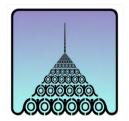


SANTA VENETIA LEVEE UPGRADE

BASIS OF DESIGN
AND PROJECT ALTERNATIVES

Marin County, California

October 2022



Prepared by:

Steve and Breeze Kinsey

CivicKnit

PO Box 81 Forest Knolls, CA 94933

Todd Bradford, PE, GE **ENGEO**

2010 Crow Canyon Place Suite 250 San Ramon, CA 94583

Darius Abolhassani, PE, GE **DAC Associates, Inc.**

7 Mt. Lassen Dr., Suite A-129 San Rafael, CA 94903

Robert Stevens, PE, TE and Rich Souza, PE, QSD/QSP

CSW|ST2

45 Leveroni Court

Novato, CA 94949

C S W

S T 2

In consultation with:

Rosemaire Gaglione, PE, Berenice Davidson, PE, Liz Lewis, David Bracken, PE, Luis Damerell, and Laurie Williams

Marin County Flood Control and Water Conservation District

3501 Civic Center Drive, Suite 304

San Rafael, CA 9490

Reviewed by:

Frank Lobedan, PE

Orion Engineers & Associates

318 Harrison Street, Suite 101

Oakland, CA 94607

Interpretive sign along Vendola Drive near Pump Station Number 5

TABLE OF CONTENTS

INTRODUCTION	1
EXISTING REPORTS AND DATA	3
EXISTING CONDITIONS - TOPOGRAPHY	4
EXISTING CONDITIONS – GEOTECHNICAL	5
EXISTING CONDITIONS – WATER SURFACE	8
EXISTING CONDITIONS – ENVIRONMENTAL RESOURCES	10
REGIONAL SOLUTION	12
EXTENSION OF PROJECT LIMITS	14
PROJECT ALTERNATIVES	15
Timber Reinforced Berm	
Precast Concrete Wall	17
Composite Sheet Pile	18
RECOMMENDATIONS FOR LEVEE UPGRADE	25
CONSTRUCTION PROCESS	27
RESTORATION	31

LIST OF FIGURES

Figure 1 Project Location	
Figure 2 1950's Flooding in Santa Venetia	
Figure 3 Existing TRB	
Figure 4 Example of a TRB installed at Santa Venetia	3
Figure 5 Typical soil conditions underlying the levee at Santa Venetia	5
Figure 6 Historic Ground Surface Settlement Monitoring	7
Figure 7 FEMA Flood Zone Mapping	8
Figure 8 Height of Las Gallinas Creek	9
Figure 9 Bay Conservation Development Commission Jurisdiction Limit	11
Figure 10 Potential location of Las Gallinas Creek tidal date	12
Figure 11 Tidal Gate	12
Figure 12 Section Through Tidal Gate	13
Figure 13 Cross Section through the South Fork of Las Gallinas Creek looking downstream	13
Figure 14 Extension of Project Limits	14
Figure 15 Comparison of Levee heights	15
Figure 16 TRB Design	16
Figure 17 Precast Concrete Floodwall	17
Figure 18 Composite Sheet Pile located along Pinole Creek in Pinole, California	18
Figure 19 EC 26.1 Properties	20
Figure 20 EC 80.5 Properties	21
Figure 21 Dual sheet piles used to limit deflection	22
Figure 22 Composite sheet installation	22
Figure 23 Artist rendering of the pre and post installation of the composite sheet pile system	23
Figure 24 Sheet pile field test	
Figure 25 Sheet pile installation tools including a top grip on the left and side grip on the right	27
Figure 26 Caterpillar Model 313	27
Figure 27 Range of Motion for a Caterpillar 313 Excavator	28
Figure 28 Land and water access to the work area	29
Figure 29 Tidal Data Near Las Gallinas Creek	
Figure 30 Waterside access equipment	
Figure 31 Waterside Route	
Figure 32 Fence and Staircase	31

Appendices

Appendix A. Composite Sheet Pile Wall Structural Calculations

Appendix B. Composite Sheet Pile Cost Estimate

INTRODUCTION

The Marin County Flood Control and Water Conservation District Zone 7 (the District) is proposing to implement the Santa Ventia Levee Upgrade Project (the Project). The Project would replace an existing wooden structure – the Timber-Reinforced Berm, or TRB – that is a crucial component of the levee system that protects the Santa Venetia neighborhood from flooding. The project location is shown in Figure 1.

Figure 1 Project Location

Santa Venetia, a residential neighborhood of about 900 homes, is in unincorporated Marin County along the south bank of the South Fork of Gallinas Creek, just upstream of where the creek flows into San Pablo Bay. The neighborhood, which was built in the early to mid-20th century, is protected from flooding by an aging and subsiding system of levees, berms, and pump stations. Without these facilities, widespread and damaging tidal floods would be a regular occurrence.

Historically, Santa Venetia was a tidal marsh, and the neighborhood was built over marsh deposits. Development of the marsh, including construction of an earthen and interior drainage system, began in 1914. Still, periodic overtopping of the levee occurred. Extensive flooding in the 1940s and 1950s, as shown in Figure 2, led to the creation of Zone 7 of the Marin County Flood Control and Water Conservation District in the 1960s. The current levee was completed during development of the Santa Venetia neighborhood in the 1950s and 1960s.

Figure 2 1950's Flooding in Santa Venetia

During a January 1982 flood event, 50 homes experienced flooding. In January 1983, 160 homes were flooded, and in December 1983, 100 homes were flooded when the tide reached a historic elevation of 8.7 feet in accordance with the National Vertical Datum of 1988 (NAVD88). Following these floods, the District completed construction of the TRB on top of the earthen levee to increase its height.

The TRB is an approximately 7,000-foot-long wooden box structure about 2.5 to 3.2 feet wide and raised about 1 to 4 feet above the earthen levee's crest. The TRB ranges in elevation from about 6 feet to almost 11 feet NAVD88. The TRB is constructed of redwood planks fastened to redwood posts sunk approximately 2 to 4 feet into the earthen levee. The box structure is backfilled with a mixture of gravel, sand, silt, and clay soils. In some locations, the TRB was filled with a concrete slurry to reduce permeability.

When built, the TRB was an urgent response to raise the elevation of the levee without significant increase in the footprint of the levee. Since the TRB's construction over 35 years ago, widespread levee overtopping has not occurred; nor have tide elevations reached the historic heights that occurred in 1982 and 1983. The TRB, however, shows signs of aging and subsidence as shown in Figure 3. In addition to the risk of overtopping, failure of the TRB may also occur via erosion and/or sliding of the underlying earthen levee, overturning or sliding of the TRB structure, and deterioration of the wood panels.

Figure 3 Existing TRB

According to a levee improvement alternatives analysis commissioned by the District, under current conditions, "winter storms coupled with high tides could overtop the existing levee and TRB system leading to significant damage to adjacent properties and/or localized potential failure of the system" as they have several times in the past. Furthermore, a US Army Corps of Engineers report references this analysis to sum-up the fragility of the existing levee system: "while the wall has held up against prior floods, a recent geotechnical report estimates that there is a significant chance [up to 90%] that the floodwall could fail before being overtopped under the current conditions". Areas of low elevation relative to tides and areas of deteriorating timbers are its primary vulnerabilities. During a 2017 storm event, portions of the TRB and underlying levee were damaged, though extensive flooding did not occur.

In March 2016, the Federal Emergency Management Agency (FEMA) completed its San Francisco Bay Coastal Study, which resulted in an approximately 1-foot increase in base flood elevation (BFE) for the community, to 9.8 feet. With this reassessment of flood elevation, portions of the TRB are now below the BFE, meaning that portions of the TRB

would be overtopped in the FEMA defined 100-year flood, resulting in flooding within the Santa Venetia neighborhood.

Over the last several years, the District has evaluated options to replace the levee and in early 2022, finalized plans to replace it with a timber reinforced berm as shown in Figure 4. However, project costs exceeded the District's budget and staff elected to reevaluate options.

Commencing in late July 2022, our team reviewed several options including a TRB, composite sheet pile, and precast concrete floodwall. We believe either the sheet pile or TRB alternative is viable, however, the composite sheet pile wall is the most efficient method to rapidly construct a levee at this location given the limited construction area and need to serve as protection for no less than 30 years.

Figure 4 Example of a TRB installed at Santa Venetia

EXISTING REPORTS AND DATA

This report relies on existing studies and reports; a summary of these documents includes:

- Geotechnical Date Report Las Gallinas Levee System prepared by Kleinfelder in July 2013
- Las Gallinas Creek Hydrologic, Hydraulic, and Coastal (HH&C) prepared the US Army Corps of Engineers in December 2013
- San Francisco Bay Tidal Datums and Extreme Tides Study prepared by AECOM in February 2016
- San Francisco Bay Coastal Study prepared by the Federal Emergency Management Agency (FEMA) in March 2016
- Gallinas Watershed Program Final Report prepared by Department of Public Works County of Marin in March 2017.
- State of California Sea-Level Rise Guidance prepared by the California Natural Resources Agency and the California Ocean Protection Council updated in 2018.
- Negative Declaration in accordance with the California Environmental Quality Act prepared by Marin County and dated June 2019
- Record of Environmental Consideration prepared by the Federal Emergency Management Agency dated December 2019.
- Gallinas Levee Upgrade Project Flood Barrier Study prepared by GHD in July 2020
- Field Observations and Site Analysis prepared by GHD in July 2021.
- Santa Venetia Levee Upgrade 100% Design Submittal plans prepared by GHD in October 2021

- Santa Venetia Levee Upgrade Project Revised Opinion of Probable Construction Cost prepared by GHD in March 2022
- Santa Venetia Levee Upgrade Project Value Engineering Summary prepared by GHD in March 2022

EXISTING CONDITIONS - TOPOGRAPHY

Our team is using the topographic base map provided by GHD that includes light detection and ranging (LIDAR) survey as well as supplemental data derived from what appears to be traditional field survey methods. We have recently completed an aerial survey on behalf of the Marin County Public Works Department for the San Rafael Airport located north of the site. While our survey and GHD survey provide similar results, the surveys are not of sufficient detail to accurately reflect the existing TRB. Thus, we have modified the information using engineering judgment and field observation to reflect field conditions. Due to the difficulty in obtaining supplemental data, we are making conservative assumptions in the heights of walls. However, we plan on acquiring additional data at locations along the levee, if possible, in October 2022.

Our work at the airport also included a resolution of the property lines within the area, which included locating survey monuments within the Santa Venetia neighborhood. The boundary data provided in the GHD survey correlates to our work. Thus, the property line information appears accurate.

The vertical datum for the project is based upon the National Vertical Datum of 1988 (NAVD 88) and the horizontal datum is the North American Datum (NAD 83), California State Plane Coordinate System, Zone 3. All units are US Survey Feet. Older surveys and technical documents for Santa Venetia are often on a vertical datum of the National Geodetic Vertical Datum of 1929 (NGVD 29). To convert elevations to NAVD 88 add 2.7 feet to NGVD 29 elevations. Note that MLLW and NAVD88 datums are approximately equal at this location.

EXISTING CONDITIONS – GEOTECHNICAL

Our team reviewed the existing available geotechnical data to develop geotechnical recommendations for an alternative flood wall. Figure 5 illustrates the general conditions along the existing levee. Between 1914 and the early 1940's developers placed fill atop the existing marsh. In the 1950's the developer constructed an earthen levee and in the 1980's the District installed the timber reinforced berm (TRB). Thus, the fill beneath the levee ranges between 5 to 17 feet thick which is underlain by up to 50 feet of Young Bay Mud (YBM).

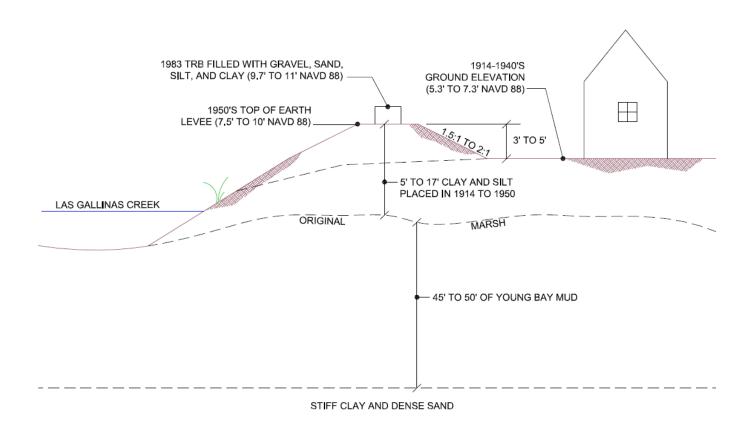


Figure 5 Typical soil conditions underlying the levee at Santa Venetia

The following table illustrates soil conditions along the wall length. These stations can be correlated with the project plans.

		Bottom			Effective	Drair	ned
Layer	Layer Thickness (ft)	of Layer (Elev. MSL, ft)	Total Unit Weight (pcf)	Effective Unit Weight [submerged](pcf)	Unit Weight (pcf)	Ка	Кр
Station 11+00 to 30+00							
Levee Material	5	4	110	47.6	110	0.28	3.5
Young Bay Mud (YBM)	-	-	90	27.6	27.6	0.42	2.4
			Station 30+0	0 to 44+00			
Levee Material	7.5	0.9	110	47.6	110	0.31	3.3
YBM	-	-	90	27.6	27.6	0.42	2.4
			Station 44+0	0 to 72+00			
Levee Material	10.5	-3.2	110	47.6	47.6	0.36	2.8
YBM	-	-	90	27.6	27.6	0.42	2.4
			Station 72+0	0 to 85+00			
Levee Material (Above Ground water Table (GWT))	5	0.5	110	47.6	110	0.32	3.1
Levee Material (Below GWT)	12	-11.5	110	47.6	47.6	0.35	2.9
YBM	-	-	90	27.6	27.6	0.42	2.4

Note. This table references elevations to Mean Sea Level (MSL) to be consistent with previous geotechnical evaluations. MSL elevations are about 3.2 feet lower than NAVD88 elevations at this location.

For the purpose of design analysis, we have assumed that ground water remains at a depth of 2 feet below the landside surface for flood wall options since sheet piles embedded in the low permeability Young Bay Mud act to cut off the transmission of groundwater. Given the low permeability of Young Bay Mud, we anticipate that structural demands will drive the design sheet pile depth as opposed to a seepage analysis. We will check both as a part of the design process.

Since the mid 1950's the District has monitored settlement within the Santa Venetia community. A plot of three locations is shown in Figure 6 and noted as following:

- SM#3 Chiseled 'x' on top rolled curb at front of sidewalk centerline of Labrea extended # 637 Vendola Drive
- SM#4 Chiseled 'x' on top rolled curb at front of sidewalk centerline of Hacienda extended # 707 Vendola Drive
- SM#6 Chiseled 'x' on top rolled curb at front of sidewalk centerline of Ash extended # 411 Vendola Drive

Figure 6 illustrates the rate of settlement is decreasing as would be anticipated given the age of the fill/levee and the characteristics of primary and secondary compression of Young Bay Mud. Future settlement in the neighborhood should be less than 1 foot over the presumed 30-year design life of the project.

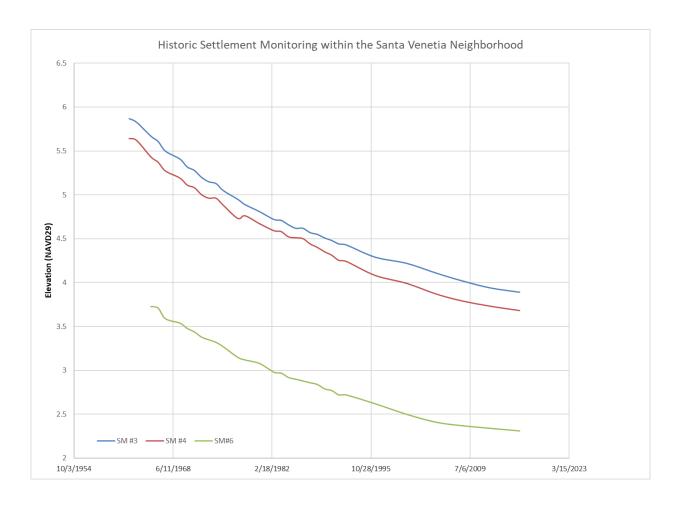


Figure 6 Historic Ground Surface Settlement Monitoring

EXISTING CONDITIONS – WATER SURFACE

An assessment of internal drainage such as pipes and pump stations within the Santa Venetia community is not included in this assessment. This study relates specifically to the impact of tide and stormwater flows in the South Fork of Las Gallinas Creek.

The Santa Venetia community is threatened by flooding from high flows in the South Fork of Las Gallinas Creek as well as high tides in San Pablo Bay. A confluence of these events compounds the flooding risk. Thus, the project intends to provide 100-year level of flood protection for a design life of 30 years. With construction commencing in 2025, the end of design life will be 2055, which conforms with available sea level rise guidance planning data increments. In order to determine the top of barrier design elevation, we referenced previously modeled 100-year water surface elevations. Typical FEMA grants require that the design complies with 100-year water surface as well as allows for sea level rise and potential settlement over the planned project life. However, it is the responsibility of the local community to determine these projections.

FEMA defines the 100-year Stillwater Base Flood Elevation as 9.8 feet in the 2017 Flood Insurance Study (FEMA, 2017) for Marin County, at Station B19 as shown in Figure 7. The estimate is mainly based on coastal influence, under the 1% chance still water level estimated from the San Francisco Bay Area Coastal Study. Comparatively, the 100-year water surface elevation presented on Page 8 of the Las Gallinas Creek Hydrologic, Hydraulic and Coastal analysis (USACE 2013) was 6.4 feet NVGD 29, or approximately 9.1 feet NAVD 88. The estimate is based on a coincident frequency analysis to account for the combined probability between coastal water surface elevation and watershed flow, to set the 1% probability water surface elevation. Note that the 100-year flow in Las Gallinas Creek is 1,300 CFS as determined by the US Army Corps of Engineers.



Figure 7 FEMA Flood Zone Mapping

At the time the existing TRB was being constructed in 1983 the recorded high tides in the preceding year peaked at 8.7 feet (at the San Francisco Gauge). Since the TRB was constructed the tide level never exceed 8.7 feet, and therefore the TRB has never been tested against the design tide height to which it was constructed to respond. The nearest tide height it has experienced is 8.42 (1998) which is less than the 10-year tide, at 8.5 feet, in FEMA's 2017 flood insurance study.

To compare the FEMA data to actual water heights, we reviewed the National Estuarine Research Reserve System who has a gauge that measures the height of water in Las Gallinas Creek. Figure 8 shows the frequency of various water heights since November 2017; this shows that Las Gallinas Creek has reached above 8 feet NAVD 88 on 12 occasions

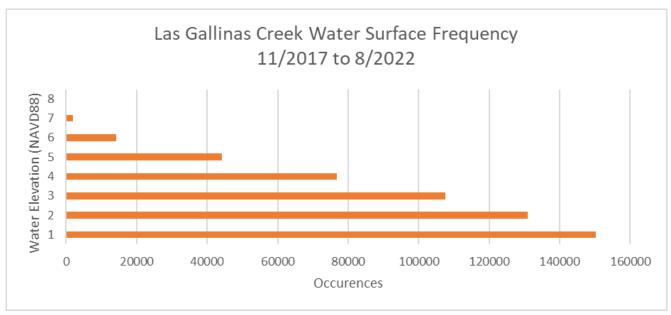


Figure 8 Height of Las Gallinas Creek

The San Francisco Bay Tidal Datums and Extreme Tides Study determined the annual chance of occurrence of extreme tide elevations in the San Pablo Bay near Las Gallinas Creek (Location #95) to be as follows:

Extreme Tide Elevations (NAVD88)							
1-YR 2-YR 5-YR 10-YR 25-YR 50-YR 100-YR 500							
7.4	7.71	8.13	8.45	9.90	9.26	9.67	10.75

The Sea Level Rise (SLR) projections have been estimated by a number of different agencies with the most recent estimates provided by the California Ocean Protection Council (OPC 2018). The State of California Sea Level Rise Guidance Document (OPC 2018, Table 1) provides a range of probabilistic SLR projections for the San Francisco Bay Area. The Likely Range High Emission estimates with 66% probability ranged from 0.6 and 1.1 feet by 2050 and 0.8 and 1.5 by 2060. If the flood barrier was constructed in 2025, the future sea level rise would be somewhere in between the 2050 and 2060 projection.

The OPC further estimates that there is a 5% probability that SLR will meet or exceed 1.4/ 1.6 feet by 2050/ 2060, and 0.5% probability that SLR will meet or exceed 1.9/ 2.4 feet by 2050/ 2060, which could be considered to represent the upper bound of reasonable SLR rates to consider in project planning.

A land settlement estimate range was provided from an analysis completed by Kleinfelder in 2018 (Kleinfelder, 2018) which considered observed elevation changes at points in Santa Venetia tracked between 1990 and 2012. The analysis projected a settlement range of 3 to 4 inches per every 10 years for the next several decades.

Based on the sum of 100-year still water elevation, settlement estimate, and SLR projection, the design criteria may be based on the following range of values (rounded up to the nearest 0.1 feet):

100-Year Wa Elevation (l		2050-2060 Proje Rise fror		Land Subsidence Estimate from Kleinfelder Report	
USACE 2013	FEMA	Low-end 66% 5% Chance		Low	High
	2016	Probability			
9.1	9.8	0.7	2.2	0.8	1.0
		(interpolated)	(interpolated)		

Selecting values from the table above results in a range of 10.6 to 13 feet NAVD88 as potential target design elevations that would meet the overall objective of providing 100-year flood protection over a 30-year design life. The previous District evaluation considered two different flood barrier elevation design criteria of 11 feet and 12.5 feet. Note that the 12.5 feet would no longer meet the extreme condition as shown above due to the project being delayed by 5 years. Considering this, and the fact that a wall height of 11 feet falls within the probability range of the projected water surface elevations, the design height of the flood wall will be 11 feet NAVD88.

EXISTING CONDITIONS – ENVIRONMENTAL RESOURCES

The environmental reports prepared for the project note several special status wildlife species are known or have high potential to occur in or near the project site. Tidal elevations are a reference that previous studies have used to guide the project development; these include:

- The Initial Study cites 6 feet NAVD88 as the "regular high tide line." Thus, work below this elevation will require a Section 404 permit issued by the US Army Corps of Engineers.
- Work near the marsh and specifically below elevation 6.5 feet, which is the extreme high tide line, will require protection of Ridgway's rail and Salt-marsh harvest mouse. Specifically, no activities, visual disturbance, and/or increase in ambient noise level shall occur within a minimum 700 feet of these species.

The existing CEQA document notes the following measures to minimize environmental impacts:

- 1. Work shall be scheduled to occur between September 1st and January 15th to avoid the Ridgeway's rail and California black rail breeding season.
- 2. Work shall be scheduled to occur between 7:00 AM and 6:00 PM in order to avoid early morning and late afternoon/evening hours when rails are most active.
- 3. Work shall be scheduled to avoid periods of high tides, as the high water reduces the amount of refugial habitat for the rails and SMHM. No work shall occur near salt marsh habitats within two hours before or after predicted extreme high tides at the project site.
- 4. Activities shall proceed as quickly as possible to reduce disturbance from noise, dust, etc.
- 5. Removal or disturbance of emergent tidal marsh vegetation shall be avoided, and removal or disturbance of vegetation at the tidal marsh/upland interface shall be avoided to provide a buffer of refugial habitat

within as wide a swathe as possible (9.8 feet minimum) from the Mean Higher High Water (MHHW) line. If removal is necessary, the work shall be scheduled outside of the breeding season (January 16th to August 31st); all vegetation shall be removed by hand and shall be salvaged and retained, if native, for replacement after work is completed.

- 6. All access will be from the landside of the levee between the houses.
- 7. The TRB waterside planks would be in the same location and changes in the width and alignment would be within 10 feet of it.
- 8. Silt fencing would be installed at above the high the tide line at elevation higher than 6 feet.

The project does not require approval from the Bay Conservation and Development Commission as illustrated in Figure 9.

