (Item 61)

Photo Num.	Comments
10	Abutment 4 southeast corner concrete riprap settled 9"
11	Abutment 4 southeast corner moderate erosion and toe exposed; chipping & undermining of concrete riprap
12	Exposed bottom slab toe with 18" scour and undermining at south outfall
13	5" scour at bottom slab toe, northeast corner
14-15	Moderate bank erosion upstream and downstream

CULVERTS (Item 62)

Photo Num.	Comments
17	Span 1 south headwall 2" x 13" x 1" spall at second railing post
-	South headwall 6" x 2" x 1" spall at post 3
18	Span 2 7" x 24" x 3" spall at the second railing post of south headwall
19	Span 2 15" X 3" spall at both railing posts southside (Typ.)
20	Span 3 full width hairline crack north headwall
21	Scaring and gouging from debris at northwest corner of abutment 1 (Typ.)
22	Abutment 1 0.010" crack full height at 10' with efflorescence
23	Wall 2 0.025" crack full height and depth through wall at 15'
-	Wall 2 0.016" crack full height and depth through wall at 21'
-	Wall 2 0.016" crack full height and depth through wall at 27'; associated 6' x .025" horizontal cracking at top of wall with efflorescence
24	Wall 3 0.025" crack full height and depth through wall at 12'
25	Wall 3 20" x 7" x 1" spall north side (varies) (likely from debris impact)
-	Wall 3 0.020" crack full height and depth through wall at 18'
-	Wall 3 0.016" crack full height and depth through wall at 24'
26	Abutment 4 0.020" full diagonal crack center of bridge
-	Abutment 4 0.016' crack full height at 28'

	Approach
Photo Num.	Comments
27	Abutment 1 Slope protection at southside (southwest corner) settled 8"
28	No slope protection at abutment 1 (northwest corner); 1/8" full height crack and spall
29	No slope protection at abutment 4 (northeast corner); Gouging from debris noted (Typ.)

01: Elevation – North View

02: Approach – Eastbound

03: Approach – Westbound

04: Approach Slab 1 – Eastbound

Diagonal crack at southwest portion of approach

6" settlement of approach slab in southwest corner

1/8" diagonal crack

2-1/2" settlement of approach slab 2

06: Approach Slab 2 – Southeast Corner

Lateral crack full width of roadway

09: Deck – South Side Span 2

Light scaring (likely from heavy equipment)

Concrete riprap settled 9"

Toe exposed; chipping and undermining of riprap

12: Bottom Slab Toe - South Channel

Exposed bottom slab toe with 18" scour and undermining at south outfall

5" scour at bottom slab toe, northeast corner

Moderate bank erosion looking upstream

15: South Channel – Looking South

Moderate bank erosion looking downstream

DO NOT DISCLOSE – INFORMATION CONFIDENTIAL UNDER THE TEXAS HOMELAND SECURITY ACT AND 23 USC SECTION 409, SAFETY SENSITIVE INFORMATION

16: Abutment 1 - Southwest

75% delaminated on southwest face abutment 1

2" x 13" x 1" spall at second railing post of span 1

7" x 24" x 3" spall at the second post of span 2

19: Span 2 – South Headwall

15" X 3" spall at both posts on span 2 (Typ.)

20: Span 3 – North Headwall

Full width hairline crack at the beginning of span 3

21: Abutment 1

Scaring and gouging from debris at northwest corner (Typ.)

0.010" crack full height at 10' with efflorescence

<u>23: Wall 2</u>

0.025" crack full height and depth through wall at 15'

22: Abutment 1

24: Wall 3

0.025" crack full height and depth through wall at 12'

25: Wall 3 – North Side

20" x 7" x 1" spall (varies) (likely from debris impact)

0.020" full diagonal crack center of bridge

27: Abutment 1 – Southwest

Slope protection appears to have settled 8" at southwest corner

DO NOT DISCLOSE – INFORMATION CONFIDENTIAL UNDER THE TEXAS HOMELAND SECURITY ACT AND 23 USC SECTION 409, SAFETY SENSITIVE INFORMATION 28: Abutment 1 – Northwest corner

No slope protection; 1/8" full height crack and spall; moderate bank erosion

29: Abutment 4 – Northeast corner

No slope protection; scoring and gouging from debris (Typ.)

APPENDIX C: References

National Flood Hazard Layer FIRMette

Legend

	DESIGNED BEAMS (STRAIGHT STRANDS)													OPTIONAL DESIGN											
					F	PRESTR	ESSING	STRANDS				DEBONDE	D STRAN	D PAT	TERN	PER R	OW		CONC	RETE	DESIGN	DESIGN	REQUIRED	LIVE L	.0AD
STRUCTURE	SPAN NO.	BEAM NO.	BEAM TYPE	NON- STD STRAND	TOTAL	SIZE	STRGTH	"e" ("e" FND	TOT NO.	DIST FROM	NC STR	D.OF RANDS	N	UMBEF DEE (ft	R OF S BONDE from	TRANI D TO end)	55	RELEASE STRGTH	MINIMUM 28 DAY COMP	COMP STRESS	LOAD TENSILE STRESS	MINIMUM ULTIMATE MOMENT	FACT	OR
				PATTERN		(in)	fpu (ksi)	(in)	(in)	DEB	(in)	TOTAL	DE- BONDED	3	6	9	12	15	f'ci (ksi)	STRGTH f'c (ksi)	(SERVICE I)	(SERVICE III)	(STRENGTH I)	Moment	Shear

DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any vind is made by TXDOT for any purpose whatsoever. TXDOT assumes no responsibility for the conversion stand is made by TXDOT for any purpose whatsoever. TXDOT assumes no responsibility for the conversion

DAT

 $\begin{pmatrix} 1 \end{pmatrix}$ Based on the following allowable stresses (ksi):

Compression = 0.65 f'ci

Tension = $0.24 \sqrt{f'ci}$

Optional designs must likewise conform.

2 Portion of full HL93.

3 Bottom corner chamfer required for 4B40 and 5B40 boxes when beam lengths are greater than 100 ft.

DESIGN NOTES:

Designed in accordance with AASHTO LRFD Bridge Design Specifications. Prestress losses for the designed beams have been calculated for a relative humidity of percent. Optional designs must likewise conform.

FABRICATION NOTES:

Provide Class H concrete.

Provide Grade 60 reinforcing steel bars.

Use low relaxation strands, each pretensioned to 75 percent of fpu. When shown on this sheet, the Fabricator has the option of furnishing either the designed beam or an approved optional beam design. All optional design submittals and shop drawings must be signed, sealed and dated by a Professional

Engineer registered in the State of Texas. Locate strands for the designed beam as low as possible on the 2" grid system unless a non-standard stand pattern is indicated. Fill row "2.5", then row "4.5", then row "6.5", etc. Place strands within a row as follows:
1) Locate a strand in each "1" position.
2) Place strand symmetrically about vertical centerline of box.

3) Space strands as equally as possible across the entire width.

Strand debonding must comply with Item 424.4.2.2.2.4. Do not debond strands in position "1". Distribute debonded strands equally about the vertical centerline. Decrease debonded lengths working inward, with debonding staggered in each row

Full-length debonded strands are only permitted in positions marked Δ .

