

Santa Venetia Levee Upgrade Zone 7 Flood Advisory Board

October 13, 2022

Discussions

- 1. Project Background and schedule
- 2. Response to Comments
- 3. Flood Wall Options
- 4. Costs and Funding

Where and Why?

- 1. Existing redwood box berm has exceeded its design life.
- 2. District budgeted \$150,000 for TRB maintenance this year.
- 3. Repair costs will continue to increase as the rate of deterioration accelerates.
- 4. Army Corps of Engineers notes failure is possible.

Levee Replacement Process

Design Refinement Summer and Fall 2022 Outreach Meetings 7/27 and 9/14 Resident Meetings October 2022

FEMA Funding Procurement Winter 2022 and Fall 2023

Response to Comments

Response to Public Comments

- 1. No public access along the flood wall will be allowed.
- 2. The flood wall footprint has been extended at each end.
- 3. Space is needed on each side of floodwall for inspection & maintenance.
- 4. Design height of the wall will remain at 11 feet.
- 5. After review, the tide gate concept is not considered viable.
- 6. Drainage law allows the District to make improvements to protect property.
- 7. Airport's levee modification has limited impact on Santa Venetia.

Project Limits have been extended

West End

Design Elevation

The 11-foot wall elevation will

- Use USACE 100-year flood elevation @9.1 feet
- Allow OPC 66% probability 0.9 feet SLR by 2050
- Meet High end of settlement projection @1 foot

The 12.5-foot wall elevation would

- Meet FEMA's 9.8 feet 100-year flood elevation
- Allow OPC 5% probability
- Comply with County's 2017 BayWAVE Vulnerability Analysis SLR estimated @1.7 feet
- Meet High end of settlement projection @1 foot

100-year Water Surface Elevation (NAVD88)		2050 Proje Level Rise f (publishe	cted Sea from OPC d 2018)	Land Subsidence Estimates from 1990-2012 data by Kleinfelder (2018)	
USACE 2013	FEMA 2016	Low-end 66% Probability	1 in 200 Chance	Low	High
9.1	9.8	0.6	1.9	0.8	1

Las Gallinas Tide Gate

- 1. 1983 tide peaked at 8.7 feet & 1998 tide reached 8.4 feet
- 2. Since November 2017 creek has reached above 8 feet 12 times.
- 3. 100-year flow in Las Gallinas Creek is **1,300 CFS**.

		Ex	treme	Tide Ele	vation		
FEET-NAVD88							
1- YR	2- YR	5- YR	10- YR	25- YR	50- YR	100- YR	500- YR
7.40	7.71	8.13	8.45	8.90	9.26	9.67	10.75

Las Gallinas Tide Gate

Tidal Gate Challenges

- 1. Las Gallinas Creek is a navigable waterway.
- 2. State and Federal regulatory agencies.
- 3. The cost to construct is high.
 - A. Las Gallinas pump station \$15+ million
 - B. Tidal Gate and flood wall \$25+ million
 - C. Levee construction \$5 million
 - D. Mitigation and other costs \$10+ million
 - E. Total cost \$55 +/- million.
- 4. Levee is still required on properties.

For reference, the bid value for the San Quentin Pump Station in San Rafael capable of pumping 300 cfs was \$6 million in August 2022

Flood Wall Options

Alternatives Considered

Cost of the Flood Barrier is the only variable in Project Costs

- 1. Clearing and Grubbing Same for all
- 2. Finish grading and restoration Same for all
- 3. Stairs and Access Same for all
- 4. Permitting, Environmental, and Administration- Same for all

Timber Reinforced Berm(TRB)Wall

Advantages

- 1. Design complete
- 2. Basic construction technology
- 3. Similar aesthetic, though taller

Disadvantages

- Labor intensive construction w/ concrete and soil import/export
- 2. Shorter life span w/ greater inspection and repair
- 3. Seepage risks continue
- 4. Adds plastic material into the environment

Precast Concrete Floodwall

Advantages

- 1. Low maintenance, durable material
- 2. Long life expectancy
- 3. More Architectural possibilities

Disadvantages

- 1. Costly Construction
- 2. Difficult to install
- 3. Young Bay Mud soil likely to settle, may require many piles beneath the wall

Vinyl Sheet Pile

Advantages

- 1. Lowest cost to construct
- 2. Long life expectancy w/ negligible settlement
- 3. Resilient in seismic event
- 4. Low maintenance /Ease of inspection
- 5. Standardized construction process

Disadvantages

- 1. Less natural
- 2. Subsurface conditions may affect construction
- 3. Requires more Environmental and permitting
- 4. Flexibility risk under the load of storm water
- 5. Increased Construction access challenges

Vinyl Sheet Pile

For Planning and Design only

*Based upon 3x embedment

Existing Condition

Vinyl Sheet Pile Visual Simulation

Alternative Ranking

Item	TRB	Concrete	Vinyl
Flood Protection	х	x	х
FEMA Funding	х	х	х
Low Impact to Residents	xx	x	xxx
Consistent with Environmental Document and Permit	ххх	×	хх
Long Design Life and Low Maintenance Cost	х	xxx	ХХ
Allows Water Access	x	×	х
Lowest Cost	XX	x	XXX
Limits Seepage	х	xx	XXX
Speed to Construct	х	xx	XXX
Score	13	13	19
		12 I I I	

Comparison Notes

- 1. Concrete is not possible given soil conditions and access restrictions.
- 2. TRB maintains the status quo and is simple to repair.
- Vinyl sheet piles are the contractor's choice but require additional design analysis for high exposed face.
- 4. Vinyl has minimal maintenance.
- 5. Vinyl has narrower width.
- Vinyl potentially has less restrictions on adjacent uses.

Design Considerations

- 1. September to January work period
- 2. Within the work zone:
 - A. Remove existing TRB in sequence with new construction
 - B. Spread TRB fill materials if possible.
 - C. Remove stairs and dock to nearest support.

Typical Fence and Staircase Design

Fence and staircases installed at property upon owner's request.

Fence and Gate – Wood

Staircase – Wood

Costs and Funding

Santa Venetia Project Costs			
	Floodwall Option		
Element		Composite	Notes
	TRB	Sheet Pile	
Planning and Design Costs	\$617,549	\$617,549	Existing Design Agreement
Construction Cost (2025)	\$16,000,000	\$12,000,000	Estimated Construction Cost
Total	\$16,617,549	\$12,617,549	

Santa Venetia Funding			
Element	Value	Notes	
FEMA and Zone 7 Funds	\$1,000,000	Design Only	

Next Steps

Next Steps

- 1. Site review of properties as needed or at owner's request October 6th to 21st.
- 2. Complete detailed design by November 2022 to qualify for FEMA reimbursement.
- 3. Present design to the Board of Supervisors on November 15, 2022
- 4. CEQA Addendum and Environmental Permitting will follow Board of Supervisors review.
- 5. Seeking funding now.