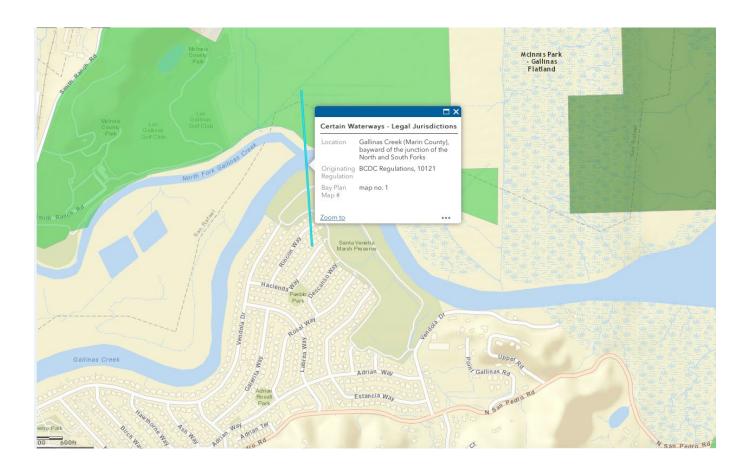


Figure 9 Bay Conservation Development Commission Jurisdiction Limit

REGIONAL SOLUTION

The District evaluated an option of installing a tidal gate on Las Gallinas Creek that could be closed if a large tide was expected preventing inundation of the community. This tidal gate would include a pump station to evacuate water from Las Gallinas Creek. Theoretically, the tide gate and pump station could be installed anywhere along Las Gallinas Creek assuming it could be connected into a levee system and/ or high ground. One such location is shown in Figure 10.

Figure 10 Potential location of Las Gallinas Creek tidal date

However, this location includes flows from the North Fork of the Las Gallinas Creek, which increases the sizing and complexity of the pump station. This would also require approval from BCDC. Thus, we evaluated placing the tidal gate and related infrastructure near the existing pump station number 5 as shown in Figure 11.

Placing a tidal gate at this location requires managing the flows from the South Fork of the Las Gallinas Creek, which are 1,300 CFS in the 100-year event. If these occur at a high tide event, which can exceed 8 feet, the tidal gate and flood wall would require a pump station of significant capacity.

Figure 12 illustrates a potential flood wall and tidal gate. Note that when the gate is closed, water would need to be

Figure 11 Tidal Gate

stored in the creek, which would increase in elevation to the height existing levee and potentially the TRB.

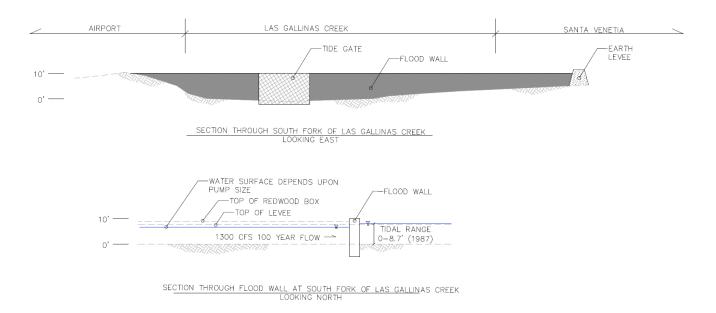


Figure 12 Section Through Tidal Gate

Figure 13 illustrates a cross section through the creek just upstream of the tidal gate. As there is no single pump that can discharge 1,300 CFS, the station would include several pumps working simultaneously to discharge inflow. Water levels would rise depending upon the intensity of rainfall and the capacity of the pumps. Thus, the existing TRB would be subject to water loading. The existing TRB would still need to be replaced with some form of levee to prevent flooding within the community.

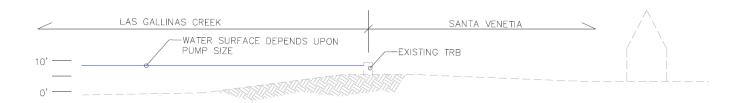


Figure 13 Cross Section through the South Fork of Las Gallinas Creek looking downstream

We estimate the cost to construct this tidal gate, floodwall, and pump system to range from \$55 to \$85 million. This is not a viable option as the State and Federal regulatory agencies would not accept this alternative for potential funding opportunities and the cost to construct is significantly higher than simply replacing the existing TRB.

EXTENSION OF PROJECT LIMITS

The previous project did not extend the TRB to reach an elevation of 11 feet on the west and east ends. Thus, the project will extend the limits as shown in Figure 13. Note that at the Meadow Drive Bridge leading to Santa Margarita Island, the District will need to install temporary measures such as sandbags or inflatable bladders should flood conditions be anticipated. Recommendations for these elements are not included in this report.

West End

East End

Figure 14 Extension of Project Limits

PROJECT ALTERNATIVES

The District proposes to replace about 7,500 feet of the exiting TRB along the South Fork of Las Gallinas Creek with a new floodwall. Previously, the District studied several alternatives for the levee and concluded that the TRB was the preferred option. We have investigated the TRB as well as two other options, including a prefabricated concrete wall and composite sheet pile walls.

Once the TRB is removed, the new wall would be located generally along the same alignment of the TRB to an elevation of 11 feet in accordance with NAVD 88. Figure 15 illustrates the existing earth berm and TRB in comparison to the future levee elevation along the proposed alignment. Note that the numbers on the horizontal access relate to property addresses along Vendola Drive.

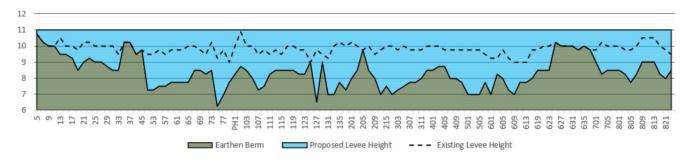


Figure 15 Comparison of Levee heights

The existing TRB is located on private property that is entirely single-family residential use except for several locations owned by public agencies. Many properties have fences, docks, landscaping, decks, and small buildings constructed near, and sometimes atop, the TRB. As previously noted, on the waterside, environmental resources restrict work to a very small work area with limited accessibility that complicates construction.

In developing these alternatives, the District collaborated with the community to determine goals for the project, which include the following:

- 1. Provide the highest degree of flood protection accounting for future ground settlement and rises in sea level.
- 2. Develop a design solution that is consistent with Federal Emergency Management Agency (FEMA) funding opportunities.
- 3. Construction should have the lowest practical impact to residences located along the levee.
- 4. The project's design should ideally be consistent with environmental documents and permits; if not, they will be amended.
- 5. The levee should offer a long design life and low maintenance cost.
- 6. To the extent possible, the levee should not unreasonably prevent access to the water.

Timber Reinforced Berm

The previous design for the TRB included a raised planter box similar to the existing condition but constructed of plastic timber. The plastic timber would be rated for outdoor use with properties complying with ASTM D 6108, Standard Test Method for Compressive Properties of Plastic Lumber and Shape and D 6109, Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastic Lumber. The original design of the TRB included either a continuous or post footings as illustrated in Figure 16.

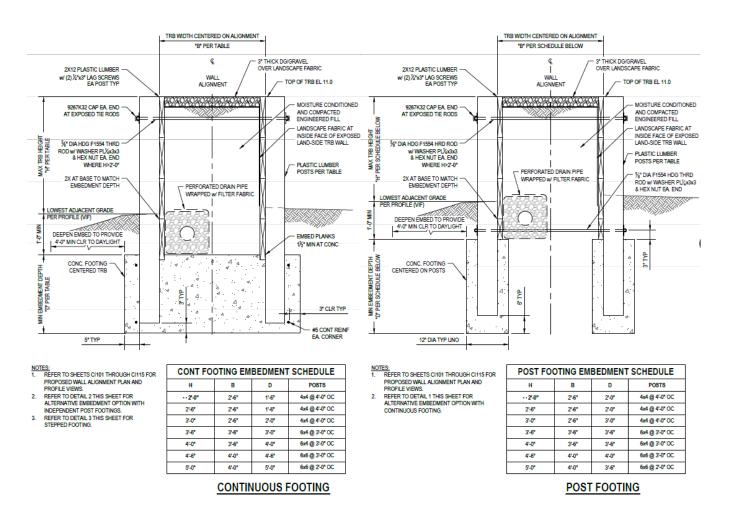


Figure 16 TRB Design

Based upon discussions with contractors, the District understood that a continuous foundation could offer a potential cost saving alternative. A secondary benefit is that could help to limit seepage. However, the additional cost of earthwork export and concrete import results in a high estimated construction cost. Thus, the District considered constructing the TRB with 90% of the alignment using a post footing with the remainder as a continuous footing. The GHD estimate for this option is approximately \$12.3 million (2022 dollars) over two construction seasons.

In speaking with local contractors, the challenge with constructing the TRB is that it is very labor intensive. In addition, exporting earthwork and importing concrete is challenging due to limited access. The process will be very slow to construct, causing disturbance to the residents. Previous estimates considered this to require two construction seasons. As the TRB is hand built, it will require regular inspection to ensure that settlement or shrinkage does not cause damage. The District will need to continue its gopher abatement program to ensure the levee is not compromised.

Precast Concrete Wall

The project could install a precast concrete floodwall along the alignment. This floodwall would be embedded into the levee by about 24 inches. It would resist floodwater by being tied into a series of columns supported by concrete foundations placed within drilled holes. An example of a precast floodwall is shown in Figure 17.

Figure 17 Precast Concrete Floodwall

This option can be an attractive and durable flood control solution. We obtained a cost to fabricate the walls from a local vendor in early 2022 who quoted about \$4 million. However, even using lightweight concrete, the units will be heavy and difficult to maneuver for installation behind the homes. In addition, the soil conditions at the site have low shear strength. Thus, the project would need to install many piers to resist the load. In addition, the weight of the units may induce settlement in the Young Bay Mud beneath the site.

We do not believe that a precast concrete wall is technically feasible at this site.

Composite Sheet Pile

A composite sheet pile functions similarly to the more traditional steel option, but it is fabricated from plastic such as polyvinyl chloride or resin materials. An example wall is shown in Figure 18. The benefit of a composite sheet is that they are lightweight, corrosion resistant, limit seepage, and have low maintenance requirements. The disadvantage is the material is not as strong as steel and thus can deflect under load especially when not backed by soil or anchor.

Figure 18 Composite Sheet Pile located along Pinole Creek in Pinole, California

A composite sheet pile is installed using similar tools to steel, which includes a vibratory hammer installed on an excavator or crane. Unlike traditional pile driving equipment that uses a large weight or ram to strike a pile, vibratory hammers use spinning counterweights to create vibration in the pile. The vibration sends the soil particles into suspension enabling the pile to slip through the soil. The vibration and the weight of the tool on the excavator arm can advance the sheet pile through most soil conditions.

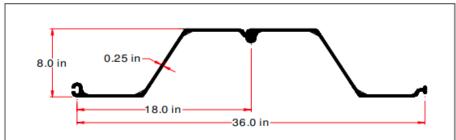
The existing geotechnical conditions at the site include five to seven feet of fill that consists of clay and silt atop as much as a 50-foot-thick layer of Young Bay Mud (YBM). The YBM is ideal for installation, however, the upper layers may present a challenge. If refusal occurs, the contractor would pre-drill a portion of the top layer to help penetration

and preserve the sheet pile from damage. To install the sheet, a side clamping driver is mounted on a small excavator. To protect the sheet, the twin metal sheets are placed on the composite pile where it is gripped; they are removed upon installation.

The sheet piles will cantilever above the ground's surface, meaning that they will have no earth backing. The benefit is that they will not induce settlement in the soft subgrade layers. The disadvantage is that the sheets will need to entirely resist the entire water load during flooding.

For this analysis, we have evaluated the EverComp range of sheet piles produced by Everlast Synthetic Products. They produce a variety of products ranging from vinyl to composite sheet pile systems. Due to deflection concerns, this evaluation focuses on the EverComp 26.1 and 80.5 line of products whose engineering properties are illustrated in Figures 19 and 20. Note that these sheets include fiberglass reinforcement.

The proposed floodwall will have exposed heights above ground level ranging from 1 to 6 feet. To prevent overturning, we have allowed a factor of safety (FOS) of 1.5. In this case, the maximum and minimum total length of sheet piles range from 24 to 7 feet respectively. In the structural analysis, the sheets have adequate shear and bending moment capacity to resist the water load, but deflection can be a challenge. However, by using the 80.5 sheet or potentially two rows of 26.1 sheets as shown in Figure 21, deflection can be reduced to 3.5 inches in the most extreme case. Appendix A includes a summary of the calculations, and the following table illustrates deflection.


Stat	ion	Sheet		Factor of S	afety = 1.5	Factor of S	afety = 2.0
Begin	End	Exposed Above Ground (Feet)	EverComp Model	Embedment below ground (feet)	Max. Deflection at top of the sheet pile (inch)	Embedment below ground (feet)	Max. Deflection at top of the sheet pile (inch)
7+50	22+00	0 - 3	EC26.1	8	0.5	9	0.5
7+50	22+00	3 - 5	EC26.1	16	10.8	19	13.5
7+50	22+00	3 - 5	EC80.5	16	1.0	19	1.3
22+00	34+00	0 - 3	EC26.1	8	0.6	9	0.6
22+00	34+00	3 - 5	EC2 6.1	15	10.5	17	13.0
22+00	34+00	3 - 5	EC80.5	15	0.9	17	1.2
34+00	67+00	0 - 3	EC80.5	8	0.1	9	0.1
34+00	67+00	0 - 5	EC80.5	14	0.9	16	1.1
34+00	67+00	5 - 6	EC80.5	18	2.6	20	3.0
67+00	82+00	0 - 3	EC26.1	7	0.4	8	0.4
67+00	82+00	0 - 5	EC26.1	12	6.8	13	7.5
67+00	82+00	0 - 5	EC80.5	12	0.6	13	0.7

EverComp 26.1 [™] FRP Sheet Pile

Technical Data Sheet

AL - Along length of sheet pile AWS - Along width of sheet pile

Property	Symbol	Units	Results	ASTM Test Method
Flexural Stress:				
Ultimate (AL)	σ _{ult AL}	psi	90,000	D 790-03
Recommended Allowable Stress(AL)	σ _{all AL}	psi	25,000	
Modulus of Elasticity (AL)	E _{AL}	psi	3,500,000	D 790-03
Ultimate (AWS)	σ _{ult AWS}	psi	29,000	D 790-03
Modulus of Elasticity (AWS)	E _{AWS}	psi	1,900,000	D 790-03
Max. Allowable Moment	M _{max}	ft-lb/ft	27,000	
Tensile Stress:				
Ultimate (AL)	σ _{ult AL}	psi	77,000	D 638-03
Recommended Allowable Stress(AL)	σ _{all AL}	psi	25,000	
Modulus of Elasticity (AL)	E _{AL}	psi	5,000,000	D 638-03
Ultimate (AWS)	σ _{ult AWS}	psi	9,000	D 638-03
Modulus of Elasticity (AWS)	E AWS	psi	3,200,000	D 638-03
Shear Stress:				
Ultimate (AL)	T ult AL	psi	5,500	D 3846-02
Recommended Allowable Stress(AL)	T all AL	psi	2,200	
Ultimate (AWS)	σ _{ult AWS}	psi	5,400	D 3846-02

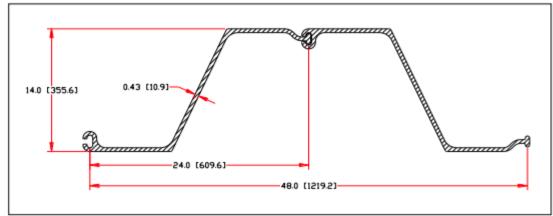

Properties of Sheet Pile:				
Width	w	inches	18	
Depth	D	inches	8	
Thickness	t	inches	0.25	
Section Modulus	Z	in ³ /ft	13	
Moment of Inertia	ı	in ⁴ /ft	52	
Radius of Gyration (pair)	r	inches	3.29	
Area of Web	A _W	in ²	2.3	

Figure 19 EC 26.1 Properties

EverComp 80.5 TM FRP Sheet Pile

Technical Data Sheet

AL - Along length of sheet pile AWS - Along width of sheet pile Property Symbol Units Results ASTM Test Method Flexural Stress: 75,000 D 790-03 Ultimate (AL) σ_{uit AL} psi σ_{al AL} Recommended Allowable Stress(AL) 20,000 psi -----Modulus of Elasticity (AL) E_{AL} psi 4,100,000 D 790-03 Ultimate (AWS) D 790-03 20,000 σ_{ult AWS} psi E AWS Modulus of Elasticity (AWS) 1,500,000 D 790-03 psi Tensile Stress: D 638-03 Ultimate (AL) σ uit AL psi 75,000 σ_{al AL} Recommended Allowable Stress(AL) psi 20,000 Modulus of Elasticity (AL) E_{AL} psi 5,500,000 D 638-03 Ultimate (AWS) 6,800 D 638-03 σ_{ult AWS} psi E AWS Modulus of Elasticity (AWS) psi 1,700,000 D 638-03 Shear Stress: 5,600 D 2344-00 Ultimate (AL) psi T ult AL Recommended Allowable Stress(AL) psi 1,800 T all AL Ultimate (AWS) 2,700 D 2344-00 σ uit AWS psi

	L		
W	in	24.0	
D	in	14.0	
t	in	0.43	
Z	in ³ /ft	38	
<u> </u>	in⁴/ft	268	
r	in	5.65	
A _W	in ²	6.5	
	W D t Z I r Aw	I in ⁴ /ft r in	D in 14.0 t in 0.43 Z in ³ /ft 38 I in ⁴ /ft 268 r in 5.65

Figure 20 EC 80.5 Properties

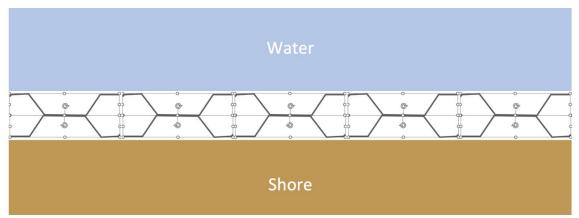


Figure 21 Dual sheet piles used to limit deflection

The basis for the analysis assumes a water surface elevation of 10 feet and the sheets installed on the creekside edge of the existing levee as shown in Figure 22. To reduce the transmissivity of water through the sheet pile system, the project will install "SwealSeal" by Deneef. This product is installed similar to an industrial caulk product along the length of the sheet pile using a special applicator prior to installation. The Everlast products have a design life of 50 years. A comparison of the pre and post installation is shown in Figure 23.

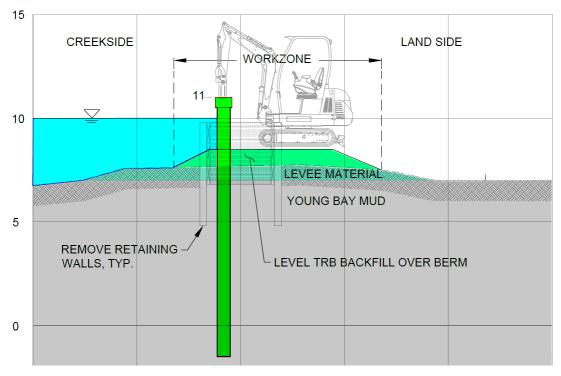


Figure 22 Composite sheet installation

The cost associated with this installation is about \$9 million (2022 dollars) as shown in Appendix B. These values are based on actual material prices provided by the manufacturer as of August 2022.

Figure 23 Artist rendering of the pre and post installation of the composite sheet pile system

Most vendors sell the sheet piles in increments of 2 feet. Unit weights of these features includes:

- EC 26.1 is 6 PLF or 4.1 PSF
- EC 80.5 is 13.4 PLF or 6.7 PSF

Thus, a 26-foot length of the EC 80.5 would weight about 350 lbs. This is too heavy for workers to move thus, equipment would need to be used to bring them into position.

In discussions with Everlast, the composite sheets are resistant to chemicals. They are checking to determine if they have data on chemical leaching. If the sheet was damaged by vandalism, there is the potential to patch it using a similar process to a fiberglass repair.

RECOMMENDATIONS FOR LEVEE UPGRADE

As previously presented, we evaluated the TRB, precast concrete, and composite sheet piles to act as a floodwall. We do not believe that the precast concrete wall is feasible at this location. However, both the TRB and composite sheet pile system are viable options. The following table ranks each option on a scale of 1 to 3 with three being the most compliant with the defined goal.

Goal.	TRB \$12.3 MILLION	COMPOSITE SHEET \$9 MILLION
Meets Flood Protection Goal	X	X
Ability to obtain FEMA Funding	Х	Х
Minimizes Impact to Residents During Construction	X	XXX
Consistent with Environmental Document and Permit	XXX	Х
Long Design Life and Low Maintenance Cost	X	XX
Allows Water Access	X	Х
Lowest Cost	Х	XXX
Limits Seepage	Х	XXX
Speed to Construct	Х	XXX
SCORE	11	18

In evaluating alternatives, we make the following observations:

- 1. The TRB maintains the status quo and is repairable using generally available materials and standard construction processes. The composite sheets are not easily repaired if damaged. Replacement of composite sheets requires specialized equipment and trained labor.
- 2. In discussions with general contractors, composite sheets are their choice to install the floodwall at Santa Venetia. However, as there is no soil backing, they may have excessive deflection requiring heavier sheets. A field evaluation would help to calibrate the anticipated deflection.
- 3. Composite sheets have minimal maintenance requirements. They require visual inspection to ensure they have not been vandalized.
- 4. The composite sheet pile system is no wider than 20 inches. The TRB ranges from 2.5 to 3.2 feet in width.
- 5. Because the vinyl sheet penetrates the ground, effectively cutting off groundwater, homeowners could possibly encroach closer to the wall than the TRB.

We believe that the composite sheet pile offers the District and Santa Venetia community with a flood mitigation solution. However, the limited access presents major challenges. In discussing composite sheet piles with suppliers, contractors, and equipment vendors, we understand there is ongoing innovation. New tools and sheets pile options are coming to market which will help to install these systems in communities such as Santa Venetia. Thus, we recommend testing a segment of the sheet pile wall in a similar configuration as shown in Figure 24 to verify the following:

- 1) The equipment including excavator and hammer best suited for installation given limited access.
- 2) Confirm the maximum length of sheet that could be installed by a small excavator using a top grip hammer.
- 3) Verify the time required to install a sheet using a small vibratory hammer on a small excavator to verify daily production rates to confirm the floodwall could be installed within one construction season.
- 4) Measure the ground vibration associated with installation of the sheets.
- 5) Simulate the water load on the sheet to verify deflection values.

Note that at the six locations where storm and sanitary sewer utilities crossing the levee, these areas would feature a standard timber reinforced berm as the pipelines would conflict with the sheet piles. Each of these would be about 16 feet in length. Finally, it could be beneficial to use the TRB in certain locations where obstruction prevent sheet pile installation equipment.

Figure 24 Sheet pile field test

CONSTRUCTION PROCESS

Installation of a floodwall within the area is complicated by limited accessibility due to private homes as well as extensive biological resources along the south fork of Las Gallinas Creek. Thus, selecting a construction method that is quick and minimally invasive is critical. Composite sheet piles are installed using similar tools to those used for steel sheets. Figure 25 illustrates two options to install sheets include a top and side grip vibratory hammers

Figure 25 Sheet pile installation tools including a top grip on the left and side grip on the right.

The side grip hammer is a relatively new tool with the benefit of being able to grab long sheets and install them without using a large excavator or crane. As the sheet enters the ground, the operator can shift the tool higher on

the sheet. We understand that due to numerous articulations possible, these tools require considerable hydraulic fluid flow and pressure only available on larger excavators. However, this is a rapidly evolving tool and new manufacturers are coming to market within the next year. We understand that several new tools will be presented at the Bauma 2022 trade show in Munich Germany in late October.

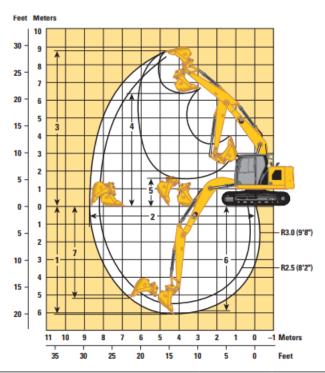

Currently, we were only able to find top grip hammers available in the San Francisco Bay Area. The length of sheet pile able to be installed by these tools is limited by the excavator's reach. Given the site restrictions at Santa Venetia, the excavator's width needs to be less than 10 feet. If we selected a Caterpillar

Figure 26 Caterpillar Model 313

model 313 (15-ton class) as shown in Figure 26, it has a width of a little over 8 feet and a maximum reach of about

21 feet as shown in Figure 27. In comparison, the Caterpillar model 308 (10-ton class) has a width of about 7.5 feet with a maximum reach of about 17 feet.