HL9.	3 LO	ADI	ING									
Bridge Division Standard												
PRESTRESSED CONCRETE BOX BEAM DESIGNS (NON-STANDARD SPANS)												
			BΒΛ	IĽ)							
FILE: bbstds07.dgn	DN: TXE	<i>эот</i>	ск: ТхДОТ	DW:	SFS	ск: SDB						
CTxDOT December 2006	CONT	SECT	JOB		H	GHWAY						
REVISIONS												
04–11: f'ci and LLDF. 01–16: Notes.	DIST		COUNTY			SHEET NO.						

					l	DESIG	NED I	BEAMS (STRAIG	HT S	STRAND	5)									OPTIONAL DESIGN					
					ŀ	PRESTRE	SSING	STRANDS				DEBONDE	D STRAN	D PATT	ERN P	ER RC	W		CONC	RETE	DESIGN	DESIGN	REQUIRED	LIVE	LOAD	
STRUCTURE	SPAN LENGTH	BEAM NO.	BEAM TYPE	NON- STD STRAND	TOTAL NO.	SIZE	STRGTH	"e" Q	"e" END	TOT NO. DEB	DIST FROM BOTTOM	NC STR	0.0F ANDS	NU	JMBER DEB (ft	R OF STRANDS BONDED TO from end)		RELEASE STRGTH	MINIMUM 28 DAY COMP STRCTH	LOAD COMP STRESS (TOP Q)	LOAD TENSILE STRESS (BOTT @)	MINIMUM ULTIMATE MOMENT CAPACITY	DISTRI FAC	BUTION TOR 2)		
	(ft)			PATTERN		(in)	fpu (ksi)	(in)	(in)	020	(in)	TOTAL	DE- BONDED	3	6	9	12	15	f'ci (ksi)	f'c (ksi)	(SERVICE I) fct(ksi)	(SERVICE III) fcb(ksi)	(STRENGTH I) (ft-kins)	Moment	Shear	
TYPE 5XB20 X-BEAMS 32' Roadway 8" Slab	40 45 50 55 60 65	ALL ALL ALL ALL ALL ALL	5XB20 5XB20 5XB20 5XB20 5XB20 5XB20 5XB20		12 14 20 24 30 36	0.6 0.6 0.6 0.6 0.6 0.6 0.6	270 270 270 270 270 270 270	7.03 7.03 7.03 7.03 6.90 6.59	7.03 7.03 7.03 7.03 6.87 6.46	0 0 4 6 8	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	12 14 20 24 28 28	0 0 4 6 8	0 0 2 2 2	0 0 2 2 2	0 0 0 2 2	0 0 0 0 2	0 0 0 0 0	4.000 4.000 4.000 4.000 4.400 4.900	5.000 5.000 5.000 5.000 5.000 5.200	1.231 1.557 1.926 2.333 2.777 3.259	- 1 . 621 - 1 . 997 - 2 . 432 - 2 . 901 - 3 . 406 - 3 . 946	1255 1498 1787 2090 2407 2739	0.688 0.667 0.649 0.633 0.619 0.606	0.903 0.897 0.891 0.887 0.883 0.883 0.879	
TYPE 5XB28 X-BEAMS 32' Roadway 8" Slab	40 45 50 55 60 65 70 75 80	ALL ALL ALL ALL ALL ALL ALL ALL ALL	5XB28 5XB28 5XB28 5XB28 5XB28 5XB28 5XB28 5XB28 5XB28		12 12 14 18 22 26 32 36	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	270 270 270 270 270 270 270 270 270 270	10.63 10.63 10.63 10.63 10.63 10.63 10.63 10.63 10.38 10.19	10.63 10.63 10.63 10.63 10.63 10.63 10.63 10.63 10.32 10.10	0 0 0 0 0 0 2 6 6	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	12 12 14 18 22 26 28 28	0 0 0 0 0 2 6 6	0 0 0 0 0 2 0 2	0 0 0 0 0 0 0 2 2	0 0 0 0 0 0 0 2 0	0 0 0 0 0 0 0 2 2	0 0 0 0 0 0 0 0 0	$\begin{array}{c} 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 600 \end{array}$	5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000	0.800 1.006 1.240 1.497 1.777 2.079 2.404 2.753 3.124	-1.023 -1.255 -1.523 -1.812 -2.124 -2.454 -2.807 -3.182 -3.578	1748 1793 1870 2187 2521 2867 3231 3614 4011	0.719 0.697 0.678 0.661 0.647 0.633 0.621 0.611 0.601	0.948 0.942 0.937 0.933 0.929 0.926 0.923 0.921 0.919	
TYPE 5XB34 X-BEAMS 32' Roadway 8" SIab	40 45 50 55 60 65 70 75 80 85 90 95	ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL	5XB34 5XB34 5XB34 5XB34 5XB34 5XB34 5XB34 5XB34 5XB34 5XB34 5XB34 5XB34		10 12 14 14 16 18 22 24 28 34 40 44	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	270 270 270 270 270 270 270 270 270 270	13.11 13.11 13.11 13.11 13.11 13.11 13.11 13.11 13.11 12.75 12.51 12.38	$\begin{array}{c} 13.11\\ 13.11\\ 13.11\\ 13.11\\ 13.11\\ 13.11\\ 13.11\\ 13.11\\ 13.11\\ 13.11\\ 13.11\\ 12.65\\ 12.31\\ 12.17\end{array}$	0 0 0 0 0 0 0 0 4 8 10 10	$\begin{array}{c} 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\end{array}$	10 12 14 14 18 22 24 28 28 28 28 28	0 0 0 0 0 0 0 0 4 8 10 10	0 0 0 0 0 0 0 2 4 2 2	0 0 0 0 0 0 0 2 2 2 2 2 2	0 0 0 0 0 0 0 0 2 2 2 2	0 0 0 0 0 0 0 0 0 0 2 2	0 0 0 0 0 0 0 0 0 0 2 2	$\begin{array}{c} 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 600 \\ \end{array}$	$\begin{array}{c} 5.000\\ 5.000\\ 5.000\\ 5.000\\ 5.000\\ 5.000\\ 5.000\\ 5.000\\ 5.000\\ 5.000\\ 5.000\\ 5.000\\ 5.000\\ 5.200\\ \end{array}$	0.657 0.824 1.014 1.222 1.449 1.693 1.955 2.236 2.535 2.853 3.188 3.542	-0.777 -0.953 -1.158 -1.378 -1.614 -1.866 -2.134 -2.419 -2.718 -3.036 -3.369 -3.719	1818 2172 2487 2432 2632 2997 3381 3781 4197 4634 5086 5558	0.736 0.714 0.695 0.678 0.663 0.649 0.637 0.626 0.615 0.606 0.597 0.589	$\begin{array}{c} 0.976\\ 0.971\\ 0.966\\ 0.962\\ 0.958\\ 0.958\\ 0.953\\ 0.953\\ 0.951\\ 0.949\\ 0.949\\ 0.947\\ 0.946\\ 0.945\\ \end{array}$	
TYPE 5XB40 X-BEAMS 32' Roadway 8" SIab	40 45 50 55 60 65 70 75 80 85 90 95 100 105	ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL	5xB40 5xB40 5xB40 5xB40 5xB40 5xB40 5xB40 5xB40 5xB40 5xB40 5xB40 5xB40 5xB40		10 12 14 14 16 18 20 24 28 32 36 42 48	$\begin{array}{c} 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\$	270 270 270 270 270 270 270 270 270 270	15.70 15.70 15.70 15.70 15.70 15.70 15.70 15.70 15.70 15.45 15.26 15.04 14.87	15.70 15.70 15.70 15.70 15.70 15.70 15.70 15.70 15.70 15.40 15.09 14.77 14.58	0 0 0 0 0 0 0 0 0 0 0 0 2 4 6 10 12 16	$\begin{array}{c} 2.50\\$	10 12 14 14 14 16 18 20 24 28 28 28 28 28 28 28 28 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 2 2 4 2 2 4 2 2 2	0 0 0 0 0 0 0 0 0 0 2 4 6 4 6 0	0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 0	$\begin{array}{c} 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 000 \\ 4 . 500 \end{array}$	5.000 5	0.560 0.701 0.861 1.037 1.227 1.433 1.654 1.890 2.142 2.408 2.690 2.988 3.300 3.628	-0.629 -0.772 -0.938 -1.117 -1.308 -1.513 -1.731 -1.962 -2.207 -2.464 -2.735 -3.020 -3.318 -3.630	1886 2255 2694 3007 2947 3137 3521 3939 4378 4834 5310 5806 6319 6854	0.752 0.729 0.692 0.692 0.676 0.662 0.638 0.628 0.618 0.609 0.601 0.593 0.586	1.001 0.996 0.991 0.988 0.984 0.982 0.980 0.978 0.975 0.975 0.974 0.973 0.972 0.971	

DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any tind is made by TXDDT for any purpose whatsoever. TXDDT assumes no responsibility for the conversion of this eta-mater to other formats or for incorrect results or damages resulting from its use.

DESIGN NOTES:

Designed in accordance with AASHTO LRFD Bridge Design Specifications. Prestress losses for the designed beams have been calculated for a relative humidity of 60 percent. Optional designs must likewise conform. Beam designs are applicable for 8" concrete slabs without overlay and 0 through 30 degree skews.

FABRICATION NOTES: Provide Class H concrete.

Provide Grade 60 reinforcing steel bars. Use low relaxation strands, each pretensioned to 75 percent of fpu. When shown on this sheet, the Fabricator has the option of furnishing either the designed beam or an approved optional beam design. All optional design submittals and shop drawings must be signed, sealed and dated by a Professional Engineer registered in the State of Texas.

