Street Design that Supports Walkable, Livable Communities

Paul Zykofsky, AICP
Director, Land Use/Transportation Programs Local Government Commission

Prepared by the Local Government Commission with assistance from Dan Burden, Walkable Communities

Street Design

- Influences trip choices
- Safe, quiet, slow, shaded streets encourage people to walk, ride bicycle or take transit instead of driving a car

Street Design

Street Design

- Impacts pollutant emissions
- Stop and go traffic results in higher pollutant emissions
- Studies in Germany showed that traffic calming, which reduces average speeds and smooths the flow of traffic:
- Reduced hydrocarbon emissions by 10-22\%
- Reduced NOx emissions by 32-48\%
(Source: Peter Newman and Jeffrey Kenworthy. Sustainability and Cities: Overcoming Automobile Dependence. Island Press: Washington DC, 1999.)

Street Design

- Affects

formation of ozone

- Cooler streets reduce heatisland effect which
contributes to ozone formation
- L.A. Study found every degree increase results in approximately 3% increase in

Street Design

- Can help create more livable
neighborhoods
- Improve property values
- Lower costs
- Improve
quality of life

Street Design

New Approaches to Street Design

Alternative Patterns of Development

TRIP ASSIGNMENT: CONVENTIONAL

Traditional vs. Conventional

Central Business Districts at the same scale

Savannah, Georgia

Irvine, California

U.S. Population Growth and Transportation - 1970-1996

California Population Growth and Transportation - 1970-2000

Land Use Pattern Affects Travel

- Traditional pattern makes it possible to make some trips without a car
- Less than 20\% of trips are home to work
- Other 80% are often short trips, running errands, picking up the kids, etc.
- Create communities in which some of those trips can be done without driving a car

Good Neighborhood Streets

- Safe
- Low
volume
- Slow
speeds
- Quiet
- Shaded
- Good sidewalks
- Easy to ride bicycle on

Principles of Healthy Streets

Principles of Healthy Streets

- Streets

designed so drivers feel comfortable at slow speeds

- 15-25 mph on neighborhood streets
- 25-35 mph on avenues and
 boulevards

Principles of Healthy Streets

Principles of Healthy Streets

Principles of Healthy Streets

- Narrower streets are slower and safer
- Longmont, CO study of 20,000 accidents
- Found street width had the greatest relationship to injury accidents
- Accidents/mile/year were higher on wider streets
- 40-foot wide street
$2.23 \mathrm{a} / \mathrm{m} / \mathrm{y}$
- 36-foot wide street
- 24-foot wide street

Source: "Residential Street Typology and Injury Accident Frequency,
Switt and Associates, Longmont, CO, 1997

Healthy Streets Need Tree Canopies

Trees Reduce Heat Island Effect

[^0]
Designing Healthy Streets

Designing Healthy Streets

- Short blocks and T-intersections reduce vehicle speeds
■ Medians, gateways and other techniques that visually narrow the road reduce vehicle speeds
- On-street parking helps narrow the street and provides buffer for sidewalks

Designing Healthy Streets

- Network of interconnected streets with nearby destinations and mix of uses is critical

Plan for Celebration, Florida, a traditional neighborhood being built by Disney Development Corp.

Fairview Village, OR

Recommended Designs for Different Types of Roadways

Lane

Provides access to single-family homes.

Street

Street width 16-18 feet with curb,
gutter and informal parking
Planting strips 6 feet
Sidewalks 5 feet on each side
Average speed 15 mph
Requires a 40-foot ROW
Utility location - Underground or
alley
Drainage - Curb and gutter
Two to six blocks long
s long

$$
\square
$$

Buildings \& Land Use
Residential - primarily single
family
Buildings brought close to
sidewalk
Consistent building line
recommended

Street

Provides access to single-family homes.

Street
Street width 26-28 feet with curb,
gutter and informal parking
Planting strips 6 feet
Sidewalks 5 feet on each side
Average speed 20 mph
Requires a 48-foot ROW
Utility location - Underground or
alley
Drainage - Curb and gutter
Two to six blocks long

Buildings \& Land Use
Residential - many residential types
Residences brought close to sidewalk
Consistent building line
recommended
Front porches encouraged

Avenue with Parking

Connects town and neighborhood centers.

Street
Street width 24 foot on both sides of median with curb and gutter.
Median width 12-16 foot.
Travel lanes 12 foot.
Planting strips 6 foot.
Sidewalks 5-8 feet on each side.
Average speed 35 mph .
Requires an 82-94 foot ROW.
Utility location - underground.
Drainage - Curb and gutter, median can
have swale for natural drainage

Buildings \& Land Use
Mixed residential and commercial use Buildings brought close to sidewalk
Consistent building line recommended
Avenues are designed to connect town centers to neighborhoods
Sidewalks and bike lanes on both
sides.
Place prominent public buildings and plazas at end of vistas

Main Street

Provides access to and a space for neighborhood commercial and mixed use buildings

Street
Street width 38 foot with curb and gutter
Street dimensions curb-to-curb
Lanes 11 feet with striped parking Planting wells
Sidewalks 11 feet on each side.
Average speed 20-25 mph.
Requires a 60 foot minimum ROW
Utility location - underground
Drainage - Curb and gutter
Include bulbouts at intersections and
mid-block crossings

Buildings \& Land Use
Commercial and mixed use
Buildings next to sidewalk
Consistent building line recommended
Pedestrian awnings, arcades, sidewalk dining and sidewalk retail are recommended

FIGURE 2-15

Street and lane widths.