Boom Option	Reach Boom 4.65 m (15'3")					
Stick Options		Reach	Stick			
	R2.5	(8'2")	R3.0 (9'10")		
1 Maximum Digging Depth	5540 mm	18'2"	6040 mm	19'10"		
2 Maximum Reach at Ground Line	8190 mm	26'10"	8660 mm	28'5"		
3 Maximum Cutting Height	8560 mm	28'1"	8830 mm	29'0"		
4 Maximum Loading Height	6150 mm	20'2"	6420 mm	21'1"		
5 Minimum Loading Height	2080 mm	6'10"	1600 mm	5'3"		
6 Maximum Depth Cut for 2440 mm (8'0") Level Bottom	5330 mm	17'6"	5860 mm	19'3"		
7 Maximum Vertical Wall Digging Depth	4760 mm	15'7"	5190 mm	17'0"		
Minimum Working Equipment Radius	2430 mm	8'0"	2570 mm	8'5"		
Bucket Digging Force (ISO)	98.45 kN	22,130 lbf	98.67 kN	22,180 lbf		
Stick Digging Force (ISO)	66.68 kN	14,990 lbf	59.29 kN	13,330 lbf		
Bucket Type	G	GD GD		D		
Bucket Capacity	0.68 m ³	0.89 yd ³	0.68 m ³	0.89 yd ³		
Bucket Tip Radius	1240 mm	4'1"	1240 mm	4'1"		

Figure 27 Range of Motion for a Caterpillar 313 Excavator

Using the Caterpillar 313 excavator and a top grip hammer, sheets less than 18 feet in length could potentially be installed depending on the hammer model. However, sheets in excess of this length would require pre-drilling of a hold to place the sheet to a depth where the excavator could grab it.

Moving materials in and out of the work area is extremely limited. Figure 28 illustrates a location near 807 Vendola Drive. Access from the street to the existing TRB is wide and is not blocked by landscaping, fences, or other amenities. As these are few along the levee, we recommend considering allowing some form of waterside access. As shown in

Figure 28, when the tide is at an elevation of 1-foot NAVD88 (May 17, 2022 at 11 AM), the water is about 150 feet from the existing TRB. However, as the tide rises, there are opportunities to gain access using a shallow draft barge as shown in Figure 30.

Figure 28 Land and water access to the work area

The contractor could use a modular barge such as those fabricated by Flexifloat to move materials to and from the shoreline. The Flexifloat could be loaded from the fairgrounds located upstream of Las Gallinas Creek as shown in Figure 31. This approach could only be used at higher tides potentially requiring work at night. Figure 29 illustrates tidal conditions at the site in reference to MLLW, which is close to NAVD 88. We need to assess the depth of Las Gallinas Creek to confirm the feasibility of this option. Finally, work within the creek would require approval by various Federal and State agencies.

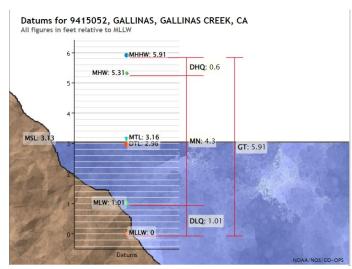


Figure 29 Tidal Data Near Las Gallinas Creek

Figure 30 Waterside access equipment

Figure 31 Waterside Route

RESTORATION

Upon completion of the levee installation, the District would offer to install side fences with gates to replace those removed to facilitate construction. In addition, the District would offer to install a staircase crossing the floodwall. Both of these features are show in Figure 32.

Figure 32 Fence and Staircase

The staircase shown above is a typical application that is currently used to cross the TRB. This could be used for the composite sheet pile. Note that the staircase's alignment could be shifted so that it is parallel to the floodwall to prevent encroachment into the property.

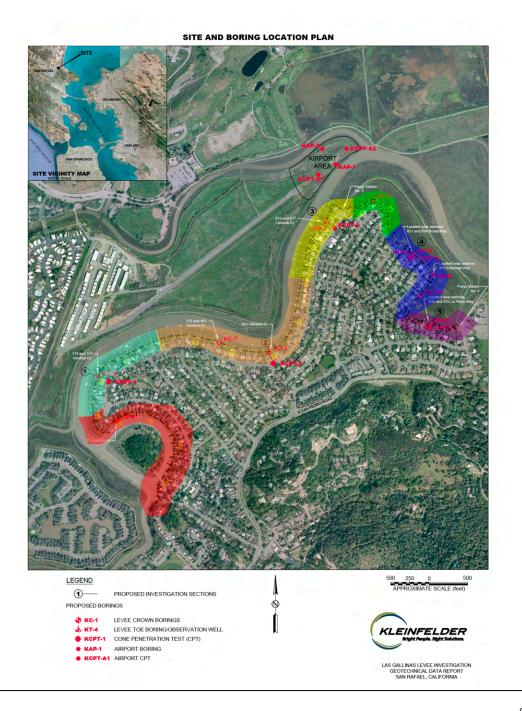
In addition, if the property has a storm drainage pipe routed to Las Gallinas Creek, at the discretion of the owner, the District's contractor can reconnect it and route it over the floodwall. Note that this drainage system would require a pump located on the owner's property. All other restoration including, but not limited to, landscaping, patios, decks, docks, structures, and utility systems would be completed through negotiations between the property owner and Marin County's Real Estate Division.

Project Name: Flood Wall

Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA


Page 1 of 36

Date: **August 18, 2022**

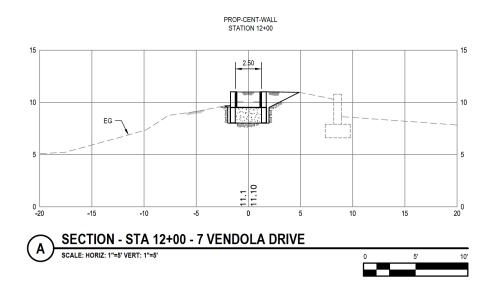
Project Description

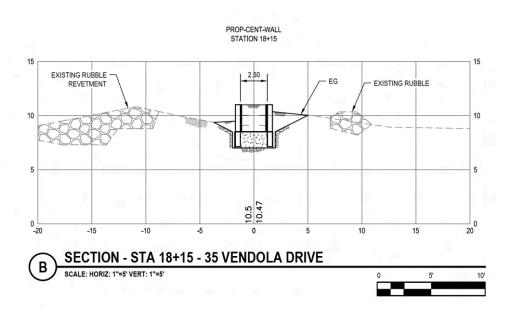
The scope of work is to perform a preliminary evaluation of the feasibility of application of EverLast vinyl sheet piles for the Santa Venetia flood control project.

Site Location and Project Limits

Project Name: Flood Wall

Project Location: Santa Venetia, Marin

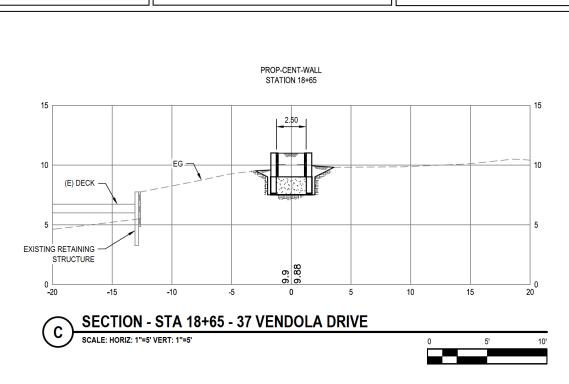

County, CA

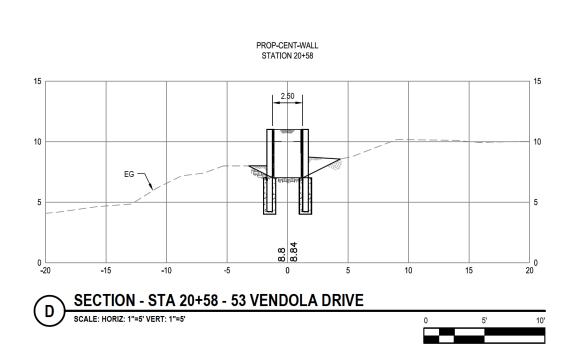

Project No.: **1511-4222S**By: DA Checked By: DA
Page 2 of 36

Date: **August 18, 2022**

Cross-Sections

The existing cross sections were taken from a set of plans dated October 2021 titled 'Marin County Flood Control and Water Conservation District, Santa Venetia Levee Upgrade, Design Sections' for a different alternative system. These are used to model the new sheet pile wall locations and loading conditions.

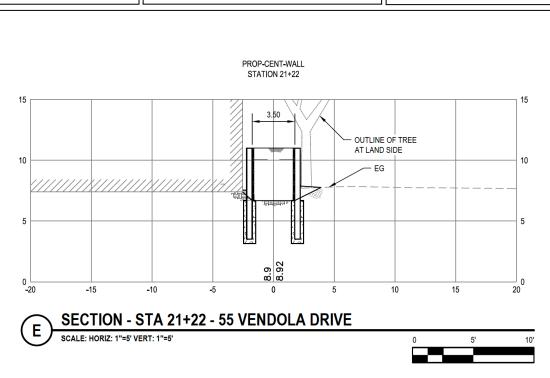

Project Name: Flood Wall

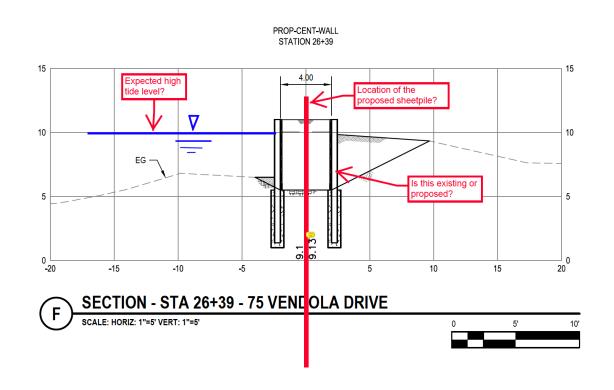

Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA

Page 3 of 36



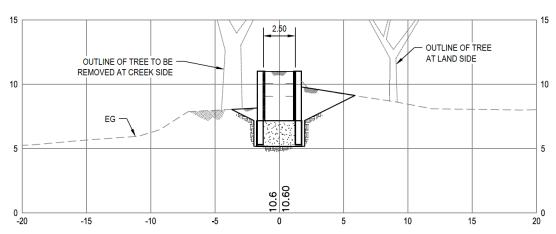

Project Name: Flood Wall

Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA
Page 4 of 36

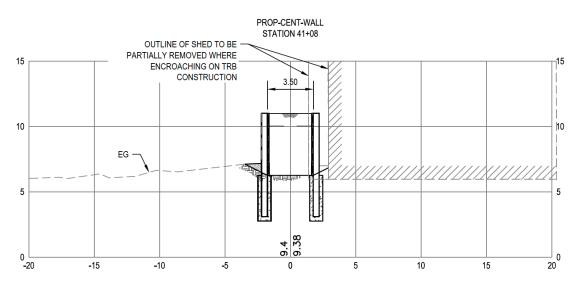
Project Name: Flood Wall

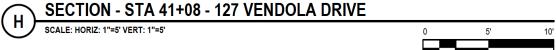

Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA
Page 5 of 36

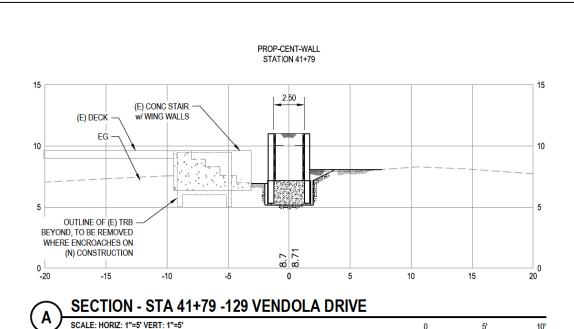
Date: August 18, 2022

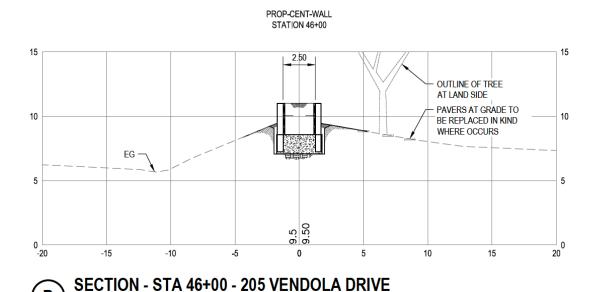




SECTION - STA 37+58 - 119 VENDOLA DRIVE

SCALE: HORIZ: 1"=5' VERT: 1"=5'


Project Name: Flood Wall


Project Location: Santa Venetia, Marin

County, CA

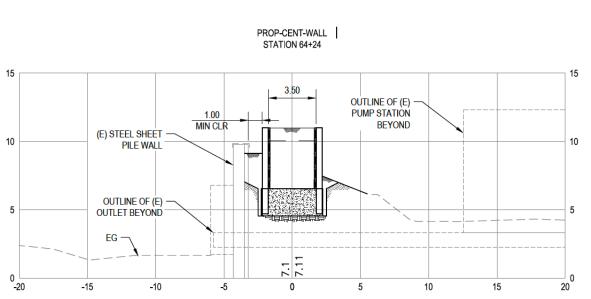
Project No.: **1511-4222S**By: DA Checked By: DA
Page 6 of 36

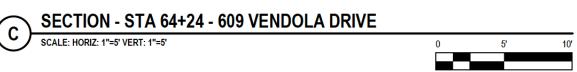
Date: August 18, 2022

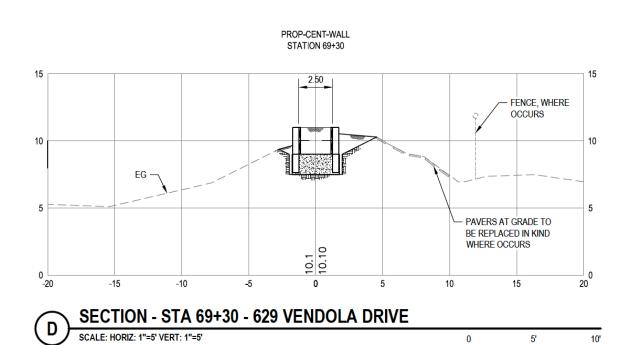
SCALE: HORIZ: 1"=5' VERT: 1"=5'

5'

10'

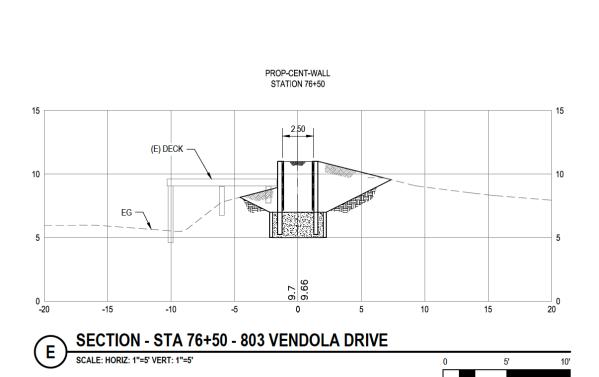


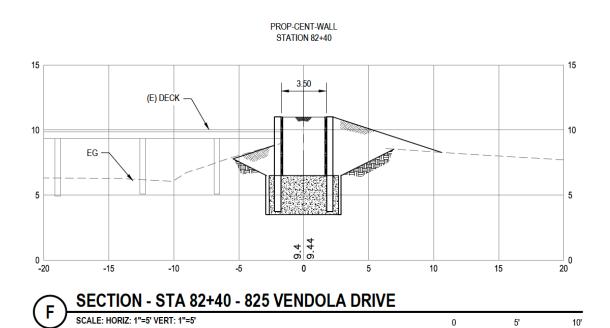

Project Name: Flood Wall


Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA
Page 7 of 36

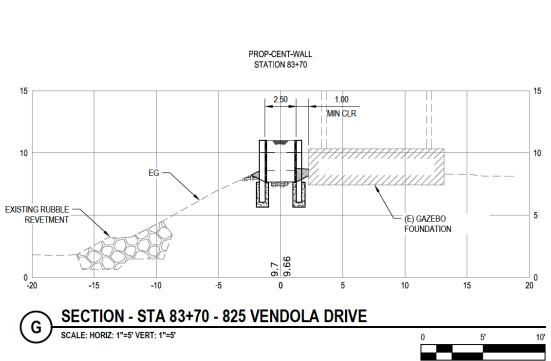


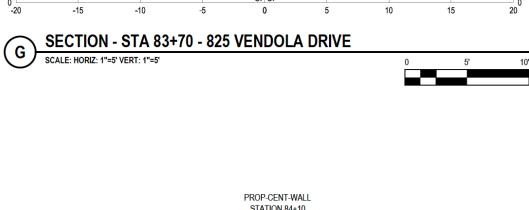

Project Name: Flood Wall

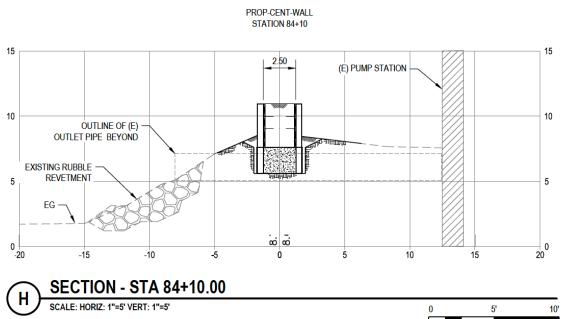
Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA
Page 8 of 36




Project Name: Flood Wall


Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA
Page 9 of 36

Project Name: Flood Wall

Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA
Page 10 of 36

Date: **August 18, 2022**

Geotechnical Conditions and Parameters

The subsurface conditions investigated by Kleinfelder were evaluated by Engeo and the following information was extracted by Engeo for preliminary design of the sheet pile flood control wall.

Stations: 85+00 to 108+00

	А	В	С	D	Е	F	G	Н		J	K
1		Bottom	Bottom	Total	Effective Unit	Effective Drained Unit		ined		GWT Depth	Groundw
	Layer	of Layer (Depth,	of Layer (Elev.	Unit Weight	Weight [submerg				Surface		ater Elevation
2		ft)	MSL, ft)	(pcf)	ed](pcf)	(pcf)	Ka	Кр	Elev. (ft)	7.5	(MSL, ft)
	Levee										
3	Material	7.5	0.9	120	57.6	120	0.26	3.9	8.4		0.9
4	YBM	-	-	90	27.6	27.6	0.42	2.4			

Stations: 70+00 to 85+00

	A	В	С	D	E	F	G	Н	1-2.,	J	K
1							Di	rained	1	GWT Depth	
2	Layer	Bottom of Layer (Depth, ft)	Layer (Elev.	Total Unit Weight (pcf)	Effective Unit Weight [submerge d](pcf)	Effective Unit Weight (pcf)	Ka	Кр	Surface Elev. (ft)	7.5	Groundwat er Elevation (MSL, ft)
3	evee Materia		0.9	110	47.6	110	0.31	3.3	8.4		0.9
4	YBM			90	27.6	27.6	0.42	2.4			

Stations: 44+50 to 70+00

	Α	В	С	D	E	F	G	Н		J	K
1		Bottom of	Bottom of		Effective Unit Weight	Effective	Dr	ained		GWT Depth	Groundwat
	Layer	Layer	Layer (Elev.	Total Unit		Unit Weight			Surface		er Elevation
2		(Depth, ft)	MSL, ft)	Weight (pcf)](pcf)	(pcf)	Ka	Кр	Elev. (ft)	2	(MSL, ft)
3	evee Materia	10.5	-3.2	110	47.6	47.6	0.36	2.8	7.3		5.3
4	YBM	-	¥.	90	27.6	27.6	0.42	2.4			

Project Name: Flood Wall

Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA

Page 11 of 36

Date: **August 18, 2022**

Stations: 30+50 to 44+50

	Α	В	С	D	E	F	G	Н	1	J	K
1							Dra	ined		GWT Depth	
2	Layer	Bottom of Layer (Depth, ft)	Bottom of Layer (Elev. MSL, ft)	Total Unit Weight (pcf)	7	Effective Unit Weight (pcf)	Ka	Кр	Surface Elev. (ft)	5	Groundwater Elevation (MSL, ft)
3	Levee Material (Above GWT)	5	0.5	110	47.6	110	0.32	3.1	5.5		0.5
4	Levee Material (Below GWT)	17	-11.5	110	47.6	47.6	0.35	2.9			
5	YBM	- (4)	- 1	90	27.6	27.6	0.42	2.4	2		

Stations: 22+00 to 30+50

	А	В	С	D	Е	F	G	Н	1	J	K
1					Effective		Dra	ined		GWT Depth	
	Layer	Bottom of	Bottom of		Unit Weight	Effective					Groundwat
		Layer	Layer (Elev.	Total Unit	[submerged	Unit Weight			Surface		er Elevation
2		(Depth, ft)	MSL, ft)	Weight (pcf)](pcf)	(pcf)	Ka	Кр	Elev. (ft)	7.5	(MSL, ft)
3	.evee Materia	7.5	1.9	125	62.6	120	0.26	3.9	9.4		1.9
4	YBM	-	-	90	27.6	27.6	0.42	2.4			

Stations: 7+50 to 22+00

4	Α	В	С	D	Е	F	G	Н	1	J	K
1							Dra	ained		GWT Depth	
2	Layer	Bottom of Layer (Depth, ft)	Bottom of Layer (Elev. MSL, ft)	Total Unit Weight (pcf)	Effective Unit Weight [submerged](pcf)	Effective Unit Weight (pcf)	Ka	Кр	Surface Elev. (ft)	4.5	Groundwater Elevation (MSL, ft)
	Levee										
3	Material	4.5	4.1	110	47.6	110	0.33	3.0	8.6		4.1
4	YBM	-	-	90	27.6	27.6	0.42	2.4			

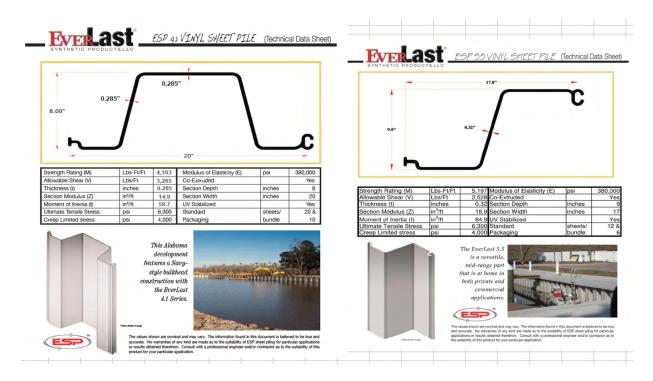
Project Name: Flood Wall

Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA

Page 12 of 36


Date: August 18, 2022

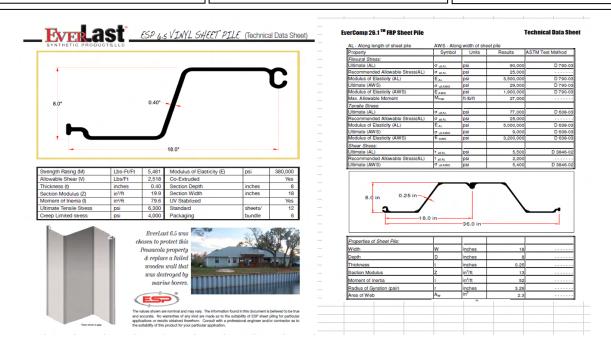
Stations: 5+00 to 7+50

	А	В	С	D	E	F	G	Н	1	J	K
1		Bottom	Bottom	Total	Effective Unit	Effective	Dra	ined		GWT Depth	Ground
	Layer	of Layer	of Layer	Unit	Weight	Unit					water
2		(Depth, ft)	(Elev. MSL, ft)	Weight (pcf)	[submer ged](pcf)	Weight (pcf)	Ka	Кр	Surface Elev. (ft)	7.5	(MSL, ft)
				Ĭ							
	Levee			0							
3	Material	7.5	0.9	120	57.6	120	0.26	3.9	8.4		0.9
4	YBM	-	-	90	27.6	27.6	0.42	2.4			

EverLastSheet Pile Information

Structural properties of different shapes of the system are as follows.