Locate strands for the designed beam as low as possible on the 2" grid system unless a non-standard stand pattern is indicated. Fill row "2.5", then row "4.5", then row "6.5", etc. Place strands within a row as follows: 1) Locate a strand in each "1" position.

Place strand symmetrically about vertical centerline of box.
 Space strands as equally as possible across the entire width.

Strand debonding must comply with Item 424.4.2.2.4. Do not debond strands in position "1". Distribute debonded strands equally about the vertical centerline. Decrease debonded lengths working inward, with debonding staggered in each row.

Full-length debonded strands are only permitted in positions marked Δ .

(1) Based on the following allowable stresses (ksi): Compression = 0.65 f'ci Tension = $0.24 \sqrt{f'ci}$ Optional designs must likewise conform.

2 Portion of full HL93.

HL93	3 LO,	4DI	NG								
Texas Department	of Tra	nsp	ortation		Bi Di St	ridge ivision tandard					
PRESTRESSED CONCRETE											
X-BEAM	<i>S</i> 7	⁻ A	NDA	R	D						
DESIGNS											
32'	ROA	١D	NAY								
	X	BS	5D-3.	2							
FILE: xbstds40.dgn	DN: SF	₹W	ск: ВМР	DW:	SFS	ск: SDB					
CTxDOT June 2011	CONT	SECT	JOB			HIGHWAY					
REVISIONS	[
01-16: Notes, 0.6" strand designs.	DIST		COUNTY			SHEET NO.					

			D	ESIGNE	ED GIR	DERS				DEPR	ESSED	СОЛС	ĩN					
STRUCTURE	SPAN NO.	GIRDER NO.	GIRDER TYPE	NON-	PR. TOTAL	ESTRES	SING ST	RANDS "e"	"e"	ST F PAT	RAND TERN	RELEASE STRGTH	MINIMUM 28 DAY	DESIGN LOAD COMP	DESIGN LOAD TENSILE	REQUIRED MINIMUM ULTIMATE	LIVE DISTR FAC	LOAD IBUTION CTOR
				STD STRAND PATTERN	NO.	5122	fpu	Ę.	END	NO.	TO END	1 f'ci	COMP STRGTH f'c	(TOP Q) (SERVICE I)	STRESS (BOTT Q) (SERVICE III)	MOMENT CAPACITY (STRENGTH I)	2	
						(in)	(ksi)	(11)	(in)		(<i>in</i>)	(ksi)	(ksi)	fct(ksi)	fcb(ksi)	(kip-ft)	Moment	Shear
	40	ALL	T x 28		14	0.6	270	10.48	9.34	2	10.5	4.000	5.000	1.189	-1.700	1731	0.850	1.070
Type Tx28 Girders	45	ALL	1 x 28		14	0.6	270	10.48	9.34	2	10.5	4.000	5.400	1.507	-2.077	1/1/	0.820	1.080
32' Roadway	50	ALL	1 x 28		16	0.6	270	10.23	9.23	4	8.5	4.000	5.800	1.853	-2.508	2040	0.800	1.080
8.5" Slab	55	ALL	T x 28		18	0.6	270	0.75	8.20	4	12.5	4.100	6.400	2.247	-2.980	23/7	0.780	1.090
	60	ALL	1 X 28		22	0.6	270	9.75	7.57	4	16.5	4.800	6.900	2.655	-3.462	2715	0.760	1.090
	40	ALL	T x 20		20	0.0	270	9.50	12.01	4	10.5	5.000	7.300	3.104	-3.978	3064	0.740	1.100
	40	ALL	T x 34		12	0.0	270	12.01	13.01	7	0 5	4.000	5.000	1 1 2 0	-1.505	1975	0.000	1.050
	45 50	ALL	T x 24		14	0.0	270	12.01	12.15	2	0.5	4.000	5.000	1.180	-1.566	2124	0.050	1.000
	55	ALL	Ty24		16	0.0	270	12.70	11.70	4	0.5	4.000	5.000	1.457	-1.907	2240	0.050	1.000
Type Tx34 Girders	60	ALL	T x 34		10	0.0	270	12.70	11.70	4	10.5	4.000	5.500	2.068	-2.205	2449	0.010	1.000
8.5" Slab	65	ALL	T x 34		22	0.0	270	12.37	7.02	4	28.5	4.000	6.000	2.000	3.039	3173	0.730	1.070
115	70	ALL	T x 34		22	0.0	270	12.20	8.00	4	20.5	4.000	6.500	2.424	3 158	3548	0.750	1.070
E O	75	ALL	T x 34		30	0.0	270	11.81	7 11	6	28.5	5 200	6 700	3 195	-3.891	3951	0.7.50	1.080
	80	ALL	T x 34		34	0.0	270	11.01	7.41	6	30.5	5.800	7.000	3.633	-1 373	1378	0.730	1.080
6ur	40	ALL	T x 40		12	0.0	270	15.60	15.60	0	50.5	4 000	5.000	0.768	-1.053	2052	0.750	1.000
	45		T x 40		14	0.0	270	15.60	15.60			4 700	5.000	0.967	-1.282	2430	0.880	1.040
e l	50		T x 40		14	0.0	270	15.60	15.60			4 500	5.000	1 195	-1 554	2558	0.860	1.040
2	55		T x 40		16	0.0	270	15 35	14 35	4	85	4.000	5.000	1 442	-1.834	2685	0.830	1.050
	60	ALI	T x 40		18	0.6	270	15.16	13.82	4	10.5	4 000	5.000	1.687	-2.118	2875	0.810	1.050
32' Roadway	65	ALI	T x 40		18	0.6	270	15.16	13.82	4	10.5	4 000	5.000	1 978	-2 447	3277	0.800	1.060
5 8.5" Slab	70	ALL	Tx40		20	0.6	270	15.00	13.40	4	12.5	4.000	5.200	2.288	-2.783	3666	0.780	1.060
511	75	ALL	Tx40		24	0.6	270	14.77	9.77	4	34.5	4.100	5.700	2.619	-3.1.35	4064	0.760	1.060
1	80	ALL	T x 40		28	0.6	270	14.60	10.60	4	32.5	4.900	6.000	2.964	-3.509	4498	0.7.50	1.070
	85	ALL	Tx40		32	0.6	270	14.23	8.60	6	36.5	5.100	6.200	3.328	-3.900	4944	0.740	1.070
rea	90	ALL	Tx40		36	0.6	270	13.93	9.27	6	34.5	5.900	6.600	3.695	-4.294	5394	0.730	1.070
	40	ALL	Tx46		12	0.6	270	17.60	17.60			4.000	5.000	0.678	-0.844	2150	0.950	1.020
2	45	ALL	Tx46		14	0.6	270	17.60	17.60			4.500	5.000	0.846	-1.024	2543	0.920	1.020
0	50	ALL	Tx46		14	0.6	270	17.60	17.60			4.500	5.000	1.041	-1.235	3012	0.890	1.030
õ	55	ALL	Tx46		16	0.6	270	17.35	16.35	4	8.5	4.000	5.000	1.257	-1.465	3277	0.870	1.030
ats	60	ALL	Tx46		16	0.6	270	17.35	16.35	4	8.5	4.000	5.000	1.489	-1.701	3221	0.840	1.040
E Type Ty/6 Girders	65	ALL	Tx46		18	0.6	270	17.16	15.83	4	10.5	4.000	5.000	1.732	-1.957	3424	0.830	1.040
32' Roadway	70	ALL	Tx46		18	0.6	270	17.16	15.83	4	10.5	4.000	5.000	2.001	-2.227	3834	0.810	1.040
8.5" Slab	75	ALL	Tx46		20	0.6	270	17.00	15.40	4	12.5	4.000	5.000	2.289	-2.510	4254	0.790	1.040
20	80	ALL	Tx46		24	0.6	270	16.77	14.10	4	20.5	4.000	5.100	2.579	-2.804	4703	0.780	1.050
	85	ALL	Tx46		28	0.6	270	16.60	11.46	4	40.5	4.200	5.500	2.905	-3.125	5181	0.770	1.050
	90	ALL	Tx46		32	0.6	270	16.23	9.48	6	42.5	4.400	5.700	3.234	-3.438	5624	0.750	1.050
anc	95	ALL	Tx46		34	0.6	270	16.07	11.13	6	34.5	5.000	5.900	3.582	-3.777	6117	0.740	1.060
ls .	100	ALL	Tx46		38	0.6	270	15.81	11.39	6	34.5	5.600	6.600	3.961	-4.1.39	6635	0.7.30	1.060

No warranty of any ility for the convers eering Practice Act". assumes no reconneit "Texas Engin DISCLAIMER: The use of this standard is governed by the kind is made by TXDOT for any purpose whatsoe!