Local
(Parking not expected or
restricted to one side)

(Parking on both sides)

Residential Collector (Parking on both sides)

Joint ITE-CNU Project

Developing Guidance For Context Sensitive Design of Major Urban Thoroughfares

- FHWA, states, cities working on context-sensitive design
- AASHTO's Bridging

Document

- EPA smart growth program
- ITE smart growth \& traditional design work
- CNU design work
- Developed joint project

Goals

- Leverage flexibility in existing guidelines
- Make context-sensitive design the standard
- Provide guidance in "adaptable pieces"
- ITE Recommended Practice
- Break down into independent parts
- Suitable to insert in DOT, DPW manuals
- Support local implementation

Components of Guidelines

- Design Framework \& Process
- Network Design
- Thoroughfare Design Criteria

Thoroughfare Design Framework			
Ematisem	Bemesac		200
	neame mmem	cman max	
cememer			
m			
-			
$=$			

Thoroughfare Design Framework

Network Design

- Use to validate thoroughfare design
- Create connectivity with layers of smaller thoroughfares
- Access management on larger thoroughfares
- Emphasize network capacity

Impacts of Reducing Street Widths

- Savings
- \$61,000 less per mile in pavement costs (with additional trees)
- Asphalt on shaded streets can last up to 10 years longer, thus deferring repaving costs
- 15% reduction in home cooling energy

requirements

Impacts of Reducing Street Widths

- Northern California		Cost per 100 feet of street	
		24' Wide	36^{\prime} Wide
differential is	5-Inch Asphalt Paving/6-Inch Base	\$6,800	\$10,880
substantial,	6-Inch Curb and Gutter	1,265	1,265
especially if	4-foot Sidewalk	1,400	1,400
land costs are	Total Construction Costs	9,465	13,545
high	Additional Cost		\$4,080
Per mile:	Land (at \$300,000/acre)	16,800	25,200
construction	Total Cost	\$26,265	\$38,745
$\begin{aligned} & \text { \$648,960 } \\ & \text { including land } \end{aligned}$	Additional Cost		\$12,480

Healthy Streets Need Good Sidewalks

- We impact the freedom of all residents especially children and seniors when we fail to provide good sidewalks

Healthy Streets Need Good

Sidewalks

- Detached from curb
- At least 5 feet wide
- Planting strip helps shade street and sidewalk

SIDEWALK FEATURES

- Width (minimum 5), ana
- 6 feet if at back-of-clew vulSHTO)
- Crossfall 1:50
- Pedestrians need a 2 foot wide buffer to all edges, curb, buildings, bridge railings etc. - Butfer to motor vehicles ($4-10^{\prime}$), nature-strip 7 feet wide to plant trees
- Street lighting, shade
- Pavers can be used for enhancement

Healthy Streets Need Good

 Sidewalks- Sidewalks narrower than 5 feet may work well for lovers walking arm-in-arm...

Healthy Streets Need Good

 Sidewalks■ ... but average size people need sidewalks that are at least 5 feet wide (6 feet if sidewalk is attached to the curb) to walk side-by-side

Healthy Neighborhoods Need Good Street Crossings

Large versus Compact Intersections

■ How long does it take to cross this street?
Assume 8
lanes x 12
feet $=96$ feet
@ 4.0
feet/second
will take 24
seconds
@ $3.0 \mathrm{ft} / \mathrm{sec}$ will take 32
seconds

Large versus Compact Intersections

Pedestrians will walk up to 150 feet out of their way to cross

Retrofitting Existing Streets

- Traffic Calming has emerged in the last few years to address problems with existing streets
- Streets that are unsafe, especially for pedestrians and bicyclists
- Streets that are too wide
- Streets with too much cut-through traffic
- Streets that are difficult to cross

What is Traffic Calming?

- Traffic Calming is the combination of mainly physical measures that reduce the negative effects of motor vehicle use, alter driver behavior and improve conditions for non-motorized street users.

Lockwood, Ian. ITE Traffic Calming Definition.
ITE Journal, July 1997

Stop signs versus traffic calming

Why Calm Traffic?

- Reduce crash potential
- Improve pedestrian/bicyclist safety
- Reduce auto use, reduce congestion
- Increase walking, bicycling, fitness, health
- Increase property values
- Increase access, pride, ownership

■ Increase neighborhood involvement

Conflicts At Roundabouts

Conflicts At a Four-Way Interection

32 vehicle-tovehicle conflicts
24 vehicle-topedestrian conflicts
"Results of this study indicate that converting conventional intersections from stop sign or traffic signal control can produce substantial reductions in motor vehicle crashes."

March 2000 Stwdy by the Insurance Institute for Highway Safety

"Anything worth doing is worth doing slowly."

For more information

- Local Government Commission Center for Livable Communities
- Web:
- Phone:
- e-mail:
- Walkable Communities
- Web:
www.lgc.org
800-290-8202
center@lgc.org
www.walkable.org

[^0]: Sacramento -- June 29, 1998