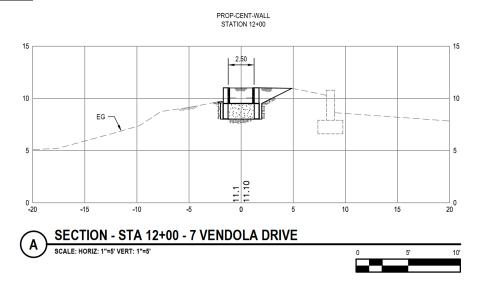
Project Name: Flood Wall


Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA

Page 13 of 36


Date: **August 18, 2022**

Analysis

For a preliminary analysis and evaluation of the above system, we have used the SPW911 software developed by PileBuck Industries. Analysis was performed using the following sections.

Section A

Project Name: Flood Wall

Project Location: Santa Venetia, Marin

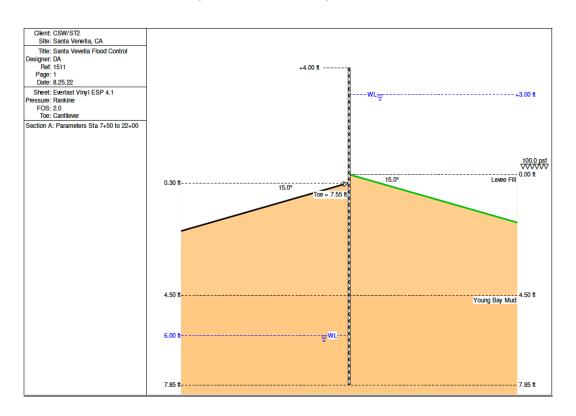
County, CA

Project No.: **1511-4222S**By: DA Checked By: DA

Page 14 of 36

Date: **August 18, 2022**

Soil profile established for the following segment of the project were adopted for our analysis.


Stations: 7+50 to 22+00

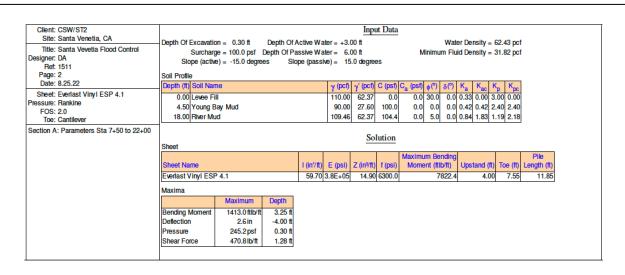
4	Α	В	С	D	Е	F	G	Н	I	J	K
1							Dra	ained		GWT Depth	
2	Layer	Bottom of Layer (Depth, ft)	Bottom of Layer (Elev. MSL, ft)	Total Unit Weight (pcf)	Effective Unit Weight [submerged](pcf)	Effective Unit Weight (pcf)	Ka	Кр	Surface Elev. (ft)	4.5	Groundwater Elevation (MSL, ft)
	Levee										
3	Material	4.5	4.1	110	47.6	110	0.33	3.0	8.6		4.1
4	YBM	-	-	90	27.6	27.6	0.42	2.4			

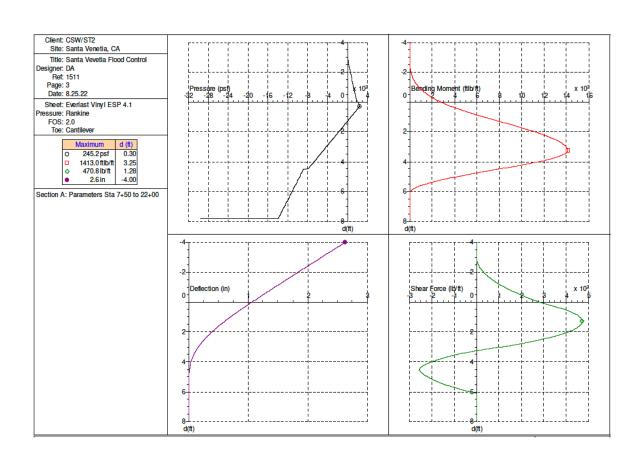
Analysis Results

Section A

Based on our preliminary analysis, the EverLast vinyl sheet pile ESP 4.1, would be adequate for the condition where the ground is saturated, with a 3-ft height of water above downslope grade. The embedment depth of the sheet pile would be 8 feet when the safety factor of 2.0 is specified.

Project Name: Flood Wall


Project Location: Santa Venetia, Marin


County, CA

Project No.: **1511-4222S**By: DA Checked By: DA

Page 15 of 36

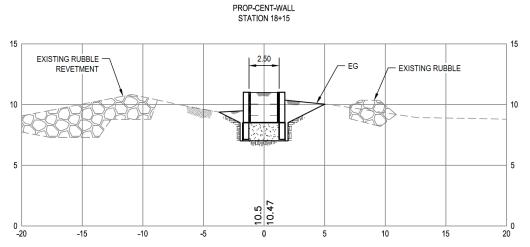
Date: **August 18, 2022**

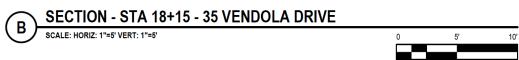
Subject: Prelim. Structural Calculations

Project Name: Flood Wall

Project Location: Santa Venetia, Marin

County, CA


Project No.: **1511-4222S**By: DA Checked By: DA


Page 16 of 36

Date: **August 18, 2022**

Client: CSW/ST2															
Site: Santa Venetia, CA	depth	P	M	D	F	depth	Р	M	D	F	depth	P	M	D	F
Title: Santa Vevetia Flood Control	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)
Designer: DA	0.00	220.3	280.7	1.1	282.7	2.64	-334.3	1333.2	0.2	246.1	5.28	-1000.8	256.0	0.0	-182.7
Ref: 1511	0.07	226.5	300.7	1.0	298.2	2.71	-351.4	1349.5	0.2	222.5	5.35	-1011.4	218.5	0.0	-171.5
Page: 4 Date: 8.25.22	0.14	232.2	321.7	1.0	314.1	2.78	-368.5	1364.1	0.2	197.7	5.42	-1022.0	183.4	0.0	-159.6
	0.21	237.9	343.8	1.0	330.3	2.85	-385.5	1377.0	0.2	171.8	5.49	-1032.6	150.9	0.0	-146.9
Sheet: Everlast Vinyl ESP 4.1 Pressure: Rankine	0.28	243.7	367.0	1.0	347.0	2.92	-402.6	1388.0	0.2	144.6		-1043.2	121.1	0.0	-133.5
FOS: 2.0	0.35	231.4	391.4	0.9	363.5	2.99	-419.7	1397.2	0.2	116.3	5.63	-1053.8	94.3	0.0	-119.4
Toe: Cantilever	0.42	214.3	417.0	0.9	378.9	3.06	-436.8	1404.3	0.2	86.8	5.70	-1064.5	70.4	0.0	-104.5
Section A: Parameters Sta 7+50 to 22+00	0.49	197.3	443.5	0.9	393.0	3.13	-453.8	1409.4	0.1	56.1	5.77	-1075.1	49.8	0.0	-89.0
Section A. Farameters Sta 7+50 to 22+00	0.56	180.2	471.0	0.9	406.0	3.20	-470.9	1412.3	0.1	24.2		-1085.7	32.5	0.0	-72.6
	0.63	163.1	499.3	0.8	417.7	3.26	-488.0	1412.9	0.1	-7.1	5.90	-1097.8	17.1	0.0	-53.1
	0.69	146.1	528.4	0.8	428.3	3.33	-505.0	1409.2	0.1	-31.1	5.97	-1108.4	7.5	0.0	-35.2
	0.76	129.0	558.2	0.8	437.8	3.40	-522.1	1400.6	0.1	-53.9		-1119.0	1.8	0.0	-16.6
	0.83	111.9	588.6	0.8	446.0	3.47	-539.2	1387.3	0.1	-75.5		-1129.6	0.0	0.0	0.0
	0.90	94.8	619.5	0.7	453.1	3.54	-556.2	1369.5	0.1	-96.0	6.18	-1140.3	0.0	0.0	0.0
	0.97	77.8	650.9	0.7	459.0	3.61	-573.3	1347.5	0.1	-115.3	6.25	-1150.9	0.0	0.0	0.0
	1.04	60.7	682.7	0.7	463.7	3.68	-590.4	1321.5	0.1	-133.4	6.32	-1161.5	0.0	0.0	0.0
	1.11	43.6	714.8	0.7	467.2	3.75	-607.4	1291.9	0.1	-150.3	6.39	-1172.1	0.0	0.0	0.0
	1.18	26.6	747.0	0.6	469.5	3.82	-624.5	1258.8	0.1	-166.0	6.46	-1182.7	0.0	0.0	0.0
	1.25	9.5	779.4	0.6	470.7	3.89	-644.0	1217.0	0.0	-182.6	6.53	-1193.3	0.0	0.0	0.0
	1.32	-7.6	811.9	0.6	470.7	3.96	-661.1	1177.3	0.0	-195.8		-1203.9	0.0	0.0	0.0
	1.39	-24.6	844.3	0.6	469.7	4.03	-678.2	1134.9	0.0	-207.8	6.67	-1214.5	0.0	0.0	0.0
	1.46	-41.7	876.6	0.5	467.5	4.10	-695.2	1090.1	0.0	-218.7	6.74	-1225.2	0.0	0.0	0.0
	1.53	-58.8	908.7	0.5	464.1	4.17	-712.3	1043.1	0.0	-228.4	6.81	-1235.8	0.0	0.0	0.0
	1.60	-75.9	940.5	0.5	459.5	4.24	-729.4	994.2	0.0	-236.9	6.88	-1246.4	0.0	0.0	0.0
	1.67	-92.9	972.0	0.5	453.8	4.31	-746.4	943.6	0.0	-244.2	6.95	-1257.0	0.0	0.0	0.0
	1.74	-110.0	1003.1	0.5	446.9	4.38	-763.5	891.6	0.0	-250.3	7.02	-1267.6	0.0	0.0	0.0
	1.81	-127.1	1033.7	0.4	438.8	4.45	-780.6	838.4	0.0	-255.3	7.09	-1278.2	0.0	0.0	0.0
	1.88	-146.6	1067.8	0.4	428.0	4.52	-882.4	784.3	0.0	-257.4	7.15	-1288.8	0.0	0.0	0.0
	1.94	-163.6	1097.0	0.4	417.4	4.58	-894.7	730.3	0.0	-254.2	7.22	-1299.4	0.0	0.0	0.0
	2.01	-180.7	1125.4	0.4	405.6	4.65	-905.3	677.1	0.0	-250.4	7.29	-1310.1	0.0	0.0	0.0
	2.08	-197.8	1153.0	0.4	392.6	4.72	-915.9	624.7	0.0	-245.8	7.36	-1320.7	0.0	0.0	0.0
	2.15	-214.8	1179.7	0.3	378.4	4.79	-926.5	573.4	0.0	-240.5	7.43	-1331.3	0.0	0.0	0.0
	2.22	-231.9	1205.3	0.3	363.1	4.86	-937.1	523.2	0.0	-234.4	7.50	-1341.9	0.0	0.0	0.0
	2.29	-249.0	1229.8	0.3	346.5	4.93	-947.7	474.4	0.0	-227.6	7.57	-1352.5	0.0	0.0	0.0
	2.36	-266.1	1253.2	0.3	328.8	5.00	-958.3	427.1	0.0	-220.1	7.64	-1363.1	0.0	0.0	0.0
	2.43	-283.1	1275.3	0.3	309.9	5.07	-968.9	381.5	0.0	-211.9	7.71	-1373.7	0.0	0.0	0.0
	2.50	-300.2	1296.0	0.3	289.8	5.14	-979.6	337.6	0.0	-202.9	7.78	-1384.3	0.0	0.0	0.0
	2.57	-317.3	1315.4	0.2	268.6	5.21	-990.2	295.7	0.0	-193.1	7.85	-2953.8	0.0	0.0	0.0

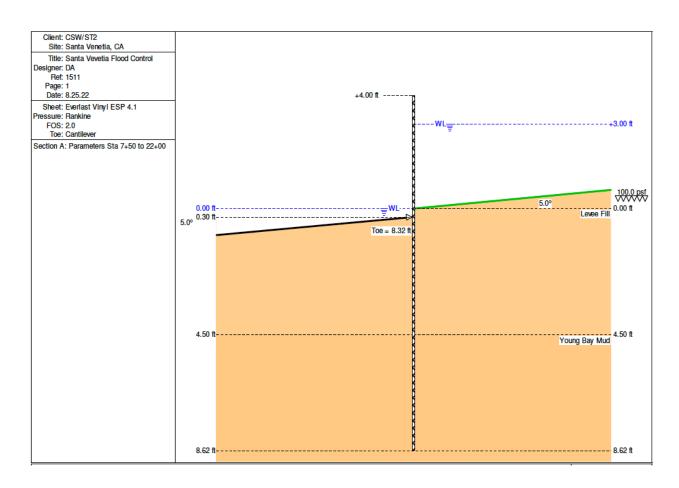
Section B

Project Name: Flood Wall

Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA
Page 17 of 36


Date: August 18, 2022

Stations: 7+50 to 22+00

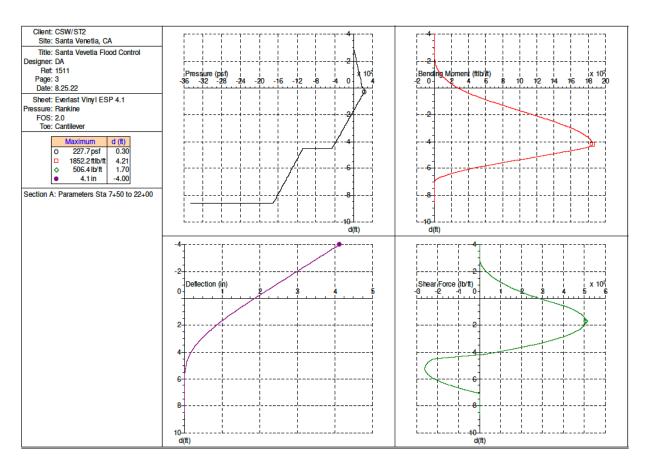
	Α	В	С	D	E	F	G	Н	1	J	K
1							Dra	ained		GWT Depth	
2	Layer	Bottom of Layer (Depth, ft)	Bottom of Layer (Elev. MSL, ft)	Total Unit Weight (pcf)	Effective Unit Weight [submerged](pcf)	Effective Unit Weight (pcf)	Ka	Кр	Surface Elev. (ft)	4.5	Groundwater Elevation (MSL, ft)
3	Levee Material	4.5	4.1	110	47.6	110	0.33	3.0	8.6		4.1
4	YBM	-	-	90	27.6	27.6	0.42	2.4	8.0		4.1

Analysis Results

Based on our preliminary analysis, the EverLast vinyl sheet pile ESP 4.1, would be adequate for the condition where the ground is saturated, with a 3-ft height of water above downslope grade. The embedment depth of the sheet pile would be 9 feet when the safety factor of 2.0 is specified.

Calculation

Subject: Prelim. Structural Calculations


Project Name: Flood Wall

Project Location: Santa Venetia, Marin

County, CA

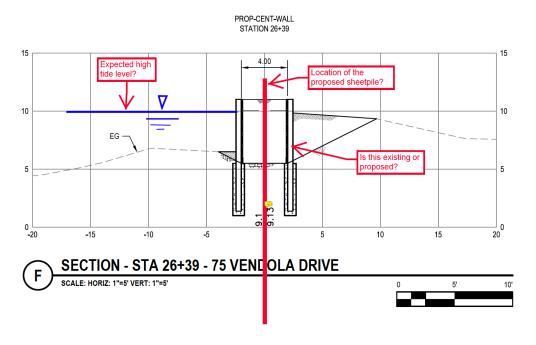
Project No.: **1511-4222S** By: DA Checked By: DA 36 Page 18 of

Client: CSW/ST2 Site: Santa Venetia, CA	Depth Of Excavation	on = 0.30 ft	Depth Of	Active Wa	ater = +3.0	_	ıt Data		Water	r Density =	62.43 pc	f	
Title: Santa Vevetia Flood Control Designer: DA Ref: 1511 Page: 2 Date: 8.25,22	Surcharg	ge = 100.0 psf e) = 5.0 degre	Depth Of Pa	assive Wa		00 ft .0 degree			n Fluid	Density =	31.82 pc	f	
Sheet: Everlast Vinyl ESP 4.1 Pressure: Rankine FOS: 2.0 Toe: Cantilever	0.00 Levee Fi 4.50 Young B	Name γ (pcf) γ' (pcf) C (psf) C _a (psf) φ' (pcf) δ(°) δ(°)											
Section A: Parameters Sta 7+50 to 22+00	Sheet	Sheet Solution											
	Sheet Name				E (psi)			Maximum Ber Moment (filt	v/ft)			Pile Length (ft)	
	Everlast Vinyl ESF Maxima			59.70	3.8E+05	14.90	6300.0	78	322.4	4.00	8.32	12.62	
	Bending Moment Deflection Pressure	Maximum 1852.2 ftlb/ft 4.1 in 227.7 psf	4.21 ft -4.00 ft 0.30 ft										
	Shear Force	506.4 lb/ft	1.70 ft										

Project Name: Flood Wall

Project Location: Santa Venetia, Marin

County, CA


Project No.: **1511-4222S**By: DA Checked By: DA

Page 19 of 36

Date: **August 18, 2022**

Client: CSW/ST2															
Site: Santa Venetia. CA	depth	Р	М	D	F	depth	Р	M	D	F	depth	Р	М	D	F
Title: Santa Vevetia Flood Control	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)
Designer: DA	0.00	221.3	279.4	1.9	281.8	2.90	-195.3	1567.9	0.5	389.9	5.80	-1274.3	611.9	0.0	-234.9
Ref. 1511	0.08	222.9	300.6	1.8	298.2	2.97	-207.2	1596.0	0.5	375.2	5.87	-1285.6	552.2	0.0	-227.9
Page: 4	0.15	224.5	323.0	1.8	314.7	3.05	-219.1	1623.1	0.4	359.5	5.95	-1298.6	486.4	0.0	-218.9
Date: 8.25.22	0.23	226.3	350.0	1.7	333.6	3.13	-231.1	1648.9	0.4	343.0	6.02	-1309.9	431.0	0.0	-210.2
Sheet: Everlast Vinyl ESP 4.1	0.31	225.9	375.1	1.7	350.3	3.20	-244.7	1677.0	0.4	323.1	6.10	-1321.2	378.0	0.0	-200.5
Pressure: Rankine	0.38	213.9	401.3	1.7	366.5	3.28	-256.6	1700.1	0.4	304.7	6.18	-1332.5	327.6	0.0	-190.1
FOS: 2.0 Toe: Cantilever	0.46	202.0	428.7	1.6	381.7	3.36	-268.6	1721.9	0.3	285.4	6.25	-1345.4	273.4	0.0	-177.2
	0.53	188.3	461.3	1.6	398.0	3.43	-280.5	1742.2	0.3	265.3	6.33		229.1	0.0	-164.9
Section A: Parameters Sta 7+50 to 22+00	0.61	176.4	490.9	1.5	411.4	3.51	-294.1	1763.6	0.3	241.2	6.41	-1368.0	188.1	0.0	-151.9
	0.69	164.5	521.5	1.5	423.9	3.58	-306.1	1780.6	0.3	219.2	6.48	-1379.3	150.6	0.0	-138.0
	0.76	152.5	553.0	1.5	435.5	3.66	-318.0	1796.0	0.3	196.3	6.56	-1392.2		0.0	-121.1
	0.84	138.9	590.0	1.4	447.7	3.74	-329.9	1809.6	0.2	172.5	6.63			0.0	-105.5
	0.92	127.0	623.1	1.4	457.4	3.81	-343.6	1823.1	0.2	144.2	6.71	-1414.8		0.0	-89.0
	0.99	115.0	657.0	1.3	466.2	3.89	-355.5	1832.8	0.2	118.6	6.79	-1426.1	36.4	0.0	-71.6
	1.07	103.1	691.5	1.3	474.2	3.97	-367.4	1840.7	0.2	92.0	6.86	-1439.0		0.0	-50.8
	1.14	89.5	731.5	1.3	482.2	4.04	-379.4	1846.6	0.2	64.6	6.94	-1450.3		0.0	-31.7
	1.22	77.5	767.1	1.2	488.3	4.12	-393.0	1850.9	0.2	32.2	7.02	-1461.6		0.0	-11.8
	1.30	65.6	803.1	1.2	493.5	4.19	-405.0	1852.2	0.1	2.9	7.09	-1472.9		0.0	0.0
	1.37	53.7	839.5	1.1	497.8	4.27	-416.9	1847.8	0.1	-48.8	7.17	-1485.8		0.0	0.0
	1.45	40.0	881.4	1.1	501.7	4.35	-428.8	1829.0	0.1	-104.9	7.24	-1497.1	0.0	0.0	0.0
	1.53	28.1	918.3	1.1	504.2	4.42	-442.5	1790.1	0.1	-167.9	7.32	-1508.4		0.0	0.0
	1.60	16.1	955.3	1.0	505.7	4.50	-453.4	1740.9	0.1	-222.1	7.40	-1519.7	0.0	0.0	0.0
	1.68	2.5	997.8	1.0	506.4	4.58	-1087.1	1682.9	0.1	-229.7	7.47	-1532.6		0.0	0.0
	1.75	-9.4	1035.0	1.0	506.2	4.65	-1098.4	1623.1	0.1	-236.5	7.55	-1543.9		0.0	0.0
	1.83	-21.4	1072.1	0.9	505.1	4.73	-1111.3	1552.7	0.1	-243.3	7.63	-1555.2		0.0	0.0
	1.91	-33.3	1109.1	0.9	503.2	4.80	-1122.6	1489.6	0.1	-248.3	7.70	-1566.5		0.0	0.0
	1.98	-46.9	1151.2	0.9	499.9	4.88	-1133.9	1425.2	0.1	-252.4	7.78	-1579.4		0.0	0.0
	2.06	-58.9	1187.8	0.8	496.1	4.96		1359.9	0.0	-255.8	7.85	-1590.7	0.0	0.0	0.0
	2.14	-70.8	1224.0	0.8	491.3	5.03	-1158.1	1284.4	0.0	-258.6	7.93	-1602.0		0.0	0.0
	2.21	-82.7	1259.9	0.8	485.8	5.11	-1169.4	1217.7	0.0	-260.1	8.01	-1613.3		0.0	0.0
	2.29	-96.4	1300.4	0.7	478.3	5.19	-1180.7	1150.7	0.0	-260.9	8.08	-1626.2		0.0	0.0
	2.36	-108.3	1335.3	0.7	470.8	5.26	-1192.0	1083.6	0.0	-260.8	8.16	-1637.5		0.0	0.0
	2.44	-120.2	1369.5	0.7	462.5	5.34	-1204.9	1007.1	0.0	-259.6	8.24	-1648.8		0.0	0.0
	2.52	-132.2	1403.2	0.6	453.3	5.41	-1216.2	940.5	0.0	-257.8	8.31	-1660.1	0.0	0.0	0.0
	2.59	-145.8	1440.8	0.6	441.6	5.49	-1227.5	874.5	0.0	-255.0	8.39	-1673.0		0.0	0.0
	2.67	-157.7	1472.9	0.6	430.5	5.57	-1238.8	809.3	0.0	-251.5	8.46	-1684.3		0.0	0.0
	2.75	-169.7	1504.1	0.5 0.5	418.5	5.64	-1251.7	736.0	0.0	-246.4	8.54	-1695.6		0.0	0.0
	2.82	-181.6	1534.4	0.5	405.7	5.72	-1263.0	673.2	0.0	-241.1	8.62	-3455.1	0.0	0.0	0.0

Section F

Project Name: Flood Wall

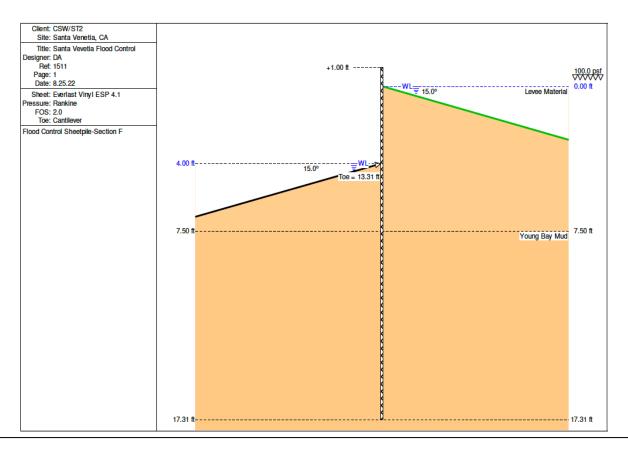
Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA
Page 20 of 36

Date: August 18, 2022

Soil profile established for the following segment of the project were adopted for our analysis.