DAT

NON-STANDARD STRAND PATTERNS

STRAND ARRANGEMENT AT ∉ OF GIRDER PATTERN

1) Based on the following allowable stresses (ksi):

Compression = 0.65 f'ci

Tension = $0.24\sqrt{f'ci}$

Optional designs must likewise conform.

(2) Portion of full HL93.

DESIGN NOTES:

Designed according to AASHTO LRFD Bridge Design Specifications. Optional designs for girders 120 feet or longer must have a calculated residual camber equal to or greater than that of the designed girder.

Prestress losses for the designed girders have been calculated for a relative humidity of 60 percent. Optional designs must likewise conform.

FABRICATION NOTES:

Provide Class H concrete.

Provide Grade 60 reinforcing steel bars.

Use low relaxation strands, each pretensioned to 75 percent of

fpu. Strand debonding must comply with Item 424.4.2.2.2.4. Full-length debonded strands are only permitted in positions marked Δ . Double wrap full-length debonded strands in outer most position of each row.

When shown on this sheet, the Fabricator has the option of furnishing either the designed girder or an approved optional design. All optional design submittals must be signed, sealed and dated by a Professional Engineer registered in the State of Texas.

Seal cracks in girder ends exceeding 0.005" in width as directed by the Engineer. The fabricator is permitted to decrease the spacing of Bars R and S by providing additional bars to help limit crack width provided the decreased spacing results in no less than 1" clear between bars. The fabricator must take an approved corrective action if cracks greater than 0.005" form on a repetitive basis.

DEPRESSED STRAND DESIGNS:

Locate strands for the designed girder as low as possible on the 2" grid system unless a non-standard strand pattern is indicated. Fill row "2.5", then row "4.5", then row "6.5", etc., beginning each row in the "A" position and working outward until the required number of strands is reached. All strands in the "A" position must be depressed, maintaining the 2" spacing so that, at the girder ends, the upper two strands are in the position shown in the table.

HL93 LOADING			SHE	ET .	1 OF 2							
Texas Department	of Tra	nsp	ortation	B D S	ridge ivision tandard							
PRESTRESS I-GIRDEF DE	SED R S SI) GT GN	CONC ANDA NS	RE RE	TE)							
32'	ROA	AD	WAY									
		G	5D-32									
FILE: ig06stds-19.dgn	DN: EF	С	CK: AJF DW:	EFC	ск: TAR							
©TxDOT August 2017	CONT	SECT	JOB		HIGHWAY							
REVISIONS												
10-19: Redesigned girders.	DIST COUNTY SHEET NO.											

				D	ESIGNI	ED GIR	DERS				DEPR	ESSED	CONC	CONCRETE		OPTIONAL DESIGN						
	STRUCTURE	SPAN NO.	GIRDER NO.	GIRDER TYPE	NON- STD STRAND PATTERN	PRI TOTAL NO.	SIZE	SING ST STRGTH fpu (ksi)	RANDS "e" ("e" END (ip)	ST F PAT NO.	RAND TERN ^{TO} END (in)	RELEASE STRGTH	MINIMUM 28 DAY COMP STRGTH f'c (ksi)	DESIGN LOAD COMP STRESS (TOP (L) (SERVICE I) fct(ksi)	DESIGN LOAD TENSILE STRESS (BOTT Q) (SERVICE III) fcb(ksi)	REQUIRED MINIMUM ULTIMATE MOMENT CAPACITY (STRENGTH I) (kin=ft)	LIVE DISTR. FAC	LOAD IBUTION CTOR 2			
		40	ALI	Tx54		12	0.6	270	21.01	21.01		(11)	4.000	5.000	0.561	-0.686	2216	0.980	1.010			
		45	ALL	Tx54		12	0.6	270	21.01	21.01			4.000	5.000	0.703	-0.835	2629	0.950	1.010			
		50	ALL	Tx54		14	0.6	270	21.01	21.01			4.000	5.000	0.858	-1.003	3108	0.920	1.020			
		55	ALL	Tx54		16	0.6	270	20.76	20.26	4	6.5	4.000	5.000	1.035	-1.189	3629	0.900	1.020			
		60	ALL	Tx54		16	0.6	270	20.76	20.26	4	6.5	4.000	5.000	1.224	-1.381	3931	0.870	1.020			
		65	ALL	Tx54		18	0.6	270	20.56	19.23	4	10.5	4.000	5.000	1.430	-1.588	4159	0.850	1.020			
		70	ALL	Tx54		18	0.6	270	20.56	19.23	4	10.5	4.000	5.000	1.653	-1.815	4103	0.840	1.030			
	Tvpe Tx54 Girders	75	ALL	Tx54		20	0.6	270	20.41	18.81	4	12.5	4.000	5.000	1.877	-2.035	4399	0.820	1.030			
	32' Roadway	80	ALL	Tx54		20	0.6	270	20.41	18.81	4	12.5	4.000	5.000	2.129	-2.284	4880	0.810	1.030			
	8.5" Slab	85	ALL	Tx54		22	0.6	270	20.28	18.46	4	14.5	4.000	5.000	2.392	-2.534	5339	0.790	1.040			
ISE.		90	ALL	Tx54		26	0.6	270	20.08	16.39	4	28.5	4.000	5.000	2.665	-2.800	5839	0.780	1.040			
S L		95	ALL	Tx54		28	0.6	270	20.01	14.29	4	44.5	4.000	5.000	2.951	-3.075	6353	0.770	1.040			
n it		100	ALL	Tx54		32	0.6	270	19.63	12.51	6	44.5	4.300	5.200	3.262	-3.370	6892	0.760	1.040			
roı		105	ALL	Tx54		36	0.6	270	19.34	12.01	6	50.5	4.700	5.400	3.574	-3.667	7434	0.750	1.040			
ı bu		110	ALL	Tx54		40	0.6	270	19.11	12.51	6	50.5	5.300	6.100	3.899	-3.973	7988	0.740	1.050			
ıltir		115	ALL	Tx54		44	0.6	270	18.83	11.55	8	48.5	5.600	6.400	4.252	-4.301	8569	0.730	1.050			
ISƏ.		120	ALL	Tx54	*	48	0.6	270	18.42	10.09	10	50.5	5.800	7.700	4.619	-4.640	9165	0.720	1.050			
s r		60	ALL	Tx62		16	0.6	270	25.53	25.53			4.000	5.000	0.961	-1.157	4309	0.900	1.010			
age		65	ALL	Tx62		16	0.6	270	25.53	25.53			4.000	5.000	1.121	-1.331	4614	0.880	1.010			
lam		70	ALL	Tx62		18	0.6	270	25.33	25.33			4.000	5.000	1.292	-1.514	4894	0.860	1.020			
or (75	ALL	Tx62		18	0.6	270	25.33	25.33			4.000	5.000	1.475	-1.705	4844	0.840	1.020			
ts (80	ALL	Tx62		20	0.6	270	25.18	24.38	4	8.5	4.000	5.000	1.659	-1.903	5116	0.830	1.020			
sul		85	ALL	1 x62		20	0.6	270	25.18	24.38	4	8.5	4.000	5.000	1.866	-2.120	5578	0.820	1.020			
re	Type Tx62 Girders	90	ALL	T x62		20	0.6	270	25.18	24.38	4	8.5	4.500	5.500	2.080	-2.338	6072	0.800	1.030			
ect	32' Roadway 8 5" Slab	95	ALL	Tx62		24	0.6	270	24.94	22.94	4	16.5	4.000	5.000	2.310	-2.574	6621	0.790	1.030			
orr	0.5 5100	100	ALL	1 x62		26	0.6	270	24.85	22.39	4	20.5	4.000	5.000	2.531	-2.805	7159	0.780	1.030			
inc		105	ALL	1 x62		30	0.6	270	24.58	14.18	6	58.5	4.800	5.800	2.771	-3.050	1123	0.770	1.030			
or		110	ALL	1 x62		34	0.6	270	24.25	15.42	6	56.5	4.200	5.000	3.020	-3.304	8301	0.760	1.030			
or 1		115	ALL	1 x62		36	0.6	270	24.11	17.44	6	46.5	4.700	5.600	3.291	-3.576	8909	0.750	1.030			
ts (120	ALL	1 x62		40	0.6	270	23.88	16.68	6	54.5	5.100	6.000	3.545	-3.835	9493	0.740	1.040			
mai		125	ALL	1 x62		44	0.6	270	23.60	14.87	8	56.5	5.300	6.100	3.836	-4.124	10128	0.730	1.040			
for		130	ALL	1 XO2		48	0.0	270	23.28	13.28	Ö	כ.טכ ן	5.800	0.700	4.144	-4.438	10849	0.730	1.040			

NON	I-STANDARD STRAND PATTERNS
PATTERN	STRAND ARRANGEMENT AT € OF GIRDER
*	2.5(14),4.5(14),6.5(14),8.5(4),10.5(2)

1 Based on the following allowable stresses (ksi): Compression = 0.65 f'ci Tension = $0.24 \sqrt{f'ci}$

Optional designs must likewise conform.