EverComp

Stations: 22+00 to 30+50

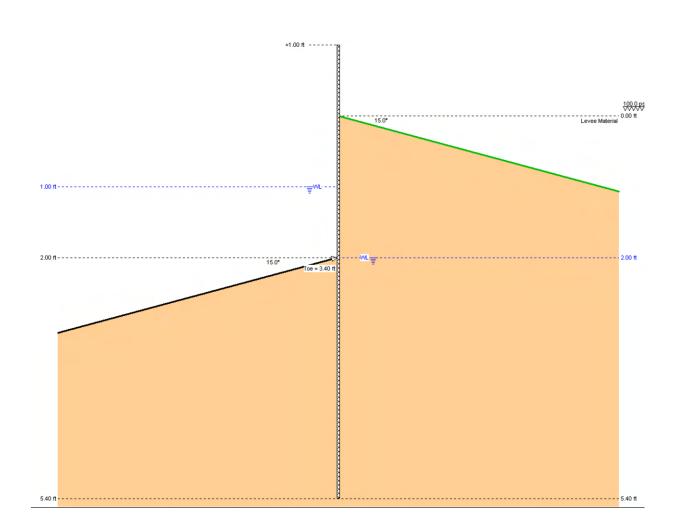
	А	В	С	D	Е	F	G	Н	1	J	K
1			Effective			Drained			GWT Depth		
	Layer	Bottom of	Bottom of		Unit Weight	Effective					Groundwat
		Layer	Layer (Elev.	Total Unit	[submerged	Unit Weight			Surface		er Elevation
2		(Depth, ft)	MSL, ft)	Weight (pcf)](pcf)	(pcf)	Ka	Кр	Elev. (ft)	7.5	(MSL, ft)
3	.evee Materia	7.5	1.9	125	62.6	120	0.26	3.9	9.4		1.9
4	YBM	-	-	90	27.6	27.6	0.42	2.4			

Analysis Results

Based on our preliminary analysis, the EverLast vinyl sheet pile ESP 4.1, would be adequate for the condition where the ground is saturated, and the 4-ft retained soil is being supported. In this case the passive water level is at 4-ft below the upslope surface. The embedment depth of the sheet pile would be 17.5 feet when the safety factor of 2.0 is specified.

Project Name: Flood Wall

Project Location: Santa Venetia, Marin


County, CA

Project No.: **1511-4222S**By: DA Checked By: DA

Page 21 of 36

Date: **August 18, 2022**

If the excavation is only 2-ft below the upslope elevation:

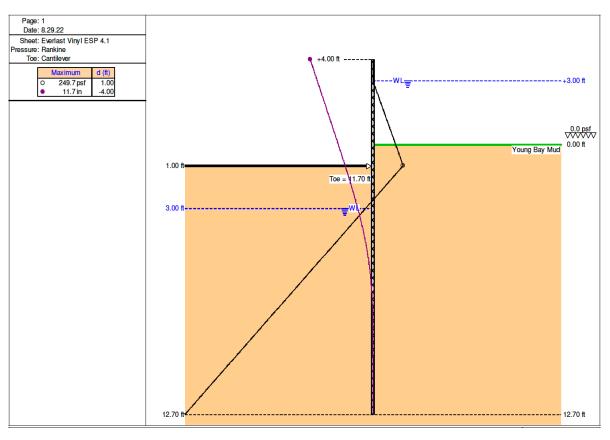
Under this condition, the embedment depth is reduced to only 5.5 feet below surface.

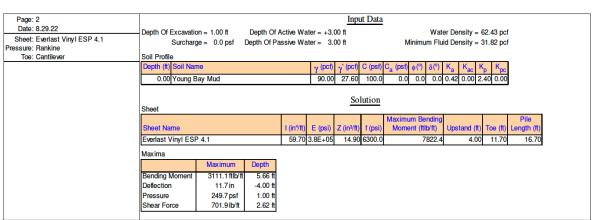
Young Bay Mud on Both Sides

If predominantly soft bay mud is controlling the subsurface conditions on both sides of the flood wall, the following parameters would be used for analysis.

Project Name: Flood Wall

Project Location: Santa Venetia, Marin

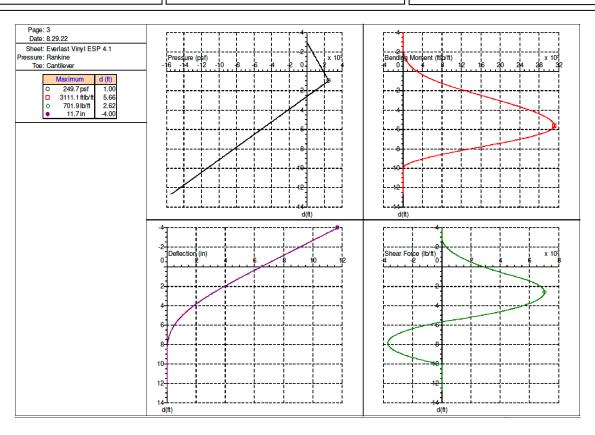

County, CA


Project No.: **1511-4222S**By: DA Checked By: DA

Page 22 of 36

Date: **August 18, 2022**

				Effective		Drai	ined
Laver	Bottom of	Bottom of		Unit Weight	Effective		
,	Layer	Layer (Elev.	Total Unit	[submerged	Unit Weight		
	(Depth, ft)	MSL, ft)	Weight (pcf)](pcf)	(pcf)	Ka	Кр
YBM	_	-	90	27.6	27.6	0.42	2.4


Subject: Prelim. Structural Calculations

Project Name: Flood Wall

Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA
Page 23 of 36

Page: 4															
Date: 8.29.22	depth	Р	M	D	F	depth	Р	M	D	F	depth	Р	M	D	F
Sheet: Everlast Vinyl ESP 4.1	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft
ressure: Rankine	0.00	187.3	281.8	6.5	283.4	4.27	-254.2	2736.4	1.6	493.3	8.54	-910.3	839.7	0.0	-331
Toe: Cantilever	0.11	194.7	314.3	6.3	304.7	4.38	-271.3	2789.7	1.5	464.2	8.65	-927.4	735.1	0.0	-31
	0.22	201.6	349.2	6.2	326.9	4.50	-288.4	2839.8	1.4	433.1	8.77	-944.5	635.0	0.0	-30
	0.34	208.6	386.6	6.0	349.7	4.61	-305.5	2886.3	1.3	400.2	8.88	-961.6	539.9	0.0	-28
	0.45	215.5	426.6	5.9	373.4	4.72	-322.6	2929.0	1.3	365.3	8.99	-978.7	450.5	0.0	-26
	0.56	222.5	469.2	5.7	397.8	4.83	-339.7	2967.8	1.2	328.6	9.10	-995.8	367.3	0.0	-24
	0.67	229.4	514.6	5.6	423.0	4.95	-356.8	3002.4	1.1	289.9	9.22	-1012.9	291.0	0.0	-22
	0.79	236.4	562.8	5.5	449.0	5.06	-373.9	3032.6	1.0	249.4	9.33	-1030.0	222.3	0.0	-20
	0.90	244.2	620.5	5.3	479.2	5.17	-391.0	3058.3	1.0	206.9	9.44	-1047.1	161.6	0.0	-17
	1.01	245.9	675.0	5.2	506.7	5.28	-408.1	3079.1	0.9	162.6	9.55	-1064.2	109.6	0.0	-14
	1.12	228.8	732.6	5.0	533.0	5.40	-427.3	3096.5	0.8	110.4	9.67	-1081.3	67.0	0.0	-11
	1.24	211.7	792.9	4.9	557.4	5.51	-444.4	3106.5	0.8	62.0	9.78	-1100.5	30.9	0.0	-7
	1.35	194.6	855.9	4.7	579.9	5.62	-461.5	3110.9	0.7	11.7	9.89	-1117.6	10.1	0.0	-4
	1.46	177.5	921.3	4.6	600.5	5.73	-478.6	3108.3	0.6	-27.6	10.00	-1134.7	0.6	0.0	-
	1.57	160.4	988.9	4.5	619.2	5.84	-495.7	3094.4	0.6	-62.7	10.12	-1151.8	0.0	0.0	
	1.69	143.3	1058.5	4.3	636.0	5.96	-512.8	3069.6	0.5	-95.9	10.23	-1168.9	0.0	0.0	
	1.80	126.2	1129.8	4.2	650.9	6.07	-529.9	3034.3	0.5	-127.2	10.34	-1186.0	0.0	0.0	
	1.91	109.1	1202.7	4.1	663.9	6.18	-547.0	2989.3	0.4	-156.5	10.45	-1203.1	0.0	0.0	
	2.02	92.0	1277.0	3.9	675.0	6.29	-564.1	2935.1	0.4	-184.0	10.57	-1220.2	0.0	0.0	
	2.14	74.9	1352.4	3.8	684.2	6.41	-581.2	2872.3	0.4	-209.6	10.68	-1237.3	0.0	0.0	
	2.25	57.8	1428.7	3.7	691.4	6.52	-598.3	2801.6	0.3	-233.3	10.79	-1254.4	0.0	0.0	
	2.36	38.6	1515.4	3.5	697.3	6.63	-615.4	2723.6	0.3	-255.1	10.90	-1271.5	0.0	0.0	
	2.47	21.5	1592.9	3.4	700.6	6.74	-632.5	2638.8	0.3	-274.9	11.01	-1288.6	0.0	0.0	
	2.59	4.4	1670.8	3.3	701.9	6.86	-651.7	2536.1	0.2	-295.0	11.13	-1305.7	0.0	0.0	
	2.70	-12.7	1748.7	3.2	701.5	6.97	-668.8	2439.1	0.2	-310.8	11.24	-1324.9	0.0	0.0	
	2.81	-29.8	1826.5	3.0	699.2	7.08	-685.9	2337.2	0.2	-324.7	11.35	-1342.0	0.0	0.0	
	2.92	-46.9	1903.9	2.9	695.1	7.19	-703.0	2231.2	0.1	-336.8	11.46	-1359.1	0.0	0.0	
	3.03	-64.0	1980.8	2.8	689.0	7.31	-720.1	2121.5	0.1	-346.9	11.58	-1376.2	0.0	0.0	
	3.15	-81.1	2056.9	2.7	681.1	7.42	-737.2	2008.9	0.1	-355.1	11.69	-1393.3	0.0	0.0	
	3.26	-98.2	2132.0	2.6	671.2	7.53	-754.3	1893.9	0.1	-361.4	11.80	-1410.4	0.0	0.0	
	3.37	-115.3		2.4	659.4	7.64	-771.4	1777.1	0.1	-365.8	11.91	-1427.5	0.0	0.0	
	3.48	-132.4	2278.5	2.3	645.8	7.76	-788.5	1659.2	0.1	-368.3	12.03	-1444.6	0.0	0.0	
	3.60	-149.5		2.2	630.2	7.87	-805.6	1540.7	0.1	-368.9	12.14	-1461.7	0.0	0.0	
	3.71	-166.6		2.1	612.7	7.98	-822.7	1422.3	0.0	-367.6	12.25	-1478.8	0.0	0.0	
	3.71	-183.7	2418.6	2.1	593.3	8.09	-822.7 -839.8	1304.7	0.0	-364.4	12.25	-1478.8	0.0	0.0	
	3.82	-183.7	2558.5	1.9	569.3	8.09	-856.9		0.0	-359.2				0.0	
		-202.9	2620.5	1.9	569.3 545.9		-856.9 -876.1	1188.3 1059.7		-359.2 -351.2	12.48 12.59	-1513.0 -1530.1	0.0	0.0	
	4.05				545.9 520.5	8.32			0.0				0.0		
	4.16	-237.1	2679.9	1.7	520.5	8.43	-893.2	948.1	0.0	-342.1	12.70	-1547.2	0.0	0.0	

Subject: Prelim. Structural Calculations

Project Name: Flood Wall

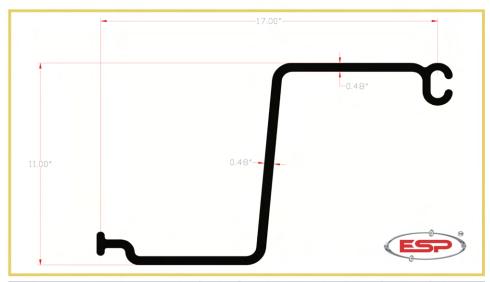
Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA

Page 24 of 36

Date: August 18, 2022


The ESP 4.1 fails.

Try ESP 10.5.

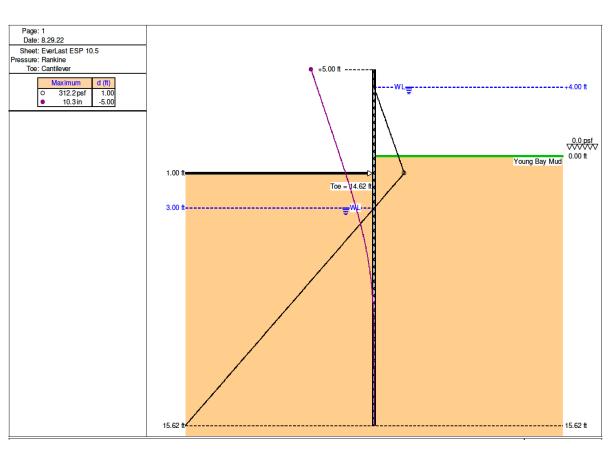
ESP 10.5 VINYL SHEET

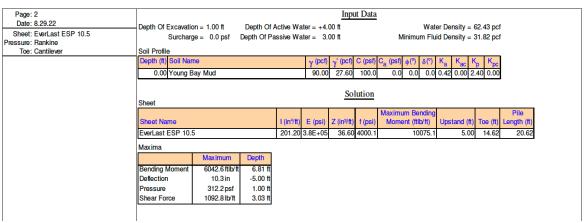
(Technical Data Sheet)

Strength Rating (M)	Lbs-Ft/Ft	10,075	Modulus of Elasticity (E)	psi	380,000
Allowable Shear (V)	Lbs/Ft	4,360	Co-Extruded		Yes
Thickness (t)	inches	0.48	Section Depth	inches	11
Section Modulus (Z)	in³/ft	36.6	Section Width	inches	17
Moment of Inertia (I)	in⁴/ft	201.2	UV Stabilized		Yes
Ultimate Tensile Stress	psi	6,300	Standard	sheets/	12
Creep Limited stress	psi	4,000	Packaging	bundle	

The 10.5 Series is ideal for industrial as well as residential applications. It is engineered for maximum versatily, superior strength and its low life cycle cost.

Physical properties are defined by ASTM standards for Plastic Building Products. The values shown are nominal and may vary. The information found in this document is believed to be true and accurate. No warranties of any kind are made as to the suitability of ESP sheet pilling for particular applications or results obtained therefrom. Consult with a professional engineer and/or contractor as to the suitability of this


Project Name: Flood Wall


Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA

Page 25 of 36

Subject: Prelim. Structural Calculations

Project Name: Flood Wall

Project Location: Santa Venetia, Marin

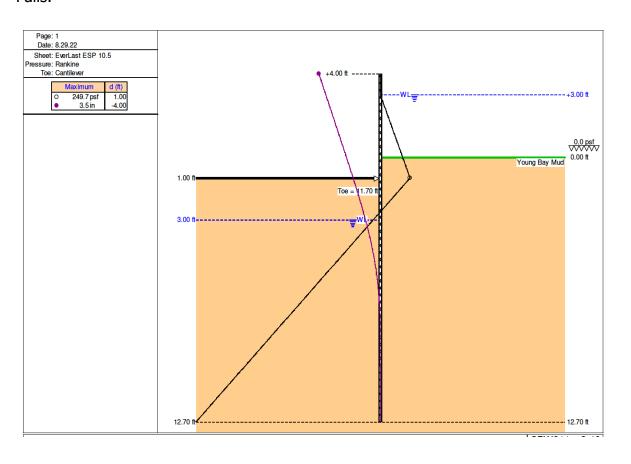
County, CA

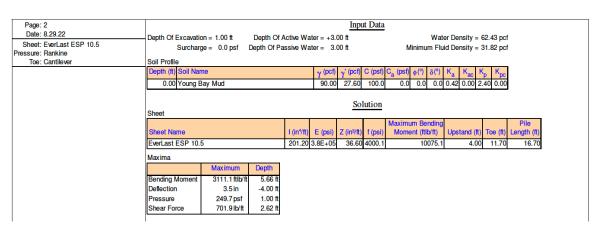
Project No.: **1511-4222S** By: DA Checked By: DA 36 Page 26 of

Page: 4															
Date: 8.29.22	depth	Р	M	D	F	depth	Р	M	D	F	depth	P	M	D	F
Sheet: EverLast ESP 10.5	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)
ressure: Rankine	0.00	249.7	657.8	5.6	498.6	5.25	-342.4	5437.1	1.4	713.9	10.51	-1149.7	1495.5	0.0	-504
Toe: Cantilever	0.14	258.7	737.3	5.4	538.0	5.39	-363.5	5532.1	1.3	665.6	10.64	-1170.8	1300.4	0.0	-482
	0.28	267.3	813.2	5.3	574.2	5.53	-384.6	5620.3	1.2	614.3	10.78	-1191.9	1114.5	0.0	-457
	0.41	275.9	894.1	5.2	611.6	5.67	-405.7	5701.3	1.1	560.2	10.92	-1213.0	938.8	0.0	-429
	0.55	284.5	980.3	5.0	650.2	5.81	-426.8	5774.7	1.1	503.2	11.06	-1234.1	774.6	0.0	-399
	0.69	293.1	1071.8	4.9	690.0	5.94	-447.9	5840.1	1.0	443.2	11.20	-1255.2	623.0	0.0	-36
	0.83	301.7	1168.8	4.8	731.0	6.08	-469.0	5897.1	0.9	380.4	11.34	-1276.3	485.0	0.0	-32
	0.97	310.3	1271.5	4.7	773.1	6.22	-490.1	5945.3	0.9	314.6	11.47	-1297.4	362.0	0.0	-28
	1.11	293.5	1380.0	4.5	814.8	6.36	-513.9	5988.6	0.8	237.2	11.61	-1318.5	255.0	0.0	-24
	1.24	272.3	1494.0	4.4	853.5	6.50	-535.0	6016.8	0.7	165.3	11.75	-1339.6	165.1	0.0	-20
	1.38	251.2	1613.2	4.3	889.3	6.64	-556.1	6035.0	0.7	90.5	11.89	-1360.7	93.5	0.0	-15
	1.52	230.1	1737.0	4.2	922.2	6.77	-577.2	6042.4	0.6	12.8	12.03	-1381.8	41.4	0.0	-10
	1.66	209.0	1865.3	4.1	952.2	6.91	-598.3	6035.3	0.6	-49.5	12.17	-1403.0	9.8	0.0	-4
	1.80	187.9	1997.4	3.9	979.3	7.05	-619.4	6006.4	0.5	-103.4	12.30	-1424.1	0.0	0.0	
	1.94	166.8	2133.2	3.8	1003.5	7.19	-640.5	5956.7	0.5	-154.3	12.44	-1445.2	0.0	0.0	
	2.07	145.7	2272.0	3.7	1024.8	7.33	-661.6	5887.5	0.4	-202.4	12.58	-1468.9	0.0	0.0	
	2.21	124.6	2413.6	3.6	1043.2	7.46	-682.7	5799.9	0.4	-247.5	12.72	-1490.0	0.0	0.0	
	2.35	103.5	2557.5	3.5	1058.7	7.60	-703.8	5694.9	0.4	-289.8	12.86	-1511.1	0.0	0.0	
	2.49	82.4	2703.4	3.3	1071.3	7.74	-724.9	5573.8	0.3	-329.1	12.99	-1532.2	0.0	0.0	
	2.63	61.3	2850.9	3.2	1081.0	7.88	-746.0	5437.7	0.3	-365.6	13.13	-1553.3	0.0	0.0	
	2.76	40.2	2999.5	3.1	1087.8	8.02	-767.1	5287.7	0.3	-399.1	13.27	-1574.4	0.0	0.0	
	2.90	19.1	3148.8	3.0	1091.7	8.16	-788.2	5125.0	0.2	-429.8	13.41	-1595.5	0.0	0.0	
	3.04	-2.0	3298.6	2.9	1092.7	8.29	-809.3	4950.7	0.2	-457.5	13.55	-1616.7	0.0	0.0	
	3.18	-23.1	3448.3	2.8	1091.2	8.43	-830.4	4766.0	0.2	-482.4	13.69	-1637.8	0.0	0.0	
	3.32	-46.9	3616.2	2.7	1086.0	8.57	-851.6	4572.0	0.2	-504.3	13.82	-1658.9	0.0	0.0	
	3.46	-68.0	3764.6	2.6	1078.2	8.71	-872.7	4369.8	0.1	-523.4	13.96	-1680.0	0.0	0.0	
	3.59	-89.1	3911.8	2.5	1078.2	8.85	-893.8	4160.6	0.1	-539.5	14.10	-1701.1	0.0	0.0	
	3.73	-110.2	4057.3	2.4	1054.1	8.99	-914.9	3945.6	0.1	-552.7	14.24	-1722.2	0.0	0.0	
	3.73	-131.3	4200.9	2.4	1034.1	9.12	-936.0	3725.9	0.1	-563.1	14.24	-1743.3	0.0	0.0	
	4.01	-152.4	4342.0	2.3	1037.7	9.12	-956.0 -957.1	3502.5	0.1	-570.5	14.58	-1764.4	0.0	0.0	
	4.01	-173.5	4480.2	2.2	996.1	9.40	-957.1	3276.8	0.1	-575.0	14.52	-1785.5	0.0	0.0	
	4.29	-194.6	4615.3	2.0	971.0	9.54	-1001.9	3021.3	0.1	-576.7	14.79	-1806.6	0.0	0.0	
	4.42	-215.7	4746.7	1.9	943.0	9.68	-1023.0	2794.2	0.0	-575.0	14.93	-1827.7	0.0	0.0	
	4.56	-236.8	4874.1	1.8	912.1	9.81	-1044.1	2568.2	0.0	-570.5	15.07	-1848.8	0.0	0.0	
	4.70	-257.9	4997.2	1.7	878.2	9.95	-1065.3	2344.5	0.0	-563.1	15.21	-1869.9	0.0	0.0	
	4.84	-279.1	5115.4	1.6	841.5	10.09	-1086.4	2124.3	0.0	-552.7	15.34	-1891.0	0.0	0.0	
	4.98	-300.2	5228.3	1.5	801.9	10.23	-1107.5	1908.6	0.0	-539.5	15.48	-1912.1	0.0	0.0	
	5.11	-321.3	5335.7	1.4	759.4	10.37	-1128.6	1698.6	0.0	-523.4	15.62	-1933.2	0.0	0.0	

Project Name: Flood Wall

Project Location: Santa Venetia, Marin


County, CA


Project No.: **1511-4222S**By: DA Checked By: DA

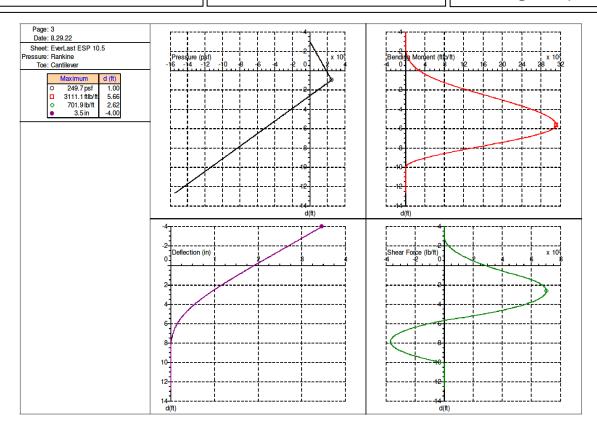
Page 27 of 36

Date: **August 18, 2022**

Fails.

Subject: Prelim. Structural Calculations

Project Name: Flood Wall


Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA

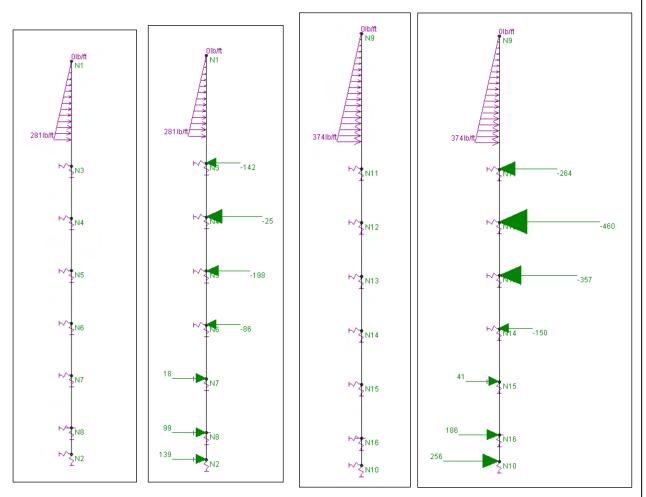
Page 28 of 36

Date: **August 18, 2022**

Page: 4															
Date: 8.29.22	depth	Р	M	D	F	depth	Р	M	D	F	depth	Р	M	D	F
Sheet: EverLast ESP 10.5	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)
Pressure: Rankine	0.00	187.3	281.8	1.9	283.4	4.27	-254.2	2736.4	0.5	493.3	8.54	-910.3	839.7	0.0	-331.0
Toe: Cantilever	0.11	194.7	314.3	1.9	304.7	4.38	-271.3	2789.7	0.5	464.2	8.65	-927.4	735.1	0.0	-318.0
	0.22	201.6	349.2	1.8	326.9	4.50	-288.4	2839.8	0.4	433.1	8.77	-944.5	635.0	0.0	-303.1
	0.34	208.6	386.6	1.8	349.7	4.61	-305.5	2886.3	0.4	400.2	8.88	-961.6	539.9	0.0	-286.4
	0.45	215.5	426.6	1.7	373.4	4.72	-322.6	2929.0	0.4	365.3	8.99	-978.7	450.5	0.0	-267.7
	0.56	222.5	469.2	1.7	397.8	4.83	-339.7	2967.8	0.4	328.6	9.10	-995.8	367.3	0.0	-247.1
	0.67	229.4	514.6	1.7	423.0	4.95	-356.8	3002.4	0.3	289.9	9.22	-1012.9	291.0	0.0	-224.6
	0.79	236.4	562.8	1.6	449.0	5.06	-373.9	3032.6	0.3	249.4	9.33	-1030.0	222.3	0.0	-200.2
	0.90	244.2	620.5	1.6	479.2	5.17	-391.0	3058.3	0.3	206.9	9.44	-1047.1	161.6	0.0	-173.9
	1.01	245.9	675.0	1.5	506.7	5.28	-408.1	3079.1	0.3	162.6	9.55	-1064.2	109.6	0.0	-145.7
	1.12	228.8	732.6	1.5	533.0	5.40	-427.3	3096.5	0.2	110.4	9.67	-1081.3	67.0	0.0	-115.6
	1.24	211.7	792.9	1.4	557.4	5.51	-444.4	3106.5	0.2	62.0	9.78	-1100.5	30.9	0.0	-79.5
	1.35	194.6	855.9	1.4	579.9	5.62	-461.5	3110.9	0.2	11.7	9.89	-1117.6	10.1	0.0	-45.4
	1.46	177.5	921.3	1.4	600.5	5.73	-478.6	3108.3	0.2	-27.6	10.00	-1134.7	0.6	0.0	-9.3
	1.57	160.4	988.9	1.3	619.2	5.84	-495.7	3094.4	0.2	-62.7	10.12	-1151.8	0.0	0.0	0.0
	1.69	143.3	1058.5	1.3	636.0	5.96	-512.8	3069.6	0.2	-95.9	10.23	-1168.9	0.0	0.0	0.0
	1.80	126.2	1129.8	1.2	650.9	6.07	-529.9	3034.3	0.1	-127.2	10.34	-1186.0	0.0	0.0	0.0
	1.91	109.1	1202.7	1.2	663.9	6.18	-547.0	2989.3	0.1	-156.5	10.45	-1203.1	0.0	0.0	0.0
	2.02	92.0	1277.0	1.2	675.0	6.29	-564.1	2935.1	0.1	-184.0	10.57	-1220.2	0.0	0.0	0.0
	2.14	74.9	1352.4	1.1	684.2	6.41	-581.2	2872.3	0.1	-209.6	10.68	-1237.3	0.0	0.0	0.0
	2.25	57.8	1428.7	1.1	691.4	6.52	-598.3	2801.6	0.1	-233.3	10.79	-1254.4	0.0	0.0	0.0
	2.36	38.6		1.0	697.3	6.63	-615.4	2723.6	0.1	-255.1	10.90	-1271.5	0.0	0.0	0.0
	2.47	21.5	1592.9	1.0	700.6	6.74	-632.5	2638.8	0.1	-274.9	11.01	-1288.6	0.0	0.0	0.0
	2.59	4.4	1670.8	1.0	701.9	6.86	-651.7	2536.1	0.1	-295.0	11.13	-1305.7	0.0	0.0	0.0
	2.70	-12.7	1748.7	0.9	701.5		-668.8	2439.1	0.1	-310.8	11.24	-1324.9	0.0	0.0	0.0
	2.81	-29.8	1826.5	0.9	699.2	7.08	-685.9	2337.2	0.1	-324.7	11.35	-1342.0	0.0	0.0	0.0
	2.92	-46.9	1903.9	0.9	695.1	7.19	-703.0	2231.2	0.0	-336.8	11.46	-1359.1	0.0	0.0	0.0
	3.03	-64.0	1980.8	0.8	689.0	7.31	-720.1	2121.5	0.0	-346.9	11.58	-1376.2	0.0	0.0	0.0
	3.15	-81.1	2056.9	0.8	681.1	7.42	-737.2	2008.9	0.0	-355.1	11.69	-1393.3	0.0	0.0	0.0
	3.26	-98.2	2132.0	8.0	671.2	7.53	-754.3	1893.9	0.0	-361.4	11.80	-1410.4	0.0	0.0	0.0
	3.37	-115.3	2206.0	0.7	659.4	7.64	-771.4	1777.1	0.0	-365.8	11.91	-1427.5	0.0	0.0	0.0
	3.48	-132.4	2278.5	0.7	645.8	7.76	-788.5	1659.2	0.0	-368.3	12.03	-1444.6	0.0	0.0	0.0
	3.60	-149.5	2349.5	0.7	630.2	7.87	-805.6	1540.7	0.0	-368.9	12.14	-1461.7	0.0	0.0	0.
	3.71	-166.6	2418.6	0.6	612.7	7.98	-822.7	1422.3	0.0	-367.6	12.25	-1478.8	0.0	0.0	0.
	3.82	-183.7	2485.7	0.6	593.3	8.09	-839.8	1304.7	0.0	-364.4	12.36	-1495.9	0.0	0.0	0.0
	3.93	-202.9	2558.5	0.6	569.3	8.20	-856.9	1188.3	0.0	-359.2	12.48	-1513.0	0.0	0.0	0.0
	4.05	-220.0	2620.5	0.5	545.9	8.32	-876.1	1059.7	0.0	-351.2	12.59	-1530.1	0.0	0.0	0.0
	4.16	-237.1	2679.9	0.5	520.5	8.43	-893.2	948.1	0.0	-342.1	12.70	-1547.2	0.0	0.0	0.0

Project Name: Flood Wall

Project Location: Santa Venetia, Marin


County, CA

Project No.: **1511-4222S**By: DA Checked By: DA
Page 29 of 36

Date: August 18, 2022

RISA3D Model

As a cross-evaluation, a finite element analysis using a pile-soil interaction model in RISA3D was developed. Soil reaction was modelled by defining springs having stiffness equal to the passive soil reaction at the specific depth. Two conditions using vinyl sheet piles with EverLast ESP 6.5 were analyzed. The following analyses were considered to be in YBM (bay mud) soil profile.

3-ft Hydrostatic

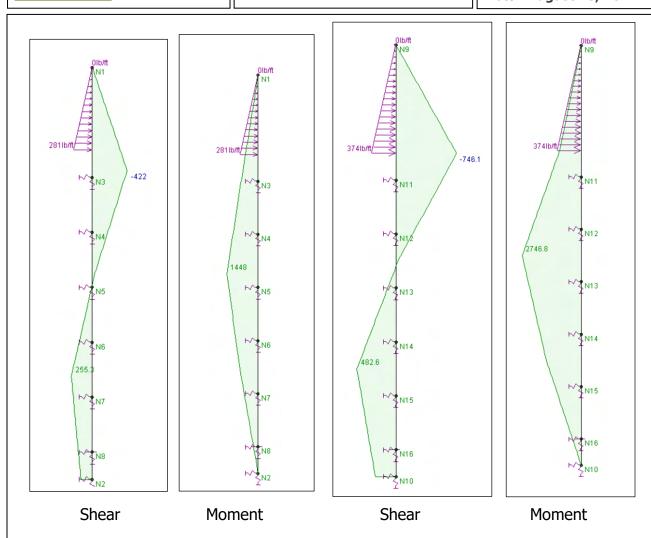
4-ft Hydrostatic

3-ft Hydrostatic

Subject: **Prelim. Structural Calculations**

Project Name: Flood Wall

Project Location: Santa Venetia, Marin


County, CA

Project No.: **1511-4222S**By: DA Checked By: DA

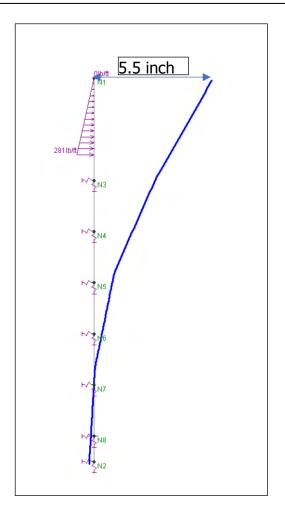
Page 30 of 36

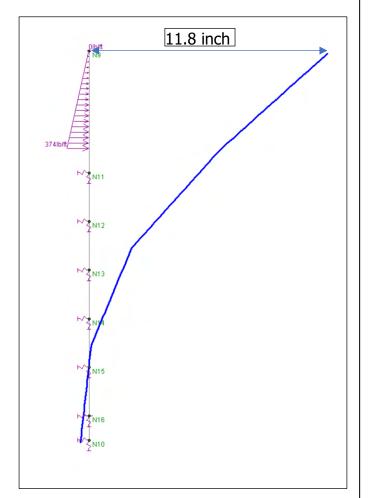
Date: **August 18, 2022**

4-ft Hydrostatic

Subject: Prelim. Structural Calculations

Project Name: Flood Wall


Project Location: Santa Venetia, Marin


County, CA

Project No.: **1511-4222S**By: DA Checked By: DA

Page 31 of 36

Date: August 18, 2022

Deflection x10

3-ft Hydrostatic

Deflection x10

4-ft Hydrostatic

Project Name: Flood Wall

Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA

Page 32 of 36

Date: August 18, 2022

New Ground Profile Provided by the Geotechnical Engineer 8/29/22

	А	В	С	D	Е	F	G	Н	1	J	K
1					Effective		Dra	ined		GWT Depth	
	Layer	Bottom of	Bottom of		Unit Weight	Effective					Groundwat
		Layer	Layer (Elev.	Total Unit	[submerged	Unit Weight			Surface		er Elevation
2		(Depth, ft)	MSL, ft)	Weight (pcf)](pcf)	(pcf)	Ka	Кр	Elev. (ft)	7.5	(MSL, ft)
3	.evee Materia	7.5	1.9	125	62.6	120	0.26	3.9	9.4		1.9
4	YBM	-	-	90	27.6	27.6	0.42	2.4			

EverComp 26.1 [™] FRP Sheet Pile

Technical Data Sheet

AL - Along length of sheet pile	AWS - Along	width of she	eet pile
Property	Symbol	Unite	I R

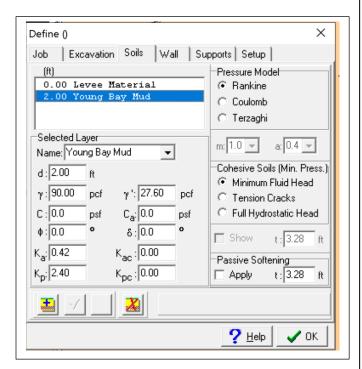
Property	Symbol	Units	Results	ASTM Test Method
Flexural Stress:				
Ultimate (AL)	σ _{ult AL}	psi	90,000	D 790-03
Recommended Allowable Stress(AL)	σ _{all AL}	psi	25,000	
Modulus of Elasticity (AL)	E _{AL}	psi	3,500,000	D 790-03
Ultimate (AWS)	σ _{ult AWS}	psi	29,000	D 790-03
Modulus of Elasticity (AWS)	E _{AWS}	psi	1,900,000	D 790-03
Max. Allowable Moment	M_{max}	ft-lb/ft	27,000	

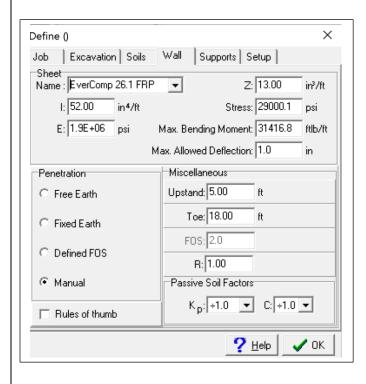
For conditions where the lighter gage unreinforced vinyl fails, EverComp 26.1 fiber reinforced sheet pile will be specified.

Project Name: Flood Wall

Project Location: Santa Venetia, Marin

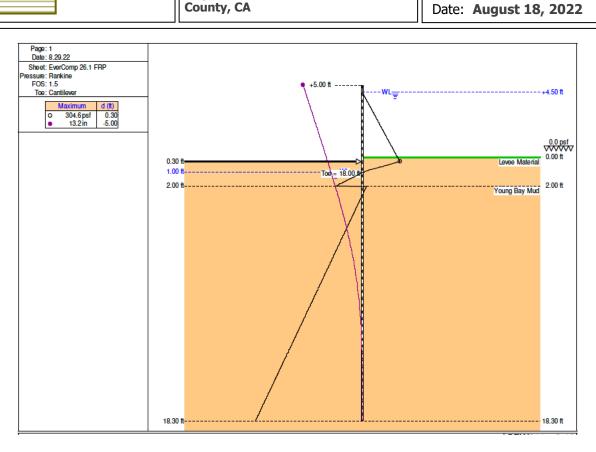
County, CA


Project No.: **1511-4222S**By: DA Checked By: DA


Page 33 of 36

Date: **August 18, 2022**

Analysis Results



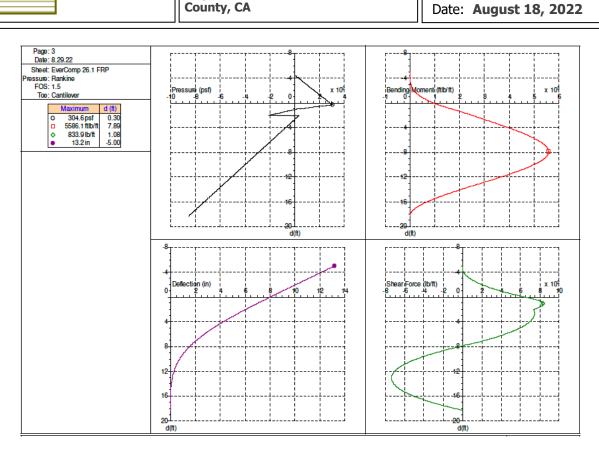
Project Name: Flood Wall

Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S** By: DA Checked By: DA 36 Page 34 of

Page: 2						Inpu	ıt Data							
Date: 8.29.22	Depth Of Excavation	on = 0.30 ft	Depth Of A	Active W	ater = +4.	50 ft		Water	r Density = 6	2.43 pcf				
Sheet: EverComp 26.1 FRP Pressure: Rankine	Surchar	ge = 0.0 psf	Depth Of Pa	assive W	ater= 1.	00 ft		Minimum Fluid	Density = 3	1.82 pcf				
FOS: 1.5	Soil Profile													
Toe: Cantilever	Depth (ft) Soil Nar	me	γ (pcf) γ (pcf) C (psf) C_a (psf) ϕ (°) δ (°) K_a K_{ac} K_{bc}											
	0.00 Levee M	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -												
		Coung Bay Mud 90.00 27.60 0.0 0.0 0.0 0.42 0.00 2.40 0.00												
	2.00 roung t													
								Solution						
	Sheet	Solution												
								Maximum Bending			Pile	1		
	Sheet Name			I (in/ft)	E (psi)	Z (in3/ft)	f (psi)	Moment (ftlb/ft)	Upstand (ft)	Toe (ft)	Length (ft)	1		
	EverComp 26.1 FF	RP.		52.00	1.9E+06	13.00	29000.1	31416.8	5.00	18.00	23.30			
	Maxima													
		Max imum	Depth											
	Bending Moment	5586.1 ftlb/ft	7.89 ft											
	Deflection	13.2 in	-5.00 ft											
	Pressure	304.6 psf	0.30 ft											
	Shear Force	833.9 lb/ft	1.08 ft											
	Ţ													


Subject: Prelim. Structural Calculations

Project Name: Flood Wall

Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S** By: DA Checked By: DA 36 Page 35 of

Page: 4 Date: 8.29.22															
	depth	Р	М	D	F	depth	Р	М	D	F	depth	Р	М	D	F
Sheet: EverComp 26.1 FRP	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)
Pressure: Rankine	0.00	280.9	951.8	8.0	637.5	6.15	-191.9	5208.0	2.6	409.6	12.31	-528.3	3399.5	0.2	-721.1
FOS: 1.5	0.16	293.9	1053.5	7.9	682.3	6.32	-200.4	5269.4	2.5	379.2	12.47	-536.7	3276.4	0.2	-726.9
Toe: Cantilever	0.32	296.3	1176.5	7.7	734.6	6.48	-209.9	5332.8	2.4	343.5	12.63	-546.3	3136.8	0.2	-731.9
	0.49	224.8	1293.1	7.5	773.8	6.64	-218.4	5383.8	2.3	310.3	12.79	-554.8	3012.1	0.2	-735.0
	0.65	161.3	1415.1	7.4	803.2	6.80	-226.9	5429.5	2.2	275.8	12.96	-563.3	2887.0	0.1	-736.7
	0.81	89.9	1557.0	7.2	824.5	6.96	-236.5	5474.5	2.1	235.4	13.12	-572.8	2746.1	0.1	-737.1
	0.97	26.4	1685.4	7.0	832.9	7.13	-244.9	5508.4	2.0	198.1	13.28	-581.3	2620.9	0.1	-736.0
	1.13	-12.5	1814.6	6.9	833.4	7.29	-253.4	5536.5	1.9	159.5	13,44	-589.8	2496.0	0.1	-733.6
	1.30	-52.4	1959.5	6.7	827.4	7.45	-263.0	5560.9	1.8	114.4	13,60	-599.3	2356.1	0.1	-729.3
	1.46	-87.8	2087.0	6.6	816.2	7.61	-271.5	5575.8	1.7	73.0	13.77	-607.8	2232.6	0.1	-724.2
	1.62	-123.1	2212.4	6.4	799.4	7.77	-280.0	5584.2	1.6	30.3	13.93	-616.3	2110.2	0.1	-717.6
	1.78	-163.0	2349.9	6.2	774.0	7.94	-289.5	5585.4	1.5	-16.4	14.09	-625.9	1973.8	0.1	-708.7
	1.94	-198.4	2467.9	6.1	745.6	8.10	-298.0	5578.4	1.5	-59.4	14,25	-634.4	1854.2	0.0	-699.4
	2.11	29.9	2582.2	5.9	736.7	8.26	-306.5	5564.4	1.4	-101.0	14,41	-642.9	1736.4	0.0	-688.8
	2.27	20.3	2711.0	5.8	741.0	8.42	-316.0	5540.2	1.3	-146.2	14.58	-652.4	1606.1	0.0	-675.3
	2.43	11.8	2826.0	5.6	743.5	8,58	-324.5	5511.6	1.2	-185.1	14.74	-660.9	1492.5	0.0	-661.8
	2.59	3.4	2941.3	5.5	744.6	8.75	-333.0	5476.6	1.2	-222.6	14.90	-669.4	1381.4	0.0	-647.1
	2.75	-6.2	3071.0	5.3	744.3	8.91	-342.6	5429.7	1.1	-263.2	15.06	-678.9	1259.6	0.0	-628.9
	2.92	-14.7	3186.3	5.2	742.8	9.07	-351.0	5381.6	1.0	-297.9	15,22	-687.4	1154.4	0.0	-611.4
	3.08	-23.2	3301.2	5.0	739.9	9.23	-359.5	5327.8	1.0	-331.2	15,38	-695.9	1052.2	0.0	-592.5
	3.24	-32.7	3429.8	4.9	735.1	9.39	-369.1	5260.6	0.9	-367.2	15.55	-705.5	941.3	0.0	-569.7
	3.40	-41.2	3543.4	4.7	729.5	9.55	-377.6	5195.2	0.9	-397.8	15.71	-713.9	846.6	0.0	-548.0
	3,56	-50.8	3669.9	4.6	721.5	9.72	-386.1	5124.8	0.8	-427.0	15,87	-722.4	755.6	0.0	-525.0
	3.72	-59.2	3781.2	4.5	713.1	9.88	-395.6	5039.8	0.7	-458.4	16.03	-732.0	658.1	0.0	-497.6
	3.89	-67.7	3891.0	4.3	703.3	10.04	-404.1	4959.3	0.7	-484.8	16.19	-740.5	576.0	0.0	-471.8
	4.05	-77.3	4012.6	4.2	690.7	10.20	-412.6	4874.5	0.7	-510.0	16,36	-749.0	498.4	0.0	-444.7
	4.21	-85.8	4118.8	4.0	678.1	10.36	-422.1	4774.1	0.6	-536.7	16.52	-758.5	416.7	0.0	-412.6
	4.37	-94.3	4223.0	3.9	664.2	10.53	-430.6	4680.7	0.6	-559.0	16.68	-767.0	349.4	0.0	-382.7
	4.53	-103.8	4337.4	3.8	647.0	10.69	-439.1	4583.7	0.5	-580.0	16.84	-775.5	287.3	0.0	-351.4
	4.70	-112.3	4436.6	3.7	630.3	10.85	-448.7	4470.4	0.5	-602.1	17.00	-785.0	224.0	0.0	-314.7
	4.86	-120.8	4533.0	3.5	612.3	11.01	-457.2	4366.3	0.4	-620.3	17.17	-793.5	173.8	0.0	-280.7
	5.02	-130.3	4638.1	3.4	590.4	11.17	-466.7	4245.7	0.4	-639.2	17.33	-802.0	129.4	0.0	-245.3
	5.18	-138.8	4728.2	3.3	569.6	11.34	-475.2	4135.5	0.4	-654.6	17.49	-811.6	86.9	0.0	-204.0
	5.34	-147.3	4814.9	3.2	547.5	11.50	-483.7	4022.9	0.3	-668.7	17.65	-820.1	55.8	0.0	-165.8
	5.51	-156.9	4908.3	3.0	521.0	11.66	-493.2	3893.5	0.3	-683.0	17.81	-828.5	31.4	0.0	-126.4
	5.67	-165.4	4987.4	2.9	496.1	11.82	-501.7	3776.3	0.3	-694.3	17.98	-838.1	12.1	0.0	-80.4
	5.83	-173.8	5062.5	2.8	469.8	11.98	-510.2	3657.3	0.3	-704.2	18,14	-846.6	2.4	0.0	-38.1
	5.99	-183.4		2.7	438.7	12.15	-519.8	3521.6	0.2	-713.9	18.30	-855.1	0.0	0.0	0.0
	5.30		5					2020					5.0	5.0	2.0

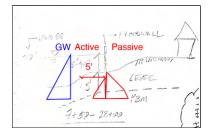
Subject: Prelim. Structural Calculations

Project Name: Flood Wall

Project Location: Santa Venetia, Marin County, CA

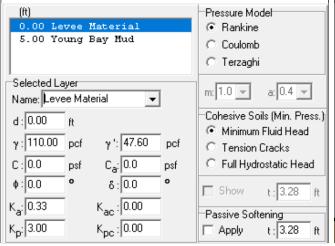
Project No.: **1511-4222S** By: DA Checked By: DA Page 36 of 36 Date: August 18, 2022