2 Portion of full HL93.

HL93 LOADING			SHE	ET .	2 OF 2							
Texas Department of Transportation												
PRESTRESS I-GIRDEI DE 32'	SED R S ESI ROA) GN ADI	CONC ANDA NS WAY SD-32	CRE NRD 2	TE)							
FILE: ig06stds-19.dgn DN: EFC CK: AJF DW: EFC CK: TAF												
CTxDOT August 2017	CONT SECT		JOB		HIGHWAY							
REVISIONS												
10–19: Redesigned girders.	DIST		COUNTY	SHEET NO.								

DATE FILE:

SECTIONS THRU RAIL

he he is

Page 59 of 67

BRONZE STAR DETAIL

Two known manufacturers are

- 1. Kassons Castings Austin, Texas
- 2. Southwell Company San Antonio, Texás

CONSTRUCTION NOTES:

Attach Bronze Star with a Type III Class C, D, E, or F epoxy adhesive. Clamp star until epoxy achieves set. Remove any visible epoxy "squeeze out" from under star. Face of rail and pilasters, parapet must be plumb unless

otherwise approved.

Apply a one rub finish to all railing surfaces unless otherwise shown elsewhere on the plans.

MATERIAL NOTES:

Provide Class "S" concrete for railing. Provide Class "S" (HPC) concrete if shown elsewhere in the plans.

Provide Grade 60 reinforcing steel. Epoxy coat or galvanize all reinforcing steel if slab bars are epoxy coated or galvanized.

Bronze Star must be cast of architectural bronze having the following composition: Copper 85 %, Tin 5 %, Lead 5 %, Žinc 5 % Provide bar laps, where required, as follows:

Uncoated or galvanized $\sim #5 = 2'-0''$ Uncoated or galvanized ~ #7 = 2'-11" Epoxy coated $\sim #5 = 3'-0''$ Epoxy coated $\sim \#7 = 4'-4''$

GENERAL NOTES:

This rail has been evaluated and approved to be of equal strength to railing with like geometry, which have been crash tested to meet MASH TL-2 criteria. This rail can be used for speeds of 45 mph and less when a TL-2 or TL-3 rated guard fence transition is used. This rail is only approved for low speed use, speeds of 45 mph and less.

Do not use this railing on bridges with expansion joints providing more than 5" movement. Rail anchorage details shown on this standard may require

modification for select structure types. See appropriate details elsewhere in plans for these modifications.

Shop drawings will not be required for this rail. See Bridge Layout or other plan sheets for the following: dimensions with the number of span pilasters, dimensions with the number of windows, window type, inclusion of bronze stars, inclusion of construction year with abutment identity.

Submit erection drawings showing span number, span pilaster locations, number of windows between pilasters and spacing to first window (see Note 6) to the Engineer for approval.

Average weight of railing with no overlay increase and no pilasters is 270 plf.

Cover dimensions are clear dimensions, unless noted otherwise. Reinforcing bar dimensions shown are out-to-out of bar.

SHE	ET 2	? 0	F 2									
* Bridge Division Standard												
TRAFFIC RAIL												
TEXAS CLASSIC												
Т	ΥP	F	т 411									
FILE: rlstd008-19.dgn	DN: TX[DOT	ск: ТхДОТ	DW:	TxD0T	ск: ТхДОТ						
CTxDOT September 2019	CONT	SECT	JOB		H	GHWAY						
REVISIONS												
	DIST		COUNTY			SHEET NO.						

(9)

10"

Түр

TYPE C

BARS S (#5)

2

(9)

warranty for the c No xD0T of this stan e by TxDOT i he he is I

APPROXIMATE QUANTITIES $^{(4)}$	
Reinf steel weight = 8.5 Lbs/SF of Approach Slab = 18.4 Lbs/LF of Support Slab	
Vol of Appr Slab Conc (CY) = 1.057W - 0.008W x T + 0.02W² Tan (Includes Support Slab)	5
W = Width of Approach Slab (ft)	
T = Conc Pavement Thickness (in)	

S = Skew Angle (deg)

(1) Flare Bars B and D in this region (1'-6" Max Spa, 3" Min Spa). Minimum flared bar length = 2'-6"

Provide longitudinal construction joints that align with longitudinal construction joints in the bridge slab with bridges built in stages. Other longitudinal construction joints must receive approval of the Engineer

4 For Contractor's information only. Quantities shown are for one approach slab only

(5) On portion of support slab that supports the concrete pavement, adjust top surface elevation, if required, to accommodate concrete pavement thickness. Smooth trowel finish. Oil top of support slab with 60 grade oil and apply heavy coat of powdered graphite. Press down one layer of 30# roofing felt.

 $^{(6)}$ Multiple piece tie bars are acceptable at longitudinal construction joints provided minimum laps shown

10 If bridge rail is present at the wingwall or CIP retaining wall, place $rac{1}{2}$ rebonded recycled tire rubber between concrete railing and top of approach slab as shown when concrete railing projects over the

Construct approach slab in accordance with Item 422. Provide Class "S" concrete with a minimum compressive strength of 4,000 psi.

Provide Grade 60 reinforcing steel. Provide longitudinal joints as shown on the Longitudinal Saw Cut Joint Detail at lane lines and shoulders when width between longitudinal construction joints or edges of approach slab exceeds 16 feet. Saw cut joints within 24 hours of concrete placement to a depth of 1 $\frac{1}{2}$ " and seal in accordance with Item 438. Alternately provide a controlled joint consisting of 1 $\frac{1}{2}$ vinyl or plastic joint former (Stress Cap, Zip Strip, Stress Lock, or equal as approved by the Engineer.) Provide rebonded recycled tire rubber joint filler that meets the

requirements of DMS-6310. "Joint Sealants and Fillers." Construct the subgrade or subbase away from the bridge for a

minimum distance of 100 feet prior to the approach slab, unless otherwise indicated on the plans. Compact and finish the subgrade or foundation for the approach

slab to the typical cross-section and to the lines and grades shown on the plans

Cure for 4 days using water or membrane curing per Item 422. All details shown herein are subsidiary to bridge approach slab.

Cover dimensions are clear dimensions, unless noted otherwise. Reinforcing bar dimensions shown are out-to-out of bar.

No warranty of any lity for the conversion on its use 20 Engi (DOT by hat se of this standar by TxDOT for 'LAIMER: he use (is made

Page 61 of 67

loose material before placing bearing pad.)

3:1

Tx40

T x 46

Tx54

Founded

Founded

Founded

Founded

18.000'

20.000'

22.000'

3.188'

3.938'

4.688'

12.191'

13.490'

14.789'

10.312'

11.062'

11.812'

11.191' 12.490'

13.789'

TABLE OF FOUNDATION LOADS

Bridge Layout Roadway surf	ace
Face of backwall - Const jt	
BACKWALL DETAIL	_
(Without approach slab) 6	

0 F

See

for

Span Length	All Girde	er Types				
Ft	Tons/Shaft	Tons/Pile				
40	54	51				
45	58	53				
50	61	54				
55	64	56				
60	68	58				
65	71	59				
70	74	61				
75	77	63				
80	80	64				
85	84	66				
90	87	68				
95	90	69				
100	93	71				
105	96	72				
110	99	74				
115	102	76				
120	105	77				

GENERAL NOTES:

Designed according to AASHTO LRFD Bridge Design Specifications.

See Bridge Layout for header slope and foundation type, size and length.

See Common Foundation Details (FD) standard sheet for all foundation details and notes. See Concrete Riprap (CRR) standard sheet or Stone Riprap (SRR) standard sheet for riprap attachment

details, if applicable. See applicable rail details for rail anchorage in

wingwalls.