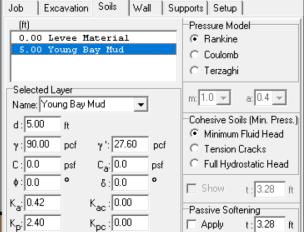
Project Name: Flood Wall

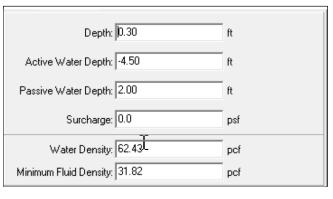

Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA
Page 36 of 52
Date: **September 8, 2022**

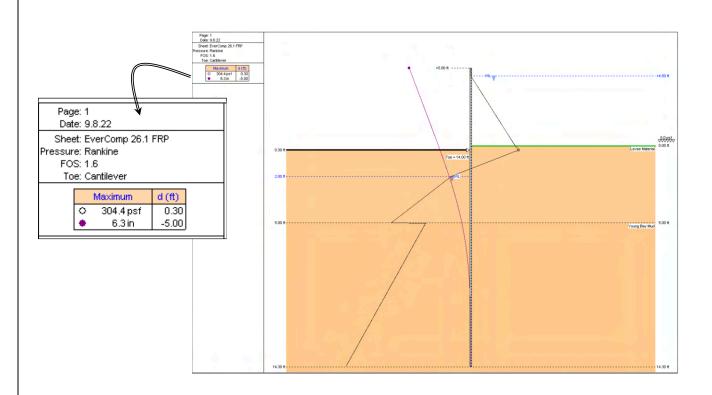

Final Round Based on Robert's Request 9/8/2022

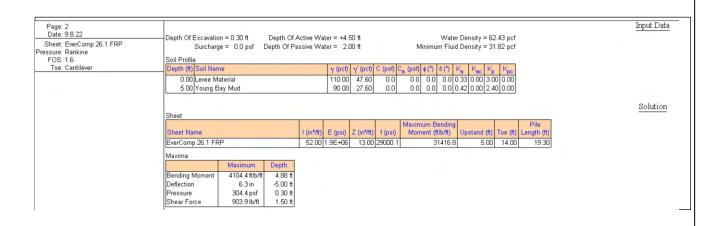

Stations: 7+50 to 22+00



	А	В	С	D	E	F	G	Н	1	J	K
1							Dr	ained	_	GWT Depth	
2	Layer	Bottom of Layer (Depth, ft)	Bottom of Layer (Elev. MSL, ft)	Total Unit Weight (pcf)	Effective Unit Weight [submerged](pcf)	Effective Unit Weight (pcf)	Ka	Кр	Surface Elev. (ft)	4.5	Groundwater Elevation (MSL, ft)
	Levee										
3	Material	4.5	4.1	110	47.6	110	0.33	3.0	8.6		4.1
4	YBM	-	-	90	27.6	27.6	0.42	2.4			

SPW911, v2.40-Input parameters

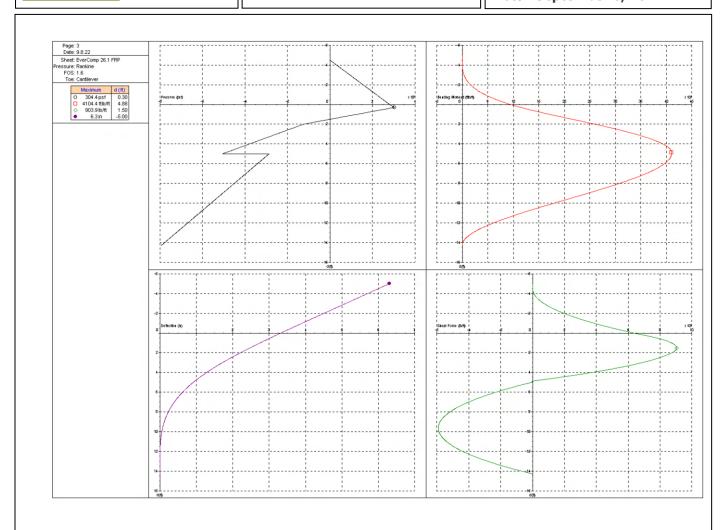

Project Name: Flood Wall


Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA
Page 37 of 52
Date: **September 8, 2022**

Analysis Results


Subject: Prelim. Structural Calculations

Project Name: Flood Wall

Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA
Page 38 of 52
Date: **September 8, 2022**

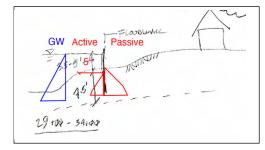
Subject: Prelim. Structural Calculations

Project Name: Flood Wall

Project Location: Santa Venetia, Marin County, CA

Project No.: **1511-4222S** By: DA Checked By: DA Page 39 of 52 Date: September 8, 2022

Page: 4	depta P	п	D	,	depta		ш	0		depti	,		0	=
Dete: 98:22 Sheet EverComp 26:1 FRP Pressure: Rankine FOS: 1.6 Toe: Cantilever			66 33 33 33 33 33 33 33 33 33 33 33 33 3	Col.	600 600 600 600 600 600 600 600 600 600	### 1920	(10.1) (1	000 110 120 120 120 120 120 120 120 120	### 1999 ### 19	69 925 925 925 925 925 925 925 925 925 92	600 (500) - 60	2007 1 2007 1 2007 1 2007 1 2007 1 2007 1 2007 2 2007 2 2007 2 2007 2 2007 2 2007 2 2007 2 2007 2 2007 2 2007 2 2007 2 2007 2 2007 2 2007 2 2007 2 2007 2 2007 2 2 2 2 2 2 2 2 2	000 1 1 1 1 1 1 1 1 1	


Project Name: Flood Wall

Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA
Page 40 of 52
Date: **September 8, 2022**

Stations: 29+00 to 34+00

Stations: 22+00 to 30+50

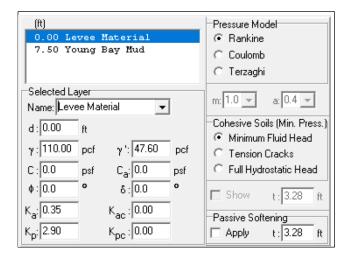
	А	В	С	D	Е	F	G	Н	1	J	K
1					Effective		Drai	ned		GWT Depth	
	Layer	Bottom of	Bottom of		Unit Weight	Effective					Groundwat
		Layer	Layer (Elev.	Total Unit	[submerged	Unit Weight			Surface		er Elevation
2		(Depth, ft)	MSL, ft)	Weight (pcf)](pcf)	(pcf)	Ka	Кр	Elev. (ft)	7.5	(MSL, ft)
3	.evee Materia	7.5	1.9	125	62.6	120	0.26	3.9	9.4		1.9
4	YBM	-	-	90	27.6	27.6	0.42	2.4			

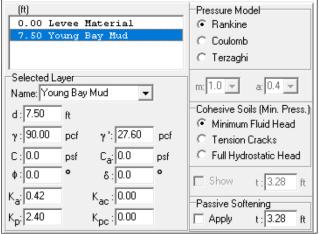
Stations: 30+50 to 44+50

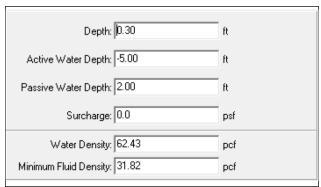
	А	В	С	D	E	F	G	Н	1	J	K
1			. 🐟 🕹				Dr	ained		GWT Depth	
2	Layer	Bottom of Layer (Depth, ft)	Bottom of Layer (Elev. MSL, ft)	Total Unit Weight (pcf)	Effective Unit Weight [submerged](pcf)	Effective Unit Weight (pcf)	Ka	Кр	Surface Elev. (ft)	5	Groundwater Elevation (MSL, ft)
3	Levee Material (Above GWT)	5	0.5	110	47.6	110	0.32	3.1	5.5		0.5
4	Levee Material (Below GWT)	17	-11.5	110	47.6	47.6	0.35	2.9			
5	YBM		-	90	27.6	27.6	0.42	2.4			

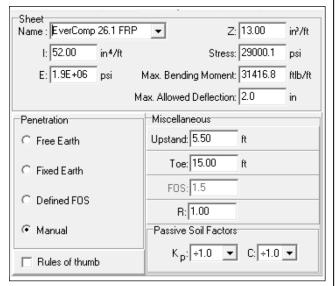
(Use more conservative parameters of the above two)

	Levee Material									
4	(Below GWT)	17	-11.5	110	47.6	47.6	0.35	2.9		
5	YBM		-	90	27.6	27.6	0.42	2.4		

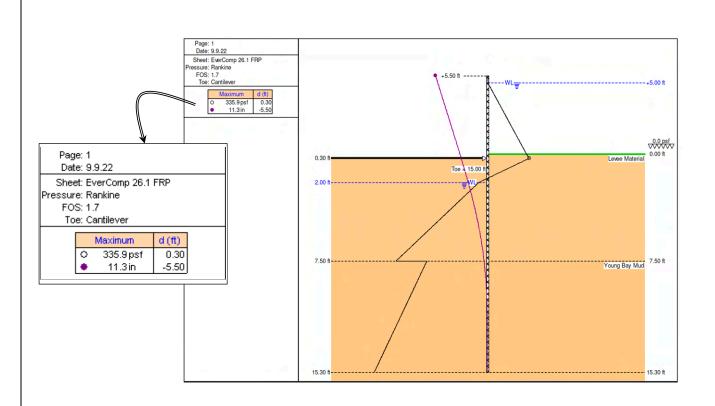

Project Name: Flood Wall

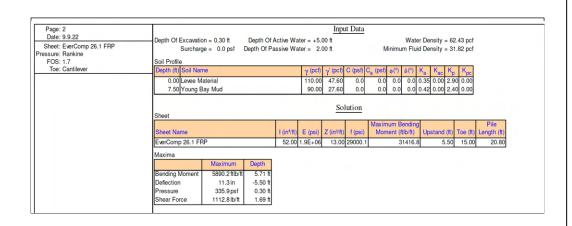

Project Location: Santa Venetia, Marin


County, CA


Project No.: **1511-4222S**By: DA Checked By: DA
Page 41 of 52
Date: **September 8, 2022**

SPW911, v2.40-Input parameters

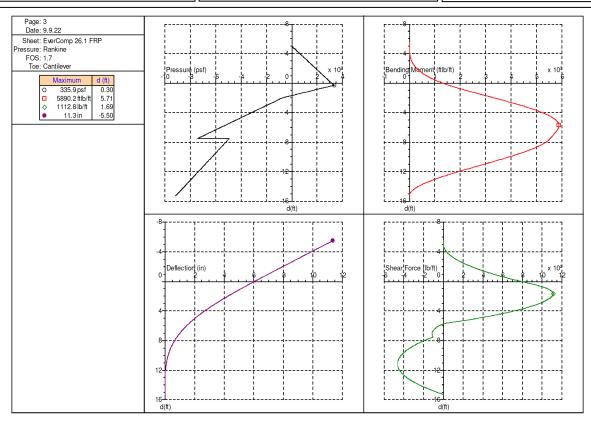

Project Name: Flood Wall


Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA
Page 42 of 52
Date: **September 8, 2022**

Analysis Results


Subject: Prelim. Structural Calculations

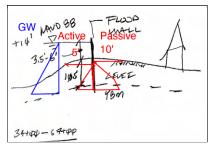
Project Name: Flood Wall

Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA
Page 43 of 52
Date: **September 8, 2022**

Page: 4 Date: 9.9.22	depth	Р	М	D	F	depth	Р	М	D	F	depth	Р	М	D	F
	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft
Sheet: EverComp 26.1 FRP ressure: Rankine	0.00	312.2	1305.8	6.0	786.8		-455.5	5810.5	1.9	272.4	10.29	-643.6	3664.4	0.2	-444
FOS: 1.7	0.14	324.1	1417.3	5.9	831.1	5.28	-470.3	5840.6	1.8	216.4	10.43	-651.1	3528.2	0.1	-450
Toe: Cantilever	0.27	333.7	1519.8	5.8	871.1		-487.1	5866.5	1.8	150.1	10.56	-658.7	3390.3	0.1	-45
	0.41	309.3	1643.0	5.7	916.0		-503.9	5883.2	1.7	81.6	10.70	-666.2	3251.1	0.1	-45
	0.54	276.1	1772.1	5.5	956.3		-520.8	5890.0	1.6	10.7	10.83	-673.8	3110.9	0.1	-46
	0.68	242.8	1906.5	5.4	992.0	5.82	-537.6	5887.2	1.5	-19.4	10.97	-681.3	2970.0	0.1	-46
	0.81	209.5	2045.6	5.3	1023.1	5.96	-554.4	5877.8	1.5	-39.4	11.10	-688.0	2846.4	0.1	-46
	0.95	180.4	2170.6	5.2	1046.5	6.09	-569.2	5864.9	1.4	-54.9	11.24	-695.5	2705.1	0.1	-4
	1.08	147.1	2316.6	5.1	1068.9	6.23	-586.0	5845.5	1.3	-70.5	11.37	-703.1	2564.0	0.1	-4
	1.22	113.9	2465.5	4.9	1086.7	6.36	-602.8	5821.7	1.3	-83.8	11.51	-710.6	2423.5	0.1	-46
	1.35	80.6	2616.6	4.8	1099.9	6.50	-619.7	5794.3	1.2	-94.7	11.64	-718.2	2283.8	0.0	-4
	1.49	47.3	2769.2	4.7	1108.5	6.63	-636.5	5763.9	1.2	-103.3	11.78	-724.8	2162.5	0.0	-4
	1.62	14.1	2922.7	4.6	1112.5	6.77	-651.2	5735.5	1.1	-108.9	11.92	-732.3	2025.3	0.0	-4
	1.76	-15.0	3057.3	4.5	1112.4	6.91	-668.0	5701.6	1.0	-113.1	12.05	-739.9	1889.9	0.0	-4
	1.90	-48.3	3210.8	4.3	1108.3	7.04	-684.9	5666.8	1.0	-115.0	12.19	-747.4	1756.5	0.0	-4
	2.03	-76.8	3363.6	4.2	1099.6	7.18	-701.7	5631.8	0.9	-114.5	12.32	-755.0	1625.6	0.0	-4
	2.17	-93.7	3514.9	4.1	1087.9	7.31	-718.5	5597.4	0.9	-111.7	12.46	-761.6	1513.3	0.0	-4
	2.30	-110.5	3664.4	4.0	1073.9	7.45	-733.3	5568.2	0.8	-107.4	12.59	-769.2	1387.8	0.0	-4
	2.44	-125.2	3793.6	3.9	1059.8	7.58	-496.3	5535.0	0.8	-117.7	12.73	-776.7	1265.6	0.0	-3
	2.57	-142.1	3939.0	3.8	1041.4	7.72	-503.8	5494.6	0.7	-144.2	12.86	-784.3	1147.1	0.0	-3
	2.71	-158.9	4081.7	3.7	1020.7	7.85	-511.4	5446.4	0.7	-169.5	13.00	-791.8	1032.6	0.0	-3
	2.84	-175.7	4221.5	3.5	997.6	7.99	-518.9	5390.6	0.6	-193.9	13.13	-799.4	922.3	0.0	-3
	2.98	-192.5	4357.8	3.4	972.2	8.12	-525.6	5335.8	0.6	-214.3	13.27	-806.0	829.6	0.0	-3
	3.11	-207.3	4474.2	3.3	948.1	8.26	-533.1	5266.7	0.6	-236.6	13.40	-813.5	728.3	0.0	-3
	3.25	-224.1	4603.5	3.2	918.3	8.39	-540.7	5191.0	0.5	-258.0	13.54	-821.1	632.1	0.0	-3
	3.38	-240.9	4728.5	3.1	886.2	8.53	-548.2	5109.0	0.5	-278.2	13.68	-828.6	541.5	0.0	-2
	3.52	-257.8	4849.0	3.0	851.8	8.67	-555.8	5021.0	0.5	-297.4	13.81	-836.2	456.8	0.0	-2
	3.66	-274.6	4964.5	2.9	815.0	8.80	-563.3	4927.3	0.4	-315.6	13.95	-842.8	387.6	0.0	-2
	3.79	-291.4	5074.8	2.8	775.9	8.94	-569.9	4840.9	0.4	-330.7	14.08	-850.4	314.7	0.0	-2
	3.93	-306.2	5166.8	2.7	739.8	9.07	-577.5	4737.4	0.4	-346.9	14.22	-857.9	248.5	0.0	-20
	4.06	-323.0	5266.5	2.6	696.3	9.21	-585.0	4629.2	0.3	-362.0	14.35	-865.5	189.4	0.0	-1
	4.20	-339.8	5360.0	2.5	650.5	9.34	-592.6	4516.6	0.3	-376.1	14.49	-873.0	137.7	0.0	-18
	4.33	-356.7	5447.0	2.4	602.4	9.48	-600.1	4399.8	0.3	-389.2	14.62	-879.6	98.8	0.0	-13
	4.47	-373.5	5527.3	2.3	551.9	9.61	-606.8	4294.5	0.3	-399.8	14.76	-887.2	61.9	0.0	-10
	4.60	-388.2	5591.6	2.3	505.8	9.75	-614.3	4170.9	0.2	-410.9	14.89	-894.7	33.2	0.0	-4
	4.74	-405.0	5658.3	2.2	451.0	9.88	-621.9	4044.0	0.2	-420.9	15.03	-902.3	13.3	0.0	-4
	4.87	-421.9	5717.2	2.1	393.8	10.02	-629.4	3914.3	0.2	-429.9	15.16	-909.8	2.2	0.0	-4
	5.01	-438.7	5768.0	2.0	334.3	10,15	-637.0	3782.0	0.2	-437.9	15.30	-916.4	0.0	0.0	


Project Name: Flood Wall

Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA
Page 44 of 52
Date: **September 8, 2022**

Stations: 34+00 to 67+00

Stations: 30+50 to 44+50

	А	В	С	D	E	F	G	Н	1	J	K
1							Dr	rained		GWT Depth	
2	Layer	Bottom of Layer (Depth, ft)	Bottom of Layer (Elev. MSL, ft)	Total Unit Weight (pcf)		Effective Unit Weight (pcf)	Ka	Кр	Surface Elev. (ft)	5	Groundwater Elevation (MSL, ft)
3	Levee Material (Above GWT)	5	0.5	110	47.6	110	0.32	3.1	5.5		0.5
4	Levee Material (Below GWT)	17	-11.5	110	47.6	47.6	0.35	2.9			
5	YBM	-	-	90	27.6	27.6	0.42	2.4			

Stations: 44+50 to 70+00

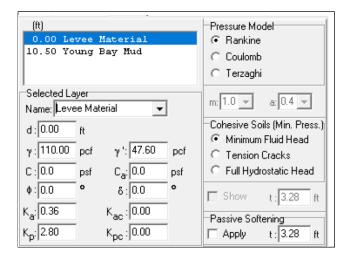
	Α	В	С	D	E	F	G	Н	1	J	K
1		D. 11	Datte on a		Effective	F((Dra	ined		GWT Depth	
	Layer	Bottom of	Bottom of		Unit Weight	Effective					Groundwat
		Layer	Layer (Elev.	Total Unit	[submerged	Unit Weight			Surface		er Elevation
2		(Depth, ft)	MSL, ft)	Weight (pcf)](pcf)	(pcf)	Ka	Кр	Elev. (ft)	2	(MSL, ft)
3	.evee Materia	10.5	-3.2	110	47.6	47.6	0.36	2.8	7.3		5.3
4	YBM	-	-	90	27.6	27.6	0.42	2.4			

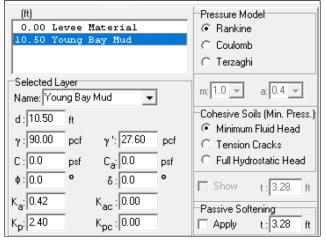
Stations: 70+00 to 85+00

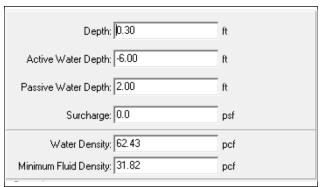
	Α	В	С	D	E	F	G	Н	1	J	K
1					Effective		Dra	ined		GWT Depth	
	Layer			_ 1(1)	Unit	Effective					
		Bottom of Layer	Bottom of Layer (Elev.	Total Unit Weight	Weight [submerge	Unit Weight			Surface		Groundwat er Elevation
2		(Depth, ft)	MSL, ft)	(pcf)	d](pcf)	(pcf)	Ka	Кр	Elev. (ft)	7.5	(MSL, ft)
3	evee Materia	7.5	0.9	110	47.6	110	0.31	3.3	8.4		0.9
4	YBM	-	-	90	27.6	27.6	0.42	2.4			

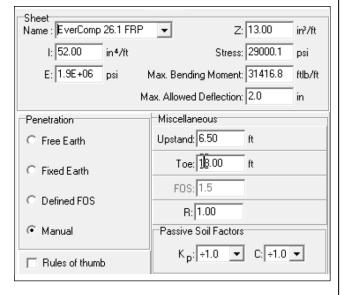
(Use more conservative parameters of the above two)

2		(Depth, ft)	MSL, ft)	Weight (pcf)](pcf)	(pcf)	Ka	Кр	Elev. (ft)	2	(MSL, ft)
3	.evee Materia	10.5	-3.2	110	47.6	47.6	0.36	2.8	7.3		5.3
4	YBM	-	-	90	27.6	27.6	0.42	2.4			

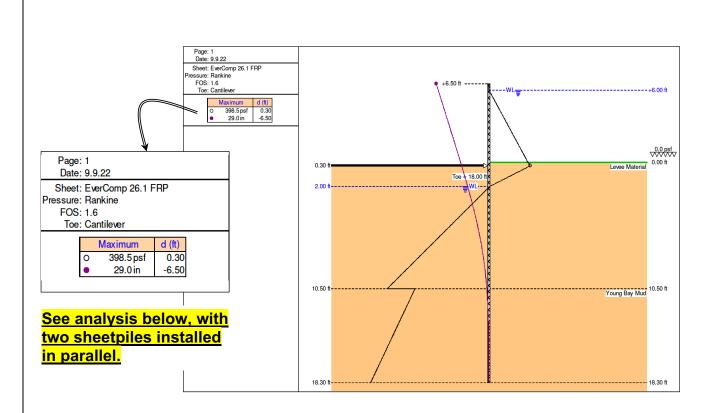

Project Name: Flood Wall

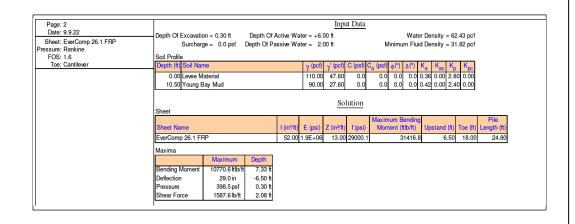

Project Location: Santa Venetia, Marin


County, CA


Project No.: **1511-4222S**By: DA Checked By: DA
Page 45 of 52
Date: **September 8, 2022**

SPW911, v2.40-Input parameters

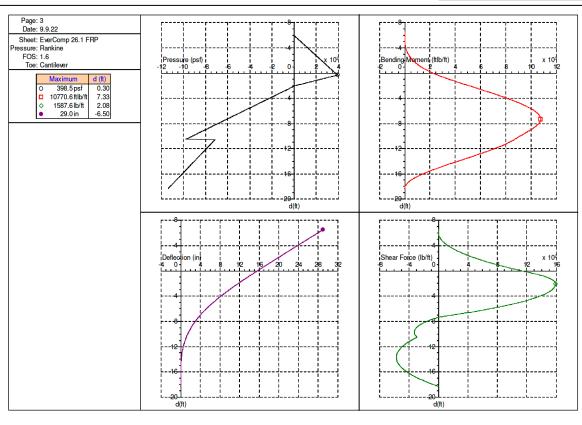

Project Name: Flood Wall


Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA
Page 46 of 52
Date: **September 8, 2022**

Analysis Results


Subject: Prelim. Structural Calculations

Project Name: Flood Wall

Project Location: Santa Venetia, Marin

County, CA

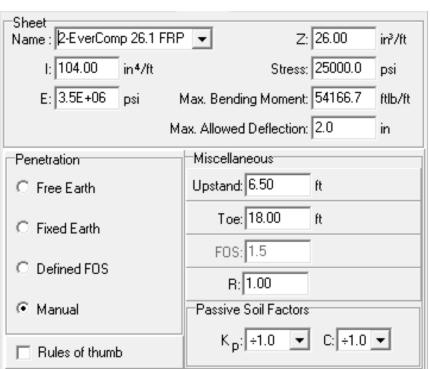
Project No.: **1511-4222S**By: DA Checked By: DA
Page 47 of 52
Date: **September 8, 2022**

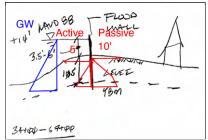
Page: 4	1														
Date: 9.9.22	depth	P	M	D	F	depth	Р	M	D	F	depth	Р	M	D	F
Sheet: EverComp 26.1 FRP	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)
ressure: Rankine	0.00	374.6	2251.9	15.6	1131.3	6.15	-474.1	10388.9	5.0	625.0	12.31	-810.4	6653.5	0.4	-519.
FOS: 1.6	0.16	388.5	2442.9	15.3	1194.6	6.32	-493.3	10486.2	4.8	545.2	12.47	-818.3	6451.3	0.4	-529
Toe: Cantilever	0.32	389.2	2644.5	15.0	1259.8	6.48	-510.1	10560.4	4.6	472.8	12.63	-827.3	6215.6	0.4	-540
	0.49	351.4	2856.7	14.6	1320.7	6.64	-529.3	10632.2	4.4	387.1	12.79	-836.3	5975.7	0.3	-549
	0.65	318.3	3050.2	14.3	1368.8	6.80	-548.5	10689.6	4.2	298.2	12.96	-845.4	5732.3	0.3	-556
	0.81	280.6	3279.5	14.0	1417.9	6.96	-567.7	10732.2	4.0	206.1	13.12	-854.4	5486.0	0.3	-562
	0.97	242.8	3516.4	13.7	1460.8	7.13	-586.9	10759.4	3.8	110.9	13.28	-863.4	5237.4	0.2	-566
	1.13	205.0	3759.9	13.4	1497.4	7.29	-606.1	10770.3	3.7	12.5	13.44	-871.4	5018.6	0.2	-569
	1.30	167.3	4009.0	13.1	1527.8	7.45	-622.9	10764.1	3.5	-33.4	13.60	-880.4	4767.6	0.2	-571
	1.46	129.5	4262.7	12.7	1552.0	7.61	-642.1	10739.0	3.3	-75.2	13.77	-889.4	4516.3	0.2	-571
	1.62	96.5	4487.6	12.5	1568.0	7.77	-661.3	10696.3	3.2	-113.8	13.93	-898.5	4265.3	0.1	-570
	1.78	58.7	4747.1	12.1	1580.4	7.94	-680.5	10637.3	3.0	-149.2	14.09	-907.5	4015.2	0.1	-567
	1.94	20.9	5008.1	11.8	1586.6	8.10	-699.7	10563.6	2.9	-181.4	14.25	-916.5	3766.8	0.1	-562
	2.11	-3.6	5269.8	11.5	1587.5	8.26	-718.9	10476.6	2.7	-210.5	14.41	-924.4	3551.3	0.1	-557
	2.27	-22.8	5531.4	11.2	1585.6	8.42	-735.7	10390.5	2.6	-233.3	14.58	-933.5	3307.7	0.1	-550
	2.43	-42.0	5792.4	10.9	1580.4	8.58	-754.9	10282.0	2.4	-256.4	14.74	-942.5	3067.6	0.1	-542
	2.59	-58.8	6019.9	10.6	1573.3	8.75	-774.1	10164.2	2.3	-276.3	14.90	-951.5	2831.7	0.1	-531
	2.75	-78.0	6278.5	10.3	1562.2	8.91	-793.3	10038.4	2.2	-293.1	15.06	-960.6	2600.6	0.0	-520
	2.92	-97.2	6535.0	10.0	1547.9	9.07	-812.5	9906.0	2.1	-306.7	15.22	-969.6	2375.0	0.0	-507
	3.08	-116.4	6789.0	9.8	1530.4	9.23	-831.7	9768.4	1.9	-317.1	15.38	-977.5	2182.6	0.0	-494
	3.24	-135.6	7039.8	9.5	1509.8	9.39	-850.9	9627.1	1.8	-324.3	15.55	-986.6	1969.0	0.0	-478
	3.40	-154.8	7287.0	9.2	1486.0	9.55	-867.7	9501.3	1.7	-328.0	15.71	-995.6	1762.8	0.0	-461
	3.56	-171.6	7499.9	8.9	1462.5	9.72	-886.9	9356.6	1.6	-329.3	15.87	-1004.6	1564.7	0.0	-442
	3.72	-190.8	7738.9	8.7	1432.8	9.88	-906.1	9212.1	1.5	-327.4	16.03	-1013.7	1375.2	0.0	-421
	3.89	-210.0	7972.8	8.4	1399.8	10.04	-925.3	9069.3	1.4	-322.4	16,19	-1022.7	1195.1	0.0	-399
	4.05	-229.2	8201.0	8.1	1363.7	10.20	-944.5	8929.4	1.3	-314.1	16.36	-1030.6	1045.7	0.0	-379
	4.21	-248.4	8423.0	7.8	1324.4	10.36	-963.7	8793.9	1.2	-302.7	16.52	-1039.6	884.8	0.0	-354
	4.37	-267.6	8638.3	7.6	1282.0	10.53	-712.1	8679.8	1.1	-295.7	16.68	-1039.0	735.2	0.0	-328
	4.53	-284.4	8820.8	7.3	1242.2	10.55	-712.1	8542.8	1.1	-323.7	16.84	-1048.7	597.5	0.0	-300
	4.70	-303.6	9022.1	7.3	1193.8	10.85	-730.2	8393.8	1.0	-350.1	17.00	-1057.7	472.4	0.0	-271
	4.70	-322.8	9215.2	6.8	1142.2	11.01	-730.2	8233.6	0.9	-375.1	17.00	-1006.7	360.4	0.0	
	5.02	-342.0	9399.6	6.6	1087.4	11.01	-739.2 -748.2	8062.8	0.9	-375.1	17.17	-1075.8	273.8	0.0	-241 -212
	5.18	-361.2	9574.7	6.3	1029.5	11.34	-757.3	7882.0	0.8	-420.5	17.49	-1092.7	188.4	0.0	-179
	5.34	-380.5	9740.1	6.1	968.4	11.50	-765.2	7716.1	0.7	-438.6	17.65	-1101.8	118.1	0.0	-144
	5.51	-397.3	9876.3	5.9	912.3	11.66	-774.2	7518.4	0.6	-457.7	17.81	-1110.8	63.5	0.0	-108
	5.67	-416.5	10021.9	5.7	845.2	11.82	-783.3	7312.7	0.6	-475.4	17.98	-1119.8	25.3	0.0	-70
	5.83	-435.7	10156.2	5.4	775.0	11.98	-792.3	7099.5	0.5	-491.6	18.14	-1128.9	4.2	0.0	-30
	5.99	-454.9	10278.7	5.2	701.6	12.15	-801.3	6879.6	0.5	-506.3	18.30	-1136.8	0.0	0.0	C

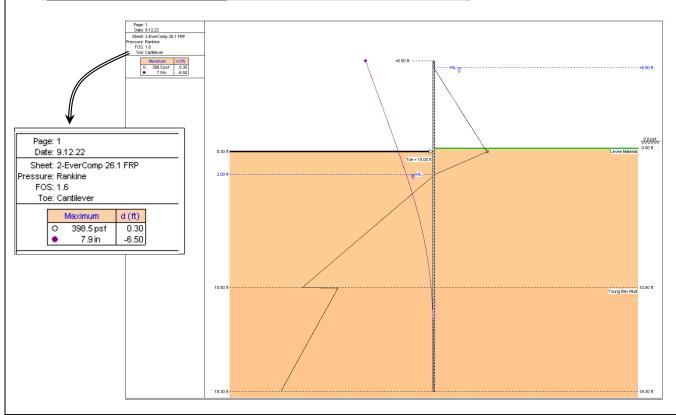
Project Name: Flood Wall

Project Location: Santa Venetia, Marin

County, CA

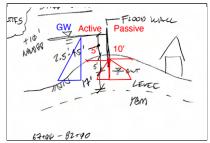

Project No.: **1511-4222S**By: DA Checked By: DA


Page 48 of 52


Date: **September 8, 2022**

Stations: 34+00 to 67+00

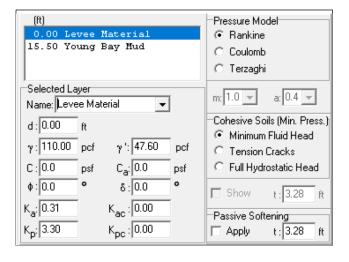
With double EverComp 26.1 sheetpiles installed in parallel

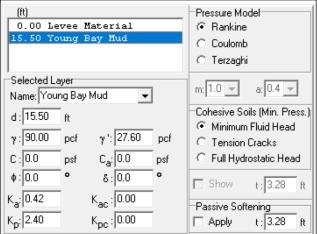

Project Name: Flood Wall

Project Location: Santa Venetia, Marin

County, CA

Project No.: **1511-4222S**By: DA Checked By: DA
Page 49 of 52
Date: **September 8, 2022**


Stations: 67+00 to 82+00

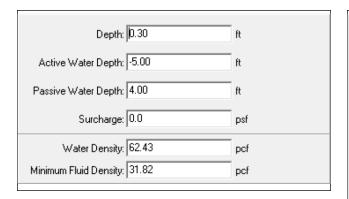


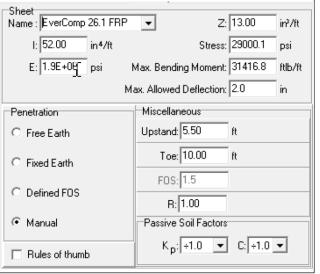
Stations: 70+00 to 85+00

\mathcal{I}	А	В	С	D	E	F	G	Н	1	J	К
1					F.C		Dra	ined		GWT Depth	
	Layer	Bottom of Layer	Bottom of Layer (Elev.	Total Unit Weight	Effective Unit Weight [submerge	Effective Unit Weight			Surface		Groundwat er Elevation
2		(Depth, ft)	MSL, ft)	(pcf)	d](pcf)	(pcf)	Ka	Кр	Elev. (ft)	7.5	(MSL, ft)
3	evee Materia	7.5	0.9	110	47.6	110	0.31	3.3	8.4		0.9
4	YBM	-	-	90	27.6	27.6	0.42	2.4			

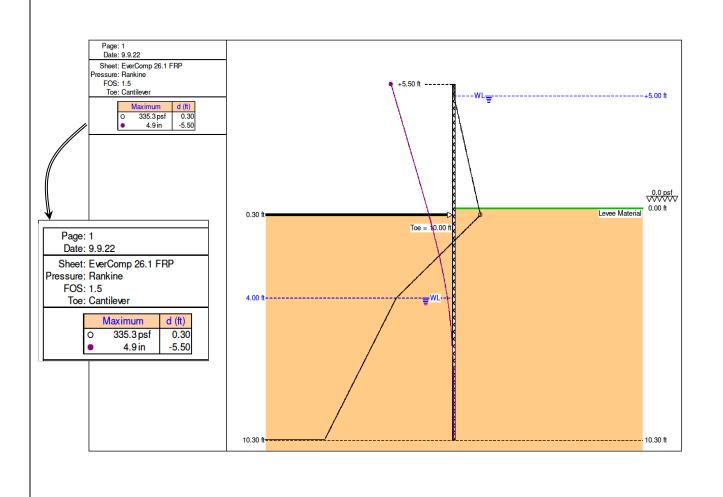
SPW911, v2.40-Input parameters

Subject: **Prelim. Structural Calculations**Project Name: **Flood Wall**


Project Location: Santa Venetia, Marin


County, CA

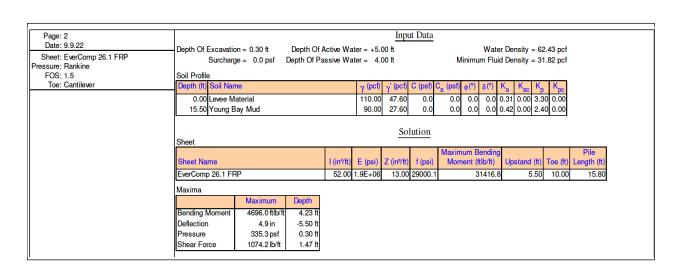
Project No.: **1511-4222S**By: DA Checked By: DA

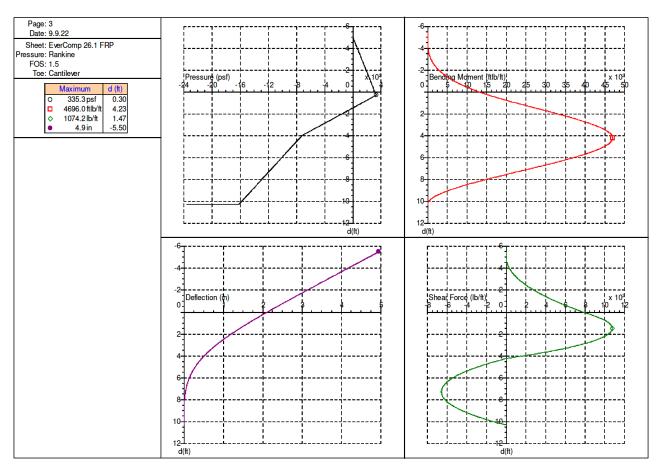

Page 50 of 52

Date: **September 8, 2022**

Analysis Results

Project Name: Flood Wall


Project Location: Santa Venetia, Marin


County, CA

Project No.: **1511-4222S**By: DA Checked By: DA

Page 51 of 52

Date: September 8, 2022

Subject: Prelim. Structural Calculations

Project Name: Flood Wall

Project Location: Santa Venetia, Marin County, CA

Project No.: **1511-4222S** By: DA Checked By: DA Page 52 of 52 Date: September 8, 2022

Page: 4															
Date: 9.9.22	depth	Р	M	D	F	depth	Р	M	D	F	depth	Р	M	D	F
Sheet: EverComp 26.1 FRP	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)
Pressure: Rankine	0.00	312.2	1299.6	2.1	783.6	3.46	-569.7	4490.5	0.7	510.1	6.93	-1139.1	2733.2	0.1	-649.3
FOS: 1.5	0.09	319.6	1372.7	2.1	812.7	3.55	-596.1	4535.2	0.6	456.6	7.02	-1152.3	2627.4	0.0	-653.1
Toe: Cantilever	0.18	326.7	1448.6	2.0	842.6	3.65	-622.4	4575.0	0.6	400.6	7.11	-1165.4	2521.0	0.0	-655.8
	0.27	333.8	1527.2	2.0	873.0	3.74	-648.8	4609.5	0.6	342.2	7.20	-1178.5	2414.4	0.0	-657.2
	0.36	314.6	1608.6	1.9	903.1	3.83	-675.1	4638.6	0.6	281.4	7.29	-1191.6	2307.6	0.0	-657.4
	0.46	288.3	1692.7	1.9	930.7	3.92	-701.5	4662.0	0.5	218.1	7.38	-1204.7	2200.9	0.0	-656.5
	0.55	261.9	1779.3	1.8	955.9	4.01	-725.0	4679.5	0.5	152.4	7.47	-1217.9	2094.4	0.0	-654.3
	0.64	235.6	1868.0	1.8	978.7	4.10	-738.1	4690.8	0.5	85.1	7.57	-1231.0	1988.4	0.0	-650.9
	0.73	209.3	1958.8	1.8	999.0	4.19	-751.2	4696.0	0.5	16.5	7.66	-1244.1	1883.1	0.0	-646.3
	0.82	182.9	2051.3	1.7	1016.9	4.28	-764.4	4694.0	0.4	-28.2	7.75	-1257.2	1778.7	0.0	-640.5
	0.91	160.3	2131.9	1.7	1030.3	4.38	-777.5	4685.9	0.4	-66.6	7.84	-1270.3	1675.3	0.0	-633.5
	1.00	134.0	2227.1	1.6	1043.7	4.47	-788.7	4674.0	0.4	-98.5	7.93	-1283.4	1573.1	0.0	-625.2
	1.09	107.7	2323.4	1.6	1054.7	4.56	-801.8	4654.6	0.4	-134.7	8.02	-1294.7	1486.7	0.0	-617.2
	1.18	81.3	2420.7	1.5	1063.2	4.65	-814.9	4629.5	0.4	-169.6	8.11	-1307.8	1387.4	0.0	-606.8
	1.28	55.0	2518.7	1.5	1069.3	4.74	-828.1	4598.8	0.3	-203.4	8.20	-1320.9	1289.9	0.0	-595.1
	1.37	28.6	2617.1	1.5	1073.0	4.83	-841.2	4562.7	0.3	-235.9	8.29	-1334.0	1194.4	0.0	-582.2
	1.46	2.3	2715.8	1.4	1074.2	4.92	-854.3	4521.5	0.3	-267.2	8.39	-1347.2	1101.2	0.0	-568.1
	1.55	-24.1	2814.5	1.4	1073.4	5.01	-867.4	4475.3	0.3	-297.4	8.48	-1360.3	1010.3	0.0	-552.8
	1.64	-50.4	2913.0	1.3	1070.1	5.10	-880.5	4424.3	0.3	-326.3	8.57	-1373.4	922.0	0.0	-536.3
	1.73	-76.7	3011.1	1.3	1064.4	5.20	-893.7	4368.7	0.2	-354.0	8.66	-1386.5	836.6	0.0	-518.5
	1.82	-103.1	3108.6	1.3	1056.3	5.29	-906.8	4308.7	0.2	-380.4	8.75	-1399.6	754.1	0.0	-499.6
	1.91	-129.4	3205.3	1.2	1045.8	5.38	-919.9	4244.5	0.2	-405.7	8.84	-1412.7	674.8	0.0	-479.4
	2.01	-155.8	3300.9	1.2	1032.8	5.47	-933.0	4176.4	0.2	-429.8	8.93	-1425.9	598.9	0.0	-458.1
	2.10	-178.4	3381.8	1.2	1019.7	5.56	-946.1	4104.4	0.2	-452.7	9.02	-1439.0	526.5	0.0	-435.5
	2.19	-204.7	3474.9	1.1	1002.3	5.65	-957.4	4039.9	0.2	-471.3	9.12	-1452.1	458.0	0.0	-411.8
	2.28	-231.0	3566.2	1.1	982.4	5.74	-970.5	3961.4	0.2	-491.9	9.21	-1463.3	402.4	0.0	-390.4
	2.37	-257.4	3655.6	1.0	960.0	5.83	-983.6	3879.7	0.2	-511.3	9.30	-1476.5	341.4	0.0	-364.4
	2.46	-283.7	3742.9	1.0	935.3	5.92	-996.7	3794.9	0.1	-529.5	9.39	-1489.6	284.7	0.0	-337.2
	2.55	-310.1	3827.7	1.0	908.1	6.02	-1009.8	3707.3	0.1	-546.5	9.48	-1502.7	232.5	0.0	-308.7
	2.64	-336.4	3910.0	0.9	878.4	6.11	-1023.0	3617.1	0.1	-562.3	9.57	-1515.8	185.1	0.0	-279.1
	2.73	-362.8	3989.5	0.9	846.4	6.20	-1036.1	3524.4	0.1	-576.8	9.66	-1528.9	142.7	0.0	-248.2
	2.83	-389.1	4066.0	0.9	811.9	6.29	-1049.2	3429.4	0.1	-590.2	9.75	-1542.0	105.3	0.0	-216.2
	2.92	-415.4	4139.1	0.8	775.0	6.38	-1062.3	3332.4	0.1	-602.4	9.84	-1555.2	73.2	0.0	-182.9
	3.01	-441.8	4208.8	0.8	735.7	6.47	-1075.4	3233.6	0.1	-613.3	9.94	-1568.3	46.7	0.0	-148.4
	3.10	-468.1	4274.8	0.8	693.9	6.56	-1088.5	3133.0	0.1	-623.0	10.03	-1581.4	25.9	0.0	-112.7
	3.19	-494.5	4336.9	0.7	649.8	6.65	-1101.7	3031.0	0.1	-631.6	10.12	-1594.5	11.0	0.0	-75.8
	3.28	-517.1	4386.7	0.7	609.9	6.75	-1114.8	2927.7	0.1	-638.9	10.21	-1607.6	2.2	0.0	-37.7
	3.37	-543.4	4440.9	0.7	561.3	6.84	-1126.0	2838.3	0.1	-644.2	10.30	-2359.0	0.0	0.0	0.0

Appendix B

Composite Sheet Pile Wall Cost Analysis

SANTA VENETIA LEVEE UPGRADE

60% Construction Document Level 09.27.2022

ITEM	DESCRIPTION	QUANTITY	UNIT	U	NIT COST	CONT.		COST		
100	GENERAL CONDITIONS									
101	Mobilization	1	LS	\$	795,000	0	\$	795,000		
102	Traffic Control	1	LS	\$	57,000	15%	\$	65,550		
103	Water Pollution Control	7	МО	\$	12,000	15%	\$	96,600		
104	Potholing	1	LS	\$	17,000	15%	\$	19,550		
105	Temporary Fencing	7,300	LF	\$	15	15%	\$	125,925		
106	Construction Layout	1	LS	\$	45,000	15%	\$	51,750		
	Subtotal =						\$	1,154,375		
200	200 EROSION & SEDIMENTATION CONTROLS									
201	Construction Entrance	6	EA	\$	20,000	15%	\$	138,000		
202	Install and Remove Silt Fence	7,300	LF	\$	11	15%	\$	92,345		
203	Install Fiber Roll	14,600	LF	\$	5	15%	\$	83,950		
204	Hydroseed	70,000	SF	\$	1.25	15%	\$	100,625		
	Subtotal =						\$	414,920		
300	DEMOLITION									
301	Clearing and Grubbing	1	LS	\$	114,000	25%	\$	142,500		
302	Tree Removal (Trunk Dia < 36")	59	EA	\$	1,500	25%	\$	110,625		
303	Large Tree Removal (Trunk Dia > 36")	3	EA	\$	7,500	25%	\$	28,125		
304	Planter Box Removal	25	EA	\$	500	25%	\$	15,625		
305	TRB Removal	6,500	LF	\$	50	25%	\$	406,250		
306	Side Fence Removal	1,695	LF	\$	25	15%	\$	48,731		
307	Rear Fence Removal	500	LF	\$	25	15%	\$	14,375		
308	Soil Export	500	CY	\$	125	30%	\$	81,250		
309	Soil Spreading	1,500	CY	\$	55	30%	\$	107,250		
310	Dock Removal	13,500	SF	\$	15	25%	\$	253,125		
311	Stair Removal	3,945	SF	\$	50	15%	\$	226,838		
312	Deck Removal	4,500	SF	\$	15	15%	\$	77,625		
313	Hardscape Removal	1,000	SF	\$	25	15%	\$	28,750		
314	Electrical System Removal	27	EA	\$	2,000	15%	\$	61,525		
315	Storm Drain System Removal	27	EA	\$	1,500	15%	\$	46,144		
316	Water System Removal	37	EA	\$	1,500	15%	\$	64,601		
317	Misc Removal (Flag Pole, walls, etc)	1	LS	\$	100,000	15%	\$	115,000		
	Subtotal =						\$	1,828,339		
400 FLOOD WALL										
401	Composite Sheet Pile (incl Seal)	84,972	SF	\$	38	20%	\$	3,919,098		
402	Sheet Pile Cap	7,157	LF	\$	25	20%	\$	214,710		
403	Timber Reinforced Berm	100	LF	\$	1,200	20%	\$	144,000		
	Subtotal =						\$	4,277,808		

ITEM	DESCRIPTION	QUANTITY	UNIT	UNI	T COST	CONT.	COST
500	FENCING & STAIRS						
501	Install Stairs	4,000	SF	\$	145	15%	\$ 667,000
502	Install Side Fence	1,620	LF	\$	125	15%	\$ 232,875
503	Install Gates	115	EA	\$	800	15%	\$ 105,800
504	Install Rear Fence	1,695	LF	\$	125	15%	\$ 243,656
505	Install Salt Marsh Mouse Ladder	60	EA	\$	60	15%	\$ 4,140
	Subtotal =						\$ 1,253,471
					Subto	tal (2022)	\$ 9,000,000
					Subto	tal (2023)	\$ 10,100,000
					Subto	tal (2024)	\$ 11,000,000
					Subto	tal (2025)	\$ 11,900,000

SANTA VENETIA LEVEE UPGRADE

BASIS OF DESIGN

AND PROJECT ALTERNATIVES