Details are drawn showing right forward skew. See Bridge Layout for actual skew directions. These abutment details may be used with standard SIG-32-30 only.

Cover dimensions are clear dimensions, unless noted otherwise. Reinforcing bar dimensions shown are out-to-out of bar.

MATERIAL NOTES: Provide Class C concrete (f'c = 3,600 psi). Provide Class C (HPC) concrete if shown elsewhere in the plans. Provide Grade 60 reinforcing steel.

Jaiv	aniz	e uo	wer	vai	5	υ.

HL93 LOADING			SF	1E I	ET 1	0F 3							
Texas Department	Bridge Division Standard												
ABUTMENTS													
TYPE TX28 THRU TX54													
PRESTR C	ON	С	I-GIR	D	FRS	5							
32' ROADWA	Ŷ	0	30)°	SK	EW							
	AI	G-	32-3	80	1								
FILE: aig43sts-17.dgn	DN: TAR C		DW:	JTR	ск: TAR								
CTxDOT August 2017	CONT	SECT	JOB		,	HIGHWAY							
REVISIONS													
	DIST		COUNTY		SHEET NO.								

HL93 LOADING			SHI	EET .	2 OF 3							
Texas Department	of Tra	ridge Division Standard										
ABUTMENTS												
TYPE TX28 THRU TX54												
PRESTR C	DER	ERS										
32' ROADWA	Y 30° SKEW											
	AI	G-	32-3	0								
FILE: aig43sts-17.dgn	DN: TA	NR .	CK: KCM D	v: JTR	ск: TAR							
CTxDOT August 2017	CONT	ONT SECT J			HIGHWAY							
REVISIONS												
	DIST		COUNTY		SHEET NO.							

TABLES OF ESTIMATED QUANTITIES WITH 2:1 HEADER SLOPE

Bar

Α

D(7

Н

L1

L2

5

U

V

wH1

wH2

wS

wV

Reinforcin

Class "C" (

	ΤΥΡΕ	Tx2	8 Gir	ders			ΤΥΡΕ	ТхЗ	4 Gir	ders			ΤΥΡΕ	Tx4	0 Gir	ders	
Bar	No.	Size	Ler	ngth	Weight	Bar	No.	Size	Len	gth	Weight	Bar	No.	Size	Lei	ngth	Weight
А	10	#11	34	'-8''	1,842	Α	A 10 #11 34'		-8"	1,842	Α	10	#11	34	'-8''	1,842	
D(7)	2	#9	1'-	-8"	11	D(7	D(7) 2 #9 1'-8"		11	D	7) 2	#9	1'	-8"	11		
Н	8	#6	34	'-8''	417	Н	8	#6	34'-8" 4		417	Н	10	#6	34	'-8''	521
L1	9	#6	5'-	11"	80	L1	9	#6	5'-11" 80		L1	9	#6	5'-	11"	80	
L2	9	#6	5'-	-9"	78	L2	9	#6	5'-	5'-9" 78		L2	9	#6	5'	-9"	78
5	35	#5	11	'-6''	420	5	35	#5	11'-6"		420	S	35	#5	11	'-6"	420
U	4	#6	11	'-7''	70	U	4	#6	11'	11'-7"		U	4	#6	11	'-7"	70
V	38	#5	11	'-4''	449	V	38	#5	12'	-4"	489	V	38	#5	13	'-4''	528
wH1	14	#6	11	'-5"	240	wH1	14	#6	12'	-5"	261	wH1	14	#6	#6 13'-5"		282
wH2	20	#6	9'-	-8"	290	wH2	20	#6	10'	-8"	320	wH2	24	#6	i 11'-8"		421
wS	22	#4	7'-	10"	115	wS	24	#4	7'-	10"	126	wS	26	#4	7'-	10"	136
wV	22	#5	11	'-4''	260	wV	24	#5	12'	-4"	309	wV	26	#5	13	'-4''	362
Reinforcing Steel Lb 4,272				4,272	Reint	orcing S	teel		Lb	4,423	Rein	forcing S	teel		Lb	4,751	
Class "C" Concrete CY 21.8					21.8	Class	Class "C" Concrete			СҮ	23.5	Class "C" Concrete				СҮ	25.3

TABLES OF ESTIMATED QUANTITIES WITH 3:1 HEADER SLOPE

	ΤΥΡΕ	Tx2	8 Gir	ders			ΤΥΡΕ	ТхЗ	4 Gira	ders					Τ	-	TΥ				
Bar	No.	Size	Len	gth	Weight	Bar	Bar No. Size Length			ŋth	Weight		Bar	No.	Size	Ler	ngth	Weight	1	Bar	Ν
А	10	#11	34'	-8"	1,842	А	A 10 #11 34'-8'		8"	1,842		А	10	#11	34	-8"	1,842		А	1	
D(7)	2	#9	1'-	-8"	11	D(7)	D(7) 2 #9 1'-8"		3"	11		D(7)	2	#9	1'-	-8''	11		D(7)	4	
Н	8	#6	34'	-8''	417	Н	H 8 #6 34'-8"		8"	417		Н	10	#6	34	-8"	521		Н	1	
L1	9	#6	5'-	11"	80	L1	L1 9 #6 5'-11'		1"	80		L1	9	#6	5'-	11"	80		L1		
L2	9	#6	5'-	-9"	78	L2	L2 9 #6 5'-9"		9''	78		L2	9	#6	5'	-9"	78		L2		
S	35	#5	11'	-6"	420	S	35	#5 11'-6"		6"	420		S	35	#5	11	-6"	420		5	3
U	4	#6	11'	-7"	70	U	4	#6	#6 11'-7		70		U	4	#6	11	-7"	70		U	
V	38	#5	11'	-4"	449	V	38	#5	12'-	12'-4"			V	38	#5	13	-4"	528		V	3
wH1	14	#6	15'	-5"	324	wH1	14	#6	17'-5"		366		wH1	14	#6	19	-5"	408	V	wH1	1
wH2	20	#6	13'	-8''	411	wH2	20	#6	15'-	8"	471		wH2	24	#6	17'-8" 637		637	V	νH2	2
wS	30	#4	7'-	10"	157	wS	34	#4	7'-1	0"	178		wS	38	#4	7'-	10"	199		wS	4
wV	30	#5	11'	-4"	355	wV	34	#5	12'-	4"	437		wV	38	#5	13	-4"	528		wV	4
Reinforcing Steel Lb 4,614			Reinfo	Reinforcing Steel			Lb	4,859		Reinforcing Steel Lb 5,322				5,322	ļ	Reinfo	rcin				
Class "C" Concrete CY 24.4			Class "C" Concrete				СҮ	26.9		Class "C" Concrete CY 29.6					29.6	(Class '	"C"			

⑦ Omit Dowels D at end of multi-span unit. Adjust reinforcing steel total accordingly.

(13) Quantities shown are for one abutment only (with approach slab). With no approach slab, add 1.5 CY Class "C" concrete and 208 lbs reinforcing steel for 4 additional Bars H.

Page 63 of 67

	ΤΥΡΕ	Tx4	6 Gir	ders				
	No.	Size	Len	gth	Weight			
	10	#11	34'	-8"	1,842			
)	2	#9	1'-	-8''	11			
	10	#6	34'	-8"	521			
	9	#6	5'-	5'-11"				
	9	#6	5'-	-9"	78			
	35	#5	11'	11'-6"				
	4	#6	11'	70				
	38	#5	14'	568				
	14	#6	15'	-5"	324			
	24	#6	13'	-8"	493			
	30	#4	7'-	10"	157			
	30	#5	14'	-4"	448			
Ċ	orcing St	eel	Lb	5,012				
5	"C" Conc	rete		СҮ	27.9			

TYPE Tx54 Girders									
Bar	No.	Size	Len	igth	Weight				
Α	10	#11	34'	-8"	1,842				
D(7)	2	#9	1'-	-8''	11				
Н	12	#6	34'	-8"	625				
L1	9	#6	5'-	11"	80				
L2	9	#6	5'-	5'-9"			5'-9"		
5	35	#5	11'	11'-6"					
U	4	#6	11'	11'-7"					
V	38	#5	15'	15'-8"					
wH1	14	#6	16'	-5"	345				
wH2	28	#6	14'	-8"	617				
wS	32	#4	7'-	10"	167				
wV	32	#5	15'	-8"	523				
Reinfo	orcing St	Lb	5,399						
Class	"C" Conc	rete		СҮ	30.3				

TYPE Tx46 Gird				ders			ТҮР
	No.	Size	Len	ngth	Weight	Bar	No.
	10	#11	34'	-8"	1,842	А	10
7)	2	#9	1'-	-8''	11	D(7)	2
	10	#6	34'	-8"	521	Н	12
	9	#6	5'-	11"	80	L1	9
	9	#6	5'-	-9"	78	L2	9
	35	#5	11'	-6"	420	S	35
	4	#6	11'	-7"	70	U	4
	38	#5	14'	-4"	568	V	38
	14	#6	21'	-5"	450	wH1	14
	24	#6	19'	-8"	709	wH2	28
	42	#4	7'-	10"	220	wS	46
	42	#5	14'	-4"	628	wV	46
forcing Steel			Lb	5,597	Reinforcing		
5	"C" Conc	rete		СҮ	32.5	Class	"С" Сог
_							

TYPE Tx54 Girders										
Bar	No.	Size	Len	gth	Weight					
Α	10	#11	34'	-8"	1,842					
D(7)	2	#9	1'-	-8"	11					
Н	12	#6	34'	-8"	625					
L1	9	#6	5'-	11"	80					
L2	9	#6	5'-	-9"	78					
5	35	#5	11'	11'-6"						
U	4	#6	11'	11'-7"						
V	38	#5	15'	15'-8''						
wH1	14	#6	23'	-5"	492					
wH2	28	#6	21'	911						
wS	46	#4	7'-	10"	241					
wV	46	#5	15	-8"	752					
Reinfo	6,143									
Class	"C" Conc	rete		СҮ	35.9					

BAR 1	ABLE
BAR	SIZE
А	#4
AA	#5
D	#4
G	#4
Н	#4
J	#4
К	#4
М	#4
0A	#5
Р	#4
Т	#4

 If multi-span units (with slab continuous over interior bents) are indicated on the Bridge Layout, see standard IGCS for adjustment to slab reinforcement and quantities.

- Span lengths for prestressed concrete I-Girder type: Type Tx28 for spans lengths 40.000' thru 65.000'. Type Tx34 for spans lengths 40.000' thru 80.000'. Type Tx40 for spans lengths 40.000' thru 90.000'. Type Tx46 for spans lengths 40.000' thru 100.000'. Type Tx54 for spans lengths 40.000' thru 120.000'.
- (3) "Y" value shown is based on theoretical girder camber, dead load deflection from an 8 ½" concrete slab, a constant roadway grade, and using precast panels (PCP). The Contractor will adjust this value as necessary for any roadway vertical curve and/or if the precast overhang panel (PCP(0)) option is used.

HL93 LOADING			SHEE	T	1 OF	2				
Texas Department	1	Bridge Division Standard								
PRESTRESSED CONCRETE I-GIRDER SPANS (TYPE Tx28 THRU Tx54) 32' ROADWAY 30° SKEW										
	SIG-32-30									
FILE: sig43sts-19.dgn	DN: JA	ЛН	ск: ASB	DW:	JTR	<i>ск</i> : TAR				
©TxDOT August 2017	CONT	SECT	JOB			HIGHWAY				
REVISIONS										
10–19: Increased "X" and "Y" Values	DIST COUNTY			(SHEET NO					

TABLE OF DEAD LOAD DEFLECTIONS

TYPE	Tx28 GI	RDERS	TYPE Tx34 GIRDERS			TYPE	TYPE Tx40 GIRDERS			TYPE Tx46 GIRDERS			TYPE Tx54 GIRDERS			
SPAN LENGTH	"A"	"B"	SPAN LENGTH	"A"	"B"	SPAN LENGTH	"A"	"B"	SPAN LENGTH	"A"	"B"	SPAN LENGTH	"A"	"B"		
Ft	Ft	Ft	Ft	Ft	Ft	Ft	Ft	Ft	Ft	Ft	Ft	Ft	Ft	Ft		
40	0.011	0.015	40	0.006	0.009	40	0.004	0.006	40	0.003	0.004	40	0.002	0.003		
45	0.017	0.024	45	0.010	0.014	45	0.006	0.009	45	0.004	0.006	45	0.003	0.004		
50	0.026	0.037	50	0.016	0.022	50	0.011	0.015	50	0.007	0.010	50	0.005	0.007		
55	0.040	0.056	55	0.024	0.033	55	0.016	0.022	55	0.011	0.015	55	0.007	0.010		
60	0.057	0.080	60	0.034	0.048	60	0.022	0.031	60	0.015	0.021	60	0.010	0.014		
65	0.079	0.111	65	0.047	0.066	65	0.031	0.043	65	0.021	0.030	65	0.014	0.020		
	•	<u> </u>	70	0.064	0.090	70	0.042	0.059	70	0.028	0.040	70	0.019	0.027		
			75	0.085	0.120	75	0.056	0.078	75	0.038	0.053	75	0.025	0.035		
			80	0.111	0.156	80	0.073	0.102	80	0.049	0.069	80	0.033	0.046		
						85	0.093	0.131	85	0.063	0.089	85	0.042	0.059		
						90	0.118	0.165	90	0.080	0.113	90	0.053	0.074		
						-			95	0.100	0.140	95	0.066	0.093		
									100	0.123	0.173	100	0.081	0.114		
	TYPE SPAN LENGTH Ft 40 45 50 55 60 65	TYPE Tx28 GI SPAN LENGTH "A" Ft Ft 40 0.011 45 0.017 50 0.026 55 0.040 60 0.057 65 0.079	TYPE Tx28 GIRDERS SPAN LENGTH "A" "B" Ft Ft Ft 40 0.011 0.015 45 0.017 0.024 50 0.026 0.037 55 0.040 0.056 60 0.057 0.080 65 0.079 0.111	TYPE Tx28 GIRDERS TYPE SPAN LENGTH "A" "B" SPAN LENGTH SPAN LENGTH Ft Ft Ft Ft 40 0.011 0.015 40 45 0.017 0.024 45 50 0.026 0.037 50 55 0.040 0.056 65 60 0.057 0.080 65 65 0.079 0.111 65 70 75 80	TYPE Tx28 GIRDERS TYPE Tx34 GI SPAN LENGTH "A" "B" Ft Ft Ft 40 0.011 0.015 45 0.017 0.024 55 0.040 0.056 60 0.057 0.080 65 0.079 0.111 70 0.064 75 0.085 80 0.111	TYPE Tx28 GIRDERS TYPE Tx34 GIRDERS SPAN LENGTH "A" "B" Ft Ft Ft 40 0.011 0.015 45 0.017 0.024 55 0.040 0.056 60 0.057 0.080 65 0.079 0.111 65 0.079 0.111	TYPE Tx28 GIRDERS TYPE Tx34 GIRDERS TYPE SPAN LENGTH "A" "B" SPAN LENGTH "A" "B" Ft Ft	TYPE Tx28 GIRDERS TYPE Tx34 GIRDERS TYPE Tx40 GI SPAN LENGTH "A" "B" SPAN LENGTH "A" "B" SPAN LENGTH "A" "B" Ft SPAN 40 0.006 0.009 40 0.004 50 0.026 0.037 50 0.016 0.022 50 0.011 55 0.040 0.056 60 0.034 0.048 60 0.022 65 0.079 0.111 70 0.064 0.090 75 0.056 80 0.111 0.156 80 0.073 85 0.093 90 0.118 <td>TYPE Tx28 GIRDERS TYPE Tx34 GIRDERS TYPE Tx34 GIRDERS SPAN LENGTH "A" "B" SPAN LENGTH "A" "B" Ft <t< td=""><td>TYPE Tx28 GIRDERS TYPE Tx34 GIRDERS TYPE Tx40 GIRDERS TYPE Tx40 GIRDERS SPAN LENGTH "A" "B" "B" SPAN LENGTH "A" "B" SPAN LENGTH SPAN LENGTH Span So So So</td><td>TYPE Tx28 GIRDERS TYPE Tx34 GIRDERS TYPE Tx40 GIRDERS TYPE Tx46 GIR SPAN LENGTH "A" "B" SPAN LENGTH</td><td>TYPE Tx28 GIRDERS TYPE Tx34 GIRDERS TYPE Tx34 GIRDERS TYPE Tx40 GIRDERS TYPE Tx46 GIRDERS \$\$\begin{bmatrix}{c} SPAN & "A" & "B" & \$\$\begin{bmatrix}{c} Ft & Ft & Ft & \$\$\begin{bmatrix}{c} Ft & Ft & \$\$\begin{bmatrix}{c} Ft & Ft & Ft & Ft & \$\$\begin{bmatrix}{c} Ft & \$\$\begin{bmatrix}{c} Ft & Ft & \$\$\bedin \$\$\begin{bmatrix}{c} Ft & \$\$\bedin \$\$\begin{bmatrix}{</td><td>TYPE Tx28 GIRDERS TYPE Tx34 GIRDERS TYPE Tx40 GIRDERS TYPE Tx40 GIRDERS TYPE Tx46 GIRDERS TYPE LENGTH "A" "B" SPAN LENGTH "A"</td><td>TYPE Tx28 GIRDERS TYPE Tx34 GIRDERS TYPE Tx40 GIRDERS TYPE Tx46 GIRDERS TYPE Tx54 GIR SPAN "A" "B" SPAN "A" <t< td=""></t<></td></t<></td>	TYPE Tx28 GIRDERS TYPE Tx34 GIRDERS TYPE Tx34 GIRDERS SPAN LENGTH "A" "B" SPAN LENGTH "A" "B" Ft Ft <t< td=""><td>TYPE Tx28 GIRDERS TYPE Tx34 GIRDERS TYPE Tx40 GIRDERS TYPE Tx40 GIRDERS SPAN LENGTH "A" "B" "B" SPAN LENGTH "A" "B" SPAN LENGTH SPAN LENGTH Span So So So</td><td>TYPE Tx28 GIRDERS TYPE Tx34 GIRDERS TYPE Tx40 GIRDERS TYPE Tx46 GIR SPAN LENGTH "A" "B" SPAN LENGTH</td><td>TYPE Tx28 GIRDERS TYPE Tx34 GIRDERS TYPE Tx34 GIRDERS TYPE Tx40 GIRDERS TYPE Tx46 GIRDERS \$\$\begin{bmatrix}{c} SPAN & "A" & "B" & \$\$\begin{bmatrix}{c} Ft & Ft & Ft & \$\$\begin{bmatrix}{c} Ft & Ft & \$\$\begin{bmatrix}{c} Ft & Ft & Ft & Ft & \$\$\begin{bmatrix}{c} Ft & \$\$\begin{bmatrix}{c} Ft & Ft & \$\$\bedin \$\$\begin{bmatrix}{c} Ft & \$\$\bedin \$\$\begin{bmatrix}{</td><td>TYPE Tx28 GIRDERS TYPE Tx34 GIRDERS TYPE Tx40 GIRDERS TYPE Tx40 GIRDERS TYPE Tx46 GIRDERS TYPE LENGTH "A" "B" SPAN LENGTH "A"</td><td>TYPE Tx28 GIRDERS TYPE Tx34 GIRDERS TYPE Tx40 GIRDERS TYPE Tx46 GIRDERS TYPE Tx54 GIR SPAN "A" "B" SPAN "A" <t< td=""></t<></td></t<>	TYPE Tx28 GIRDERS TYPE Tx34 GIRDERS TYPE Tx40 GIRDERS TYPE Tx40 GIRDERS SPAN LENGTH "A" "B" "B" SPAN LENGTH "A" "B" SPAN LENGTH SPAN LENGTH Span So So So	TYPE Tx28 GIRDERS TYPE Tx34 GIRDERS TYPE Tx40 GIRDERS TYPE Tx46 GIR SPAN LENGTH "A" "B" SPAN LENGTH	TYPE Tx28 GIRDERS TYPE Tx34 GIRDERS TYPE Tx34 GIRDERS TYPE Tx40 GIRDERS TYPE Tx46 GIRDERS \$\$\begin{bmatrix}{c} SPAN & "A" & "B" & \$\$\begin{bmatrix}{c} Ft & Ft & Ft & \$\$\begin{bmatrix}{c} Ft & Ft & \$\$\begin{bmatrix}{c} Ft & Ft & Ft & Ft & \$\$\begin{bmatrix}{c} Ft & \$\$\begin{bmatrix}{c} Ft & Ft & \$\$\bedin \$\$\begin{bmatrix}{c} Ft & \$\$\bedin \$\$\begin{bmatrix}{	TYPE Tx28 GIRDERS TYPE Tx34 GIRDERS TYPE Tx40 GIRDERS TYPE Tx40 GIRDERS TYPE Tx46 GIRDERS TYPE LENGTH "A" "B" SPAN LENGTH "A"	TYPE Tx28 GIRDERS TYPE Tx34 GIRDERS TYPE Tx40 GIRDERS TYPE Tx46 GIRDERS TYPE Tx54 GIR SPAN "A" "B" SPAN "A" <t< td=""></t<>		

0.100

0.120

0.144

0.140

0.169

0.202

105

110

115

DEAD LOAD DEFLECTION DIAGRAM

Calculated deflections shown are due to the concrete slab on interior girders only (Ec = 5000 ks). Adjust values as required for exterior girders and if optional slab forming is used. These values may require field verification.

TABLE OF ESTIMATED QUANTITIES									
		Prestres	Prestressed Concrete Girders						
SPAN LENGTH	REINF CONCRETE SLAB	ABUT TO (4) INT BT	INT BT TO 4 INT BT	ABUT TO ABUT	TOTAL REINF STEEL				
Ft	SF	LF	LF	LF	Lb				
40	1,360	157.85	158.00	157.69	3,128				
45	1,530	177.85	178.00	177.69	3,519				
50	1,700	197.85	198.00	197.69	3,910				
55	1,870	217.85	218.00	217.69	4,301				
60	2,040	237.85	238.00	237.69	4,692				
65	2,210	257.85	258.00	257.69	5,083				
70	2,380	277.85	278.00	277.69	5,474				
75	2,550	297.85	298.00	297.69	5,865				
80	2,720	317.85	318.00	317.69	6,256				
85	2,890	337.85	338.00	337.69	6,647				
90	3,060	357.85	358.00	357.69	7,038				
95	3,230	377.85	378.00	377.69	7,429				
100	3,400	397.85	398.00	397.69	7,820				
105	3,570	417.85	418.00	417.69	8,211				
110	3,740	437.85	438.00	437.69	8,602				
115	3,910	457.85	458.00	457.69	8,993				
120	4,080	477.85	478.00	477.69	9,384				

4 Fabricator will adjust lengths for girder slopes as required.

⁽⁵⁾ Reinforcing steel weight is calculated using an approximate factor of 2.3 lbs/SF.

GENERAL NOTES:

Designed according to AASHTO LRFD Bridge Design Specifications.

Multi-span units, with slab continuous over interior bents, may be formed with the details shown on this sheet and standard IGCS.

See IGTS standard for Thickened Slab End details and

quantity adjustments. See PCP and PCP-FAB for panel details not shown. See PCP(0) and PCP(0)-FAB for precast overhang panel details if this option is used.

See IGMS standard for miscellaneous details.

See applicable rail details for rail anchorage in slab. See PMDF standard for details and quantity adjustments if this option is used.

This standard is drawn showing right forward skew. See Bridge Layout for actual skew direction. This standard does not support the use of transition bents.

Cover dimensions are clear dimensions, unless noted otherwise.

MATERIAL NOTES: Provide Class S concrete (f'c = 4,000 psi). Provide Class S (HPC) concrete if shown elsewhere in

the plans. Provide Grade 60 reinforcing steel.

Provide bar laps, where required, as follows:

Uncoated $\sim #4 = 1'-7''$ Epoxy coated $\sim #4 = 2'-5''$ Deformed Welded Wire Reinforcement (WWR) (ASTM A1064) of equal size and spacing may be substituted for Bars A, AA, D, OA, P or T unless noted otherwise.

HL93 LOADING	SHEET 2 OF 2								
Texas Department	Bridge Division Standard								
PRESTRESSED CONCRETE I-GIRDER SPANS (TYPE Tx28 THRU Tx54) 32' ROADWAY 30° SKEW									
	SI	<u>G-</u>	32-3	80					
FILE: sig43sts-19.dgn	DN: JN	1H	ск: ASB	DW:	JTR	ск: TAR			
CTxDOT August 2017	CONT	SECT	JOB			HIGHWAY			
REVISIONS									
10–19: Increased "X" and "Y" Values	DIST COUNTY				SHEET NO.				

EXHIBIT A: Existing Right-Of-Way & Easement Plan

E. 3:43:33 Snider Br 2020 7/30/ T:\20 DATE: FIIE: