

## Virtual Council Meeting Agenda August 3, 2020 6:00 p.m.

| 1. | Ca                                                                                                                                 | ll to Order and Invocation Mayor Ed Hooks                                                                                                                                                                                     |
|----|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Pu                                                                                                                                 | blic Comments Mayor                                                                                                                                                                                                           |
| 3. | Со                                                                                                                                 | nsent Agenda Mayor                                                                                                                                                                                                            |
|    | а.<br>b.<br>c.                                                                                                                     | Approval of Minutes —  i. July 6, 2020 — Virtual Regular Meeting  ii. July 8, 2020- Continued Public Hearings  Petition for Voluntary Non-Contiguous Annexation- ABB  Resolution Approving Financing for Purchase of Vehicles |
| 4. | Re                                                                                                                                 | solution of Recognition- Richard Hurst- 50 Yard Challenge                                                                                                                                                                     |
| 5. | Public Hearings- All Public Hearings will be voted upon at the CONTINUED meeting to be held on Wednesday, August 5, 2020 at 6:00pm |                                                                                                                                                                                                                               |
|    | a.                                                                                                                                 | Conditional Rezoning- CU-R-8 & CU-R-10 to R-12(CD) Tupelo Junction- 1818 Saddle Club Road by Lebanon Road 3, LLC, c/o James Parker, Jr.,                                                                                      |
|    | b.                                                                                                                                 | Quasi-judicial Board of Adjustment- Special Use Request-<br>Temporary use of property located at 3445 Old Hillsborough<br>Road by Alamance Community SchoolAshley Ownbey, Planner                                             |
| 6. | Ad                                                                                                                                 | iournment                                                                                                                                                                                                                     |

# Mebane City Council - Virtual Meeting August 3, 2020- 6:00 PM



The City of Mebane is taking measures to mitigate the spread of the COVID-19 virus including banning physical attendance at public meetings, employing social distancing, and implementing remote participation. The following will allow the public to attend the meeting by remotely accessing it on the internet.

For those without internet service, you can listen to the meeting by calling 919-304-9210, password 158962.

For people who plan to view the meeting, but not comment or participate, the City is providing a YouTube live stream by searching *City of Mebane* on YouTube or at the following link:

https://www.youtube.com/channel/UCoL1RXdRDMzK98p53TMoqww

For people who plan or think they may want to address the City Council during the Public Comment Period or the Public Hearing, see options below.

#### Option #1

- Email comment to <a href="mailto:info@cityofmebane.com">info@cityofmebane.com</a>. Written comments may be submitted at any time between the notice of the Public Hearing and 24 hours after the Public Hearing.
- Messages must be labeled Public Comment or Public Hearing in the subject line and must contain commenter's name and address.
- Comments received prior to the meeting will be read aloud by the City Clerk.

#### Option #2

- Email <u>info@cityofmebane.com</u> by Monday, August 3, 2:00pm to speak during the Public Comment Period or Public Hearing. When email is received, an email will be sent with instructions on how to register and speak during the Public Comment Period or Public Hearing.
- Messages must be labeled Public Comment or Public Hearing in the subject line and must contain commenter's name and address.
- Registered participants will be given an access code to speak at the meeting via Zoom, a remote conferencing service.
- Callers will be held in queue and asked to mute their phones or speakers until they are called on to speak.
- Speakers will be called in the order in which they are registered. Should time allow after all
  registered speakers have had a chance to speak, you may use the "raise hand" button on the
  Zoom interface to be recognized and staff will unmute you to give comment.
- Per authority of NCGS 143-318.17, if a person participating remotely willfully disrupts the Council
  meeting, then upon direction by the Mayor, such person may be removed from electronic
  participation, or his or her e-mail may not be read.



The Mebane City Council held its regular monthly meeting at 6:00 p.m., Monday, July 6, 2020. Due to public health concerns related to COVID-19, the meeting was held virtually via Zoom.

#### Council Present via Zoom:

Mayor Ed Hooks
Mayor Pro-Tem Jill Auditori
Councilmember Tim Bradley
Councilmember Patty Philipps
Councilmember Everette Greene
Councilmember Sean Ewing

City Staff Present at City Hall:
Assistant City Manager Chris Rollins
City Attorney Lawson Brown
City Clerk Stephanie Shaw
IT Director Kirk Montgomery
Planner Ashley Ownbey

City Staff Present via Zoom:
City Manager David Cheek
Finance Director Jeanne Tate
Development Director Cy Stober
HR Director Beatrice Hunter

Mayor Hooks called the virtual meeting to order and gave the invocation. Mr. Tommy Jones registered to speak during the meeting, however at the time Mayor Hooks called for Public Comments, Mr. Jones had not logged on to speak.

Mayor Hooks continued with opening discussion about a proposed Town Hall Meeting/Listening Session. The following are highlights from that discussion.

- Set meeting date for Wednesday, August 5<sup>th</sup>, directly following after the 6pm voting meeting
- Each speaker allowed 5 minutes
- All registered speakers will be allowed their 5 minutes no matter how long the meeting goes
- Speaker must be registered to participate
  - o Registered participants will be brought in to the Zoom call in the order in which they registered
  - o Speaking order will be posted on PowerPoint slide at the beginning of the meeting so participants know when they will be up to speak
  - o Limit speakers to one time to speak, no repeats
- Council agreed that main objective is to listen

- o No back and forth dialog with the speaker
- o Need time to hear concerns, then Council will address at a later time, ex. another meeting
- Allow people to speak no matter their residential address
- Opening statement by Mayor to set guidelines for meeting
- David recommended that the meeting topic should be tied to recent national concerns, as those issues are what started the conversation for a Town Hall Meeting/Listening Session
  - o Mr. Bradley said he feels setting the topic would "weigh the public discussion in one way or another"
  - o Ms. Auditori said that Mr. Bradley makes a good point
  - o Mr. Bradley said topic could be listed as "current issues"
  - o Ms. Philipps suggested a topic of "we want to hear you"
- All City Department Heads should "attend" virtually but not expected to speak
- Allow speakers to register up until 5pm the day of the meeting
- Should be advertised separate from the regular meeting- ad in paper, Facebook, website, google ads
- Ms. Auditori would like for it to be clear that Council's lack of response during the meeting is not because they are not listening, they are listening, notes are being taken and Council will follow up to comments at a later time.

Mr. Rollins interrupted the discussion to let Mayor Hooks know that Mr. Jones had joined the meeting remotely via Zoom and was ready to address the Council with comments.

Tommy Jones, 307 E Dogwood Dr Mebane, NC 27302, stated that he recently participated in a healing rally, invited by Councilmember Ewing. He stated he met Mayor Hooks and others that attended. He said after that meeting, they discussed further the needs and concerns of the African-American community which is right now 24.7 percent of the population of Mebane. He said there are various concerns about social inequality, systemic racism, and police brutality and can fairly say he does not necessarily see as much in Mebane in the past five years that he has lived here but the underlying issues still remain. He said he is proposing that Council put together a minority-based, African-American based advisory committee. He said such a committee could provide comments and suggestions that could be recognized by the Council, that way proper decisions and proper acknowledgments can be made. Mr. Jones stated the only way to bridge the gap is to continue the conversation. He said they need more representation and he feels that an Advisory Committee to the Council is essential going forward within our City.

Mayor Hooks and Mr. Ewing thanked Mr. Jones for attending the meeting and for his comments. Mr. Cheek invited Mr. Jones to participate in the upcoming Town Hall/Listening Session meeting. He said mentioning the concerns and ideas he shared tonight at that meeting would be a good idea.

Mr. Jones thanked Mr. Cheek for that invite and shared that he thinks Council should verbally acknowledge speakers during the Listening Session, even if it is a prepared statement read at the end of the meeting.

Ms. Philipps agreed, that during the session, some type of acknowledgment should be made, assuring the speakers that they have been heard but suggested a follow up meeting would be the best time to provide responses, feedback and/or action. Council discussed a follow up meeting but did not set an official date.

Mr. Cheek said his understanding, based on what Mr. Jones said, is that while there may not be a conversation, a statement needs to be given at the end of the meeting acknowledging that Council and staff heard the speakers. Mr. Jones said that is exactly what he meant.

Mr. Jones thanked everyone, said goodbye and left the remote meeting.

Mr. Cheek introduced the City's new Human Resources Director Beatrice Hunter. He spoke highly of Ms. Hunter, her education, experience and training. Mr. Cheek also shared that she is a resident of Mebane. Ms. Hunter shared her excitement with the opportunity to be able to work in Mebane, live in Mebane and play in Mebane.

Mayor Hooks gave an overview of the Consent Agenda:

- a. Approval of Minutes
  - i. June 1, 2020 Virtual Regular Meeting
  - ii. June 3, 2020- Continued Public Hearings
- b. Hazard Mitigation Plan Resolution
- c. Final Plat- Townes at Oakwood Square, Phase 1
- d. Recommendation to the Alamance County Commissioners for Reappointment to the Alamance County Library Committee
- e. Odor Control Chemicals Bid Results and Recommendation

Ms. Philipps made a motion, seconded by Ms. Auditori, to approve the consent agenda as presented. The motion carried unanimously.

Mayor Hooks announced that the next item is a public hearing and will not be voted on until the continued meeting which will be held on Wednesday, July 8, 2020.

A virtual Public Hearing was held a request from Dogwood Properties & Development Corporation for approval to rezone five (5) properties totaling +/-3.32 acres located at 1218 and 1228 South Fifth Street, as well as two (2) adjacent, unaddressed properties on South Fifth Street and one (1) unaddressed property on NC 119, from R-20 (Single-Family Residential) to B-2 (General Business). Mr. Stober presented the request. He explained that the properties are currently vacant lots, some with unoccupied dwellings on them. Their property boundaries were redefined through the right of way acquisition process to support the NC 119 Bypass transportation improvement project. The properties are in the G-4 Secondary Growth Area but adjacent to the G-1 Mixed Use (III) Cameron Lane Primary Growth Area. They are also less than 1,000 feet from the Interstate 40/85 interchange and isolated from nearby properties by the NC

119 Bypass and widened S. Third Street. Those properties are single-family residences to the north, east, and south; and commercial to the west and southwest.

Tony Tate, Landscape Architect and Land Planner with TMT Landscaping, Durham, NC, joined the virtual meeting via Zoom and provided a brief overview of the request. He explained that originally, he applied for a B-2(CD) (General Business Conditional Zoning) back in March but the Planning Board denied the request because he did not have a site plan. Since then he revised his application to B2 (General Use) and plans to market the properties as commercial. He stated he spoke with Mayor Hooks and the Mayor shared that the Council has an opportunity to restrict those uses. Mr. Tate presented the following proposed list of B2 uses to be restricted from the properties under consideration for rezoning.

Dogwood Properties Development Corporation Mebane City Council Presentation Exhibit A July 6, 2020

The property owner offers the following B2 uses to be restricted from for the rezoned properties at the pleasure of Mebane City Council.

- 1. Temporary Emergency Shelter
- Communication Tower under 50' in height
- 3. Athletic Fields
- 4. Auditorium, Coliseum or Stadium
- 5, Batting Cages, Outdoor
- 6. Batting Cages, Indoor
- 7. Bingo Parlor
- 8. Campground/RV Park
- Coin Operated Amusement
- 10, Country Club with Golf Course
- Golf Course
- 12, Golf Driving Range
- 13. Automobile Parking (Commercial)
- 14. Blacksmith
- 15. Equipment Repair
- 16. Theater (Outdoor)
- 17. Boat Sales
- 18. Building Supply Sales
- 19. Fuel Oil Sales
- 20. Manufactured Home Sales
- 21. Recreational Vehicle Sales
- 22. Video Tape Rental and Sales
- 23. Communication or Broadcasting Facility
- 24. Taxi Terminal
- 25. Telephone Exchange
- 26. Transformer Stations
- 27. Beverage Products
- 28. Ice
- 29. Jewelry and Silverware Fabrication, No Plating
- 30. Printing and Publishing, Incidental to a Newspaper Office
- 31. Fireworks Stand
- 32. Video Gaming Arcade

Mr. Bradley asked for clarification about whether Council is considering an B2 Conditional Zoning or a straight B2 General Use zoning. Mr. Rollins explained that the original history was that Mr. Tate was asking for a conditional zoning from the very beginning and staff supported that conditional zoning which restricted the uses however when the request was presented to the Planning Board as part of that review the conditional zoning requires a site plan to be submitted, not just a restriction on the uses. So, when the Planning Board heard that, they were not in support of the conditional zoning. Therefore, Mr. Tate resubmitted for a straight B2 rezoning and the Planning Board approved recommending the straight B2 rezoning to Council. However, Mr. Tate still believes, and staff still believes, that conditional zoning makes the most sense even though he does not have a site plan. All of the proposed uses on the submitted list would be restricted from those properties. Mr. Bradley said if Council has the authority, he is perfectly satisfied with waiving the site plan in lieu of a more restricted zoning. He said there are residential properties facing these properties and he would feel more comfortable with restricted the uses. Mr. Stober said he has spoken with Mr. Rollins and Mr. Brown about the matter and Planning Staff is not empowered to make any recommendation in that regard but he does believe that Council has much more authority in negotiating the agreement with the applicant. Mr. Brown said from a legal stand point, Council can convert this to a conditional rezoning to include the restricted uses. He reminded Council that the City's Unified Development Ordinance (UDO) does include impervious surface limitations and setback requirements and the setbacks are generally enhanced when the business property is adjoining residential property, so there are some safeguards in the UDO. Mr. Ewing questioned if Mr. Tate owns the adjoining property and if the same zoning would apply. Mr. Stober stated that property was not advertised and cannot be considered at tonight's meeting. Ms. Philipps stated, if Council has the legal authority, she supports moving forward with the zoning including the restricted uses. She also requested that if the developer can preserve the mature trees on the properties, it would be ideal. Mr. Tate said he would certainly pass that request along to the developer and hopefully he will be doing the site plan and he would see what he could do about making that happen.

No one from the public spoke concerning the matter. Mayor Hooks asked for a motion to continue the public hearing. Mr. Ewing made a motion, seconded by Ms. Philipp's, to continue the public hearing until Wednesday, July 8, 2020 at 6:00pm. The motion carried unanimously per the roll call vote.

Mayor Hooks announced that the City is now accepting applications for vacancies on the Board of Adjustment, one position for the Alamance County ETJ and one position for the Orange County ETJ. He encouraged citizens to apply.

Mayor Hooks also thanked the West End Revitalization Association for their recent donations to the Police Department and Fire Department to help cover COVID-19 related costs. Both departments received \$250 each.

Mr. Ewing thanked Reverend Keisha Bluford and Pastor Sammy Ballard for organizing the Unity March recently held in downtown Mebane. He also thanked Jay Starnes, owner of Fat Man and His Food, for providing barbeque for the event.

| There being no further business, the meeting | ended at 6:58pm. |
|----------------------------------------------|------------------|
|                                              |                  |
| Attest:                                      |                  |
| Stephanie W. Shaw, City Clerk                | Ed Hooks, Mayor  |





The Mebane City Council held a continued meeting at 6:00 p.m., Monday, July 6, 2020. The July 6, 2020 meeting was continued per G.S. 166A-19.24, which states that when a public body conducts a public hearing as a remote meeting, it must allow for written comments on the subject of the public hearing to be submitted between publication of any required notice and 24 hours after the public hearing. Due to public health concerns related to COVID-19, the meeting was held virtually via Zoom.

<u>Council Present via Zoom:</u>
Mayor Ed Hooks
Councilmember Everette Greene
Councilmember Sean Ewing

Council Absent:
Mayor Pro-Tem Jill Auditori

Councilmember Tim Bradley
Councilmember Patty Philipps

City Staff Present via Zoom:
City Manager David Cheek
Assistant City Manager Chris Rollins
City Clerk Stephanie Shaw
Jeanne Tate, Finance Director
IT Director Kirk Montgomery
Development Director Cy Stober

<u>City Staff Present via Phone:</u> City Attorney Lawson Brown

#### Per the requirement of G.S. 166A-19.24 the unanimous vote was conducted by roll call.

Mayor Hooks called the meeting to order. He then stated that tonight's meeting is a continuation of the public hearing held on Monday, July 6, 2020 on a request from Dogwood Properties Development Corporation to rezone 5 Parcels located at and adjacent to 1218 and 1228 S. Fifth Street from R-20 (Single Family Residential) to B-2 (General Business).

Clerk Shaw stated that no public comments were received. Mr. Greene made a motion, seconded by Mr. Ewing to close the public hearing.

Mr. Bradley made a motion, seconded by Ms. Philipps to, approve the B-2 Conditional rezoning as discussed and to include the restricted uses list as presented and a motion finding that the application is consistent with the objectives and goals in the City's 2017 Comprehensive Land Development Plan *Mebane By Design*. The request is for a property within the City's G-4 Secondary Growth Area and is "...generally residential and commercial in nature..." (Mebane CLP, p.66). The motion carried unanimously per the roll call vote.

| There being no further business, the meeting | g was adjourned at 6:03pm. |
|----------------------------------------------|----------------------------|
|                                              |                            |
| Attest:                                      |                            |
| Stephanie W. Shaw, City Clerk                | Ed Hooks, Mayor            |



#### AGENDA ITEM #3B

Petition for Voluntary Non-Contiguous Satellite Annexation – ABB

| M | eet | ing | Date |
|---|-----|-----|------|
|   |     |     |      |

August 3, 2020

#### Presenter

Lawson Brown, City Attorney

#### **Public Hearing**

Yes □ No 🗵

#### Summary

Staff received a petition requesting voluntary non-contiguous satellite annexation from ABB.

#### **Background**

The applicant is requesting the described property to be annexed into Mebane's Corporate Limits. This is a non-contiguous satellite annexation containing approximately 101.119 acres.

#### **Financial Impact**

The property will be added to the ad valorem tax base for the City once the property is annexed.

#### Recommendation

Staff recommends Council's acceptance of the petition, the Clerk's Certificate of Sufficiency and adoption of a Resolution setting a date of public hearing for September 14, 2020.

#### **Suggested Motion**

I make a motion to accept the petition, the Clerk's Certificate of Sufficiency and to adopt the resolution setting a date of public hearing for September 14, 2020.

#### **Attachments**

- 1. Petition
- 2. Clerk's Certificate of Sufficiency
- 3. Map
- 4. Resolution



#### PETITION REQUESTING A NON-CONTIGUOUS ANNEXATION

#### Annexation Process – Approximately a 2 Month Process

1<sup>st</sup> Month- Submit a Petition for Annexation to the City Council, the Clerk reports to City Council the Sufficiency of the Annexation and the City Council adopts a Resolution to set a Public Hearing

2<sup>nd</sup> Month- A Public Hearing is held and normally that same night, the City Council will adopt an Ordinance to set the effective date as the same or the Council will deny the request

| <b>Date</b> :6/25/20 |
|----------------------|
|----------------------|

To the City Council of the City of Mebane:

- 1. We the undersigned owners of real property respectfully request that the area described in Paragraph 2 below be annexed to the City of Mebane.
- 2. The area to be annexed is non-contiguous to the City of Mebane and the boundaries of such territory are as follows:

\*Please include a Description of Boundaries (Metes and Bounds) on a separate paper.

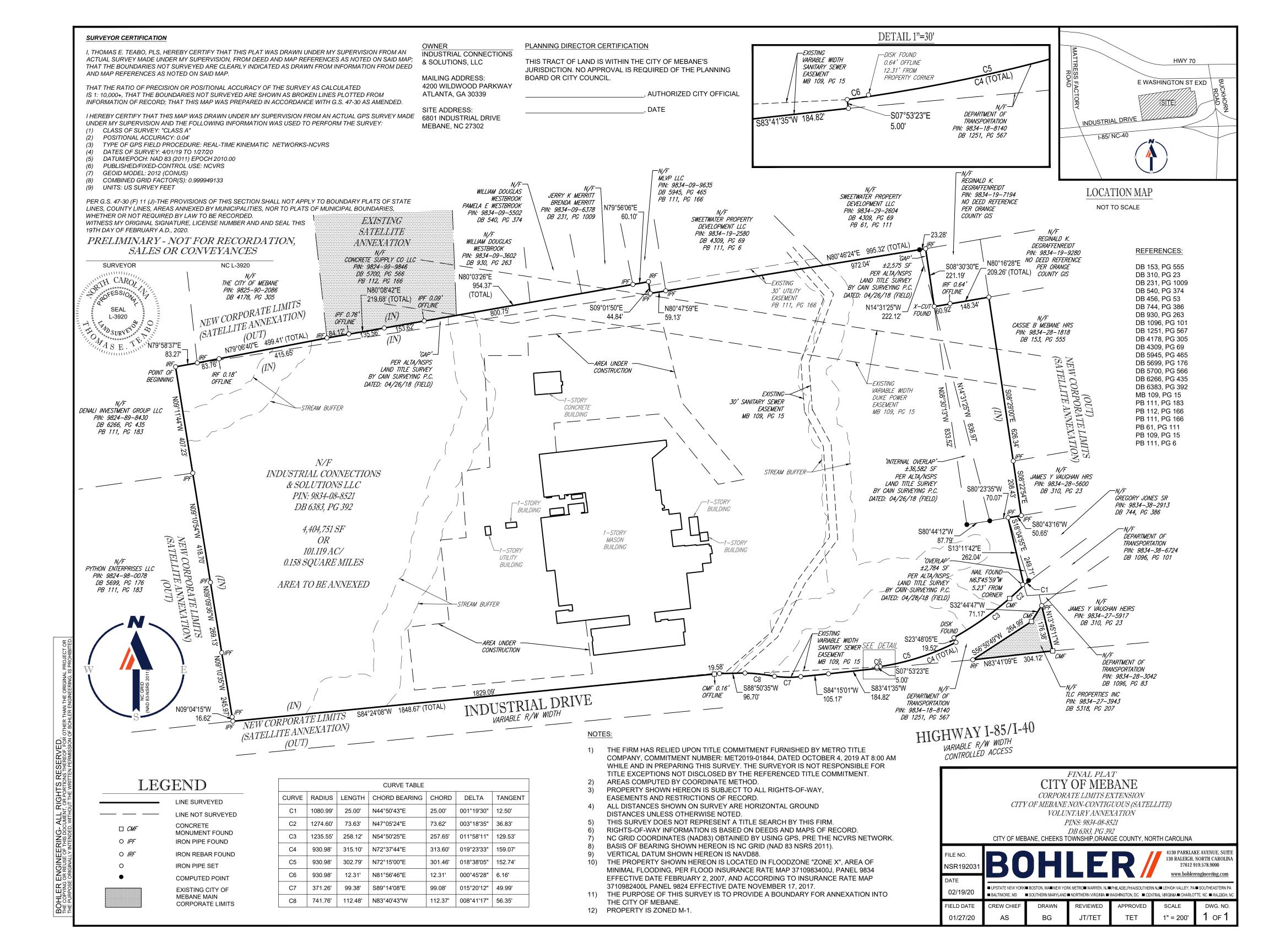
\*\*3. We acknowledge that any zoning vested rights acquired pursuant to G.S. 160A-385.1 or or G.S. 153A-344.1 must be declared and identified on this petition. We further acknowledge that failure to declare such rights on this petition shall result in a termination of vested rights previously acquired for the property. (If zoning vested rights are claimed, indicate below and attach proof.)

| Name                        | Address                                   | Do you declare<br>vested rights<br>(Yes or No) | Signature                             |
|-----------------------------|-------------------------------------------|------------------------------------------------|---------------------------------------|
| 1. David Onuscheck          | 6801 Industrial Drive<br>Mebane, NC 27302 | Yes                                            | And Churcheck Sr. VP & Corp Secretary |
| <sup>2.</sup> Bridget Smith | 6801 Industrial Drive<br>Mebane, NC 27302 | Yes                                            | Bridget Smith Secretary               |
| 3.                          |                                           |                                                |                                       |

<sup>\*</sup>Municipality may wish to require metes and bounds description or map. (Provide 2 paper copies, an electronic copy and 3 mylars)

<sup>\*\*</sup>This is one possible format for zoning vested rights declaration. This language may require modification to reflect the requirements of the municipal zoning vested rights ordinance, if any.

#### **CERTIFICATE OF SUFFICIENCY**


To the City Council of the City of Mebane, North Carolina:

I, Stephanie W. Shaw, City Clerk, do hereby certify that I have investigated the petition attached hereto and have found as a fact that said petition has been signed by all owners of real property lying in the area described therein, in accordance with G.S. 160A-58.2.

In witness whereof, I have hereunto set my hand and affixed the seal of the City of Mebane, this  $3^{rd}$  day of August, 2020

SEAE CITY ON THE BANK THE BANK

Stephanie W. Shaw Stephanie W. Shaw, City Clerk



## RESOLUTION FIXING DATE OF PUBLIC HEARING ON QUESTION OF ANNEXATION PURSUANT TO G.S. 160A-58.2

WHEREAS, a petition requesting annexation of the non-contiguous area described herein has been received; and

WHEREAS, the Mebane City Council directed the City Clerk to investigate the sufficiency of the petition; and

WHEREAS, certification by the City Clerk as to the sufficiency of the petition has been made;

NOW, THEREFORE, BE IT RESOLVED, by the Mebane City Council of the City of Mebane, North Carolina that:

Section 1. A public hearing on the question of annexation of the non-contiguous area described herein will be held at the Mebane Municipal Building at 6:00 p.m. on September 14, 2020.

Section 2. The area proposed for annexation is described as follows:

Beginning at a point, said point being an iron rebar found, said iron rebar also being an easterly corner of the Now or Formerly Denali Investment Group, LLC property, said point also being THE POINT OF BEGINNING;

Thence departing said easterly corner of the Now or Formerly Denali Investment Group, LLC and running with a southerly line of the Now or Formerly Denali Investment Group, LLC property N 79° 58' 37" E 83.27' to an iron rebar found, said iron rebar being the southwesterly corner of the Now or Formerly City of Mebane property;

Thence departing said southerly line of the Now or Formerly Denali Investment Group, LLC property and running with the southerly line of the Now or Formerly City of Mebane property, the following courses and distances: N 79° 06' 40" E 83.76' to an iron rebar found, said iron rebar being 0.18' south of subject property line; N 79° 06' 40" E 415.65' to an iron rebar found, said iron rebar being the southwesterly corner of the Now or Formerly Concrete Supply Company, LLC property;

Thence departing the southerly line of the Now or Formerly City of Mebane property and running with the southerly line of the Now or Formerly Concrete Supply Company, LLC property the following courses and distances: N 80° 08' 42" E 84.12' to an iron pipe found, said iron pipe being 0.76' north of subject property line; N 80° 08' 42" E 135.56' to an iron pipe set; N 80° 03' 26" E 153.62' to an iron pipe found, said iron pipe being 0.09' north of subject property line;

Thence departing said iron pipe found and running with the southerly line of the Now or Formerly Concrete Supply Company, LLC, the Now or Formerly William Douglas Westbrook, the Now or Formerly William Douglas Westbrook et ux. and the Now or Formerly Jerry K. Merritt et ux. properties respectively N 80° 03' 26" E 800.75' to an iron pipe found, said iron pipe being a southeasterly corner of the Now or Formerly Jerry K. Merritt et ux. property;

Thence departing the southerly line of the Now or Formerly Jerry K. Merritt et ux. property and running with the southerly line of the Now or Formerly MLVP, LLC property the following courses and distances: N 79° 56' 06" E 60.10' to an iron rebar found; S 09° 01' 50" E 44.84' to an iron pipe found; N 80° 47' 59" E 59.13' to an iron pipe found, said pipe being the southwesterly corner of the Now or Formerly Sweetwater Property Development, LLC property;

Thence departing the southerly line of the Now or Formerly MLVP, LLC property and running with the southerly line of the Now or Formerly Sweetwater Property Development, LLC properties N 80° 46' 24" E 995.32' to an iron rebar found, said iron rebar being the northwesterly corner of the Now or Formerly Reginald K. Degraffenreidt property;

Thence departing the southerly line of the Now or Formerly Sweetwater Property Development, LLC property and running with the westerly line of the Now or Formerly Reginald K. Degraffenreidt property S 08° 30′ 30″ E 221.19′ to an X-cut found;

Thence departing the westerly line of the Now or Formerly Reginald K. Degraffenreidt property and running with the southerly line of the Now or Formerly Reginald K. Degraffenreidt property, the following courses and distances: N 80° 16' 28" E 60.92' to an iron rebar found, said iron rebar being 0.64' north of subject property line; N 80° 16' 28" E 148.34' to an iron pipe set, said iron pipe being the southeasterly corner of the Now or Formerly Reginald K. Degraffenreidt property;

Thence departing the southerly line of the Now or Formerly Reginald K. Degraffenreidt property and running with the westerly line of the Now or Formerly Cassie B. Mebane HRS property S 08° 29' 00" E 626.34' to an iron pipe found, said iron pipe being the northwesterly corner of the Now or Formerly James Y. Vaughan HRS property;

Thence departing the westerly line of the Now or Formerly Cassie B. Mebane HRS property and running with the westerly line of the Now or Formerly James Y. Vaughan HRS property S 08° 22' 54" E 208.43' to an iron pipe found, said iron pipe being along with northerly line of the Now or Formerly Gregory Jones Sr. property;

Thence departing the westerly line of the Now or Formerly James Y. Vaughan HRS property and running with the northerly line of the Now or Formerly Gregory Jones SR property S 80° 43′ 16″ W 50.65′ to an iron pipe found;

Thence departing the northerly line of the Now or Formerly Gregory Jones SR property and running with the westerly line of the Now or Formerly Gregory Jones SR property S 13° 11' 42" E 262.04' to a nail found, said nail being 5.23' northwest of subject property corner, said nail also being a northerly corner of the Now or Formerly Department of Transportation property;

Thence departing the westerly line of the Now or Formerly Gregory Jones SR property and running with the northerly line of the Now or Formerly Department of Transportation property, the following courses and distances:

Thence with a curve to the right, whose arc length is 73.63' and having a radius of 1274.60', with a chord bearing of S 47° 05' 24" W and distance of 73.62' to a concrete monument found;

Thence with a curve to the right, whose arc length is 258.12' and having a radius of 1235.55', with a chord bearing of S 54° 50' 25" W and distance of 257.65' to a disk found; S 23° 48' 05" E and distance of 19.52' to an iron pipe set;

Thence with a curve to the right, whose arc length is 302.79' and having a radius of 930.98', with a chord bearing of S 72° 15' 00" W and distance of 301.46' to a disk found, said disk being 0.64' north of subject property line and 12.31' northeast from subject property corner;

Thence with a curve to the right, whose arc length is 12.31' and having a radius of 930.98', with a chord bearing of S 81° 56' 46" W and distance of 12.31' to an iron pipe set; S 07° 53' 23" E and distance of 5.00' to an iron pipe set, said iron pipe being along the northerly rights-of-way of Industrial Drive;

Thence departing the northerly line of the Now or Formerly Department of Transportation property and running with the northerly rights-of-way of Industrial Drive, the following courses and distances: S 83° 41' 35" W and distance of 184.82' to an iron pipe set; S 84° 15' 01" W and distance of 105.17' to an iron pipe set;

Thence with a curve to the right, whose arc length is 99.38' and having a radius of 371.26', with a chord bearing of N 89° 14' 08" W and distance of 99.08' to an iron pipe set;

Thence with a curve to the left, whose arc length is 112.48' and having a radius of 741.76', with a chord bearing of N 83° 40' 43" W and distance of 112.37' to an iron pipe set; S 88° 50' 35" W and distance of 96.70' to a computed point; S 84° 24' 08" W and distance of 19.58' to a concrete monument found, said concrete monument being 0.16' south of subject property line; S 84° 24' 08" W and distance of 1829.09' to an iron pipe found, said iron pipe being a southeasterly corner or the Now or Formerly Python Enterprises, LLC property;

Thence departing the northerly rights-of-way of Industrial Drive and running with the easterly line of the Now or Formerly Python Enterprises, LLC property, the following courses and distances: N 09° 04' 15" W and distance of 16.62' to an iron pipe found; N 09° 10' 35" W and distance of 245.97' to an iron pipe found; N 09° 09' 36" W and distance of 269.13' to an iron pipe found; N 09° 10' 54" W and distance of 418.70' to an iron pipe found, said iron pipe being the southeasterly corner of the Now or Formerly Denali Investment Group, LLC property;

Thence departing the easterly line of the Now or Formerly Python Enterprises, LLC property and running with the easterly line of the Now or Formerly Denali Investment Group, LLC property N 09° 11' 44" W and distance of 407.23' to an iron rebar found, said iron rebar being THE POINT OF BEGININNING and containing 4,404,751 square feet or 101.119 acres, more or less.

| newspaper having general circulation in the City of Meb of the public hearing. | ane, at least ten (10) days prior to the date |
|--------------------------------------------------------------------------------|-----------------------------------------------|
|                                                                                | Ed Hooks, Mayor                               |
| ATTEST:                                                                        |                                               |
|                                                                                |                                               |
| Stephanie W. Shaw, City Clerk                                                  |                                               |

Section 3. Notice of the public hearing shall be published once in the Mebane Enterprise, a



#### AGENDA ITEM #3C

# Financing proposal for Public Works Vehicles

#### **Meeting Date**

August 3, 2020

#### Presenter

Wayne Pore, Public Works Director Jeanne D. Tate, Finance Director

#### **Public Hearing**

Yes ☐ No 区

#### Summary

In response to a request for proposals, the City has received bids for financing the purchase of two Public Works trucks. Staff is making a recommendation based on these proposals, and the attached resolution approving the financing terms requires City Council approval.

#### **Background**

On July 6, 2020, the City issued a request for proposals for installment financing for the purchase of vehicles for the Public Works department. We received proposals from five institutions as shown below. The rates presented are representative of the current rate environment, and the staff recommends approval. The financing will result in planned annual debt payments, and no tax rate increase is expected.

#### **Financial Impact**

All proposals received were for 5-year terms with level principal payments. Some proposals included closing costs or other fees. US Bancorp offered the lowest rate with no additional fees. Their proposal would include a prepayment penalty of 3% due on the balance on any payment date after 13 months. Interest over the 5-year term totals \$16,117.48.

Debt payments would begin in February 2021, with one payment occurring during the current FY21 budget. Future years' principal plus interest payments will decline each year. No tax or rate increase is expected to result from the debt.

|                       | 5 Year Te     | rm (\$430,000)                           |
|-----------------------|---------------|------------------------------------------|
| Financial Institution | Interest Rate | Total Principal,<br>Interest and<br>Fees |
|                       |               |                                          |
| American National     | 2.45%         | 455,219.55                               |
| BB&T                  | 1.93%         | 454,897.00                               |
| First Bank            | 1.99%         | 455,435.83                               |
| US Bancorp            | 1.363%        | 446,117.48                               |
| Wells Fargo           | Non-disclos   | ure requested                            |
|                       |               |                                          |

#### Recommendation

Staff recommends adoption of the resolution approving the issuance and terms of the financing agreement.

#### **Suggested Motion**

Motion to adopt the attached resolution approving the issuance and financing agreement with US Bancorp.

#### **Attachments**

1. Resolution approving financing terms

# RESOLUTION AUTHORIZING THE EXECUTION AND DELIVERY OF A MASTER TAX-EXEMPT INSTALLMENT PURCHASE AGREEMENT, AND RELATED INSTRUMENTS, AND DETERMINING OTHER MATTERS IN CONNECTION THEREWITH.

WHEREAS, the governing body of the City of Mebane ("Purchaser") desires to obtain certain property (the "Property") described in the Property Schedule to the Master Tax-Exempt Installment Purchase Agreement (collectively, the "Agreement") with U.S. Bancorp Government Leasing and Finance, Inc. ("Seller"), the form of which has been available for review by the governing body of Purchaser prior to this meeting; and

WHEREAS, the Property is essential for the Purchaser to perform its governmental functions; and

WHEREAS, Purchaser has taken the necessary steps, including those relating to any applicable legal bidding requirements, to arrange for the acquisition of the Property; and

WHEREAS, Purchaser proposes to enter into the Agreement with Seller substantially in the forms presented to this meeting.

## NOW, THEREFORE, BE IT RESOLVED BY THE GOVERNING BODY OF PURCHASER AS FOLLOWS:

<u>Section 1</u>. It is hereby found and determined that the terms of the Agreement in the forms presented to this meeting and incorporated in this resolution are in the best interests of Purchaser for the acquisition of the Property.

Section 2. The Agreement and the acquisition and financing of the Property under the terms and conditions as described in the Agreement are hereby approved. The City Manager or designee of Purchaser and any other officer of Purchaser who shall have power to execute contracts on behalf of Purchaser be, and each of them hereby is, authorized to execute, acknowledge and deliver the Agreement with any changes, insertions and omissions therein as may be approved by the officers who execute the Agreement, such approval to be conclusively evidenced by such execution and delivery of the Agreement. The City Manager and any other officer of Purchaser who shall have power to do so be, and each of them hereby is, authorized to affix the official seal of Purchaser to the Agreement and attest the same.

<u>Section 3</u>. The proper officers of Purchaser be, and each of them hereby is, authorized and directed to execute and deliver any and all papers, instruments, opinions, certificates, affidavits and other documents and to do or cause to be done any and all other acts and things necessary or proper for carrying out this resolution and the Agreement.

Section 4. Pursuant to Section 265(b) of the Internal Revenue Code of 1986, as amended (the "Code"), Purchaser hereby specifically designates the Agreement as a "qualified tax-exempt obligation" for purposes of Section 265(b)(3) of the Code. The City

shall not take or omit to take any action the taking or omission of which shall cause its interest payments on this financing to be includable in the gross income for federal income tax purposes of the registered owners of the interest payment obligations. The City hereby designates its obligations to make principal and interest payments under the Financing Documents as "qualified tax-exempt obligations" for the purpose of Internal Revenue Code Section 265(b)(3).

<u>Section 5</u>. The City intends that the adoption of this resolution will be a declaration of the City's official intent to reimburse expenditures for the project that is to be financed from the proceeds of the USBGLF financing described above. The City intends that funds that have been advanced, or that may be advanced, from the City's general fund, or any other City fund related to the project, for project costs may be reimbursed from the financing proceeds.

The undersigned further certifies that the above resolution has not been repealed or amended and remains in full force and effect and further certifies that the Agreement executed on behalf of Purchaser are the same as presented at such meeting of the governing body of Purchaser, excepting only such changes, insertions and omissions as shall have been approved by the officers who executed the same.

| Date:, 2020                                                                         |
|-------------------------------------------------------------------------------------|
|                                                                                     |
| Purchaser                                                                           |
| By:                                                                                 |
| (Signature of Secretary, Board Chairman or other member of the Governing Body)      |
| Name:                                                                               |
| Title:                                                                              |
| Attested By:                                                                        |
| (Signature of one additional person who can witness the passage of this Resolution) |
| Name:                                                                               |
| Title:                                                                              |



# Resolution Recognizing Richard Hurst for Exemplary Service to the Citizens of Mebane

**WHEREAS**, the City of Mebane would like to recognize and show its appreciation for one of its exceptional citizens, Richard Hurst of 1049 South Third Street in Mebane, and

WHEREAS, Richard decided to accept a challenge from Raising Men Lawn Care Service of Madison, Alabama, and

**WHEREAS**, Raising Men Lawn Care Service is designed to promote awareness for the youth of the future and a platform where the younger members of the community can give back to the community, and

**WHEREAS**, Raising Men Lawn Care Service issued a challenge to youth around the world to cut 50 lawns free for the elderly, disabled, single parents, veterans, & anyone in need of help, and

**WHEREAS**, Richard accepted this challenge on July 26, 2019, and completed the 50<sup>th</sup> yard 364 days later on July 25, 2020, and

**WHEREAS**, Richard's exemplary service and sacrifice is an example of how to unite our extraordinary local community by the simple act of helping others, and

**NOW, THEREFORE BE IT RESOLVED**, on behalf of the City of Mebane, its citizens, and staff, the Mayor and City Council, by this Resolution and public record, formally express sincere appreciation to Richard Hurst for his dedication to the City of Mebane.

**BE IT FURTHER RESOLVED** that this Resolution is made a part of the official minutes of the City of Mebane and that an official copy of this expression of our appreciation is presented to Richard Hurst.

| sealed, and delivered day of August 2020 |
|------------------------------------------|
| ks, Mayor<br>Mebane                      |

(SEAL)

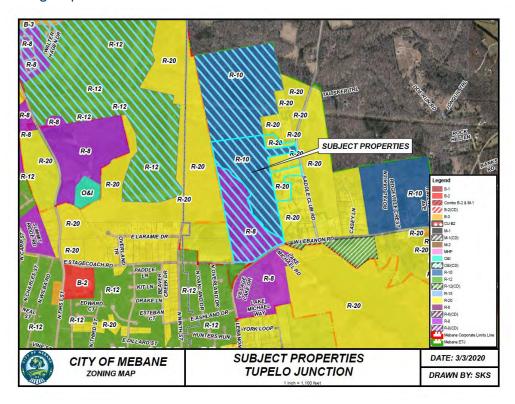


### **AGENDA ITEM #5A**

RZ 20-04
Conditional Rezoning —
Tupelo Junction (formerly
"The Landing at Lake Michael)

#### Presenter

Chris Rollins, Assistant City Manager


#### **Applicant**

Lebanon Road 3, LLC, c/o James Parker, Jr. 320 Executive Court Hillsborough, NC 27278

#### **Public Hearing**

Yes ⊠ No □

#### **Zoning Map**



#### Property

1818 Saddle Club Road Orange County GPIN #9826416085

#### **Proposed Zoning**

R-12(CD)

#### Current Zoning

CU-R-10 & CU-R-8

#### Size

+/-93.5 acres

#### Surrounding

#### Zoning

R-8, R-10, R-12(CD), R-20

#### Surrounding

#### Land Uses

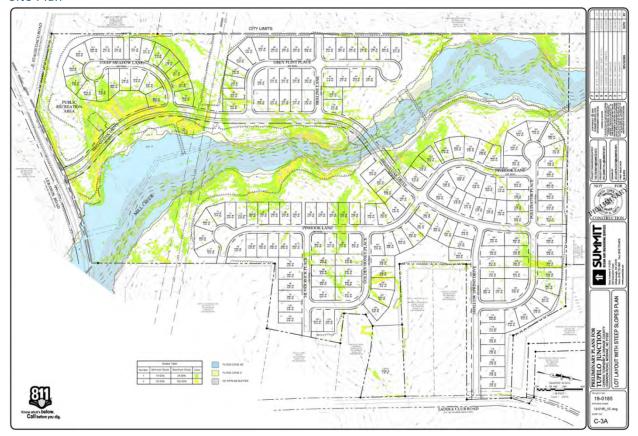
Residential & Vacant

#### Utilities

To be extended at developer's expense

#### Floodplain

Yes


#### Watershed

Yes

#### City Limits

Nο

#### Site Plan



#### Summary

Lebanon Road 3, LLC, c/o James Parker, Jr., is requesting approval to conditionally rezone +/-93.5 acres of a +/-179.23-ac property located at 1818 Saddle Club Road (Orange County — ETJ) from CU-R-8 & CU-R-10 (Conditional Use Permit - Single-Family Residential) to R-12(CD) (Single Family Residential Conditional Zoning District) to allow "Tupelo Junction" a subdivision with 181 single family homes as a Residential Cluster Development. The property is located in Orange County outside of the City Limits within the Extra-Territorial Jurisdiction (ETJ). Lebanon Road Partners has the property under contract to purchase, contingent upon approval of the conditional rezoning.

The site-specific plan onsite amenities & dedications include the following:

- The applicant proposes to construct all internal roads with 5' sidewalks.
- 4,325' of a 10'-wide asphalt multiuse path to connect to the dedicated multiuse path on Stagecoach Road, cross Lebanon Road to the entrance of Lake Michael Park, and through the extent of the property, stubbing at the northern property limit. This is required by the City's adopted *Bicycle and Pedestrian Transportation Plan*.
- The applicant is proposing to donate +/-1.0 acres of private recreation area for use by the HOA members, including a clubhouse and dog park.

#### Requested waivers:

- The UDO requires front setbacks of 30' and the applicant is requesting that they be reduced to 25'.
- The UDO requires side setbacks of 10′, 18′ corner lots, and the applicant is requesting that they be reduced to 5′ minimum, and 13′ corner lots.
- The UDO requires rear setbacks of 25' and the applicant is requesting that they be reduced to 20'.
- The UDO requires a minimum lot width of 85' and the applicant is requesting that they be reduced to 60'.
- The UDO calculates that the applicant provide 5.17 ac in public recreation area and the applicant is requesting a waiver to provide 1.48 ac (4,325 linear feet) of public greenways (as required by the City's *Bicycle and Pedestrian Transportation Plan*) and 1.0 ac in private recreation area.

The Technical Review Committee (TRC) has reviewed the site plan and the applicant has revised the plan to reflect the comments.

#### **Financial Impact**

The developer will be required to make all of the improvements at his own expense.

#### Recommendation

The Planning Staff recommends approval of the request.

#### **Suggested Motion**

- 1. Motion to approve the R-12(CD) zoning as presented.
- 2. Motion to find that <u>the application is consistent</u> with the objectives and goals in the City's 2017 Comprehensive Land Development Plan *Mebane By Design*. The request:
  - ☐ Is for a property within the City's G-4 Secondary Growth Area and is "...generally residential and commercial in nature..." (Mebane CLP, p.66);
  - Does not develop 50% of the property in a Conservation Area that features Mill Creek (p. 67);
  - □ Is providing community facilities in the form of a greenway that connects to Lake Michael Park, consistent with Growth Management Goal 1.4 (p. 17, 83);
  - ☐ Improves the safety and confidence of pedestrians crossing Lebanon Road, consistent with Public Facilities and Infrastructure Goal 2.1 (p.17, 84);

| Provides a greenway connection across Lebanon Road to Lake Michael Park, consistent with Open Space and Natural Resource Protection Goal 4.2 (p. 17 & 89);                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Provides a greenway and open space in a developing area, connecting to other locations, consistent with Open Space and Natural Resource Protection Goal 4.3 (p. 17, 89, & 90); and |
| Provides a greenway, as required in the City's Bicycle and Pedestrian Transportation Plan.                                                                                         |

- 3. Motion to deny the B-2(CD) rezoning as presented due to a lack of
  - a. Harmony with the surrounding zoning or land use

#### OR

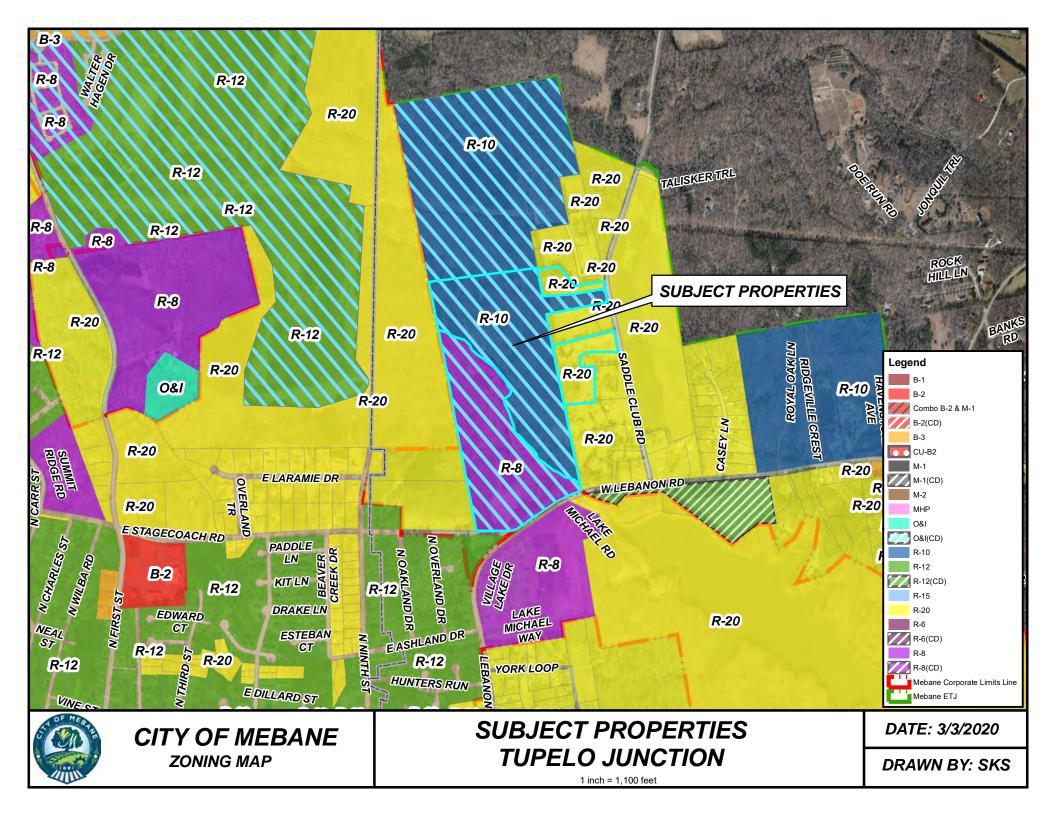
b. Consistency with the objectives and goals in the City's 2017 Comprehensive Land Development Plan *Mebane By Design*.

#### **Attachments**

- 1. Zoning Amendment Application
- 2. Zoning Map
- 3. Site Plan
- **4.** Planning Project Report
- 5. Builder Architectural Commitments for Single-Family Home Construction
- **6.** Preliminary Water and Sewer System Approval Letter
- 7. Technical Memorandum City Engineering Review
- 8. Tupelo Junction (formerly titled "The Landing at Lake Michael") Traffic Impact Analysis (TIA)
- 9. Tupelo Junction TIA Review from Ramey, Kemp, and Associates

# APPLICATION FOR A ZONING AMENDMENT Application is hereby made for an amendment to the Mebane Zoning Ordinance as follows:

| Name of Applicant: Lebanon Road 3 L         | LC                                                   |
|---------------------------------------------|------------------------------------------------------|
|                                             |                                                      |
|                                             | Orive, Hillsborough, NC 27278                        |
| Address and brief description of property   | to be rezoned: <u>approximately 36.7 acres</u>       |
| ocated west of Mill Creek and north of Le   | ebanon Road (SW portion of PIN 9826416085)           |
| Applicant's interest in property: (Owned,   | leased or otherwise)contract purchaser               |
| Do you have any conflicts of interest with  | h: Elected/Appointed Officials, Staff, etc.?         |
| Yes Explain:                                | NoX                                                  |
| Type of re-zoning requested:downzo          | oning from CU-R-8 to R-10(CD)                        |
| Sketch attached: YesX                       | No                                                   |
| Reason for the requested re-zoning:         | replace a 2005 Special Use Permit site plan with a   |
| conditional zoning residential cluster deve |                                                      |
| Signe                                       | o Daston Hondon                                      |
|                                             | for Lebanon Road 3, LLC                              |
| Date                                        | 9-10-19                                              |
| Action by Planning Board:                   |                                                      |
| Public Hearing Date:                        | _Action:                                             |
| Zoning Map Corrected:                       |                                                      |
|                                             | ith the application for rezoning when it is returned |


- 1. Tax Map showing the area that is to be considered for rezoning.
- 2. Names and addresses of all adjoining property owners within a 300' radius (Include those that are across the street).
- 3. \$300.00 Fee to cover administrative costs.
- 4. The information is due 15 working days prior to the Planning Board meeting. The Planning Board meets the 2<sup>nd</sup> Monday of each month at 6:30 p.m. Then the request goes to the City Council for a Public Hearing the following month. The City Council meets the 1<sup>st</sup> Monday of each month at 6:00 p.m.

# APPLICATION FOR A ZONING AMENDMENT Application is hereby made for an amendment to the Mebane Zoning Ordinance as follows:

| Name of Applicant: Leban                                                        | ion Road 3, LLC                                                           |                               |  |  |  |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------|--|--|--|
|                                                                                 | eadowland Drive, Hillsborough, N                                          |                               |  |  |  |
| Address and brief description of property to be rezoned:approximately 6.0 acres |                                                                           |                               |  |  |  |
| located west of Saddle Club R                                                   | Road (eastern portion of PIN 98264                                        | 116085)                       |  |  |  |
| Applicant's interest in propert                                                 | ty: (Owned, leased or otherwise)                                          | contract purchaser            |  |  |  |
| *Do you have any conflicts of                                                   | interest with: Elected/Appointed                                          | Officials, Staff, etc.?       |  |  |  |
| Yes Explain:                                                                    |                                                                           | No X                          |  |  |  |
| Type of re-zoning requested:                                                    | From R-20 to R-12(CD)                                                     |                               |  |  |  |
| Sketch attached: Yes                                                            | No                                                                        |                               |  |  |  |
|                                                                                 | coning: <u>replace a 2005 (amer</u><br>oning residential cluster developn |                               |  |  |  |
|                                                                                 | Signed: 200A                                                              | Hoston IID                    |  |  |  |
|                                                                                 |                                                                           | anon Road 3, LLC              |  |  |  |
|                                                                                 | Date: 9-10-                                                               | 19                            |  |  |  |
| Action by Planning Board:                                                       |                                                                           |                               |  |  |  |
|                                                                                 | Action:                                                                   |                               |  |  |  |
| Zoning Map Corrected:                                                           |                                                                           |                               |  |  |  |
| The following items should be                                                   | e included with the application fo                                        | r rezoning when it is returne |  |  |  |
| To the decide the                                                               | at a form to a constitution of form                                       | and the same                  |  |  |  |

- 1. Tax Map showing the area that is to be considered for rezoning.
- 2. Names and addresses of all adjoining property owners within a 300' radius (Include those that are across the street).
- 3. \$300.00 Fee to cover administrative costs.
- 4. The information is due 15 working days prior to the Planning Board meeting. The Planning Board meets the 2<sup>nd</sup> Monday of each month at 6:30 p.m. Then the request goes to the City Council for a Public Hearing the following month. The City Council meets the 1<sup>st</sup> Monday of each month at 6:00 p.m.

| Application is hereby made for an amendment to the Mebane Zoning Ordinance as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Name of Applicant: Lebanon Road 3, LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Address of Applicant: 504 Meadowland Drive, Hillsborough, NC 27278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Address and brief description of property to be rezoned: approximately 49.2 acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| located east of Mill Creek and west of Saddle Club Road (SE portion of PIN 9826416085)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Applicant's interest in property: (Owned, leased or otherwise)contract purchaser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| *Do you have any conflicts of interest with: Elected/Appointed Officials, Staff, etc.?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Yes Explain: No X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| Type of re-zoning requested:downzoning from CU-R-10 to R-12(CD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Sketch attached: Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Reason for the requested re-zoning:replace a 2005 (amended 2006) Special Use Permit site plan with a conditional zoning residential cluster development site plan                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| for Lebanon Road 3, LLC  Date: 9-10-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Action by Planning Board:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Public Hearing Date:Action:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Zoning Map Corrected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| The following items should be included with the application for rezoning when it is returned:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| <ol> <li>Tax Map showing the area that is to be considered for rezoning.</li> <li>Names and addresses of all adjoining property owners within a 300' radius (Include those that are across the street).</li> <li>\$300.00 Fee to cover administrative costs.</li> <li>The information is due 15 working days prior to the Planning Board meeting. The Planning Board meets the 2<sup>nd</sup> Monday of each month at 6:30 p.m. Then the request goes to the City Council for a Public Hearing the following month. The City Council meets the 1<sup>st</sup> Monday of each month at 6:00 p.m.</li> </ol> |  |  |  |  |  |  |



EROSION CONTROL: ORANGE COUNTY PLANNING & INSPECTIONS DEPT.

**EROSION CONTROL & STORMWATER OFFICER II** 

TIMOTHY A. SMITH, PE

(919) 732-6676 (FAX) TIM.SMITH@SUMMITDE.NET

320 EXECUTIVE COURT

HILLSBOROUGH, NC 27278

SUMMIT DESIGN & ENGINEERING SERVICES

STEVE KALTENBACH

(919) 245-2587

THE DESIGN RESPONSE, INC.

215 E. CHATHAM ST., SUITE 125

THEDESIGNRESPONSE.COM

CARY N.C. 27511

(919) 469-2080 (OFFICE)

JACK L. SMYRE, PE, AICP

131 W. MARGARET LANE HILLSBOROUGH, NC 27278

PIEDMONT ELECTRIC

MEBANE, NC 27302

2500 S. NC 86

(336) 732-2123

AARON BOYKINS

LEBANON ROAD 3, LLC

320 EXECUTIVE COURT

(919) 732-3883 (PHONE)

HILLSBOROUGH, NC 27278

JAMES.PARKER@SUMMITDE.NE

c/o JAMES PARKER, JR

TELEPHONE:

LEES BEES, INC.

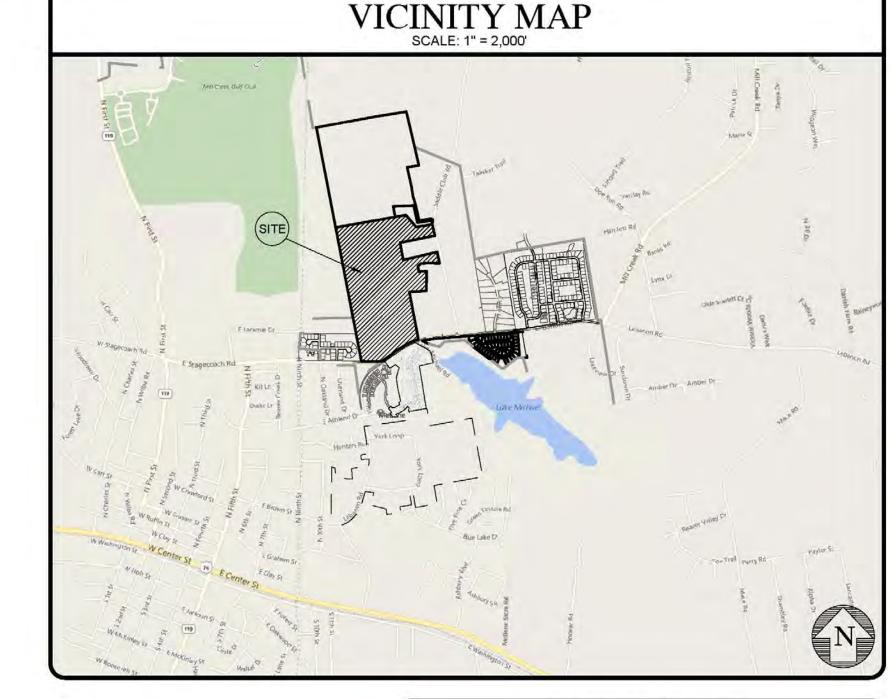
JEFFREY R. LEE

jeffreyrlee@yahoo.com 1818 SADDLE CLUB ROAD

MEBANE, NC 27302

TUPELO JUNCTION

PRELIMINARY PLANS


RESIDENTIAL CLUSTER DEVELOPMENT

ORANGE COUNTY, CHEEKS TOWNSHIP LEBANON ROAD, MEBANE, NC 27302

> SUBMITTAL #1: SEPTEMBER 10, 2019 SUBMITTAL #2 : OCTOBER 22, 2019 SUBMITTAL #3: NOVEMBER 26, 2019 SUBMITTAL #4: DECEMBER 20, 2019 SUBMITTAL #5: JANUARY 21, 2020 SUBMITTAL #6: FEBRUARY 11, 2020

PARCEL PIN: 9826-41-6085 DB. 6364, PG. 131 ZONING: R-20 179.23 ACRES (PER GIS)

LAKE MICHAEL



| SHEET INDEX     |                                       |  |  |
|-----------------|---------------------------------------|--|--|
| SHEET<br>NUMBER | SHEET TITLE                           |  |  |
| C-1             | COVER SHEET                           |  |  |
| C-2             | EXISTING CONDITIONS PLAN              |  |  |
| C-3             | OVERALL SITE & UTILITY PLAN           |  |  |
| C-3A            | LOT LAYOUT WITH STEEP SLOPES PLAN     |  |  |
| C-4             | OVERALL GRADING & STORM DRAINAGE PLAN |  |  |
| C-5             | STREET DETAILS                        |  |  |
| A200            | CLUBHOUSE BUILDING ELEVATIONS         |  |  |

# CONSTRUCTION BUILD-OUT SCHEDULE # OF LOTS APPROX. COMPLETION

| 2 |    |    |             |
|---|----|----|-------------|
|   | 1  | 20 | SPRING 2021 |
|   | 11 | 34 | SPRING 2022 |
|   | Ш  | 46 | SPRING 2023 |
|   | IV | 26 | SPRING 2024 |
|   | V  | 55 | SPRING 2025 |
|   |    |    |             |

## TRC NOTES:

- 1. THE NEW CULVERT FOR ON-SITE CREEK CROSSING SHALL PASS THE 100 YEAR STORM WITHOUT TOPPING THE ROADWAY. SIZING AND MATERIAL TO BE DETERMINED WITH THE CONSTRUCTION DRAWINGS.
- 2. ALL NEW ROADS ARE CONSIDERED LOCAL RESIDENTIAL AS DETERMINED BY THE PROJECT TRAFFIC ENGINEER AND WILL BE BUILT TO CITY STANDARDS AND MAINTAINED BY THE CITY OF MEBANE AFTER FINAL ACCEPTANCE.
- 3. THIS SUBDIVISION WILL BE PHASED AS SHOWN ON THE PLANS. THE END OF EACH PHASE SHALL PROVIDE SOME TYPE OF TURNAROUND FOR SERVICE AND EMERGENCY VEHICLES, THAT WILL BE APPROVED BY THE CITY OF MEBANE WITH THE CONSTRUCTION DRAWINGS.
- 4. THIS PROJECT IS SUBJECT TO REZONING AND ANNEXATION BY THE CITY OF MEBANE.
- 5. A TIA WAS CREATED FOR THIS PROJECT AND APPROVED BY THE CITY OF MEBANE AND N.C.D.O.T.
- 6. TWO ENTRANCE FEATURES SHALL BE PROVIDED AT EACH ENTRANCE INTO THE SITE.
- 7. THE AMENITY AREA, PARKING LOT, AND STORMWATER CONTROL MEASURES SHALL BE SCREENED WITH LANDSCAPING AND/OR BERMS. ALSO, THE RECREATION AREA SHALL BE SCREENED FROM THE RESIDENTIAL LOTS WITHIN THE SITE. ALL SCREENING SHALL BE IN ACCORDANCE WITH THE MEBANE UDO AND WILL BE INCLUDED WITH THE LANDSCAPING PLANS PROVIDED WITH THE CONSTRUCTION DRAWINGS FOR APPROVAL BY THE CITY OF MEBANE. ANY STORMWATER CONTROL MEASURES THAT POND OR HOLD 2 FEET OF WATER SHALL BE FENCED FOR SAFETY.
- 8. A CULTURAL RESOURCES ASSESSMENT HAS BEEN PROVIDED BY THE THE NC STATE HISTORIC PRESERVATION OFFICE. NO HISTORIC RESOURCES WERE FOUND WITHIN THE PROJECT AREA. WE HAVE REQUESTED THEM TO TAKE ANOTHER LOOK INTO THE STAGECOACH ROCK AND ARE AWAITING THEIR RESPONSE, THE "STAGECOACH ROCK" HAS BEEN DEEMED AS A POSSIBLE SAFETY HAZARD TO VEHICULAR TRAFFIC BY NCDOT. RELOCATION OF THE ROCK SHALL BE COORDINATED WITH AND APPROVED BY N.C.D.O.T. THIS NEW LOCATION SHALL BE EITHER ON SITE OR AT LAKE MICHAEL PARK.
- 9. MAINTENANCE OF ALL COMMON AREAS WILL BE THE RESPONSIBILITY OF THE HOA FOR THIS SUBDIVISION.
- 10. THE LIMITS OF DISTURBANCE WILL TYPICALLY FOLLOW THE GRADING LIMITS. ALL OPEN SPACES AND UNDISTURBED AREAS WILL BE FENCED OFF ALONG TREE CANOPIES TO PRESERVE EXISTING VEGETATION WHERE SHOWN ON THE PLANS.
- 11. THE SUBDIVISION ROAD NAMES SHOWN HEREON HAVE BEEN APPROVED BY BOTH ALAMANCE COUNTY AND ORANGE COUNTY.
- 12. A PAYMENT-IN-LIEU WILL BE PROVIDED BY THE DEVELOPER TO THE CITY OF MEBANE FOR THE FUTURE INSTALLATION OF SIDEWALK WITHIN TUPELO JUNCTION PROPERTY STREET FRONTAGE ALONG SADDLE CLUB ROAD. THIS WILL BE NEGOTIATED WITH THE CONSTRUCTION PLAN
- 13. STORMWATER CONTROL MEASURE (SCM) ACCESS EASEMENTS ARE NOT SHOWN ON THE PLANS FOR CLARITY.
- 14. WILLOW OAK STREET TREES (2.5" CALIPER AND 10' MIN. HEIGHT AT PLANTING) SHALL BE PROVIDED ALONG BROAD OAK DRIVE FROM LEBANON ROAD TO MILL CREEK, BETWEEN THE BACK OF CURB AND THE MULTI-USE PATH.
- 15. A MINIMUM OF ONE ORNAMENTAL OR UNDERSTORY TREE SHALL BE PLANTED IN THE FRONT YARD OF EACH LOT. AND PROVIDED BY THE
- 16. THE LEFT TURN LANE ALONG LEBANON ROAD SHALL BE CONSTRUCTED NO LATER THAN PHASE II AND / OR NO LATER THAN THE CONSTRUCTION OF THE 50TH HOME.
- RESIDENTS OF THIS DEVELOPMENT OR GENERAL PUBLIC.
- 18. ALL NOTED PRIVATE COMMON ELEMENTS, INCLUDING BUT NOT LIMITED TO THE PRIVATE RECREATION AMENITIES, ENTRANCE FEATURES,
- STORMWATER CONTROL MEASURES AND STREET TREES ARE THE RESPONSIBILITY OF THE HOMEOWNERS ASSOCIATION (HOA)
- 19. THE CURRENT PLANS INDICATE PRELIMINARY DRAINAGE EASEMENTS OVER PIPES AND ENGINEERED SWALES. AS PHASED CONSTRUCTION DRAWINGS ARE FINALIZED ALL DRAINAGE WAYS (5 CFS OR MORE) SHALL HAVE A DEDICATED DRAINAGE EASEMENT PER THE CITY OF MEBANE STORM SEWER DESIGN MANUAL WHETHER PIPED OR UN-PIPED.

17. OPEN SPACE SHALL NOT BE USED FOR FUTURE STRUCTURES EXCEPT FOR INTENDED RECREATIONAL PURPOSES AND IS ACCESSIBLE TO ALL





DB/PG 6364/131 93.5 +/- ACRES

LEBANON ROAD & SADDLE CLUB RD. MEBANE, NC

PROPERTY IS LOCATED WITHIN MEBANE ETJ EXISTING ZONING: CU-R-8 & CU-R-10 PROPOSED ZONING: R-12 (CD)CURRENT USE: VACANT PROPOSED USE: SINGLE FAMILY RESIDENTIAL CLUSTER

NORTH CAROLINA

GRAHAM - MEBANE LAKE PUBLIC WATER SUPPLY (WS-II) - BALANCE OF WATERSHED

LOTS ALLOWED w/ REZONING: 3.63 DU/AC. = 339 PROPOSED LOTS:

25.72 AC (27.5%) PROVIDED: HOUSES (181 LOTS x 4,000 SF) = 724,000 SF PUBLIC ROADWAYS & SIDEWALKS = 352,010 SF MULTI-USE PATH = 44,350 SF

TOTAL PROVIDED = 1,120,360 SF (25.72 AC) 27.5% PRESERVED TREE CANOPY = 25.1 AC

ALLOWED (30% MAX): 28.05 AC

PLANTED BUFFERS = 0.4 AC PLANTED EVERGREEN TREES (SEEDLINGS) ON GRADED SLOPES = 3.5 AC PLANTED STREET TREES AND FRONT YARD TREES = 1.8 AC TOTAL TREE CANOPY = 30.8 AC (33% OF TOTAL AREA)

REQUIRED (SUM OF REDUCTIONS BELOW BASE LOT AREA): 16.42 AC. (17.56%) COMPREHENSIVE PLAN GOAL FOR CONSERVATION AREAS: 28.05 AC. (30%) PROVIDED: 50.22 AC. (53.7%)

ACTIVE (PUBLIC AND PRIVATE RECREATION SPACE): 2.48 AC. (2.65%) PASSIVE (NON-RECREATIONAL HOA PROPERTY): 47.74. AC. (51.06%)

PRIVATE RECREATION SPACE PROVIDED: 0.88 AC. (CLUBHOUSE, PLAYGROUND, PLAY FIELD, GAMES, SHELTERS)

0.12 AC. (DOG PARK AND GAZEBO) 1.00 AC. (TOTAL PRIVATE RECREATION SPACE PROVIDED) PUBLIC RECREATION SPACE REQUIRED: (181 LOTS) X (1/35 AC./LOT) = 5.17 AC.

PUBLIC RECREATION SPACE PROVIDED: (4,600 LF GREENWAY/MULTI-USE PATH) X (14 FT. WIDE CORRIDOR) = 1.48 AC. UBLIC RECREATION SPACE DEFICIT:

(5.17 AC. REQUIRED) - (1.48 ACRES PROVIDED) = 3.69 AC. DEFICIT DTENTIAL PAYMENT-IN-LIEU FOR DEFICIT: TAX VALUE PER AC. (PARENT TRACT): (\$802,950) ÷ (179.23 ACRES) = \$4,480/AC

(3.69 AC. DEFICIT) X (\$4,480/AC.) = \$16,531 POTENTIAL PAYMENT-IN-LIEU ROPOSED PAYMENT-IN-LIEU FOR PUBLIC RECREATION SPACE DEFICIT: \$0 THE ESTIMATED COST OF THE PUBLIC INFRASTRUCTURE PROVIDED FOR USE BY THE GENERAL PUBLIC (GREENWAYS & MULTI-USE PATHS) IS \$281,500 AND IS CONSIDERATION UNDER SECTION 6-7.1.1 OF THE UDO FOR COUNCIL TO NOT REQUIRE AN ADDITIONAL PAYMENT-IN-LIEU BY LOWERING THE AMOUNT OF PUBLIC RECREATION SPACE REQUIRED TO MATCH THE AMOUNT OF PUBLIC RECREATION SPACE PROVIDED.

LINEAR FEET OF PUBLIC ROADS: 9,985 FT AREA OF NEW PUBLIC R/W: 530,218 SF

CITY OF MEBANE PUBLIC WATER, SANITARY SEWER, & ROADWAYS SHALL BE PROVIDED FOR THIS DEVELOPMENT.

PUBLIC WATER MAIN: 10,095 LF PUBLIC SAN. SEWER: 8,987 LF

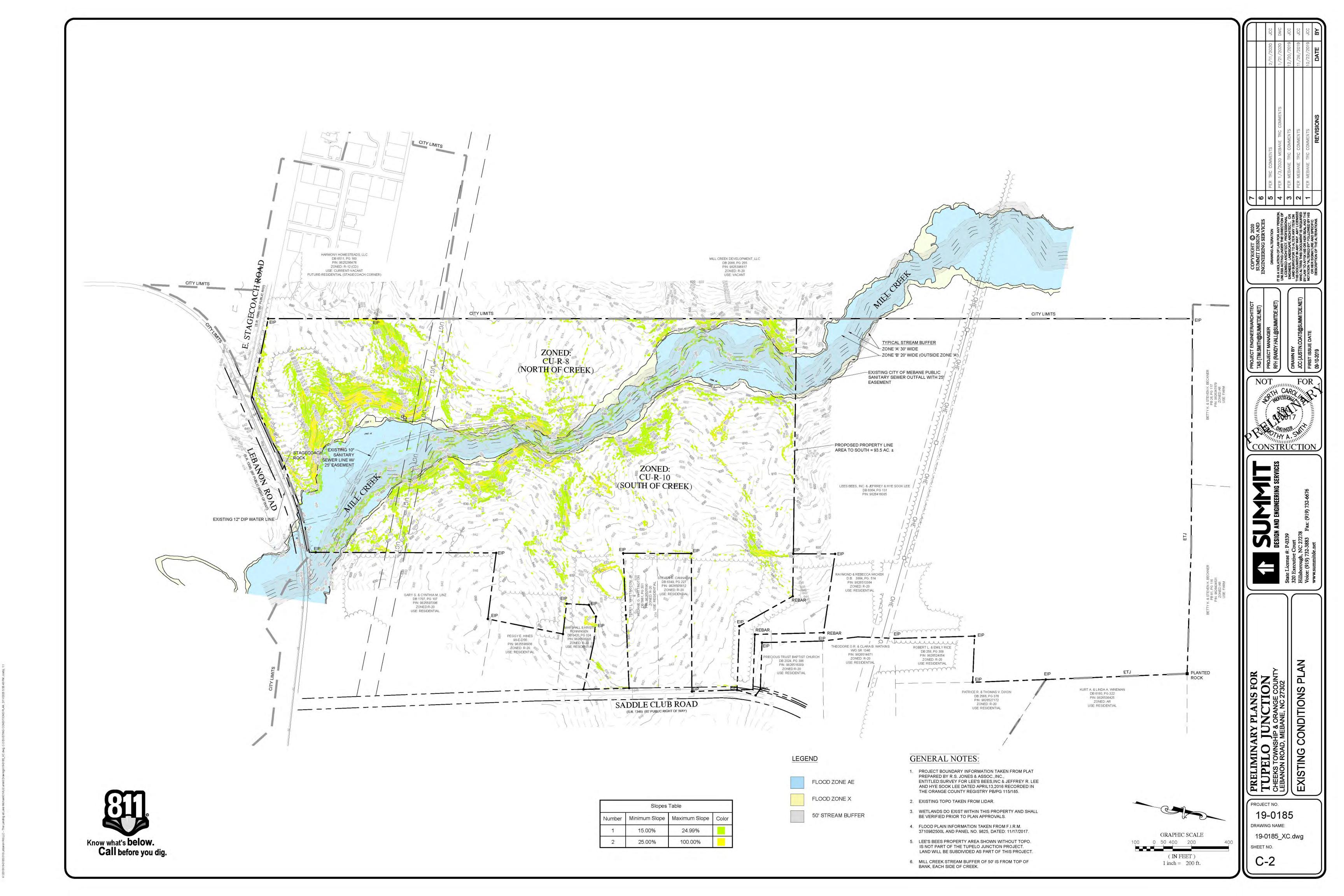
PUBLIC SIDEWALK: 10,285 LF PUBLIC MULTI-USE PATH: 4,325 LF

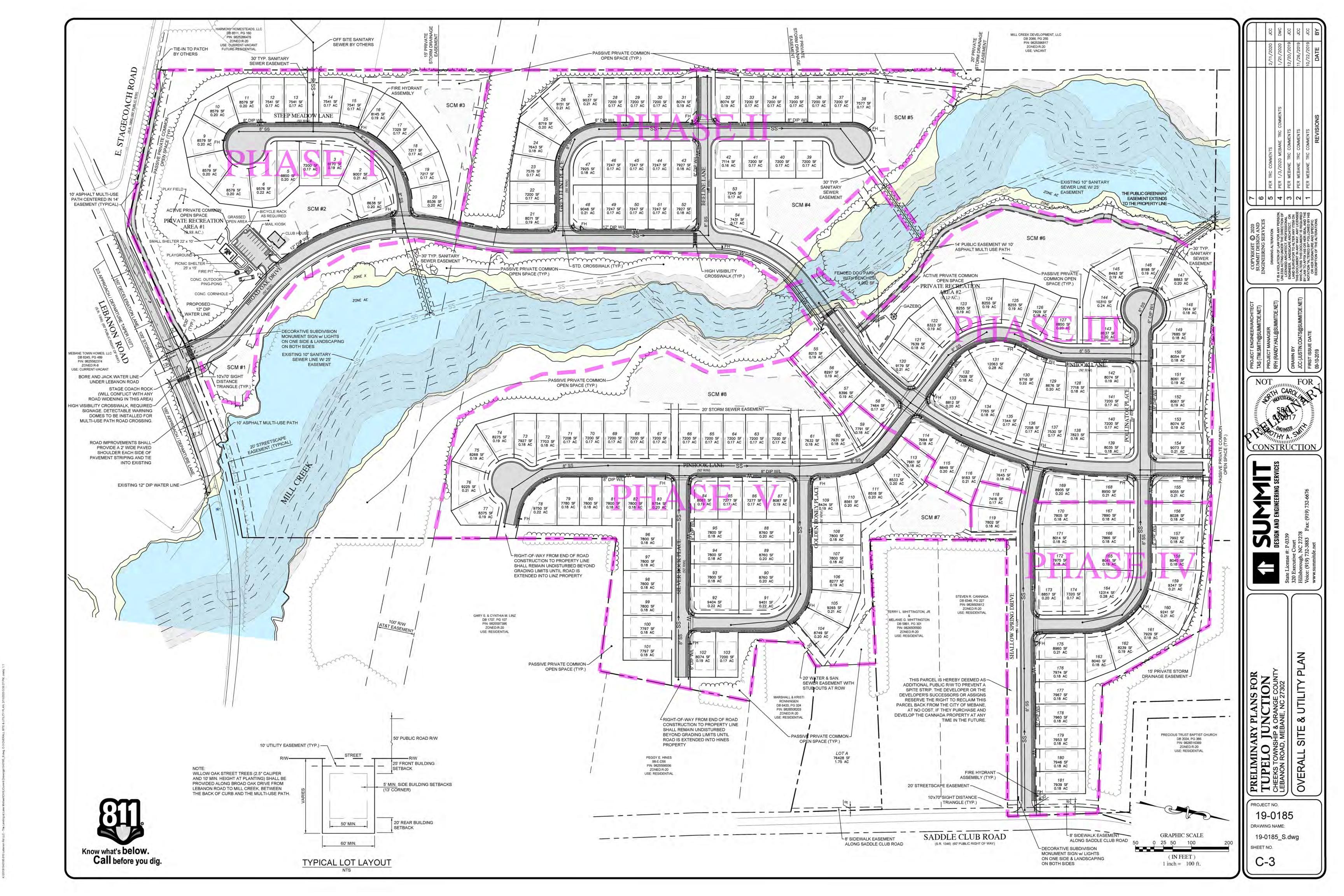
REAR: 25 FT. CORNER: 18 FT.

CORNER: 13 FT. STANDARD R-12 ZONING SETBACKS (NOT USED) SIDE:

P.O. Box 3585, Cary, NC 27519 thedesignresponse.com

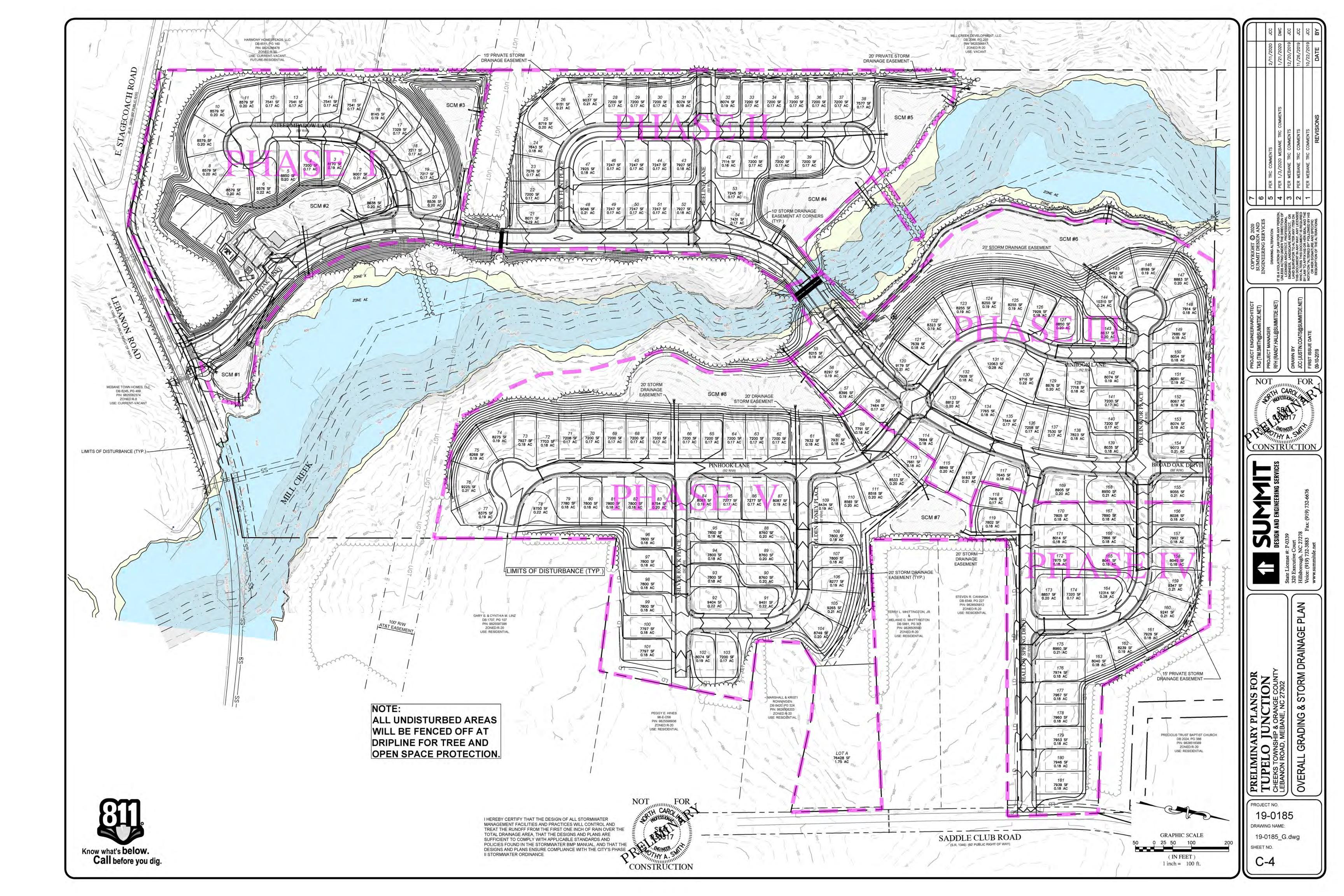
# NORTH EAST VILLAGE HAVENSTONE LEBANON ROAD STAGECOACH CORNERS

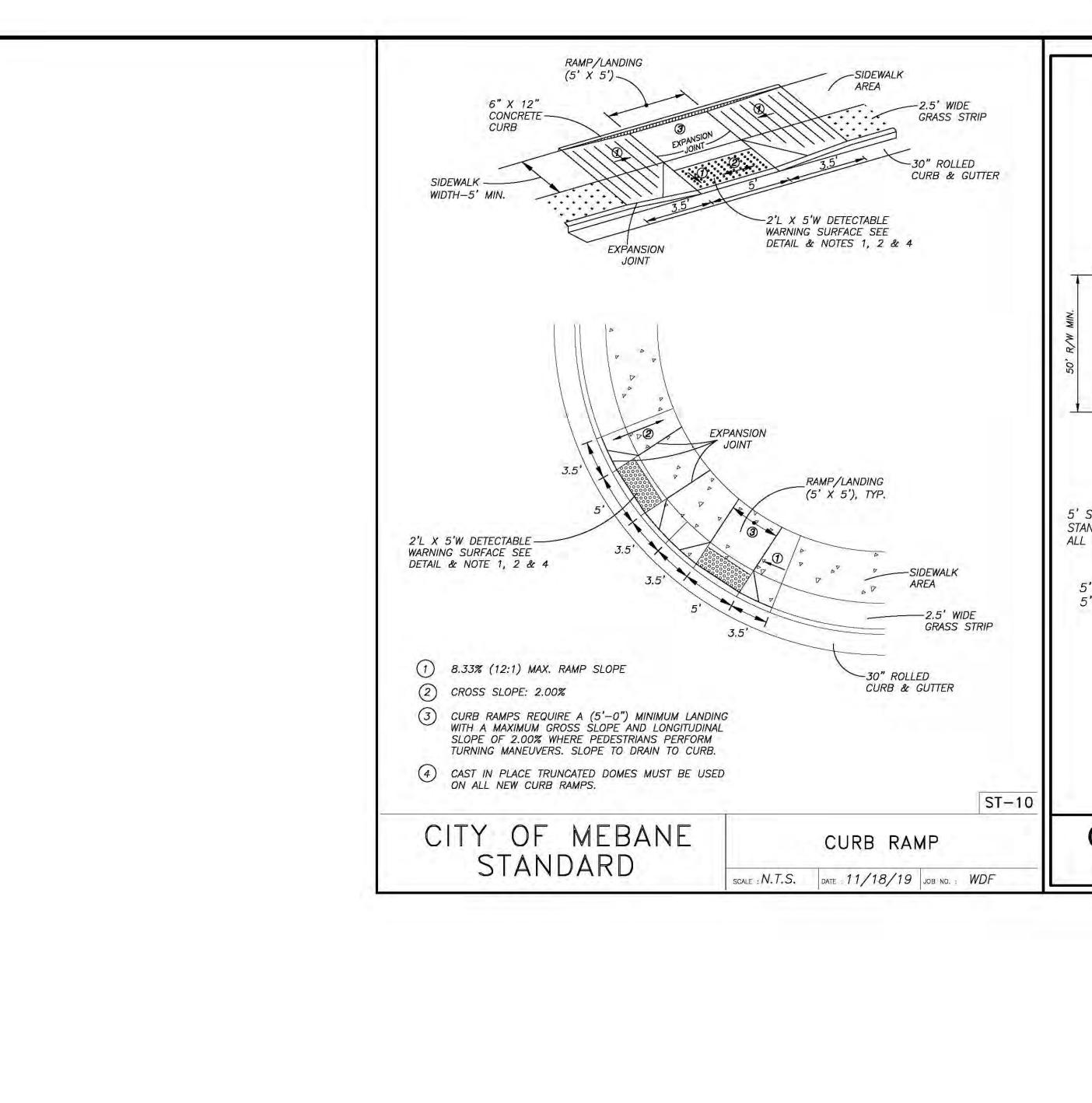

SITE LOCATION MAP

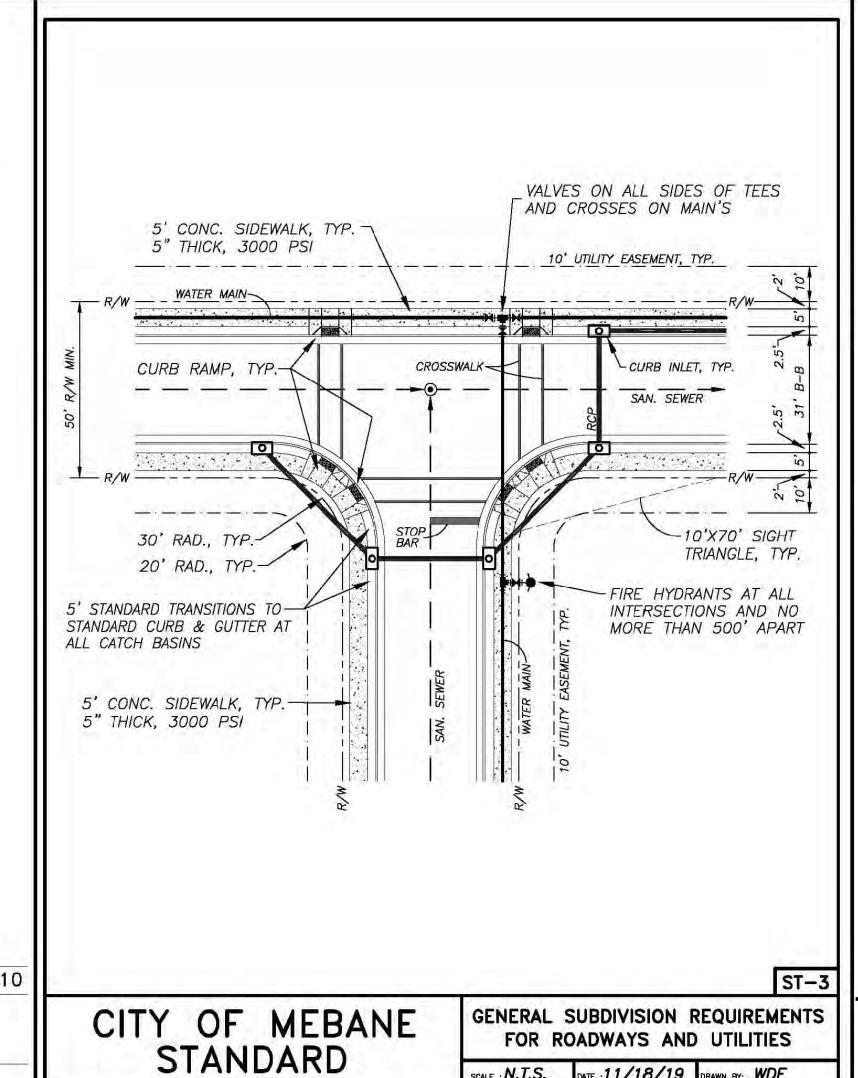




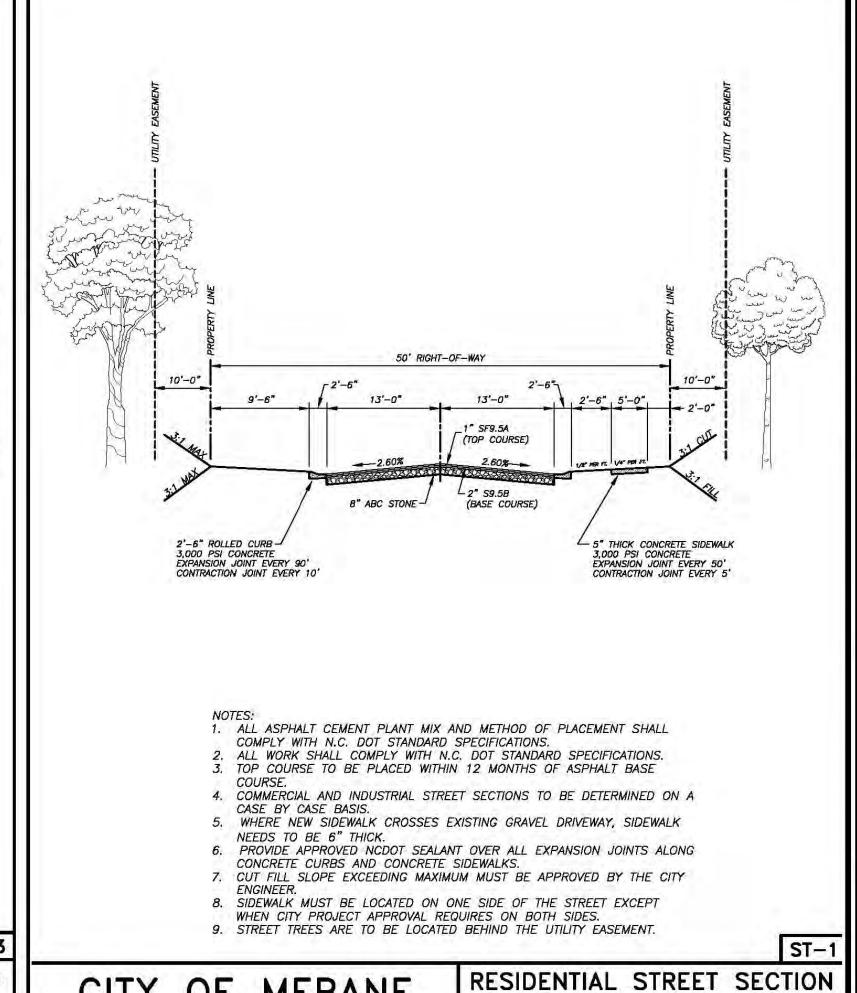
ONTRACTOR SHALL NOTIFY "NC811" (811) OR (1-800-632-4949) AT EAST 3 FULL BUSINESS DAYS PRIOR TO BEGINNING CONSTRUCTION OR EXCAVATION TO HAVE EXISTING UTILITIES LOCATED. CONTRACTOR SHALL CONTACT ANY LOCAL UTILITIES THAT PROVIDE THEIR OWN LOCATOR SERVICES INDEPENDENT OF "NC811". REPORT NY DISCREPANCIES TO THE ENGINEER IMMEDIATELY.

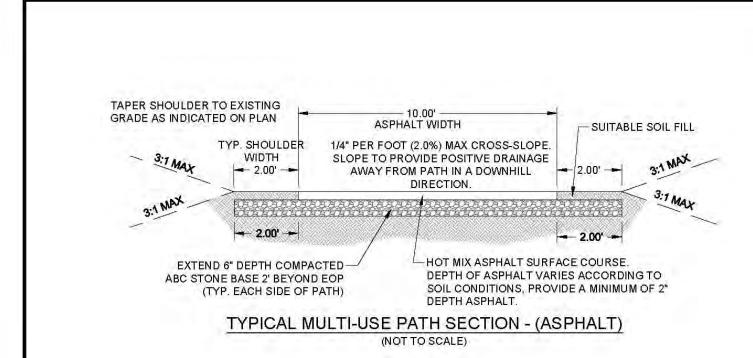

CONSTRUCTION

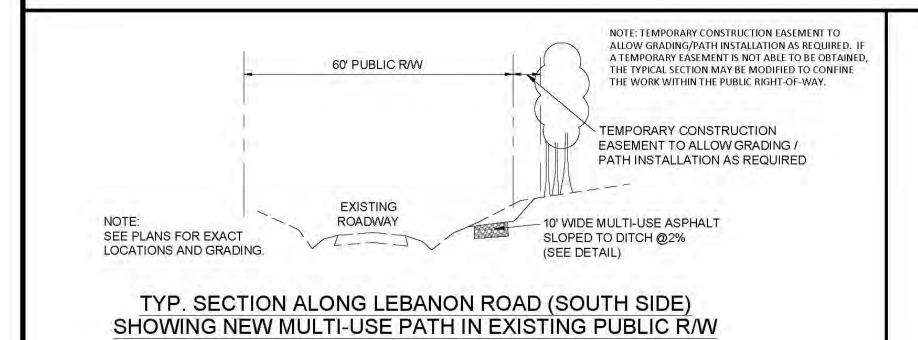

DRAWING NAME:

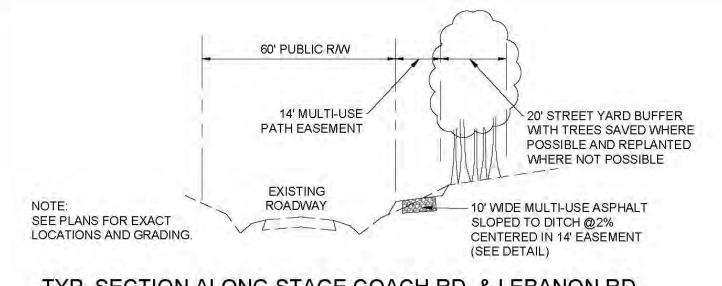




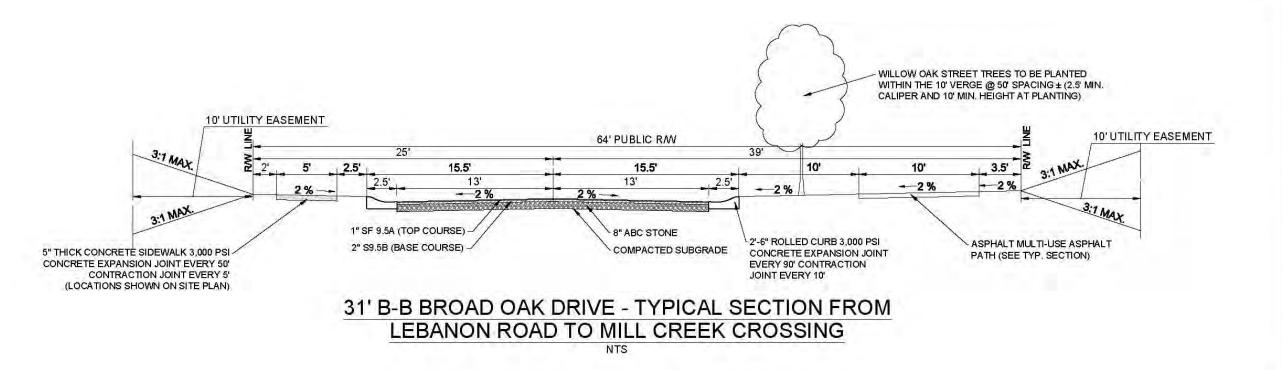



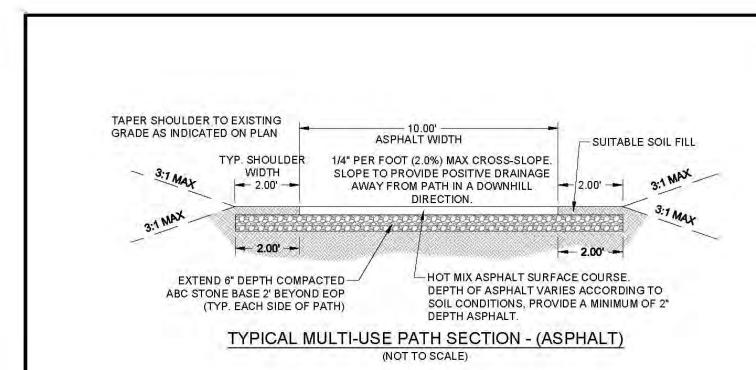




SCALE : N.T.S. DATE : 11/18/19 DRAWN BY: WDF








TYP. SECTION ALONG STAGE COACH RD. & LEBANON RD. SHOWING NEW MULTI-USE PATH & STREETYARD BUFFER (NORTH SIDE)



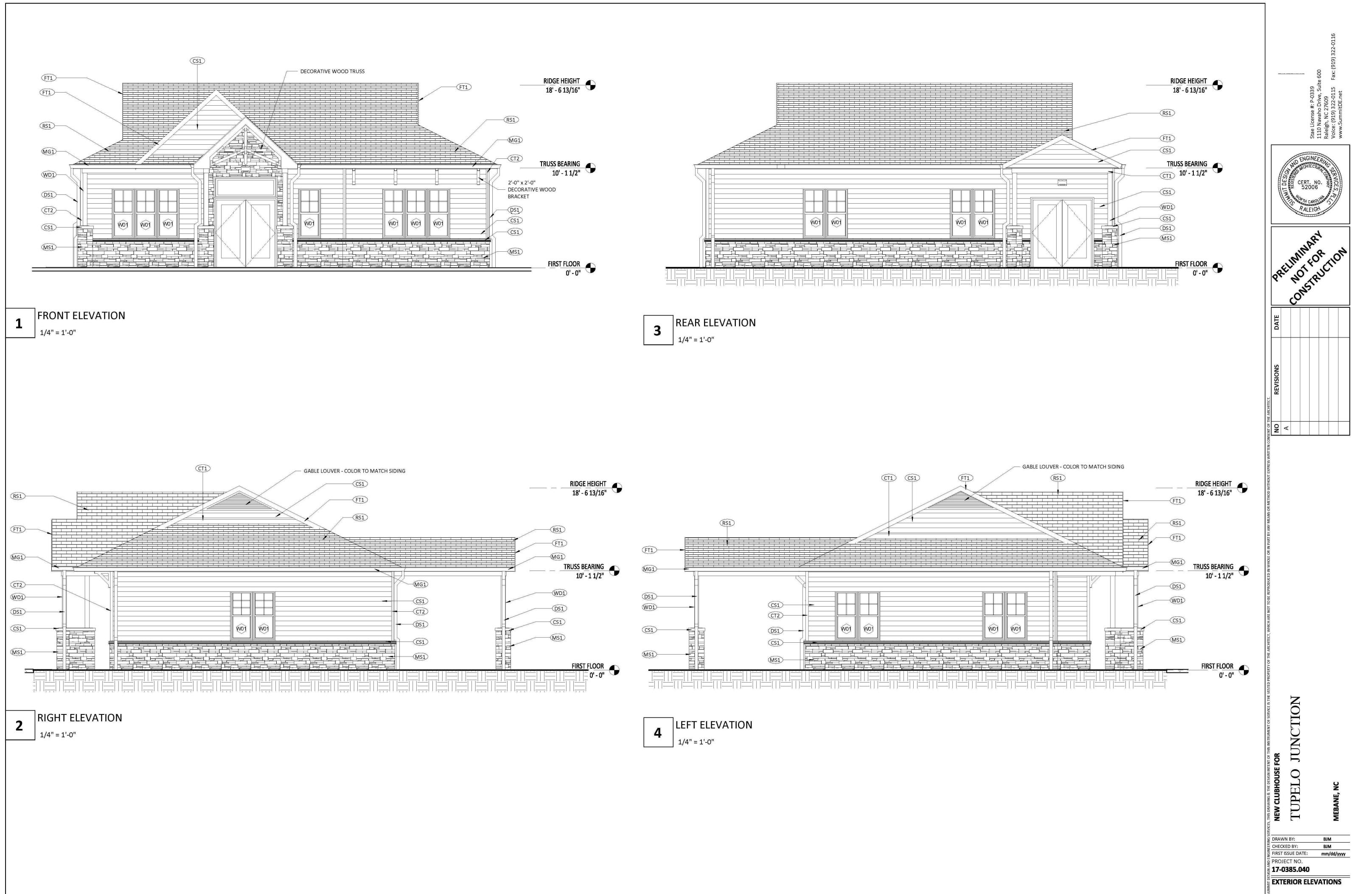
CITY OF MEBANE

STANDARD



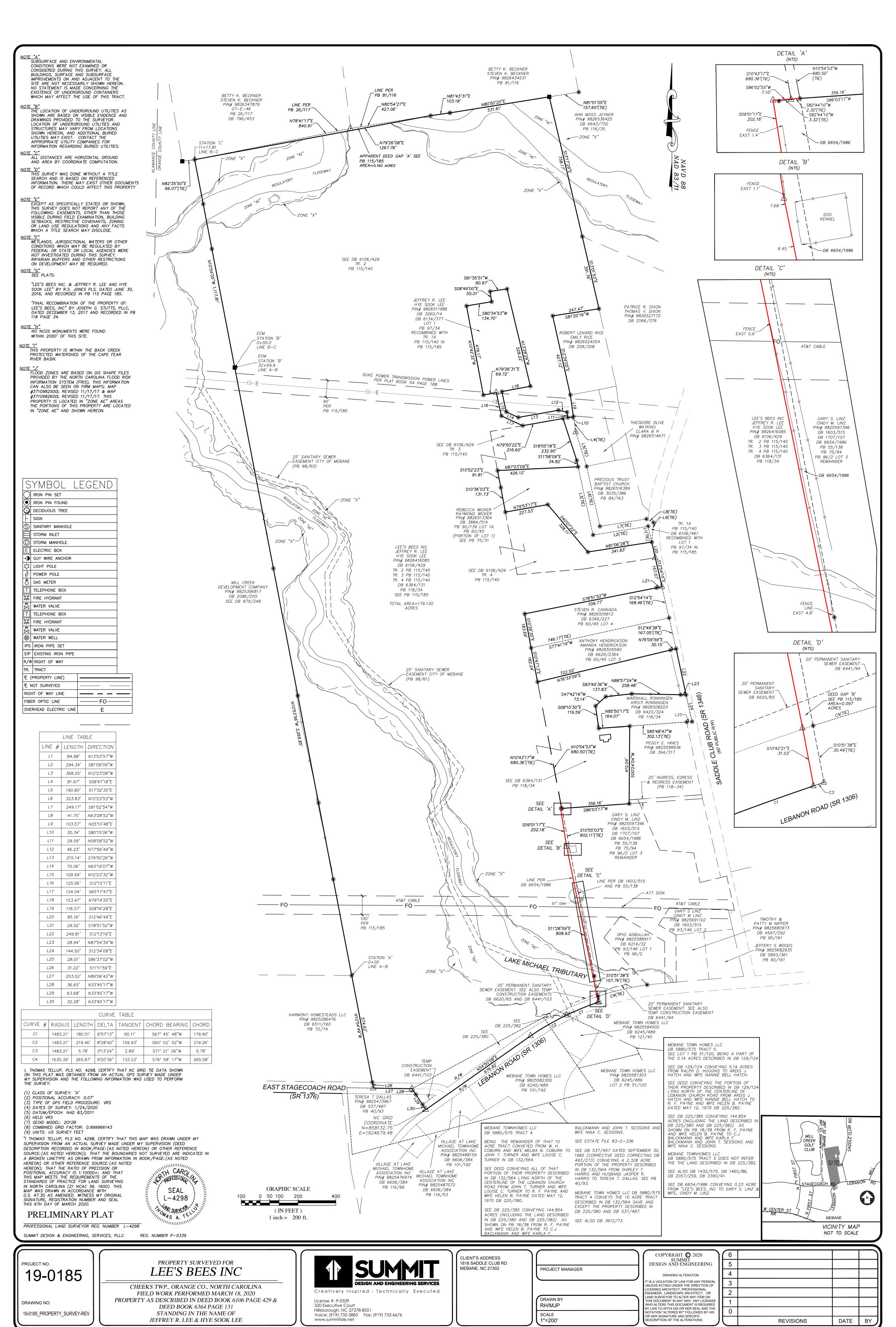
FOR

NOT


CONSTRUCTION

(50' ROW - 31' B-B)

SCALE : N.T.S. DATE : 8/3/17 DRAWN BY: SKS


PROJECT NO.

19-0185 DRAWING NAME: 19-0185\_D.dwg SHEET NO.



TUPELO FIRST ISSUE DATE:

EXTERIOR ELEVATIONS **A200** 



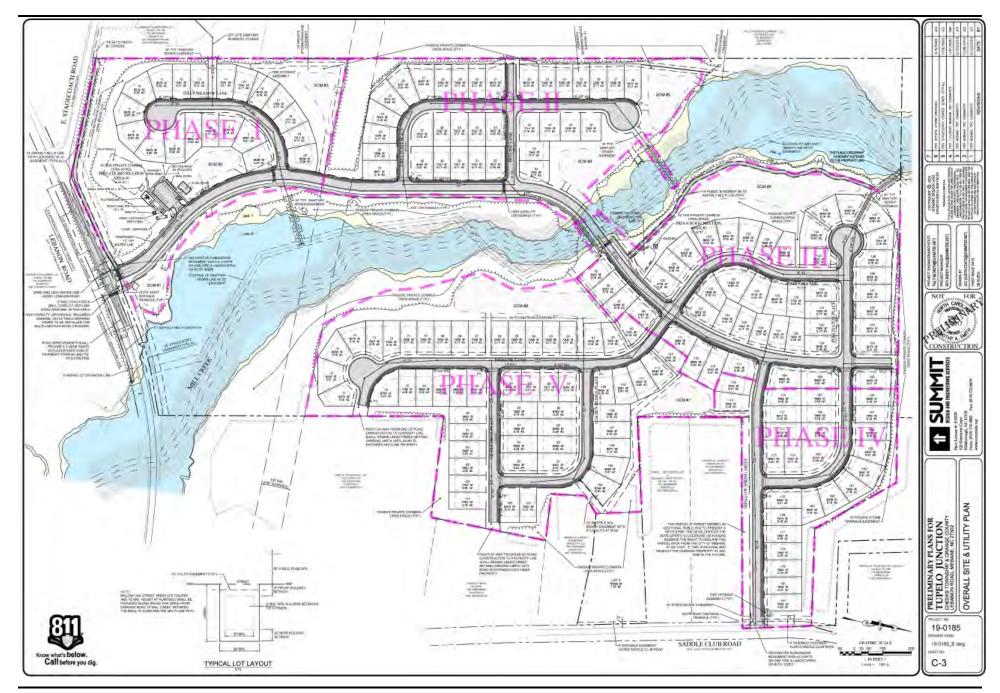
N:\2019\19-0185.010 Lebanon Rd LLC - The Landing at Lake Michael\Unsorted\SURVEY\DWG\_SURVEY\19-0185\_PROPERTY-SURVEY-REV.dwg, 7/24/2020 11:19:29 AM, 1:1

# PLANNING PROJECT REPORT

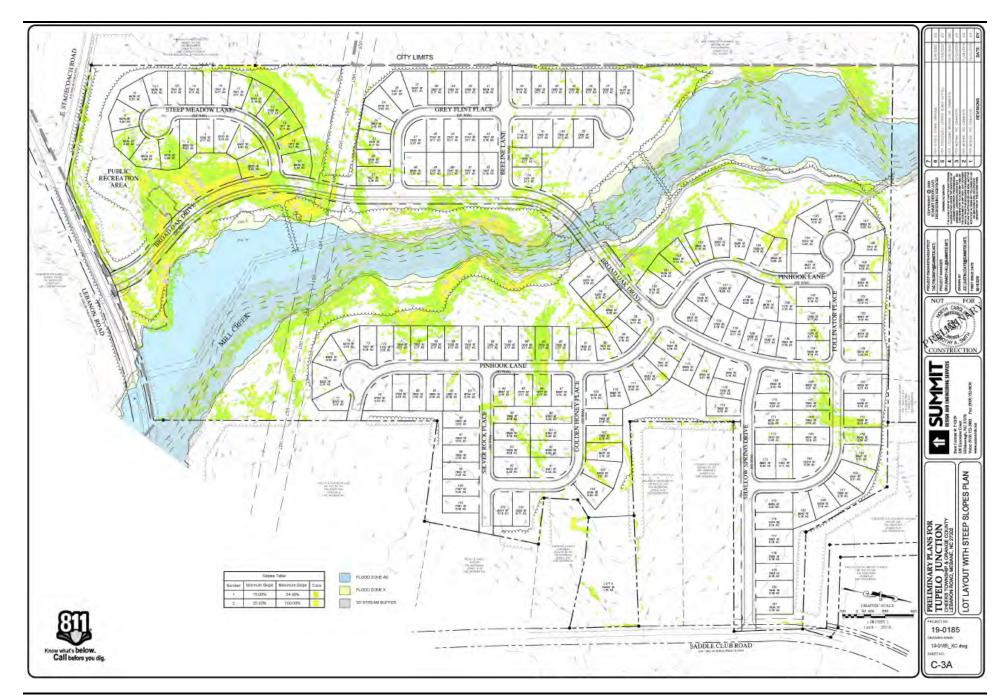
DATE 03/02/20 PROJECT NUMBER RZ 20-04

PROJECT NAME Tupelo Junction

Lebanon Road 3, LLC


c/o James Parker, Jr. 320 Executive Court

Hillsborough, NC 27278


# **CONTENTS**

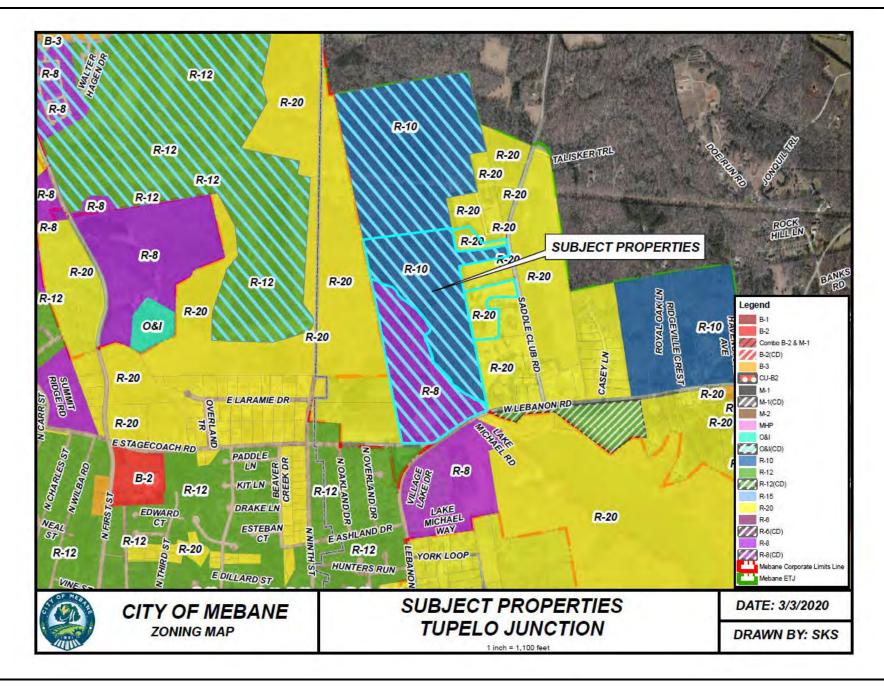
**APPLICANT** 

| PROJECT NAME & APPLICANT            | PAGE 1  |
|-------------------------------------|---------|
| ZONING REPORT                       | PAGE 4  |
| LAND USE REPORT                     | PAGE 6  |
| UTILITIES REPORT                    | PAGE 9  |
| STAFF ZONING REQUEST RECOMMENDATION | PAGE 11 |



PAGE 2




| ZONING REPORT     |                                                                                                                                                                                                                                                             |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EXISTING ZONE     | CU-R-8 & CU-R-10 (Conditional Use Residential [2005 Mebane Zoning Ordinance])                                                                                                                                                                               |
| REQUESTED ACTION  | R-12(CD) (Single-Family Residential, Conditional Zoning District)                                                                                                                                                                                           |
| CONDITIONAL ZONE? | ⊠YES □NO                                                                                                                                                                                                                                                    |
| CURRENT LAND USE  | Vacant, Forested                                                                                                                                                                                                                                            |
| PARCEL SIZE       | +/-93.5 acres of a +/-179.23 parent parcel                                                                                                                                                                                                                  |
| PROPERTY OWNERS   | Lees's Bees, Inc. c/o Jeffrey R. Lee 1818 Saddle Club Road Mebane, NC 27302 GPINs 9826416085                                                                                                                                                                |
| LEGAL DESCRIPTION | The applicant proposes to rezone +/-93.5 acres of a +/-179.23 ac tract from CU-R-8 & CU-R-10 (Conditional Use Residential) to R-12(CD) (Single-Family Residential, Conditional Zoning District) to allow for a Residential Cluster development of 181 lots. |
|                   | All properties to the east and west are R-20 (Single-Family Residential) except for the                                                                                                                                                                     |

| SITE HISTORY           | northern end of the parent property. This property was approved for a Conditional     |  |  |  |  |  |
|------------------------|---------------------------------------------------------------------------------------|--|--|--|--|--|
| SHE HISTORY            | Use Permit and rezoning request in 2005 for a Master Planned community called The     |  |  |  |  |  |
|                        | Landing at Lake Michael. The vested rights for that plan are expired.                 |  |  |  |  |  |
|                        | STAFF ANALYSIS                                                                        |  |  |  |  |  |
| CITY LIMITS?           | □YES ⊠NO                                                                              |  |  |  |  |  |
| PROPOSED USE BY-RIGHT? | □YES ⊠NO                                                                              |  |  |  |  |  |
| SPECIAL USE?           | □YES ⊠NO                                                                              |  |  |  |  |  |
| EXISTING UTILITIES?    | ⊠YES □NO                                                                              |  |  |  |  |  |
| POTENTIAL IMPACT OF    | The proposed zoning district will be a continuance of the R-12 zoning to the west and |  |  |  |  |  |
| PROPOSED ZONE          | the south. It will introduce denser zoning to the more rural areas to the north and   |  |  |  |  |  |
| PROPOSED ZONE          | east, though there are other Residential Cluster developments farther to the east.    |  |  |  |  |  |

"Stagecoach Corner" properties to the southwest, which are zoned R-12(CD). The

parent property of this proposed rezoning area is to the north and zoned CU-R-10. The vested rights for that Conditional Use permit are expired. All other properties to the north are zoned R-20. The properties to the south are zoned R-8, R-12, and R-20. The property has been vacant and forested except for a single-family residence at the

**AREA ZONING & DISTRICTS** 



### LAND USE REPORT

| EXISTING LAND USE                  | Vacant & Forested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROPOSED LAND USE &                | The applicant is requesting a conditional rezoning to develop +/-93.5 acres                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| REQUESTED ACTION                   | of a +/-179.23 ac tract for a Residential Cluster development of 181 lots.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PROPOSED ZONING                    | R-12(CD) (Single-Family Residential, Conditional Zoning District)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PARCEL SIZE                        | +/-93.5 acres of a +/-179.23 parent parcel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AREA LAND USE                      | All properties to the north and east are used for large-lot single-family residences that do not use municipal utilities. The properties to the west are currently vacant but the four parcels to the southwest were approved for a Residential Cluster development called "Stagecoach Corner". The properties directly south of the subject property are Lake Michael Park, the townhome community "The Villages at Lake Michael", and a R-12 vacant lot.                                                                          |
| ONSITE AMENITIES & DEDICATIONS     | The applicant proposed to provide a 4,325'-long, 10'-wide public multiuse path connecting to the dedicated multiuse path on Stagecoach Road, extended across Lebanon Road to the entrance of Lake Michael Park, and through the extent of the project, stubbing it at the northern property line. The applicant is also proposing to provide full-canopy street trees on Broad Oak Drive and +/-1.0 ac in private recreation amenities, including a play area with a clubhouse and a dog park, all of which will be HOA-maintained. |
| WAIVER REQUESTED                   | ⊠YES □NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DESCRIPTION OF REQUESTED WAIVER(S) | 85' lot width required, 60' requested; 30' front yard setback, 25' requested; 25' rear yard setback required, 20' requested; and 10' side setback required, 5' minimum requested, with 13' minima requested for corner lots. A payment <i>in lieu</i> of providing sidewalk on the frontage along Saddle Club Road is requested.                                                                                                                                                                                                    |

| CONS                                              | ISTENCY WITH <i>MEBANE BY DESIGN</i> STRATEGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LAND USE GROWTH STRATEGY DESIGNATION(S)           | G-4 Secondary Growth Area<br>Conservation Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| OTHER LAND USE CONSIDERATIONS                     | Graham-Mebane Reservoir Water Supply (WS-II) Watershed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MEBANE BY DESIGN GOALS & OBJECTIVES SUPPORTED     | GROWTH MANAGEMENT 1.4  Ensure that adequate community facilities are integrated into new development to reduce distances to parks, schools and community centers.  PUBLIC FACILITIES AND INFRASTRUCTURE 2.1  Improve safety and confidence of pedestrian access across major streets, including I-40/85, US-70, NC-119, Mebane-Oaks Road and other highly-traveled roadways.  OPEN SPACE AND NATURAL RESOURCE PROTECTION 4.2  Provide greenways, parks and open space connectivity between different land uses and across major transportation corridors, thereby advancing safety and health. |
|                                                   | OPEN SPACE AND NATURAL RESOURCE PROTECTION 4.3 Support park, greenway, and open space expansion in developed and developing areas, prioritizing connectivity between each location.                                                                                                                                                                                                                                                                                                                                                                                                            |
| MEBANE BY DESIGN GOALS & OBJECTIVES NOT SUPPORTED |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



|   | 1  |   | <br>- |   | _ |   | _ |   | $\overline{}$ |   | _ |  |
|---|----|---|-------|---|---|---|---|---|---------------|---|---|--|
| ι | JΤ | Ш | Н     | Н |   | к | H | Ρ | ( )           | к |   |  |

| AVAILABLE UTILITIES                                                     | ⊠YES □NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROPOSED UTILITY NEEDS                                                  | Per the memorandum from Franz Holt of AWCK, the projected is estimated to require 43,440 gallons per day of water and sewer service to support the development's 181 single-family residences. It features 8" sewer lines and 8" and 6" water lines that will be served by the 10" sewer line along Mill Creek and an 10" water line from Lebanon Road.                                                                                                                                                                                                                                                                                        |
| UTILITIES PROVIDED BY APPLICANT                                         | Applicant has pledged to provide all on-site utilities, as described in AWCK's Technical Memo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MUNICIPAL CAPACITY TO ABSORB PROJECT                                    | The City has adequate Water & Sewer Supply to meet the domestic and fire flow demands of the project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CONSISTENCY WITH MEBANE LONG RANGE UTILITY PLAN?                        | ⊠YES □NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ADEQUATE STORMWATER CONTROL?                                            | ⊠YES □NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| INNOVATIVE STORMWATER MANAGEMENT?                                       | □YES ⊠NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TI                                                                      | RANSPORTATION NETWORK STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CURRENT CONDITIONS                                                      | Lebanon Road is a state-maintained secondary route with an average daily traffic volume of 3,700 trips at this location. It has a current Level Of Service (LOS) C and is projected to have a LOS D in 2040. It has a Safety Score of 44.6, which reflects a history of some traffic incidents on this road section.                                                                                                                                                                                                                                                                                                                           |
| TRAFFIC IMPACT ANALYSIS REQUIRED?                                       | ⊠YES □NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DESCRIPTION OR RECOMMENDED IMPROVEMENTS                                 | The applicant will provide a left-turn lane with 100' feet of storage on a widened section of Lebanon Road to enter at Broad Oak Lane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CONSISTENCY WITH THE MEBANE BICYCLE AND PEDESTRIAN TRANSPORTATION PLAN? | ⊠YES □NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MULTIMODAL IMPROVEMENTS PROVIDED BY APPLICANT?                          | ⊠YES □NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DESCRIPTION OF MULTIMODAL<br>IMPROVEMENTS                               | The applicant proposes to provide 4,325' in multiuse paths in and around the development, connecting to the multiuse path dedicated along Stagecoach Road and extending it to the entrance of Lake Michael Park. The applicant will provide a high-visibility crossing of Lebanon Road to realize this connection. The multiuse path will be stubbed at the property boundary to the north. The applicant also proposes to provide 10,285' in sidewalks internal to the project, though they are requesting to pay <i>in lieu</i> for sidewalks along Saddle Club Road. Bicycle racks are being provided at all private recreation facilities. |

#### PROPOSED TRAFFIC OPERATIONS



The Landing at Lake Michael Traffic Impact Study Mebane, NC

45

### STAFF RECOMMENDATION

| STAFF ZONING<br>RECOMMENDATION                                                       | ■ APPROVE        □ DISAPPROVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| STAFF SPECIAL USE FINDING                                                            | ☐ CONSISTENT ☐ NOT CONSISTENTWITH MEBANE BY  DESIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| RATIONALE                                                                            | The proposed development "Tupelo Junction" is consistent with the guidance provided within <i>Mebane By Design</i> , the Mebane Comprehensive Land Development Plan. Specifically, it serves Goals 1.4, 2.1, 4.2, and 4.3, and commits >50% of the space for protection in this Conservation Area. The proposed project will be developed as a Residential Cluster subdivision compliant with the watershed overlay district and providing an offsite multiuse path.                                                                                                                                                                                                                                 |  |  |  |  |
| F                                                                                    | PUBLIC INTEREST CONFORMANCE?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| ENDANGER PUBLIC HEALTH OR SAFETY?                                                    | □YES □NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| SUBSTANTIALLY INJURE THE VALUE OF ADJOINING OR ABUTTING PROPERTY?                    | TYES INO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| HARMONIOUS WITH THE AREA IN WHICH IT IS LOCATED?                                     | □YES □NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                                                                                      | ☐ The application is consistent with the objectives and policies for growth and development contained in the City of Mebane Comprehensive Land Development Plan, <i>Mebane By Design</i> , and, as such, has been recommended for approval.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| CONSISTENT WITH MEBANE BY DESIGN, THE MUNICIPAL COMPREHENSIVE LAND DEVELOPMENT PLAN? | <ul> <li>The application is not fully consistent with the objectives and policies for growth and development of the City of Mebane Comprehensive Land Development Plan, Mebane By Design, but is otherwise in the public interest and has been recommended for approval. The Comprehensive Land Development Plan must be amended to reflect this approval and ensure consistency for the City of Mebane's long-range planning objectives and policies.</li> <li>The application is not consistent with the objectives and policies for growth and development of the City of Mebane Comprehensive Land Development Plan, Mebane By Design, and, as such, has been recommended for denial.</li> </ul> |  |  |  |  |

### **Tupelo Junction**

#### **Builder Commitments**

#### **Exterior Specifications:**

· Siding: fiber cement

· Trim: composite

· Roofing: 20-year asphalt shingles

· Gutters: 5" gutters and downspouts

- · Optional exterior materials based on elevation and options purchased
  - · standing seam metal roofs (24 gauge)
  - · fiber cement shakes and board & batt
  - · alternate vinyl window colors
  - · brick veneer
- · Roof overhang: 12"
- Main roof pitch: minimum 8:12
- Foundation: monoslab (exposed concrete parked on front elevation)
- · Sod: front yard
- Street tree: one in front yard (near ROW)
- Driveway: 18' width to ROW (if longer than 25' then taper to 12' at ROW)
- · Garages: 1 & 2 car
- Front porches: included on some plans, optional on others

#### Plans:

- Ranch plans: 1400-2000 SF, 3-4 bedrooms, 2-3 baths (1-2 plans)
- 1.5-story plans: 1600-2400 SF, 3-4 bedrooms, 2-4 baths (1-2 plans)
- 2-story plans: 1600-2800 SF, 3-5 bedrooms, 2.5-4 baths (3-4 plans)

The following renderings and floorplans are representative of the types of product that Garman Homes intends to build in Tupelo Junction.

# **BLISS**

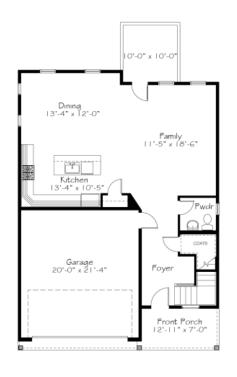


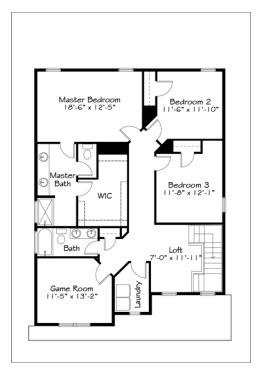


Bliss A Bliss B






1<sup>st</sup> Floor


2<sup>nd</sup> Floor



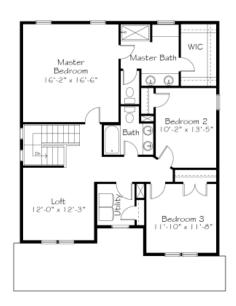


Go A Go B





1<sup>st</sup> Floor 2<sup>nd</sup> Floor


## **HAPPY**

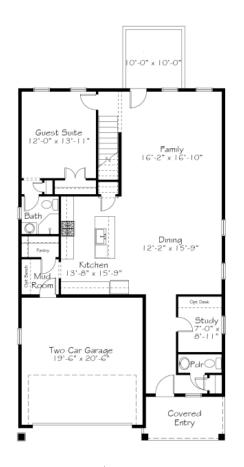


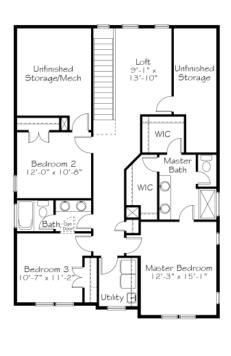


Нарру В Нарру С






1<sup>st</sup> Floor 2<sup>nd</sup> Floor


# JOY





Joy A Joy B

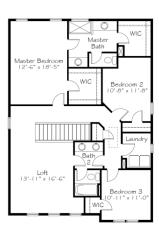




1<sup>st</sup> Floor 2<sup>nd</sup> Floor

# **LUCKY**






Lucky A Lucky B



Lucky C





1<sup>st</sup> Floor 2<sup>nd</sup> Floor



March 5, 2020

Mr. Tim Smith, PE Summit Design and Engineering Services 504 Meadowland Drive Hillsborough, NC 27278-8851

Subject: Tupelo Junction— Water and Sewer System

Dear Mr. Smith:

Regarding the Preliminary Site Plans for Tupelo Junction and in accordance with paragraph 7-4.3 A.3.a. in the UDO, this memo is provided to indicate that I have reviewed the preliminary water and sewer system layout and find it acceptable and meeting City of Mebane requirements as follows:

A. Water system – The project is proposed to be served from one 12-inch connection to the City's existing 12-inch water line along Lebanon Road. Internal to the project site is a proposed 12-inch water line along Broad Oak Drive. The remaining streets will be served from this line with 8-inch and 6 inch water line extensions with appropriate valves and fire hydrant spacing. When designed and installed to City and State standards, these public lines will become part of the City's water system. The estimated daily water use for this project is 43,440 gallons per day (181 homes at 240 gallons per day each). The City has adequate water capacity available to meet the domestic demand and fire flow requirements of this project.

B. Sanitary Sewer system – The project is proposed to be served with 8-inch sanitary sewer extensions from three separate connections with the City's existing 10-inch gravity sewer outfall, which parallels Mill Creek. Internal to the project site are proposed 8-inch sewer lines with appropriate manhole spacing. When designed and installed to City and State standards, these public lines will become part of the City's sanitary sewer collection system. The estimated daily sewer use for this project is 43,440 gallons per day (181 homes at 240 gallons per day each). The City has adequate sewer capacity available at the downstream North Regional Sewer Pump Station and at the WRRF to meet this demand.

If there are any questions, please let me know.

Sincerely,

Franz K. Holt, P.E. City Engineer

CC: Montrena Hadley, Planning Officer and Cy Stober, Planning Director

Chris Rollins, Assistant City Manager

Kyle Smith, Utilities Director

**CITY OF MEBANE** 

Frang K. Holt

106 East Washington Street | Mebane, NC 27302







Technical Memorandum

Date: March 5, 2020

To: Montrena Hadley, Planning Officer

From: Franz K. Holt, P.E.

Subject: Tupelo Junction-City Engineer review

City Engineering has reviewed the Preliminary Site Plans for Tupelo Junction submitted February 11th, 2020 by Tim Smith, P.E. with Summit Design and Engineering Services and provides the following technical comments.

#### A. General

Tupelo Junction is a proposed phased residential single family residential cluster development proposed to be built on 93.5 acres on the north side of Lebanon Road (S. R. 1306) across form the between E. Stagecoach Road and Saddle Club Road. The project proposes 181 single family lots with a min. lot size of 7,200 square feet as allowed by the UDO for R-12 Cluster Development (which allows for a 40% reduction in lot size with the balance of the lot area being placed in private common open space).

The property is in the Graham-Mebane Lake public water supply watershed non-critical area. Plans show using the high-density option which is allowed with new engineered stormwater control facilities receiving storm water runoff from proposed new development (max. built upon area of 30%).

Water and sewer service is provided from a 12-inch water line along Lebanon Road and a 10-inch sewer outfall along Mill Creek which runs through the middle of the proposed development.

Internal streets are considered local and constructed to a 31-ft. b-b curb and gutter section with a 5-ft. wide concrete sidewalk being typically located on one side of the street. A 10-ft. wide asphalt multi-use path (City maintained) is proposed along Broad Oak Drive from the entrance on Lebanon Road on the creek side of the roadway with street tree plantings (HOA maintained). Where Broad Oak Drive crosses Mill Creek the 10-ft. asphalt multi-use path (City maintained) will continue along Mill Creek to the end of the development. In addition, the developer plans to install a 10-ft. wide asphalt multi-use path (City maintained) along Lebanon Road connecting to the proposed multi-use path at Stagecoach Corner Development on E. Stagecoach Road and to the Lake Michael Road entrance. No sidewalk is planned along Saddle Club Road with acceptance of a payment in lieu by the City being recommended. All streets, multi-use path, and sidewalks are to be constructed to City standards and will be made public when completed for City ownership, operation, and maintenance.





The project includes street connections with Lebanon Road, which will include a left turn lane and to Saddle Club Road with no proposed turn lanes.

#### B. Availability of City Water and Sewer

Regarding the Preliminary Site Plans for Tupelo Junction and in accordance with paragraph 7-4.3 A.3.a. in the UDO, this memo is provided to indicate that I have reviewed the preliminary water and sewer system layout and find it acceptable and meeting City of Mebane requirements as follows:

- 1. Water system The project is proposed to be served from one 12-inch connection to the City's existing 12-inch water line along Lebanon Road. Internal to the project site is a proposed 12inch water line along Broad Oak Drive. The remaining streets will be served from this line with 8-inch and 6 inch water line extensions with appropriate valves and fire hydrant spacing. When designed and installed to City and State standards, these public lines will become part of the City's water system. The estimated daily water use for this project is 43,440 gallons per day (181 homes at 240 gallons per day each). The City has adequate water capacity available to meet the domestic demand and fire flow requirements of this project.
- 2. Sanitary Sewer system The project is proposed to be served with 8-inch sanitary sewer extensions from three separate connections with the City's existing 10-inch gravity sewer outfall, which parallels Mill Creek. Internal to the project site are proposed 8-inch sewer lines with appropriate manhole spacing. When designed and installed to City and State standards, these public lines will become part of the City's sanitary sewer collection system. The estimated daily sewer use for this project is 43,440 gallons per day (181 homes at 240 gallons per day each). The City has adequate sewer capacity available at the downstream North Regional Sewer Pump Station and at the WRRF to meet this demand.

#### C. Watershed Overlay District and Phase II Stormwater Requirements

1. Watershed Overlay District requirements are provided under Sec. 5.2 of the UDO. These requirements in the UDO are for the Back-Creek Watershed, which includes the Graham-Mebane Lake. This project lies in the GWA non-critical area allowing up to 30% built upon area with engineered stormwater controls. The proposed stormwater management devices shown on the plans are intended to receive stormwater runoff from the proposed new development and will meet the requirements of the Water Supply Watershed Rules. Upon the project being completed and the site being stabilized with permanent ground cover, the stormwater management devices temporarily serving as erosion control measures will be converted to the designed permanent stormwater management device (owned and





maintained by the property owners' association). A 20-year maintenance bond and annual inspection fee will be posted with the City upon completion of the stormwater management devices.

#### 2. Phase II Stormwater Post Construction Ordinance

Sec. 5.4 in the UDO provides standards for Storm Water Management and 5.4.F requires compliance with the Mebane Post Construction Runoff Ordinance (which is a stand-alone ordinance titled the Phase II Stormwater Post Construction Ordinance (SPCO)). The standards in the UDO are general standards as the Ordinance itself provides detailed standards. The SPCO does apply to this project as it will disturb more than one acre of land and it is estimated that the new built upon will be more than 24% of the site. The project proposes to provide eight stormwater management devices (all devices where perm. water surface is 2 feet or more are to be fenced as required by ordinance). These devices will be designed to meet the SPCO as a part of final construction plan submittal/approval process. All stormwater management devices will be owned and maintained by the property owners' association.

#### D. Storm Drainage System

Sec. 5-4. D. in the UDO provides requirements for storm drainage systems. The preliminary site plans include a preliminary piping layout that indicates certain pipe locations, inlets, and discharge points. Stormwater flows from these pipes will be transported to stormwater management devices. Design of the storm drainage system will be in accordance with the City's Storm Drainage Design Manual.

#### E. Street Access

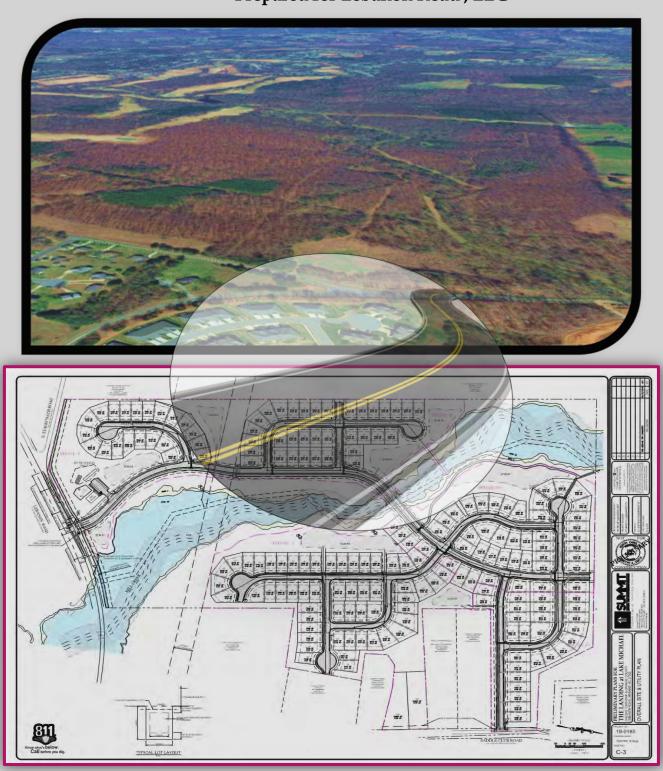
Proposed streets shown on the plans are considered local and to be constructed to City of Mebane standards (31' B-B width and rolled curb and gutter) with sidewalk located typically on one side. These local streets will connect to Lebanon Road and Saddle Club Road. Four street stubs are provided to adjacent properties for possible future extension. Also shown is a left turn lane on Lebanon Road with 100' of storage. All improvements to and along Lebanon Road will meet NCDOT design and construction requirements. NCDOT encroachment agreements and driveway permit applications are where connecting to or working with NCDOT road right-ofways.

#### F. Construction Plan Submittal

Sec. 7-6.7. A. in the UDO indicates that construction plans for all street facilities, including water and sewer facilities, shall be submitted following preliminary plat or site plan approval; therefore, construction plans are not required as a part of the site plan review. A utility plan is provided which generally shows the proposed water lines, sewer lines, and storm drainage and stormwater



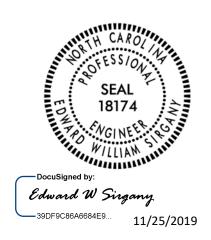
management devices to indicate that the project is feasible for utility service and providing stormwater management. Appendix E which is included in the UDO is a Construction Document checklist which is to be provided when construction plans are submitted after Preliminary Site Plan approval.


Based on city engineering review of the referenced preliminary site plans, it is my opinion that said plans are in substantial compliance with the UDO.



### **NOVEMBER 2019**

### Traffic Impact Analysis


The Landing at Lake Michael Lebanon Road Mebane, NC Prepared for Lebanon Road , LLC





The Landing at Lake Michael Lebanon Road (SR 1306) & Broad Oak Drive Mebane, North Carolina

# **Traffic Impact Analysis**



Prepared by **Summit Design & Engineering** 

320 Executive Court Hillsborough, NC 27278 License Number: P-0339

Prepared for

Lebanon Road, LLC

504 Meadowlands Drive Hillsborough, NC 27278



#### **Executive Summary**

#### Introduction

A proposed subdivision consisting of one hundred eighty-four (184) single family homes is planned to be constructed on a site that is along the north side of Lebanon Road (SR 1306) in the City of Mebane in Orange County, North Carolina. The development is being proposed on a single large parcel, totaling approximately 179 acres. The development will be built in five (5) phases over a five-year period after work commences in 2020. Two site entrances are proposed, one on Lebanon Road near Stagecoach Road, and a second access on Saddle Club Road north of Lebanon Road. The access points will be street type entrances, with one entry lane and two exit lanes onto Lebanon Road, and one entry lane and one exit lane for the access onto Saddle Club Road. The accesses will be built to NCDOT and City of Mebane standards, where all internal streets are proposed to be City maintained streets.

Summit Design & Engineering analyzed the development to determine the potential traffic impacts that this project may have on the roadway network. The analysis will identify any transportation improvements that may be required to accommodate the impacts of both the projected background traffic and the new development traffic. The following intersections were included in the study:

- Lebanon Road (SR 1306) & Supper Club Road (SR 1304)
- Lebanon Road (SR 1306) & Stagecoach Road (SR 1376)
- Lebanon Road (SR 1306) & Broad Oak Dr. (Site Dr. #1)
- Lebanon Road (SR 1306) & Lake Michael Park
- Lebanon Road (SR 1306) & Saddle Club Road (SR 1346)
- Saddle Club Road (SR 1346) & Shallow Spring Dr. (Site Dr. #2)

The Vicinity Map shows the location of the site near Mebane, NC, and the intersections in the vicinity that are part of this Traffic Impact Analysis. The subject intersections were analyzed for the following scenarios:

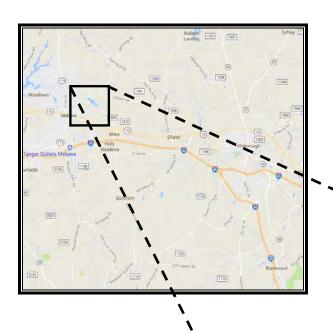
- 2019 Existing Conditions
- 2025 Future No Build Conditions
- 2025 Future Build Conditions

Data was collected at the four existing subject intersections for the AM and PM peak hours, from 6 AM to 9 AM and from 4 PM to 7 PM to allow for determining the exact peak hours. The turn movement counts were collected on October 17, 2019 while all traditional and year-round schools were in session. The data was collected in 15-minute intervals at all locations to determine the exact peak hour within the data collection period.



A scoping discussion was held with City of Mebane Planning staff, as well as NCDOT Division 7 staff, to obtain background information and to determine the elements to be covered in this Traffic Impact Analysis (TIA). The topics discussed involved selecting the intersections to be studied, the background growth rate, and any recently approved developments and/or TIP projects that may be impacted or create an impact on the study area.

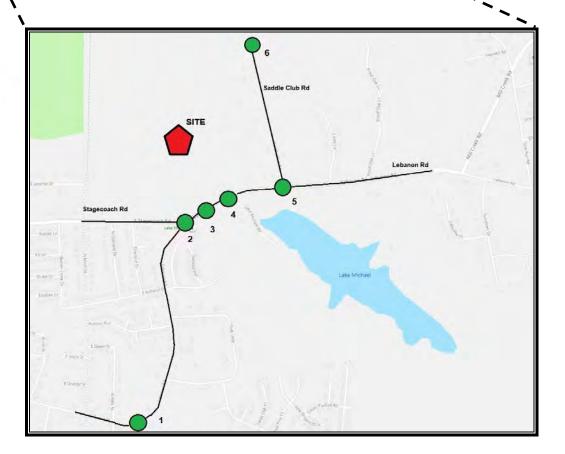
Based on discussions with City and NCDOT staff, it was determined that the study corridor would include the main public street intersections along Lebanon Road from and including the intersection at Supper Club Road to the intersection at Saddle Club Road. Within this area on this corridor are intersections at Ashland Drive/Lake Michael Way, York Road, York Loop Road, Stagecoach Road, and Lake Michael Park entrance. With the exception of Stagecoach Road and Lake Michael Park entrance (also an access for Phase II of the Villages of Lake Michael), all new site generated trips are expected to be through movements at these intersections, and therefore it was determined these intersections would not need to be included in the study. There are no current or future TIP projects approved and/or funded in the area within the scope of the site buildout.


As part of the City of Mebane Unified Development Ordinance, there is consideration to provide a capacity analysis of all transportation modes. However, in light of the lack of a transit system in the area, it was agreed that analysis of the transit mode would not be necessary for this study, but bicycle and pedestrian modes will be applicable. In addition, City staff requested to provide a report on the speed of traffic along Lebanon Road as part of the study. NCDOT District office indicated that a report of the speed data would need to be referred to NCDOT Traffic Engineer in the Division office for determination of any change requests in posted speed limits on statemaintained roadways.

There are developments in the area that have been recently approved and under construction that will need to be considered as part of this Traffic Impact Analysis, namely the future trips created when they are completed. These developments are The Villages of Lake Michael, the Retreat at Lake Michael, Stagecoach Corner, and the Havenstone subdivision. The Villages of Lake Michael is nearly complete, with only 22 townhouse units remaining to be built, and should be completed in 2020. The remaining named developments have construction underway, but are not expected to have any units complete before 2021, although it is anticipated that all units in those developments are expected to be completed within the study period of this TIA.

Following the scoping discussion, the NCDOT TIA Checklist was completed and submitted to the City of Mebane, in lieu of a traditional Memorandum of Understanding. The "Needs" section and "Scoping" sections were completed and sent to both City of Mebane and NCDOT for signatures. A copy of the TIA Checklist submittal is included in Appendix B.




#### **VICINITY MAP**



### **LEGEND**

= Study Area Intersection

- 1 Supper Club Rd
- 2 Stagecoach Rd
- 3 Site Dr. #1
- 4 Lake Michael Park
- 5 Saddle Club Rd.
- 6 Site Dr. #2





#### Trip Generation

The site generation potential of the proposed development was computed using the 10<sup>th</sup> Edition of *ITE Trip Generation Manual*. The trip generation calculated trips based on a total build of one hundred eighty-four (184) Single Family Homes (ITE Land Use Code 210). The developer plans to construct the subdivision in five phases over a period of 5 years. Per NCDOT Congestion Management Standards, and the Rate vs. Equation Spreadsheet effective July 1, 2018, the trip generation was calculated using the Equation for the adjacent street peak hour data.

The weekday average daily trips generated, as well as AM and PM Peak Hour trips by development phase are shown for the proposed land use in the table below:

#### Adjacent Street Traffic Volumes Wkday Avg # Trips Weekday AM Peak Hr Weekday PM Peak Hr ITE Code Enter Exit Total Total Phase Land Use Size Units Enter Exit Enter Exit Total Buildout SFHOUSE **Dwelling Units** 184 911 1822 101 135 115 182 911 1822 182 **Unadjusted Volume** 911 34 101 135 115 67 0 Internal Capture 0 0 0 Pass-By Trips 0 0 0 0 0 0 **Volume Added to Adjacent Streets** 911 911 1822 34 101 135 115 67 182 Source: ITE Trip Generation Manaul, 10th Edition

#### **SUMMARY OF SITE TRIP GENERATION**

For a residential type land use, pass-by trips are not utilized, as those type types apply to retail and service type land uses. Similarly, there are no internal capture trips to account for in a residential development.

The total unadjusted volumes were calculated to be 135 trips during the AM peak hour (34 entering and 101 exiting), and 182 trips during the PM peak hour (115 entering and 67 exiting). The average weekday trips have been calculated to be 1,822 total, with 911 entering trips and 911 exiting trips.

#### **Adjacent Developments**

There are several approved and planned developments within the study area that were identified by the City of Mebane planning staff that could either impact or be impacted by the proposed development. There are four adjacent developments that must be considered for this study: the Villages of Lake Michael, the Retreat at Lake Michael, Stagecoach Corner, and Havenstone. Only the Villages of Lake Michael is partially constructed with occupied units, the other three are under construction, and do not have any residential units constructed and occupied to date.



The Villages of Lake Michael is a townhouse development being constructed to the east of Lebanon Road, off Lake Michael Way south of Stagecoach Road. It is a development of 159 townhomes, and at present has 22 townhome units left that are under construction. With 22 units still to be built, the remaining new trips generated, were derived by simple ratio of the full buildout trip assignment for each access to the 22 remaining units, and trips assigned to the background traffic analysis.

The Retreat at Lake Michael is a single-family home subdivision that has been approved to be constructed on the south side of Lebanon Road, just east of Saddle Club Road. This development proposes to construct 43 homes by the end of 2021. The trip assignments calculated for this development were revised from data available from the original Traffic Study, and assigned to the roadway network using the same distributions. The name of this development in the original Traffic Study was known as the Villas at Havenstone.

The Havenstone subdivision is a single-family subdivision that has been approved to be constructed on the north side of Lebanon Road, east of both Saddle Club Road, and the Retreat at Lake Michael subdivision. This subdivision is under construction to build 169 units in two phases, with estimated completions in 2022 and 2024 respectively. This development was also required to have a Traffic Impact Analysis submitted, and the trip assignments for this TIA were derived directly from that study.

For the Havenstone subdivision, as well as the Retreat at Lake Michael, trip distributions and assignments east of Saddle Club Road had to be determined for use in this TIA, since the study intersections for those developments did not include either Stagecoach Road or Supper Club Road. The trip distribution ratios that were determined for the Landing at Lake Michael for these two intersections were applied to the trips to and from the west for these two approved developments. The similarity in land use type, location and traffic patterns support the distribution ratios for all of these developments.

A proposed development on Stagecoach Road, named Stagecoach Corner was a development of a size that did not require any traffic study as part of its approval. Since the location of Stagecoach Corner is not on Lebanon Road, and is slightly further west of the other developments, a slightly different yet still similar, trip distribution would be appropriate. A simple distribution of trips to and from the development of 60 % to/from the west and 40 % to/from the east is a reasonable estimation of the trips. A 50/50 split of trips at Stagecoach Road and Lebanon Road intersection of Stagecoach Corner generated traffic would provide a pattern of trips similar to the adjacent developments.

The Villages at Lake Michael constructed a left turn lane and right turn lane on Lebanon Road at their entrance on Lake Michael Way. These improvements have been completed prior to this TIA being developed, and are therefore were used in all analyses, although this intersection is not included as a study intersection for the report. No other roadway improvements were recommended or constructed by the adjacent developments that fall within the study area for this study.



#### Trip Distribution

The primary site trips for the proposed development were distributed based upon the existing traffic patterns, and engineering judgement. Since there have been several residential developments in the area recently approved, the trip distributions closely resemble the adjacent developments' distributions. Also to note, the Landing at Lake Michael development had a Traffic Impact Analysis completed around 2005, although with a larger number of homes proposed, but trip distributions were developed as part of that TIA submittal. A review of the existing turning movement counts at the subject intersections indicate directional flow in the peak hours, primarily westbound in the morning (towards the City), and eastbound in the afternoon. The distribution ratios developed for the adjacent developments applied 30 % of trips to/from the east of the site (generally) and 70 % of trips to/from the west. Similar ratios were developed for the Landing at Lake Michael, however additional ratios were included for the Stagecoach Road and Supper Club Road intersections on Lebanon Road due to their proximity to the site.

Based on the information available from the adjacent developments Traffic Impact Analyses, the primary trip distributions for the site have been estimated to be:

- 70 % to/from the west on Lebanon Road
- 30 % to/from the east on Lebanon Road

Additional distributions were then made to account for trips being further split onto the surrounding roadway network. A small percentage of trips to/from the north on Saddle Club Road were applied to the site, similar to the adjacent developments. A similar split in trips was made at the Supper Club Road intersection on Lebanon Road, following the recommendations from the earlier Landing at Lake Michael TIA.

After review of the turn movement data at the Stagecoach Road intersection, a slight revision in the original distribution for this intersection was developed to split the new trip distribution more evenly to reflect current traffic patterns. The remaining trip distributions developed in the earlier TIA for the Landing at Lake Michael were also applied for the study. All remaining distributions are listed here:

- 5 % to/from the west on E. Brown Street
- 30 % to/from the south on Supper Club Road
- 30 % to/from the west on Stagecoach Road

The traffic distributions utilized for dividing traffic in and out of the two access points was determined in the same manner as the earlier Traffic Impact Analysis. For the main access on Lebanon Road, it was determined that 75 % of the traffic entering the subdivision would use this drive, and the remaining 25% entering traffic would use the access drive on Saddle Club Road. Of the traffic entering the Saddle Club Road access, it was determined that 15 % of that traffic would originate from east of the site, and the remaining 10 % would be split between 5 % from the west and 5 % from the north. For exiting traffic, the distributions match with the entering traffic, with 25 % of the trips leaving from the Saddle Club Road access, and 75 % of the trips using the main access on Lebanon Road.



The results of the study are presented as follows, listed by intersection:

#### **Lebanon Road & Supper Club Road**

The proposed development, and the adjacent developments under construction, will add new trips to this unsignalized intersection, including through movements onto westbound E. Brown Street, as well as turning movements to and from Supper Club Road. The Level of Service for this intersection will remain at A for the AM peak hour and B for the PM peak hour. This will provide adequate capacity in its current configuration for several years after the project buildout.

#### **Lebanon Road & Stagecoach Road**

The proposed development, and the adjacent developments under construction, will add new trips to this intersection that would be turning movements on Stagecoach Road, as well as through movements on Lebanon Road. The Level of Service for this intersection will remain at B for the AM peak hour, and for the PM peak hour will decrease to LOS C. Although the Level of Service decreases under the Buildout conditions, it continues to be well above the target LOS of D, and the increase in delay per vehicle averages approximately 17%. This will provide adequate capacity in its current configuration for several years after the project buildout.

#### Lebanon Road & Broad Oak Drive (Site Drive #1)

The proposed development will add new trips with the buildout of the site to this intersection, with new trips entering and exiting at Broad Oak Drive, the main entrance to the subdivision. The trips will be added as south bound left and right turns from Broad Oak Drive, and left and right turns from Lebanon Road into the site. None of these movements experience excessive delays or queues, in Buildout analysis, and a left turn lane was configured for Lebanon Road at the site driveway with 100 feet of storage. The Level of Service for the intersection overall is B, with 10.3 second average delay, with the left turn exiting the site experience slightly longer average delay than the right turns exiting the same site driveway.

#### Lebanon Road & Lake Michael Park

The proposed development, and the adjacent developments under construction, will add new trips to this intersection with the buildout of the site however, only the new trips generated by the buildout of the Villages of Lake Michael will add any turning traffic at this intersection. All other adjacent developments, as well as the proposed site will add through movements only at this intersection. The intersection will experience LOS A in the AM peak hour, and LOS B in the PM Peak hour under all conditions.

#### **Lebanon Road & Saddle Club Road**

The proposed development, and the adjacent developments under construction, will add new trips to this signalized intersection with the buildout of the site, on all approaches and all movements. There are no turn lanes on any of the approaches of the intersection, but existing volumes are such that there is adequate capacity to handle the additional trips generated by all of the adjacent



developments and the proposed site. The intersection will experience LOS B in both AM and PM peak hours for the future No Build and Buildout analysis periods.

### **Lebanon Road & Shallow Spring Drive (Site Drive #2)**

The proposed development will add new trips with the buildout of the site to this intersection, with new trips entering and exiting at Shallow Spring Drive, the secondary entrance to the subdivision. The trips will be added as eastbound left and right turns from Shallow Spring Drive, and left and right turns from Saddle Club Road into the site. The intersection will operate at LOS A in both the AM and PM peak hour with very little delay.

A summary of the existing, No Build conditions and Build conditions is provided below indicating the capability of the roadway network to handle the new trips generated by this site.

### HCM 6<sup>th</sup> Edition Level of Service Summary

|   |                                                    |          | 2019     | 203      | 25       |
|---|----------------------------------------------------|----------|----------|----------|----------|
|   | AM PEAK                                            | Approach | EXISTING | NO BUILD | BUILD    |
| 1 | Lebanon Rd. & Supper Club Rd.                      |          | A (8.8)  | A (8.9)  | A (9.0)  |
| 2 | Lebanon Rd. & Stagecoach Rd.                       |          | A (9.7)  | B (10.8) | B (11.6) |
| 3 | Lebanon Rd. & Broad Oak Dr. (Site Dr. #1)          | SBL      | -        | -        | B (11.6) |
|   |                                                    | SBR      | -        |          | B (10.1) |
| 4 | Lebanon Rd. & Lake Michael Park                    |          | A (9.0)  | A (9.6)  | A (9.8)  |
| 5 | Lebanon Rd. & Saddle Club Rd.                      |          | A (9.2)  | B (10.1) | B (10.6) |
| 6 | Saddle Club Rd. & Shallow Spring Dr. (Site Dr. #2) |          |          | н        | A (8.7)  |

| Г      |                                                    |          | 2019     | 20       | 25       |
|--------|----------------------------------------------------|----------|----------|----------|----------|
|        | PM PEAK                                            | Approach | EXISTING | NO BUILD | BUILD    |
| 1      | Lebanon Rd. & Supper Club Rd.                      |          | A (9.5)  | В (10.0) | В (10.4) |
| 2      | Lebanon Rd. & Stagecoach Rd.                       |          | B (11.4) | B (14.6) | C (18.4) |
| 3      | Lebanon Rd. & Broad Oak Dr. (Site Dr. #1)          | SBL      | *        | *        | C (16.2) |
| $\Box$ |                                                    | SBR      | -        | -        | B (10.1) |
| 4      | Lebanon Rd. & Lake Michael Park                    |          | B (11.0) | B (12.7) | B (13.1) |
| 5      | Lebanon Rd. & Saddle Club Rd.                      | ·        | A (9.3)  | B (10.6) | В (11.5) |
| 6      | Saddle Club Rd. & Shallow Spring Dr. (Site Dr. #2) |          | -        | ·        | A (8.7)  |

LOS (delay in seconds)

Note: for unsignalized conditions, LOS and delay indicates only minor street approach with longest delay.



#### Speed Study Results

The City of Mebane requested that a speed study be conducted on Lebanon Road east of the development site where the posted speed limit is 55 MPH. This segment of roadway is presently outside the City Limits, but is likely to be annexed with the completion of the developments along Lebanon Road, sometime in the future. Typically speed limit reduction requests are coordinated between municipalities and appropriate NCDOT Division office, so the information provided in this study is for informational purposes only for the City.

The results of the speed data collection show similar results for both days collected, indicated by the 85<sup>th</sup> percentile speed in the report. The 85<sup>th</sup> percentile speed is the speed at which 85% of drivers at travelling at or below, based on roadway and environment conditions. The results for the speed study are indicated below:

#### **SPEED STUDY RESULTS**

| DATE: Wednesday, October 16, 2019 |           |             |      |         |      |      |  |
|-----------------------------------|-----------|-------------|------|---------|------|------|--|
| Street Name                       | Direction | Percentiles |      |         |      |      |  |
|                                   |           | 15th        | 50th | Average | 85th | 95th |  |
| Lebanon Road (SR 1306)            | Eastbound | 41          | 47   | 47      | 54   | 58   |  |
| Lebanon Road (SR 1306)            | Westbound | 40          | 46   | 46      | 53   | 57   |  |

| DATE: Thursday, October 17, 2019 |           |             |      |         |      |      |  |
|----------------------------------|-----------|-------------|------|---------|------|------|--|
| Street Name                      | Direction | Percentiles |      |         |      |      |  |
|                                  |           | 15th        | 50th | Average | 85th | 95th |  |
| Lebanon Road (SR 1306)           | Eastbound | 41          | 47   | 47      | 53   | 58   |  |
| Lebanon Road (SR 1306)           | Westbound | 33          | 44   | 43      | 52   | 55   |  |

As indicated above, the 85<sup>th</sup> percentile speed for both directions, on both days was between 52 and 54 MPH. With a posted speed limit of 55 MPH, the present posting appears to be supported by the data collected.

#### Bicycle and Pedestrian Level of Service (BLOS/PLOS) Results

There are several different methods to analyze bicycle and pedestrian modes of transportation, and to determine the Bicycle Level of Service (BLOS) and Pedestrian Level of Service (PLOS), but the method to be used to do this is generally site and network dependent. The *Highway Capacity Manual* can be used to determine a LOS value for each mode of transportation, but it too varies by the chapter of the Manual being utilized.

Separately, but part of the basis for the research and development of the BLOS/PLOS for the *Highway Capacity Manual*, use of the BLOS/PLOS Calculator developed by Sprinkle Consulting is possible that can evaluate features that are not dependent upon pedestrian volumes or bicycle volumes. These analyses developed and utilized the "Level of Traffic Stress" measure that determined how well the features of sidewalks, bicycle paths and lanes, and density of users related to the comfort level of each



user. A corresponding chart of values was factored from algorithms derived from research, that set a scale from A to F, similar to automobile LOS, but not based on delay values that is used for the automobile mode. This model is still used across the US for many cities, large and small, and represents a reasonable estimation of Level of Service where pedestrian and bicycle counts are unavailable.

For the evaluation of this site, the developer has committed to the construction of sidewalks within the subdivision on all streets, as well as a ten-foot wide multi-use path extension from adjacent developments through the site. The multi-use path will also be constructed on Lebanon Road to complete a connection between the entrance to Lake Michael Park to the east of the site, and to the same proposed path to be constructed as part of the Stagecoach Corner subdivision on Stagecoach Road. The path will be separated from the travel lanes of Lebanon Road at a comfortable distance varying between 17 and 23 feet, and will cross from the north side of Lebanon Road to the south side at the main site intersection at Broad Oak Drive. By crossing the path at this location, it provides a logical crossing point to allow motorists, cyclists and pedestrians to determine the respective movements of vehicles, bikes and pedestrians to minimize conflicts. The crossing will include a high-visibility type crosswalk and appropriate signage on Lebanon Rd.

Within the subdivision, the multi-use path is proposed to be constructed on the waterway side of the main street, Broad Oak Drive, where there are no lots proposed, thereby eliminating any interruption of the path by driveways to homes. The path crosses Broad Oak Drive approximately halfway along its length, to connect to the continuation of the path along the stream through the subdivision. There are sidewalks proposed on the subdivision streets along one side of each street, as required in the UDO, and are five (5) feet in width. All sidewalks will be constructed with ADA compliant curb ramps at intersections, in accordance with City of Mebane standards. The results of each condition's analysis are summarized below:

### BLOS / PLOS SUMMARY LEBANON ROAD

|                | 2019     | 2025     |                                      |  |  |
|----------------|----------|----------|--------------------------------------|--|--|
|                | EXISTING | NO BUILD | BUILD                                |  |  |
| Bicycle LOS    | C (3.43) | D (3.63) | C (3.45) - Seg 1<br>C (3.40) - Seg 2 |  |  |
| Pedestrian LOS | D (3.97) | D (4.18) | B (2.29) - Seg 1<br>B (2.09) - Seg 2 |  |  |

| LOS | MODEL SCORE |  |
|-----|-------------|--|
| Α   | ≤ 1.50      |  |
| В   | 1.51 - 2.50 |  |
| С   | 2.51 - 3.50 |  |
| D   | 3.51 - 4.50 |  |
| E   | 4.51 - 5.50 |  |
| F   | > 5.50      |  |

The Buildout Level of Service indicates an improvement in the Level of Service for both pedestrians and cyclists, since the proposed development will be providing a left turn lane for the site, as well as the multi-use path connection along both segments. The analysis provides intuitive results to the differences the pedestrian and bicycle features included in a project can have for various related buildout or no-build conditions. These improvements show a significant improvement in the Level of Service by the addition of the multi-use path on Lebanon Road.



#### **Conclusions and Recommendations**

In summary, the residential development site on the north side of Lebanon Road, east of Stagecoach Road in Mebane (Orange County) was analyzed for three (3) separate conditions including 2019 Existing Conditions and 2025 Build and No Build Conditions. The trip generation analysis indicates that the proposed development of one hundred eighty-four (184) single family homes to be constructed in five (5) phases starting in 2020 is expected to generate a total of 1,822 trips per day, with 135 trips during the AM peak hour, and 182 trips in the PM peak hour at buildout. For the purposes of this study, the total volume added to the adjacent roadway network was not reduced for any pass-by trips or Internal Capture trips, since this is a residential subdivision. All scenarios were configured according to NCDOT Congestion Management requirements for capacity analysis. New trips added to the study area from approved adjacent developments presently under construction were considered and included in the future traffic analysis. An analysis of the Bicycle Level of Service and Pedestrian Level of Service was also calculated as required by the City of Mebane Unified Development Ordinance.

For this site construction, two new street accesses will be built for the site that will provide access from Lebanon Road and from Saddle Club Road. The site access on Lebanon Road will be constructed approximately halfway between Stagecoach Road and the entrance to Lake Michael Park, and allow for one entering lane and two exiting lanes. The site access on Saddle Club Road will be constructed approximately 2,100 feet north of Lebanon Road, and allow for one entering lane and one exiting lane. In addition to the roadway network within the site, and required sidewalks, the development will also construct a 10-foot wide multi-use path that connects to Lake Michael Park, and a similar path being constructed on Stagecoach Road as part of an adjacent development. The trial will also be constructed within the subdivision to provide a direct connection for residents of the subdivision, as well as providing future access to adjacent vacant properties. Construction of the project is expected to begin in 2020 and be completed by the end of 2025, pending agency approvals.

Summit Design & Engineering collected traffic count information at the existing intersections, calculated the trip generation for the site development and analyzed the traffic impacts to formulate the recommendations in this study. Discussions with NCDOT Division 7 staff as well as City of Mebane Planning Department staff were conducted to determine the complete scope of the report, including the multi-modal aspects of the study. A speed study on Lebanon Road was also completed at the request of the City, to provide information to the City and NCDOT concerning the possible need for further review of the posted speed limit on Lebanon Road in the vicinity of these subdivisions and the greenway trail.

The existing roadway network demonstrated the ability to adequately handle the added site trips to the network with only minimal improvements, as the Existing, Future No Build and Future Buildout analysis Level of Service indicates adequate roadway capacity under the current operating conditions.



A summary of the results for the study intersections are as follows:

#### **Lebanon Road & Supper Club Road**

Analysis of the existing approaches during build conditions indicate that the intersection movements will operate at acceptable levels of service. There is adequate capacity available to handle additional traffic for the proposed site, the adjacent developments under construction and annual growth.

No improvements are recommended for this intersection.

#### **Lebanon Road & Stagecoach Road**

The existing configuration shows slight increases in delay for both peak hours for No Build and buildout conditions. All of the increased delay is associated with the Stagecoach Road movements, under stop sign control, but continue to provide adequate future capacity as well as minimal delay.

No improvements are recommended for this intersection

### <u>Lebanon Road & Broad Oak Drive (Site Drive #1)</u>

The construction of the development will create this new intersection on Lebanon Road, and provide a left turn lane into the site as well as two lanes exiting the development. All of the delay is associated with the new access drive, with minimal queuing in the left turn lane recommended to be constructed as part of the development. There is adequate capacity available on Lebanon Road to handle additional traffic for the adjacent developments, the proposed site, as well as annual growth.

Construct a new site access road on the north side of Lebanon Road, approximately 374 feet feet east of Stagecoach Road with one entry lane and two exit lanes. Construct a left turn lane on the new site access road with 100 feet of storage and appropriate taper.

Construct a left turn lane on Lebanon Road eastbound at the site access road, with 100 feet of storage and appropriate taper. The construction of this turn lane should be completed within the second phase of the project, to be coordinated with the construction of the multiuse path and its connection to the adjacent development.

#### **Lebanon Road & Lake Michael Park**

Analysis of the existing approaches during build conditions indicate that the intersection movements will operate at acceptable levels of service. There is adequate capacity available to handle additional traffic for the proposed site, the adjacent developments under construction and annual growth.



## <u>Lebanon Road & Lake Michael Park (continued)</u>

No improvements are recommended for this intersection.

#### **Lebanon Road & Saddle Club Road**

Analysis of the existing approaches during build conditions indicate that the intersection movements

will operate at acceptable levels of service. There is adequate capacity available to handle additional traffic for the proposed site, the adjacent developments under construction and annual growth.

No improvements are recommended for this intersection.

## Saddle Club Road & Shallow Spring Drive (Site Drive #2)

The construction of the development will create this new intersection on Saddle Club Road, and provide a single entrance and exit for the proposed site. There is adequate capacity available to handle additional traffic for the adjacent developments, the proposed site, as well as annual growth.

Construct a new site access road on the west side of Saddle Club Road, approximately 2,100 feet north of Lebanon Road, with one entry lane and one exit lane. The site access shall be constructed with the Phase IV build of the subdivision.

All driveway accesses roadway shall be constructed to City of Mebane standards and specifications and per the City's Unified Development Ordinance. Any NCDOT requirements related to NCDOT maintained roadways will be designed to NCDOT standards and specifications.

In conclusion, this study has reviewed the impacts of both background traffic conditions and the proposed traffic to be generated by the site as well as the adjacent developments presently under construction, studied the impacts to the roadway network, and has determined that there will be adequate capacity for future traffic. In addition, this study provided a Level of Service analysis for bicycle and pedestrian modes, and found that the amenities and features proposed with the construction of this development will enhance and improve the non-automobile modes of transportation in the area. Speed information was collected for further evaluating the speed on Lebanon Road by NCDOT, as the adjacent developments are built to completion.

5808 Faringdon Place Raleigh, NC 27609 Phone: 919-872-5115 www.rameykemp.com

February 20, 2020

TO: Cy Stober, AICP

Development Director - City of Mebane

E: cstober@cityofmebane.com

FROM: Jessica McClure, PE

Ramey Kemp and Associates, Inc. E: jmcclure@rameykemp.com

SUBJECT: Tupelo Junction (formerly The Landing at Lake Michael) TIA Review Comments

Mr. Stober:

Ramey Kemp and Associates, Inc. (RKA) has reviewed the subject TIA and issues the following comments.

#### **Study Summary**

The proposed site is a residential development with 184 single family homes located north of Lebanon Road between Stagecoach Road and Saddle Club Road in Mebane, NC. Full buildout is anticipated in 2025. Access is proposed via an unsignalized, full movement driveway on Lebanon Road and an unsignalized, full movement driveway on Saddle Club Road. The development is anticipated to generate approximately 1,820 daily trips during a typical weekday – with 135 occurring during the morning (AM) peak hour and 182 occurring during the afternoon (PM) peak hour.

Existing (2019) traffic conditions, No Build (2025) traffic conditions, and Buildout (2025) traffic conditions were analyzed. Analysis results indicate that all study intersections are expected to operate acceptably under each scenario. Based on traffic volumes, an eastbound left-turn lane with 100' of full width storage plus appropriate taper is recommended on Lebanon Road at the Site Driveway (Broad Oak Drive).

A speed study was also conducted along Lebanon Road. Results indicate the 85<sup>th</sup> percentile speeds (threshold typically used to set speed limits) were reported between 52 miles per hour (mph) and 54 mph. The existing speed limit on this section of Lebanon Road is 55 mph. No speed limit modifications are recommended at this time.

The City of Mebane 2040 Comprehensive Transportation Plan (CTP) recommends a shared-use path across the development frontage to accommodate bicyclists and pedestrians. This is consistent with Mebane's Bicycle and Pedestrian Plan. The development will provide connectivity to the proposed shared-use path that will also be constructed by adjacent developments and a high visibility crossing of Lebanon Road at the main Site Driveway (Board Oak Drive) to provide access to Lake Michael Park.

Based on the review of the Tupelo Junction (formerly The Landing at Lake Michael) TIA, no additional improvements within the study area are recommended.

The following comments relate to deviations from various NCDOT and/or City analysis guidelines. A revised TIA based on these comments is <u>not</u> requested.

## **TIA Report**

- 1. Traffic counts collected at the study intersections appear reasonable.
- 2. There are some minor imbalances in the adjacent development traffic. This is likely due to rounding and the proportional reductions used to determine remaining development densities. This is not anticipated to significantly impact analysis results.
- 3. The trip distribution is reasonable and generally consistent with similar developments in the area.
- 4. The AM peak hour site trips calculated by RKA resulted in 33 entering trips and 102 exiting trips compared to 34 and 101 in the TIA. This is likely due to rounding and is not anticipated to significantly impact analysis results as the total number of AM peak hour trips is the same.
- 5. Figure 7: Primary Site Trip Assignment The entering trips in the PM peak hour are short by one trip. There are minor imbalances in traffic volumes between Broad Oak Drive and Stagecoach Road (loss of one trip in both the AM and PM peak hours). These are not anticipated to significantly impact analysis results.
- 6. Figure 8: 2025 Site Buildout Traffic there are minor inconsistencies between some volumes (NB right-turn and WB left-turn) at the intersection of Lebanon Road and Lake Michael Park across Figure 8, the appendix calculations and Synchro. However, these volumes are relatively low and are not anticipated to significantly impact the analysis results.
- 7. Figure 10: Proposed Traffic Operations The Stop signs at the site driveways should be indicated as proposed by using an asterisk as noted in the legend.
- 8. The bicycle and pedestrian LOS analysis approach and results are reasonable.
- 9. The speed study approach and results are reasonable. No modifications to the speed limit would be warranted at this time based on the 85<sup>th</sup> percentile speeds, which range from 52 mph to 54 mph. The existing speed limit is 55 mph.

### Synchro / SimTraffic Analyses

10. NCDOT Congestion Management Guidelines indicate a volume of 4 should be used for any allowable movements that have actual counts lower than 4. Several movements in the Synchro files have volumes less than 4. However, these volumes are relatively low and are not anticipated to significantly impact the analysis results.



11. NCDOT Congestion Management Guidelines state a total flow period of 60 minutes and a peak flow period of 15 minutes should be used for SimTraffic analyses. Typically, this would be achieved by a seeding period of at least 10 minutes, followed by four 15-minute intervals with the peak hour factor adjusted for the third quarter hour. A seeding period and a single 60-minute internal with no peak hour factor adjustment was used for this analysis. However, the study intersections are under capacity and the queuing results would not be significantly impacted by this change.



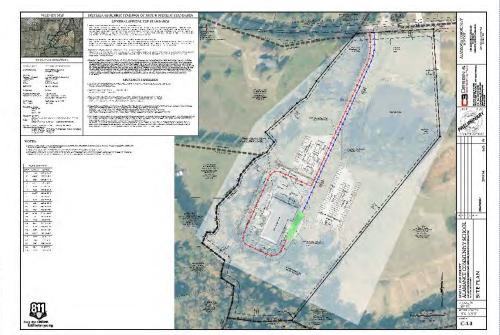


# AGENDA ITEM #5B

SUP 20-02
Board of Adjustment Special Use
Permit—
Alamance Community School
Temporary Use Request

#### Presenter

Ashley Ownbey, City Planner


# **Applicant**

Alamance Community School c/o Leslie Hall Paynter 1024 Mebane Oaks Road P.O. Box 155 Mebane, NC 27302

### **Public Hearing**

Yes ⊠ No □ Quasi-Judicial - BOA

### Site Plan



#### Property

3445 Old Hillsborough Road, Mebane, NC 27302 GPIN 9813498204

# Proposed Zoning

N/A

# Current Zoning

R-20

## Size

+/-16.42

## Surrounding Zoning

R-20, R-12, R-6

# Surrounding Land Uses

Single-Family Residential, Residential Cluster Developments

#### Utilities

On Site

## Floodplain

No

#### Watershed

No

#### City Limits

Yes

#### Summary

Alamance Community School c/o Leslie Hall Paynter, a newly approved charter school, is requesting approval of a special use request to temporarily have Alamance Community School use the Crosslink Community Church's facilities (3445 Old Hillsborough Road) until its permanent campus in Graham is completed and approved for occupancy. Per the Mebane Unified Development Ordinance, all elementary and secondary schools must be approved as a special use by the Mebane Board of Adjustment.

The applicant is proposing to use the existing facilities with no improvements or changes. A traffic study was completed by Ramey, Kemp, and Associates on behalf of the applicant, per NC General Statute, and reviewed by the NC Department of Transportation Municipal School Transportation Assistance staff. The City of Mebane 2040 Comprehensive Transportation Plan and the Bicycle and Pedestrian Transportation Plan both call for a 10' multiuse path along Old Hillsborough Road but this offsite improvement for a safe non-automobile access to the school will not be provided due to the temporary nature of the site use and was part of the approval process for Crosslink Church.

The Technical Review Committee (TRC) has reviewed the site plan and the applicant has revised the plan to reflect the comments. The applicant has an agreement to use the property as a temporary special use, pending approval by the Board of Adjustment.

#### Financial Impact

No improvements are proposed for the site and no revenue is anticipated from the proposed use.

#### Recommendation

The Planning staff has reviewed the request for harmony with the zoning of the surrounding area and consistency with the City's adopted plans and recommends approval.

#### **Suggested Motion**

1. Motion to approve special use request for an Elementary/Secondary School as presented

#### and

- 2. Motion to find that the request is both reasonable and in the public interest because it finds that it:
  - a. Will not materially endanger the public health or safety;
  - b. Will not substantially injure the value of adjoining or abutting property;
  - c. Will be in harmony with the area in which it is located; and
  - d. Will <u>not be fully consistent</u> with the objectives and goals in the City's adopted plans, failing to realize a recommended 10' multiuse path along Old Hillsborough Road recommended in both the City's 2040 Comprehensive Transportation Plan and Bicycle and Pedestrian Transportation Plan. Due to the temporary nature of the use request, these offsite improvements would be unreasonably burdensome upon the applicant. Otherwise, the request is consistent with the City's adopted plans, specifically:

- ☐ The goals and objectives of the G-2 Primary Residential (VI) Growth Area (Jones Drive & South Mebane Oaks Road)
- 3. Motion to deny the special use permit as presented due to a failure to satisfy any one of the four criteria required for approval (NOTE: criterion for failure must be specified)

#### **Attachments**

- 1. Special Use Permit Application
- 2. Zoning Map
- 3. Site Plan
- **4.** Planning Project Report
- 5. Preliminary Water and Sewer System Approval Letter
- 6. Traffic Analysis
- 7. MSTA Review of Traffic Analysis
- **8.** NCDOT District Office Review of Traffic Analysis
- 9. Appraisal Report

Application is hereby made for an amendment to the Mebane Zoning Ordinance as follows:

Name of Applicant: Alamance Community School

Address of Applicant: 3445 Old Hillsborough Rd, Mebane, NC 27302

Address and brief description of property: 3445 Old Hillsborough Rd, Mebane, NC 27302.

Existing church with parking facility.

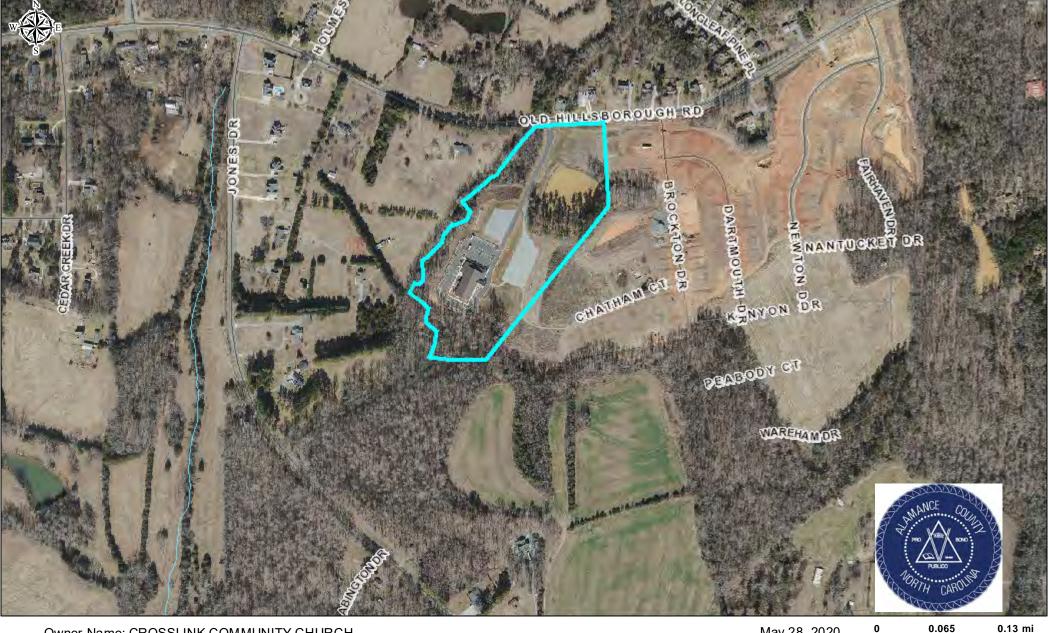
| Applicant's interest in property: (Owned, leased or otherwise) Leased for   | temporary use. |
|-----------------------------------------------------------------------------|----------------|
| *Do you have any conflicts of interest with: Elected/Appointed Officials, S | Staff, etc.?   |
| Yes Explain:                                                                | _ No X         |
| Type of request: Temporary use as a school.                                 |                |
| Sketch attached: Yes X No                                                   | _              |

Reason for the request: Temporary use as a charter school until permanent building is

finished at a separate location. Period of use expected to be no longer than 90 days.

Date: \_\_\_\_\_

05-28-20


Action by Planning Board: \_\_\_\_\_

Public Hearing Date: \_\_\_\_\_\_Action: \_\_\_\_\_

Zoning Map Corrected: \_\_\_\_\_\_

The following items should be included with the application for rezoning when it is returned:

- 1. Tax Map showing the area that is to be considered.
- 2. Names and addresses of all adjoining property owners within a 300' radius (Include those that are across the street).
- 3. \$400.00 Fee to cover administrative costs.
- 4. The information is due 15 working days prior to the Planning Board meeting. The Planning Board meets the 2<sup>nd</sup> Monday of each month at 6:30 p.m. Then the request goes to the City Council for a Public Hearing the following month. The City Council meets the 1<sup>st</sup> Monday of each month at 6:00 p.m.



Owner Name: CROSSLINK COMMUNITY CHURCH

1030 MEBANE OAKS ROAD MEBANE, NC 27302 GPIN: 9813498204 PID: 10-25-130

ABSS Bus Stop Meal Delivery



PERMIT APPROVED

**Heavy Industrial Development Applicants** 



APPLIED FOR PERMIT



PERMIT RENEWED



UNDER CONSTRUCTION

May 28, 2020

# 0.065

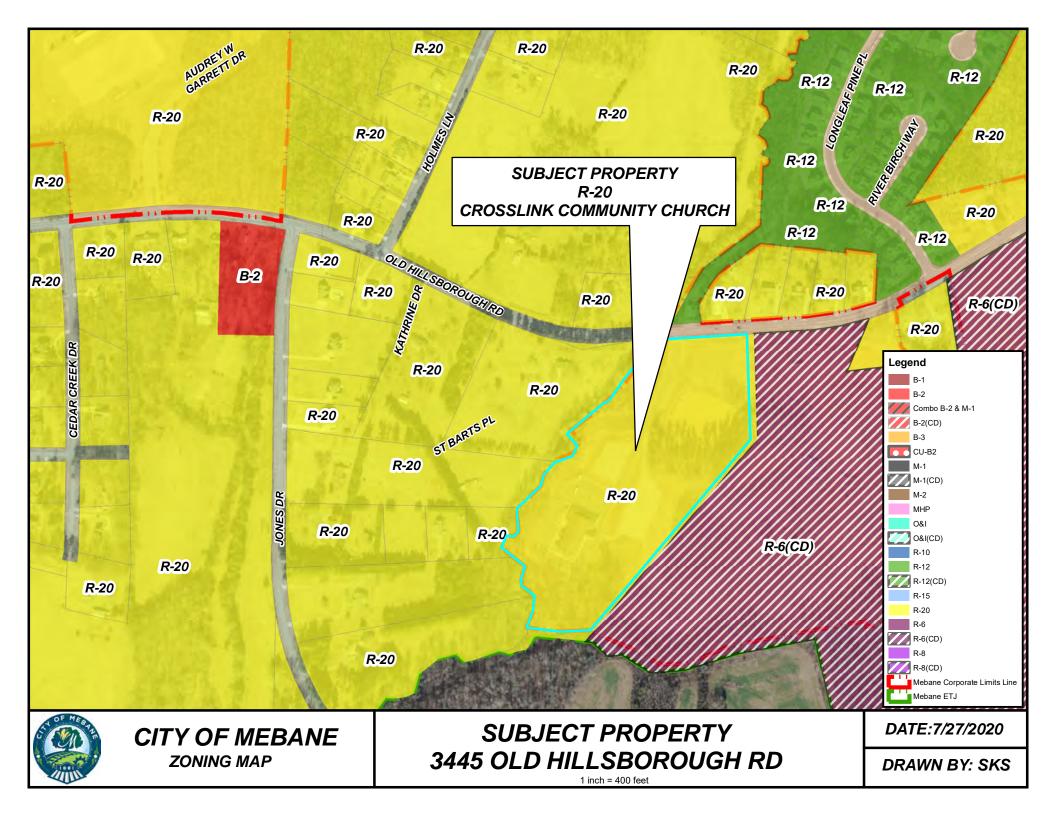
DSCLAMER:
The datasets and maps available are not survey grade or a legal document. They are a best approximation of what is on the ground, but do contain errors. The data comes from various sources nationally, the stake of North Carolina, and here in Alamance County. Alamance County will not be held responsible for the misuse, misrepsensation, or mishierprestion of the data or maps. These maps and data are a service provided for the benefit for Alamance County citizens. We constantly skrive to improve the quality and expand the amount of data and maps available.

ALAMANCE CO UNTY shall assume no liability for any errors, omissions, or inaccuracies in the information provided regardless of how caused; or any decision made or action taken or not taken by user in reliance upon any information or data turnished hererunder. The user knowley waive any and all darins for damages against any and all of the entitles comprising the Alamance County OSS system that may arise from the mapping data. Data 252/2020

Alamance County GIS



# **Special Use Permit Findings of Fact & Specific Standards**


# **General Special Use Standards**

- 1. Will not materially endanger the public health or safety; or Since the proposed use is occupying an existing structure of recent construction, the public water and sanitary components are already addressed and to current code, therefore proposing no endangerment to the public health, safety and welfare of the general public. Additionally, existing facility has sufficient distance from the Old Hillsborough Road Right of way to accommodate the required stacking of the proposed use. Hence, the safety of public transportation and travel within the public right of way or at the entrance to the site in not anticipated to materially endanger the public.
- 2. Will not substantially injure the value of adjoining or abutting property; or Since the proposed use is occupying the existing structure currently used as a church, both being institutional type uses, there is no injury to the existing value of surrounding properties. Additionally, based upon prior experience and projects, there has been no injury to values of surrounding properties related to Institutional Uses, whether school or place of worship.
- 3. Will be in harmony with the area in which it is to be located; or Given the activities of the proposed use, hours of operation, and distance from adjacent properties, the use of the church as a school would maintain the harmony of the surrounding uses and community with no material impacts to the quality of life of the surrounding property owners.
- 4. Will be in general conformity with the land use plan or other plans and policies officially adopted by the City Council.
  - The proposed use would be consistent with existing and future adopted plans for the City of Mebane. The current zoning is R-20 CD, whereby the City officials have already found that the current use as an institutional use would be consistent with the adopted plans. Being the proposed use is also institutional, it would be in keeping with the consistencies previously approved. As far as future plans, the growth strategy for this area is noted as G-2, Residential, whereby the City is hoping to encourage nodes and village type communities that provide services and amenities within. Institutional uses such as the existing and proposed uses are included in those uses required to create and complete the village/community node. The lot size of the existing property is such that it is very large compared to the footprint of the use, therefore also complying with the county's objective to promote conservation development.

#### CLIENT-FOCUSED • COMPREHENSIVE • COST-EFFECTIVE

# **Specific Standards**

- 1. Development Standards are Required: RA-20, R-20, R-15, R-12, R-10, R-8, R-6, O&I, B-2, and B-3 districts.
  - Subject property is zoned R-20.
- 2. Minimum Area: Minimum lot size shall be 3 acres. Subject property is ±16.18 acres.
- 3. Vehicular Access: Principal access shall be from a collector or higher capacity road. Existing access is from Old Hillsborough Road, which is at minimum a collector road.
- 4. Screening: All parking lots shall be screened from all adjoining residential uses or residentially-zoned lots by a buffer yard. The required buffer yard shall comply with the requirements of Section 6-3.
  - Existing parking facilities are already set back sufficiently from neighboring properties.
- 5. Site Plans: In addition to the site plan requirements of Appendix A, the required site plan shall show (i) the proposed points of access and egress and the pattern of internal circulation, loading, and unloading and (ii) the location of extent of playgrounds, athletic fields, and other outdoor recreation areas.
  - Proposed point of access/egress is on Old Hillsborough Road. Internal circulation pattern is shown on the site plan. Vegetated areas immediately adjacent to the school may be used for outdoor activities, however, there are no formal playgrounds or athletic fields proposed since the use is expected to be short term.



# SITE INFORMATION

**CURRENT OWNER:** CROSSLINK COMMUNITY CHURCH

1030 MEBANE OAKS ROAD **OWNER ADDRESS:** 

MEBANE, NC 27302 9813498204 3445 OLD HILLSBOROUGH ROAD PROPERTY ADDRESS:

CITY OF MEBANE

NORTH CAROLINA

JURISDICTION: STATE:

PIN NUMBER:

DB 3176 / PG 554 REFERENCE: PARCEL SIZE: 16.42 AC

EXISTING ZONING/USE: R-20 /CHURCH R-20 /ELEMENTARY SCHOOL PROPOSED ZONING/USE:

(TEMPORARY - 60 DAYS MAX.) **WATERSHED**: CANE CREEK - HAW RIVER CAPE FEAR

RIVER BASIN: **BUILDING SETBACKS:** 

FRONT - 30' SIDE - 10 REAR - 2

STUDENTS: 400 TOTAL (OPERATING AT 50% CAPACITY - ONLY 200 STUDENTS PER DAY) 40 TOTAL (OPERATING AT 50% CAPACITY - ONLY 20 STAFF PER DAY)

PARKING REQUIRED: 20 SPACES (5 SPACES + 1 SPACE/EMPLOYEE) **EXISTING PARKING PROVIDED:** PAVED PARKING: 117 SPACES (109 STANDARD, 8 ADA ACCESSIBLE)

GRAVEL PARKING: 140 SPACES
TOTAL PARKING: 257 SPACES

3. WILL BE IN HARMONY WITH THE AREA IN WHICH IT IS TO BE LOCATED; OR GIVEN THE ACTIVITIES OF THE PROPOSED USE, HOURS OF OPERATION, AND DISTANCE FROM ADJACENT PROPERTIES, THE USE OF THE CHURCH AS A SCHOOL WOULD MAINTAIN THE HARMONY OF THE SURROUNDING USES AND COMMUNITY WITH NO MATERIAL IMPACTS TO THE QUALITY OF LIFE OF THE

GENERAL SPECIAL USE STANDARDS

4.WILL BE IN GENERAL CONFORMITY WITH THE LAND USE PLAN OR OTHER PLANS AND POLICIES OFFICIALLY ADOPTED BY THE CITY COUNCIL. THE PROPOSED USE WOULD BE CONSISTENT WITH EXISTING AND FUTURE ADOPTED PLANS FOR THE CITY OF MEBANE. THE CURRENT ZONING IS R-20 CD, WHEREBY THE CITY OFFICIALS HAVE ALREADY FOUND THAT THE CURRENT USE AS AN INSTITUTIONAL USE WOULD BE CONSISTENT WITH THE ADOPTED PLANS. BEING THE PROPOSED USE IS ALSO INSTITUTIONAL, IT WOULD BE IN KEEPING WITH THE CONSISTENCIES PREVIOUSLY APPROVED. AS FAR AS FUTURE PLANS, THE GROWTH STRATEGY FOR THIS AREA IS NOTED AS G-2, RESIDENTIAL, WHEREBY THE CITY IS HOPING TO ENCOURAGE NODES AND VILLAGE TYPE COMMUNITIES THAT PROVIDE SERVICES AND AMENITIES WITHIN. INSTITUTIONAL USES SUCH AS THE EXISTING AND PROPOSED USES ARE INCLUDED IN THOSE USES REQUIRED TO CREATE AND COMPLETE THE VILLAGE/COMMUNITY NODE. THE LOT SIZE OF THE EXISTING PROPERTY IS SUCH THAT IT IS VERY LARGE COMPARED TO THE FOOTPRINT OF THE USE, THEREFORE ALSO COMPLYING WITH THE COUNTY'S OBJECTIVE TO PROMOTE CONSERVATION

# SPECIFIC STANDARDS

1. DEVELOPMENT STANDARDS ARE REQUIRED: RA-20, R-20, R-15, R-12, R-10, R-8, R-6, O&I, B-2, AND B-3 DISTRICTS. SUBJECT PROPERTY IS ZONED R-20.

2. MINIMUM AREA: MINIMUM LOT SIZE SHALL BE 3 ACRES. SUBJECT PROPERTY IS ±16.18 ACRES.

. WILL NOT MATERIALLY ENDANGER THE PUBLIC HEALTH OR SAFETY; OR

THE ENTRANCE TO THE SITE IN NOT ANTICIPATED TO MATERIALLY ENDANGER THE PUBLIC.

2. WILL NOT SUBSTANTIALLY INJURE THE VALUE OF ADJOINING OR ABUTTING PROPERTY; OR

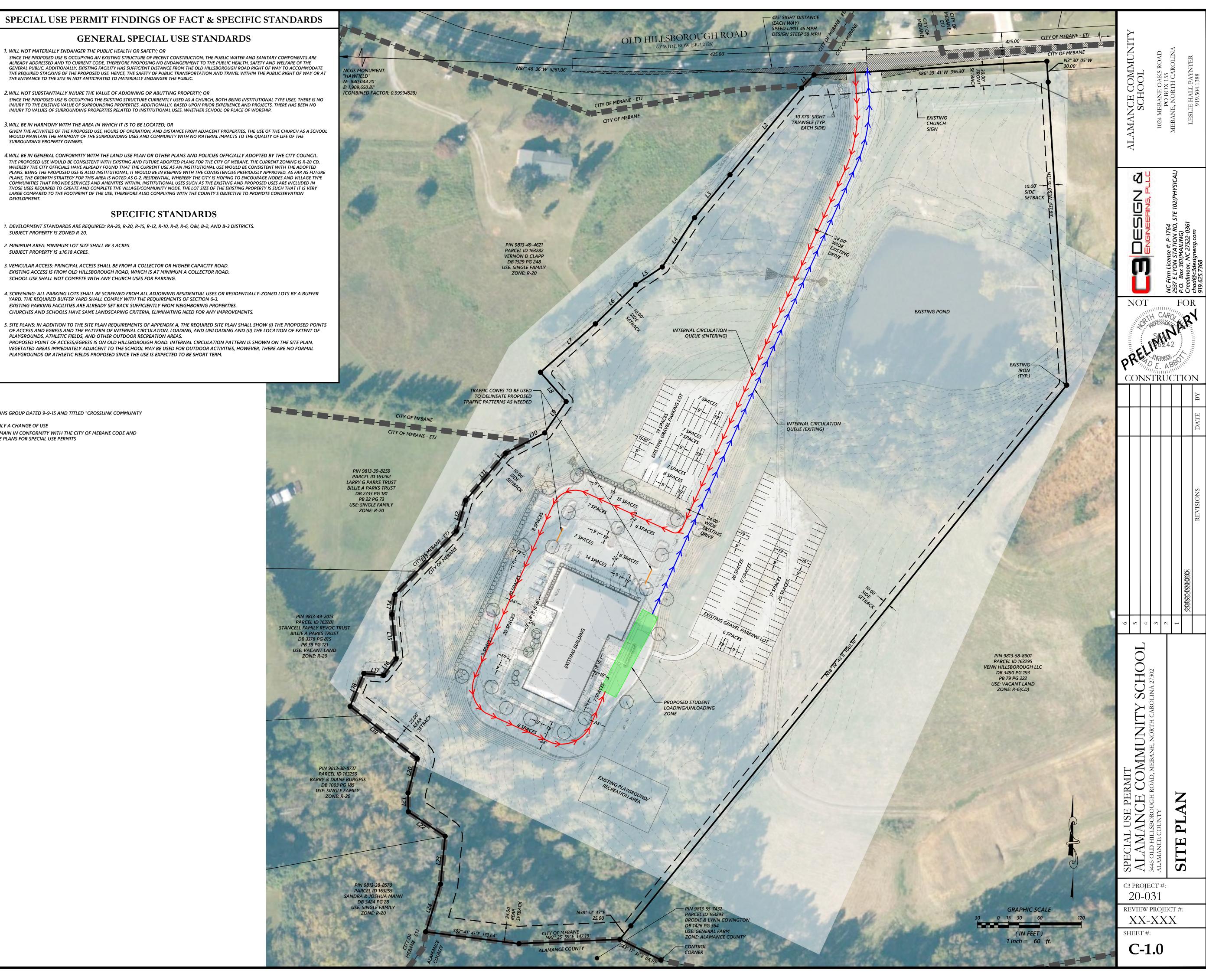
3. VEHICULAR ACCESS: PRINCIPAL ACCESS SHALL BE FROM A COLLECTOR OR HIGHER CAPACITY ROAD. EXISTING ACCESS IS FROM OLD HILLSBOROUGH ROAD, WHICH IS AT MINIMUM A COLLECTOR ROAD. SCHOOL USE SHALL NOT COMPETE WITH ANY CHURCH USES FOR PARKING.

4. SCREENING: ALL PARKING LOTS SHALL BE SCREENED FROM ALL ADJOINING RESIDENTIAL USES OR RESIDENTIALLY-ZONED LOTS BY A BUFFER YARD. THE REQUIRED BUFFER YARD SHALL COMPLY WITH THE REQUIREMENTS OF SECTION 6-3. EXISTING PARKING FACILITIES ARE ALREADY SET BACK SUFFICIENTLY FROM NEIGHBORING PROPERTIES. CHURCHES AND SCHOOLS HAVE SAME LANDSCAPING CRITERIA, ELIMINATING NEED FOR ANY IMPROVEMENTS.

5. SITE PLANS: IN ADDITION TO THE SITE PLAN REQUIREMENTS OF APPENDIX A, THE REQUIRED SITE PLAN SHALL SHOW (I) THE PROPOSED POINTS OF ACCESS AND EGRESS AND THE PATTERN OF INTERNAL CIRCULATION, LOADING, AND UNLOADING AND (II) THE LOCATION OF EXTENT OF PLAYGROUNDS, ATHLETIC FIELDS, AND OTHER OUTDOOR RECREATION AREAS. PROPOSED POINT OF ACCESS/EGRESS IS ON OLD HILLSBOROUGH ROAD. INTERNAL CIRCULATION PATTERN IS SHOWN ON THE SITE PLAN.

VEGETATED AREAS IMMEDIATELY ADJACENT TO THE SCHOOL MAY BE USED FOR OUTDOOR ACTIVITIES, HOWEVER, THERE ARE NO FORMAL PLAYGROUNDS OR ATHLETIC FIELDS PROPOSED SINCE THE USE IS EXPECTED TO BE SHORT TERM.

# **NOTES:**


1. EXISTING CONDITIONS TAKEN FROM PROPOSED LANDSCAPING PLAN BY TIMMONS GROUP DATED 9-9-15 AND TITLED "CROSSLINK COMMUNITY CHURCH AS WELL AS ALAMANCE COUNTY GIS.

2. THERE ARE NO PROPOSED IMPROVEMENTS TO THE EXISTING DEVELOPMENT, ONLY A CHANGE OF USE

3. IT IS ANTICIPATED THAT ALL EXISTING FEATURES OF THE SUBJECT PROPERTY REMAIN IN CONFORMITY WITH THE CITY OF MEBANE CODE AND THEREFORE MEET ALL OF THE REQUIREMENTS OF THE CITY UDO REGARDING SITE PLANS FOR SPECIAL USE PERMITS

| PARCEL LINE TABLE |          |               |  |  |
|-------------------|----------|---------------|--|--|
| LINE #            | DISTANCE | BEARING       |  |  |
| L1                | 22.04'   | S43° 34' 54"W |  |  |
| L2                | 166.25'  | N39° 36' 37"E |  |  |
| L3                | 80.15'   | S39° 29' 44"W |  |  |
| L4                | 84.92'   | S33° 16' 24"W |  |  |
| L5                | 46.14'   | S56° 21' 37"W |  |  |
| L6                | 81.08'   | S45° 46' 05"W |  |  |
| L7                | 105.28'  | S48° 38' 20"W |  |  |
| L8                | 56.03'   | S41° 06' 49"E |  |  |
| L9                | 54.67'   | S34° 15' 06"W |  |  |
| L10               | 63.20'   | S62° 28' 22"W |  |  |
| L11               | 89.71'   | S40° 18' 50"W |  |  |
| L12               | 45.82'   | S16° 37' 25"W |  |  |
| L13               | 127.51'  | S44° 06' 48"W |  |  |
| L14               | 29.09'   | S8° 39' 45"W  |  |  |
| L15               | 64.16'   | S5° 25' 03"E  |  |  |
| L16               | 29.70'   | S37° 11' 56"W |  |  |
| L17               | 28.74'   | N84° 43' 15"W |  |  |
| L18               | 51.38'   | S22° 37' 19"W |  |  |
| L19               | 122.42'  | S52° 12' 16"E |  |  |
| L20               | 51.58'   | S14° 50' 19"W |  |  |
| L21               | 27.00'   | S0° 51' 41"E  |  |  |
| L22               | 63.67'   | S56° 24' 01"E |  |  |
| L23               | 69.41'   | S5° 23' 04"W  |  |  |
| L24               | 71.90'   | S16° 59' 49"W |  |  |





# PLANNING PROJECT REPORT

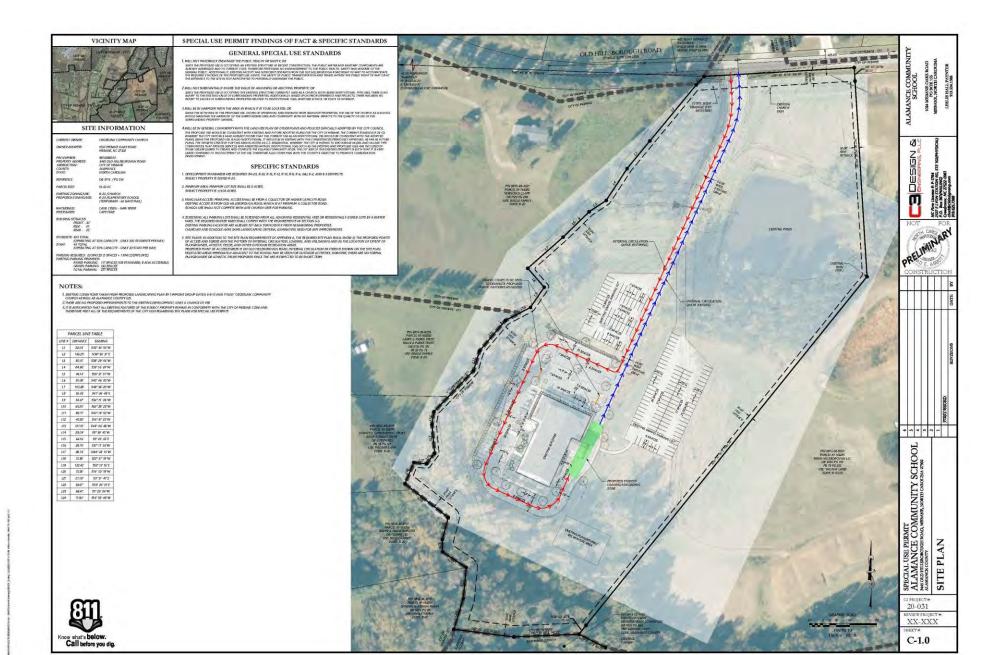
DATE 07/02/20
PROJECT NUMBER SUP 20-02

PROJECT NAME Alamance Community School Temporary Use Request

Alamance Community School

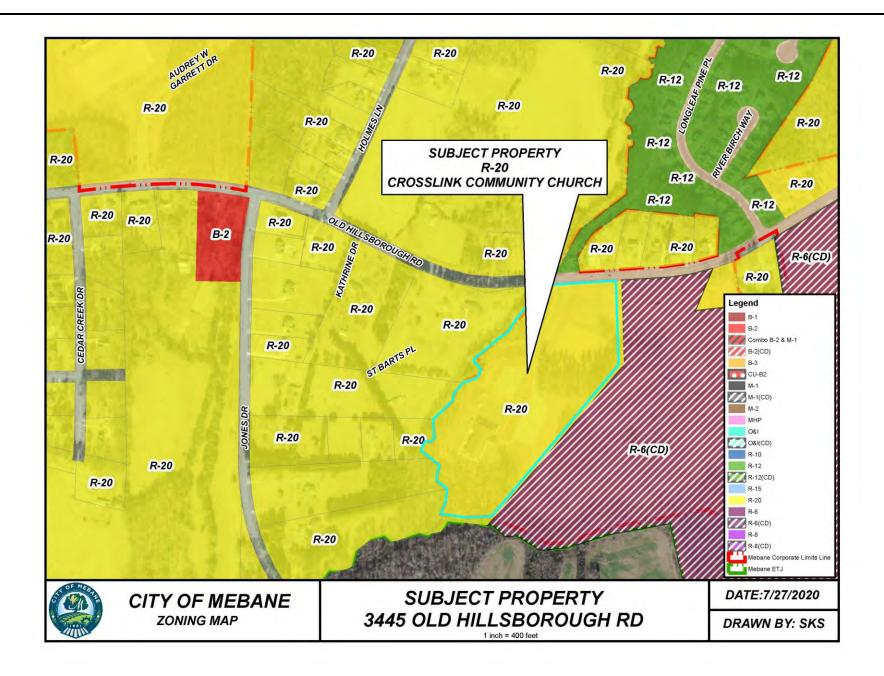
c/o Leslie Hall Paynter

1024 Mebane Oaks Road


P.O. Box 155

Mebane, NC 27302

# **CONTENTS**


**APPLICANT** 

| PROJECT NAME & APPLICANT            | PAGE 1 |
|-------------------------------------|--------|
| ZONING REPORT                       | PAGE 3 |
| LAND USE REPORT                     | PAGE 5 |
| UTILITIES REPORT                    | PAGE 7 |
| STAFF ZONING REQUEST RECOMMENDATION | PAGE 8 |



# **ZONING REPORT**

| EXISTING ZONE           | R-20 (Single-Family Residential)                                                      |  |  |  |
|-------------------------|---------------------------------------------------------------------------------------|--|--|--|
| REQUESTED ACTION        | N/A                                                                                   |  |  |  |
| CONDITIONAL ZONE?       | □YES ⊠NO                                                                              |  |  |  |
| CURRENT LAND USE        | Crosslink Community Church, peak use on Sundays                                       |  |  |  |
| PARCEL SIZE             | +/-16.42 ac                                                                           |  |  |  |
|                         | Crosslink Community Church                                                            |  |  |  |
| PROPERTY OWNERS         | 1030 Mebane Oaks Road                                                                 |  |  |  |
| PROPERTY OWNERS         | Mebane, NC 27302                                                                      |  |  |  |
|                         | GPIN 9813498204                                                                       |  |  |  |
|                         | The applicant is requesting a special use permit be granted for this church to be     |  |  |  |
| LEGAL DESCRIPTION       | temporarily used as a K-3 charter school until their primary campus in Graham is able |  |  |  |
|                         | to be occupied. The period of use will not exceed 90 days.                            |  |  |  |
|                         | All properties surrounding the subject property are zoned R-20 with the exception of  |  |  |  |
| AREA ZONING & DISTRICTS | the R-6 Residential Cluster to the east, which is the Magnolia Glen development, and  |  |  |  |
| AREA ZONING & DISTRICTS | the R-12 Residential Cluster to north across Old Hillsborough Road, which is the      |  |  |  |
|                         | Arbor Creek development                                                               |  |  |  |
| SITE HISTORY            | The property has been the site of Crosslink Community Church since 2017. There is     |  |  |  |
| SITE HISTORY            | no proposed change in this primary use.                                               |  |  |  |
|                         | STAFF ANALYSIS                                                                        |  |  |  |
| CITY LIMITS?            | ⊠YES □NO                                                                              |  |  |  |
| PROPOSED USE BY-RIGHT?  | □YES ⊠NO                                                                              |  |  |  |
| SPECIAL USE?            | ⊠YES □NO                                                                              |  |  |  |
| EXISTING UTILITIES?     | ⊠YES □NO                                                                              |  |  |  |
| POTENTIAL IMPACT OF     | There is no rezoning request, only a special use request to use the existing building |  |  |  |
| PROPOSED ZONE           | and facilities for a new, temporary use.                                              |  |  |  |



# LAND USE REPORT

| EXISTING LAND USE                    | Church                                                                                                                                                                                                     |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROPOSED LAND USE & REQUESTED ACTION | The applicant is requesting a special use permit for a K-3 school to accommodate up to 200 students for a temporary period of no longer than 90 days until their primary campus in Graham may be occupied. |
| PROPOSED ZONING                      | N/A                                                                                                                                                                                                        |
| PARCEL SIZE                          | +/-16.42                                                                                                                                                                                                   |
| AREA LAND USE                        | All of the surrounding land uses are single-family residences, though their density varies depending upon whether they are served by municipal utilities or not.                                           |
| ONSITE AMENITIES & DEDICATIONS       | The applicant is not proposing to provide any new amenities or dedications, though Crosslink Community Church still has outstanding obligations.                                                           |
| WAIVER REQUESTED                     | □YES ⊠NO                                                                                                                                                                                                   |
| DESCRIPTION OF REQUESTED WAIVER(S)   |                                                                                                                                                                                                            |

| CONSISTENCY WITH MEBANE BY DESIGN STRATEGY        |                                                                                                         |  |  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| LAND USE GROWTH STRATEGY<br>DESIGNATION(S)        | G-2 Primary Residential (VI) Growth Area (Jones Drive & South Mebane<br>Oaks Road)<br>Conservation Area |  |  |
| MEBANE BY DESIGN GOALS & OBJECTIVES SUPPORTED     |                                                                                                         |  |  |
| MEBANE BY DESIGN GOALS & OBJECTIVES NOT SUPPORTED |                                                                                                         |  |  |



# UTILITIES REPORT

| AVAILABLE UTILITIES                                                     | ⊠YES □NO                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROPOSED UTILITY NEEDS                                                  | The applicant proposes to use the existing utilities of Crosslink Community Church. Per the memo from City Engineer Franz Holt, this facility can accommodate a student population of 200 with associated faculty.                                                                                                                                                                                    |
| UTILITIES PROVIDED BY APPLICANT                                         | None                                                                                                                                                                                                                                                                                                                                                                                                  |
| MUNICIPAL CAPACITY TO ABSORB PROJECT                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                   |
| CONSISTENCY WITH MEBANE LONG RANGE UTILITY PLAN?                        | ⊠YES □NO                                                                                                                                                                                                                                                                                                                                                                                              |
| ADEQUATE STORMWATER CONTROL?                                            | ⊠YES □NO                                                                                                                                                                                                                                                                                                                                                                                              |
| INNOVATIVE STORMWATER MANAGEMENT?                                       | □YES ⊠NO                                                                                                                                                                                                                                                                                                                                                                                              |
| TRA                                                                     | NSPORTATION NETWORK STATUS                                                                                                                                                                                                                                                                                                                                                                            |
| CURRENT CONDITIONS                                                      | Old Hillsborough Road at this location experiences an average of 6,400 trips per day and has a level of service (LOS) D. With nearby transportation improvements, it is forecast to improve to a LOS C. Old Hillsborough Road at the Jones Drive intersection has a Safety Score of 66.7, with two people killed in automobile crashes, three pedestrians struck, and two people injured.             |
| TRAFFIC IMPACT ANALYSIS REQUIRED?                                       | ⊠YES □NO                                                                                                                                                                                                                                                                                                                                                                                              |
| DESCRIPTION OR RECOMMENDED IMPROVEMENTS                                 | A traffic study was completed by Ramey, Kemp, and Associates and reviewed by NCDOT District and Municipal & School Transportation Assistance Unit staff. Per the memo from District Engineer C.N. Edwards, Jr., none of the external improvements described in the study are required. Internal modifications and implementation of the traffic management plan are the responsibility of the school. |
| CONSISTENCY WITH THE MEBANE BICYCLE AND PEDESTRIAN TRANSPORTATION PLAN? | ⊠YES □NO                                                                                                                                                                                                                                                                                                                                                                                              |
| MULTIMODAL IMPROVEMENTS PROVIDED BY APPLICANT?                          | □YES ⊠NO                                                                                                                                                                                                                                                                                                                                                                                              |
| DESCRIPTION OF MULTIMODAL IMPROVEMENTS                                  | The applicant does not propose to make any multimodal improvements due to the temporary nature of the requested special use.                                                                                                                                                                                                                                                                          |

# STAFF RECOMMENDATION

| STAFF ZONING<br>RECOMMENDATION                                                       | ☐ APPROVE ☐ DISAPPROVE                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| STAFF SPECIAL USE FINDING                                                            | ☑ CONSISTENT ☐ NOT CONSISTENTWITH MEBANE BY  DESIGN                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| RATIONALE                                                                            | The proposed development "Alamance Community School Temporary Use" is consistent with the guidance provided within Mebane By Design, the Mebane Comprehensive Land Development Plan, and is in harmony with the surrounding zoning of the area. Given the temporary nature of the use request, multimodal improvements consistent with the City's 2040 Comprehensive Transportation Plan or Bicycle and Pedestrian Transportation Plan are not proposed. |  |  |  |
| F                                                                                    | PUBLIC INTEREST CONFORMANCE?                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| ENDANGER PUBLIC HEALTH OR SAFETY?                                                    | □YES □NO                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| SUBSTANTIALLY INJURE THE VALUE OF ADJOINING OR ABUTTING PROPERTY?                    | □YES □NO                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| HARMONIOUS WITH THE AREA IN WHICH IT IS LOCATED?                                     | □YES □NO                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                                                                                      | <ul> <li>The application is consistent with the objectives and policies for growth and development contained in the City of Mebane Comprehensive Land Development Plan, Mebane By Design, and, as such, has been recommended for approval.</li> <li>The application is not fully consistent with the objectives and</li> </ul>                                                                                                                           |  |  |  |
| CONSISTENT WITH MEBANE BY DESIGN, THE MUNICIPAL COMPREHENSIVE LAND DEVELOPMENT PLAN? | policies for growth and development of the City of Mebane Comprehensive Land Development Plan, <i>Mebane By Design</i> , but is otherwise in the public interest and has been recommended for approval. The Comprehensive Land Development Plan must be amended to reflect this approval and ensure consistency for the City of Mebane's long-range planning objectives and policies.                                                                    |  |  |  |
|                                                                                      | ☐ The application is not consistent with the objectives and policies for growth and development of the City of Mebane Comprehensive Land Development Plan, <i>Mebane By Design</i> , and, as such, has been recommended for denial.                                                                                                                                                                                                                      |  |  |  |



**Technical Memorandum** 

Date: July 24th, 2020

To: Ashley Ownbey, Planner

From: Franz K. Holt, P.E. 7#

Subject: Alamance Community School - City Engineering review

City Engineering has reviewed the revised site plan for the Alamance Community School (ACS) received July 23, 2020 prepared by Chad Abbott, P.E. with C3 Design & Engineering, PLLC. Comments are as follows:

#### A. General Summary

- 1. Crosslink Church is proposed to be used as the temporary location for the ACS.
- 2. No additional stormwater control measures are required at the existing facility.
- 3. No additional water and sewer improvements are required at the existing facility.
- 4. Revised car "stacking" plan meets suggested revision from Ramey Kemp (role as traffic engineer for the City of Mebane).
- 5. No additional driveway improvement connections are required or proposed at Old Hillsborough Rd.
- 6. NCDOT may need to provide a temporary driveway permit for the temporary change is use (church to school). NCDOT has indicated that if any off-site roadway improvements are needed, they will not be a City of Mebane responsibility to install.

# B. Availability of City Water and Sewer

Regarding the site plan and in accordance with paragraph 7-4.3 A.3.a. in the UDO, this memo is provided to indicate that I have reviewed the existing water and sewer system layout and find that it adequately meets the proposed change in temporary use as follows:

- 1. Water system No changes proposed or needed to the existing water system based on a probable temporary use of less than 2,000 gallons per day.
- 2. Sanitary Sewer system No changes needed to the existing sewer system based on a probable temporary use of less than 2,000 gallons per day. Downstream sewer pump stations and WRRF can handle this temporary demand. Food service prep not done on site so no additional related grease trap concerns.



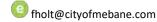
#### C. Watershed Overlay District and Phase II Stormwater Requirements

1. Watershed Overlay District requirements are provided under Sec. 5.2 of the UDO.

These requirements in the UDO are for the Back-Creek Watershed, which includes the Graham-Mebane Lake. The project is tributary to the Little Haw Creek; a Class V watershed and the Watershed Overlay District requirements do not apply to this project. This type of watershed classification (Class V) does not have density restrictions or built upon restrictions as required for the Graham Mebane Lake watershed.

#### 2. Phase II Stormwater Post Construction Ordinance

Sec. 5.4 in the UDO provides standards for Storm Water Management and 5.4.F requires compliance with the Mebane Post Construction Runoff Ordinance (which is a stand-alone ordinance titled the Phase II Stormwater Post Construction Ordinance (SPCO)). The standards in the UDO are general standards as the Ordinance itself provide detailed standards. While the standard is applicable, the threshold of land disturbance of less than 1 acre being shown exempts the project for any new stormwater control requirements.


#### D. Storm Drainage System

Sec. 5-4. D. in the UDO provides requirements for storm drainage systems. No new storm drain improvements are proposed or needed.

#### E. Street Access and Traffic Analysis

Access to Old Hillsborough Road is unchanged. The City's Traffic Analysis by Ramey Kemp indicated proposed car "stacking" recommendations which are met with the revised site plan. As of this memo date there are recommendations for additional striping on Jones Road at the Old Hillsborough Road intersection and on Old Hillsborough Road at NC 119. NCDOT has not completed their review which could alter these recommendations. NCDOT has also indicated that any required improvements will not be a City of Mebane responsibility to install.

F. Construction Plan Submittal – We do not anticipate any additional drawings being required.



# RAMEY KEMP ASSOCIATES

Moving forward.

T 919 872 5115

5808 Faringdon Place Raleigh, NC 27609

July 6, 2020

Cy Stober, AICP SchoolDev 106 East Washington Street Mebane, NC 27302

Phone: (919)563-9990

Email: cstober@cityofmebane.com

Subject: Traffic Analysis

Alamance Community Charter Temporary Site - Mebane, NC

#### Dear Mr. Stober:

This letter provides the findings of a traffic analysis prepared by Ramey Kemp & Associates, Inc. (RKA) for the proposed Alamance Community Charter Temporary Site to be temporarily located at the existing Crosslink Community Church (3457 Old Hillsborough Road) in Mebane, North Carolina. The purpose of the study is to evaluate anticipated traffic impacts caused by the proposed temporary site. The site will use the existing driveway of the Crosslink Community Church (Site Access). The scope for the following capacity analysis was requested by the City of Mebane (City) and not required by the North Carolina Department of Transportation (NCDOT).

The proposed temporary school is anticipated to have a maximum of 400 total students enrolled at the school; however, due to the COVID-19 pandemic and because it will be a temporary space, the school will only have a maximum of 220 students at any given time on campus. Based on discussion with the project team, all students will be in grades K-3. The temporary school is anticipated to be operational for a maximum of 45 days and no buses are anticipated to be provided during that time. Refer to Figure 1 located in the Appendix A for a site location map. Refer to Figure 2 located in Appendix A for the Crosslink Community Church site plan.

This analysis considers No-Build (2020) and Build (2020) traffic conditions for the study intersections during the weekday AM and PM peak hours. The study network was analyzed using the weekday PM peak hour (4:00 – 6:00 PM) of the network, which is expected to occur after the school day (8:25 AM – 3:25 PM) has ended. The bell schedule is also anticipated to be offset from the nearby schools which would lower volumes further during both the weekday AM and PM peak hours. The existing schools' bell schedules and the proposed school's bell schedule are as follows:

- Audrey W Garrett Elementary: 8:00 AM 3:25 PM
- Hawfields Middle School: 7:50 AM 2:40 PM
- Proposed Alamance Community Charter Temporary School: 8:25 AM 3:25 PM

Based on the above schedules, the anticipated bell schedule for the temporary site is expected to start at least 25 minutes after nearby schools. This time would be expected to allow adjacent school traffic to leave the network. Utilizing the weekday AM and PM peak hours is expected to provide a conservative analysis and result in higher delays than what would be expected during the school AM and PM peak hours.



Transportation Consulting that moves us forward. Moving forward.

Internal analysis was performed utilizing Synchro and SimTraffic and simulated based on NCDOT Municipal and School Transportation Assistance (MSTA) requirements per the MSTA School Calculator.

Based on the scoping meeting attended on June 4th, 2020, the study area consists of the following intersections as identified by the City:

- Old Hillsborough Road / Trollingwood Hawfields Road and NC 119\*
- Old Hillsborough Road and Jones Drive\*
- Old Hillsborough Road and Mebane Oaks Road\*
- Old Hillsborough Road and Site Access

\*Based on the scoping meeting on June 4th, 2020, these intersections were only required to be analyzed for the City. NCDOT only required analysis at the intersection of Old Hillsborough Road and Site Access.

## **Campus Features**

The proposed school will be temporarily located at the existing Crosslink Community Church (3457 Old Hillsborough Road) in Mebane, NC. The site has an existing driveway (Site Access) with one ingress and two egress lanes. It should be noted that no buses are not expected to be provided at the site.

# **Loading Operations**

Two alternatives were considered for the circulation pattern of the site. Alternative 1 would allow entering vehicles to enter the site and follow a counterclockwise flow around the building and drop students off at the east entrance. Alternative 2 would allow parents to perform a clockwise movement around the building and drop students off at the west entrance. The study intersections are not expected to be impacted by these alternatives and thus were not expected to change between Alternative 1 and Alternative 2. Refer to the Stacking section of this report for more information.

#### **Existing Roadways**

Existing lane configurations at the study intersections, lane widths, storage capacities, and other roadway information was collected by Ramey Kemp Associates. Existing lane configurations can be found in Figure 3. Table 1, on the following page, provides a summary of the data collected.



RAMEY KEMP ASSOCIATES

Table 1: Existing Roadway Inventory

| Road Name                      | Route<br>Number | Typical<br>Cross<br>Section | Speed Limit | Maintained<br>By | 2017 AADT<br>(vpd) |
|--------------------------------|-----------------|-----------------------------|-------------|------------------|--------------------|
| NC 119                         | NC 119          | 2-lane<br>undivided         | 45 mph      | NCDOT            | 23,000             |
| Trollingwood<br>Hawfields Road | SR 1981         | 2-lane<br>undivided         | 45 mph      | NCDOT            | 6,600              |
| Old Hillsborough<br>Road       | SR 2126         | 2-lane<br>undivided         | 45 mph      | NCDOT            | 6,300              |
| Jones Drive                    | N/A             | 2-lane<br>undivided         | 45 mph      | NCDOT            | N/A                |
| Mebane Oaks<br>Road            | SR 1007         | 2-lane<br>undivided         | 45 mph      | NCDOT            | 26,000             |

# **Existing (2020) Traffic Volumes**

Based on the scoping meeting on June 4th, 2020, it was determined that peak hour counts were not required. Traffic counts from previous studies were used for the study intersections. These counts were performed in 2017 and 2019. In order to develop the existing traffic volumes these counts were grown to the year 2020 using a 1% annual growth rate. This methodology was approved by the City and NCDOT. Refer to the following, No-Build (2020) Peak Hour Conditions, section of this report for more information.

# No-Build (2020) Peak Hour Conditions

Due to the COVID-19 pandemic, traffic count data from Cambridge Park and Mebane Oaks Residential were utilized at the following study intersections during a typical weekday AM (7:00 – 9:00 AM) and PM (4:00 – 6:00 PM) peak periods. Refer to Figure 4 for an illustration of the projected (2020) volumes:

- Old Hillsborough Road / Trollingwood Hawfields Road and NC 119 (October 2017)
- Old Hillsborough Road and Jones Drive (October 2017)
- Old Hillsborough Road and Mebane Oaks Road (November 2019)

Traffic count data was not available for the intersection of Old Hillsborough Road and Site Access; however, it was assumed that no non-school related traffic would be expected to/from Crosslink Community Church during the proposed temporary school's peak hours. Through volumes were balanced through this intersection along Old Hillsborough Road, as appropriate. The No-Build (2020) included traffic volumes from 2017 and 2019 as listed above. These volumes were grown to 2020 utilizing a 1% annually compounded



growth rate, as determined during scoping, based on historical data. Trips from the following adjacent developments were assumed between the count dates and No-Build (2020):

- Cambridge Park
- The Meadows
- Magnolia Glen

Table 2, below, provides a summary of the above adjacent developments.

**Table 2: Adjacent Development Information** 

| Development<br>Name | Location                                                         | Build-Out<br>Year | Land Use / Intensity                                                         | TIA Performed               |
|---------------------|------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------|-----------------------------|
| Cambridge Park      | East of Turner<br>Road and west of<br>Jones Drive                | 2021*             | Phase 1: 122 single-<br>family homes<br>Phase 2: 160 single-<br>family homes | November 2017<br>by RKA     |
| The Meadows         | Northwest of the intersection of Bowman Road and Ben Wilson Road |                   | 330 single-family homes<br>and 51 townhomes                                  | August 2016 by<br>Davenport |
| Magnolia Glen       | South of Old<br>Hillsborough<br>Road and east of<br>Jones Drive  | 2021              | 138 single-family homes<br>and 106 'active adult'<br>detached homes          | June 2015 by<br>Davenport   |

<sup>\*</sup>Phases 1 and 2 are anticipated to be built-out by 2021

It should be noted that the addition of the trips from these developments is to provide a conservative analysis, as it is likely that the peak hours of the above developments will not coincide with the proposed temporary school. Additionally, based on the residential nature of the adjacent developments, it is likely that there could be interaction between the temporary school and adjacent developments. Adjacent development trips are provided in Figure 5.

Identified adjacent development volumes were added to the projected (2020) traffic volumes to develop the No-Build (2020) peak hour traffic volumes shown in Figure 6. It should be noted that improvements from the above adjacent developments were not included in this study to provide conservative analysis results, as determined during scoping. The adjacent developments identified the following improvements:

# Old Hillsborough Road / Trollingwood Hawfields Road and NC 119

- Signal timing adjustments.
- Extend the westbound left-turn lane on NC 119 to approximately 225 feet of storage.

### Old Hillsborough Road and Mebane Oaks Road

Provide signalization once warranted and approved by NCDOT and the City.



Transportation that moves us

- Construct an exclusive northbound left-turn lane with 150 feet of storage.
- Construct an exclusive southbound left-turn lane with 150 feet of storage.

Additionally, NCDOT TIP Project U-6013 is anticipated to widen NC 119 from Trollingwood Hawfields Road to Lowes Boulevard. Part of this project includes improving the intersection of Old Hillsborough Road / Trollingwood Hawfields Road and NC 119 with turn lanes on the northbound and westbound approaches; however, the project is not anticipated to be built-out until 2023. Due to the build-out year and temporary nature of the school, these improvements were not included in future analysis for the proposed temporary school.

## **Trip Generation**

Average weekday daily and peak hour trips for the proposed public school were generated by utilizing the MSTA School Calculator, which is based on traffic count data that has been collected at school sites statewide. The calculator provides a conservative estimate of the anticipated traffic generated by the proposed school on an average school day.

The proposed temporary school is anticipated to have a maximum of 400 total students enrolled at the school; however, due to the COVID-19 pandemic and because it will be a temporary space, the school will only have a maximum of 220 students at any given time on campus. Additionally, the temporary site is not anticipated to offer any buses. For a charter school (grades K-3) with 220 students and no buses, the Traffic Calculator estimates 27 staff members, 123 parent drivers during the weekday AM peak hour, and 87 parent drivers during the school PM peak hour. Refer to Table 3, below, for a summary of the trip generation. Refer to Appendix B for MSTA calculations.

WEEKDAY AM SCHOOL PM PEAK **TRIP DAILY** LAND USE PEAK HOUR (VPH) HOUR (VPH) **GENERATOR TRIPS Exiting Entering Entering** Exiting **Erwin Elementary** 27 Staff 54 27 0 0 27\* School 87\* **Parents** 420 123 123 87\* (220 Students) 87\* **Total Site Trips** 474 150 123 114\*

**Table 3: Trip Generation Summary** 

It is estimated that the proposed development would generate approximately 474 total site trips (237 entering and 237 exiting) on the roadway network during a typical 24-hour weekday period. Of the daily traffic volume, it is anticipated that approximately 273 site trips (150 entering and 123 exiting) will occur during the weekday AM peak hour and 201 site trips (87 entering and 114 exiting) will occur during the school PM peak hour. It should be noted that the PM peak hour of the school is expected to occur prior to the weekday PM (4:00 – 6:00 PM) peak period assumed for this study based on the anticipated school bell schedule. This methodology is expected to provide conservative results.



<sup>\*</sup>Based on the anticipated school PM carpool operational hours, minimal parent trips are expected to occur during the weekday PM (4:00 - 6:00 PM) peak period assumed for this study, so including these volumes in the PM analysis is expected to provide conservative results.

## **Trip Distribution and Assignment**

Trip distribution percentages used in assigning site traffic for parents and staff for this development were estimated based on a combination of existing traffic patterns, anticipated school districting, and engineering judgment. It is estimated that trips will be distributed as follows:

- o 60% to/from the west via Trollingwood Hawfields Road
- o 25% to/from the north via Mebane Oaks Road
- o 10% to/from the south via NC 119
- o 5% to/from the south via Jones Drive

This methodology was reviewed and approved during scoping. It should be noted that the anticipated school districting was based on the ultimate location of Alamance Community Charter to be located in the northeast quadrant of Jimmie Kerr Road and Kronsberg Court in Graham, North Carolina. Refer to Appendix C for a copy of approved scoping documentation.

The site trip distribution for the proposed temporary site is included in Figure 7. The site trip assignment for the proposed site is shown in Figure 8. Parents and staff are expected to follow a similar distribution; therefore, are shown on the same figures.

## **Build (2020) Peak Hour Conditions**

The proposed site trips were added to the No-Build (2020) peak hour traffic volumes to develop the Build (2020) peak hour traffic volumes shown in Figure 9. Peak hour factors for each movement were adjusted in the analysis of build conditions since school trips occur during a short time period. A peak hour factor of 0.50 was used for all school trips. A weighted average was used to determine the peak hour factor for movements that included both school and non-school traffic.

# **Capacity Analysis**

The No-Build (2020) and Build (2020) peak hour traffic volumes were analyzed to determine the expected levels of service at the study intersections under existing roadway conditions with the site fully built-out. Study intersections were analyzed using the methodology outlined in the *Highway Capacity Manual*, 6<sup>th</sup> Edition (HCM) published by the Transportation Research Board. Capacity and level of service are the design criteria for this traffic study. A computer software package, Synchro (Version 10.3), was used to complete the analyses for all of the study area intersections. Please note that the capacity analysis of a two-way stop-control intersection does not provide an overall level of service for an intersection; only delay for an approach with a conflicting movement. Capacity analysis at all study intersections was completed according to the City's UDO, NCDOT Congestion Management Guidelines, and NCDOT MSTA Guidelines. The results of the analysis are presented in the following section of this report.



## Old Hillsborough Road / Trollingwood Hawfields Road and NC 119

The existing signalized intersection of Old Hillsborough Road / Trollingwood Hawfields Road and NC 119 was analyzed under No-Build (2020) and Build (2020) conditions with existing lane configurations and traffic control. Refer to Table 4 for a summary of the analysis results. Synchro capacity analysis reports are attached in Appendix D. Simtraffic reports are attached in Appendix G.

Table 4: Analysis Summary of Old Hillsborough Road [NB] / Trollingwood Hawfields Road [SB] and NC 119 [EB/WB]

| ANALYSIS            | A<br>P<br>P<br>R LANE |                         | WEEKDAY AM<br>PEAK HOUR<br>LEVEL OF SERVICE |                           | WEEKDAY PM<br>PEAK HOUR<br>LEVEL OF SERVICE* |                           |
|---------------------|-----------------------|-------------------------|---------------------------------------------|---------------------------|----------------------------------------------|---------------------------|
| SCENARIO            | O<br>A<br>C<br>H      | CONFIGURATIONS          | Approach<br>LOS<br>(Delay)                  | Overall<br>LOS<br>(Delay) | Approach<br>LOS<br>(Delay)                   | Overall<br>LOS<br>(Delay) |
|                     | EB                    | 1 LT, 1 TH-RT           | D                                           |                           | D*                                           |                           |
| No-Build (2020)     | WB                    | 1 LT, 1 TH-RT           | C                                           | E                         | D*                                           | D*                        |
| Conditions          | NB                    | 1 LT, 1 TH-RT           | F                                           | (62)                      | D*                                           | (49*)                     |
|                     | SB                    | 1 LT, 1 TH-RT           | D                                           |                           | D*                                           |                           |
|                     | EB                    | 1 LT, 1 TH-RT           | D                                           |                           | D*                                           |                           |
| Build (2020)        | WB                    | 1 LT, 1 TH-RT           | С                                           | F                         | D*                                           | E*                        |
| Conditions          | NB                    | 1 LT, 1 TH-RT           | F                                           | (94)                      | E*                                           | (60*)                     |
|                     | SB                    | 1 LT, 1 TH-RT           | E                                           | , ,                       | E*                                           |                           |
| Build (2020) with   | EB                    | 1 LT, 1 TH-RT           | Е                                           |                           | E*                                           |                           |
| Build (2020) with   | WB                    | <u>1 LT**</u> , 1 TH-RT | D                                           | E                         | E*                                           | E*                        |
| Conditions with     | NB                    | <b>1 LT***,</b> 1 TH-RT | E                                           | (67)                      | D*                                           | (59*)                     |
| <u>Improvements</u> | SB                    | 1 LT, 1 TH-RT           | D                                           | . ,                       | E*                                           | . ,                       |

<sup>\*</sup> Denotes delay expected during weekday PM peak hour of intersection. The intersection is expected to operate better during the school peak hour.

Capacity analysis indicates that the intersection of Old Hillsborough Road / Trollingwood Hawfields Road and NC 119 is expected to operate at an overall LOS E during the weekday AM peak hour and an overall LOS D during the weekday PM peak hour under No-Build (2020) conditions. The intersection is expected to degrade to an overall LOS F during the weekday AM peak hour and an overall LOS E during the weekday PM peak hour. It should be noted that the weekday PM delays would be expected to be lower during the school PM peak hour, since there is a lot of residential within the vicinity of the site and residential land uses typically generate traffic during two distinct peak periods, the weekday AM (7:00 – 9:00 AM) and weekday PM (4:00 – 6:00 PM) peak periods.

Based on SimTraffic simulations under Build (2020) conditions, the westbound left-turn lane along NC 119 and northbound left-turn lane along Old Hillsborough Road are anticipated to exceed the existing storage during the weekday PM peak hour. It should be noted that the Cambridge Park adjacent development is committed to



<sup>\*\*</sup> Extend the left-turn lane to approximately 225 feet of storage and appropriate deceleration and taper length.

<sup>\*\*\*</sup> Restripe the left-turn lane to approximately 550 feet of storage and appropriate deceleration and taper length. Improvements committed by adjacent developments <u>underlined</u>.

Moving forward.

lengthening the westbound left-turn lane along NC 119 and there is additional lane width along the northbound approach (Old Hillsborough Road) that is currently gored out that could provide additional storage length with minimal added pavement width. Additionally, weekday PM queuing would be expected to be lower during the school PM peak hour, since there is a lot of residential within the vicinity of the site and residential land uses typically generate traffic during two distinct peak periods, the weekday AM (7:00 - 9:00 AM) and weekday PM (4:00 - 6:00 PM) peak periods.

The Cambridge Park adjacent development is committed to lengthening the westbound left-turn lane on NC 119 to approximately 225 feet of storage and appropriate deceleration and taper length, as well as providing signal timing adjustments under Phase 2. Based on coordination with the City and NCDOT, these improvements were not included under No-Build (2020) nor Build (2020) conditions (without improvements) to provide a conservative estimation of traffic conditions at the build-out of the proposed temporary school should the improvements not be constructed by Fall 2020. Additionally, NCDOT TIP Project U-6013 will be implementing further improvements to the intersection, such as turn lanes on the northbound and westbound approaches. The build-out of NCDOT TIP Project U-6013 (2023) is expected to occur after the site is anticipated to be completed (2020) and the site is expected to be open for a maximum of 45 days; therefore, these improvements by NCDOT TIP Project U-6013 were not included in the analysis.

It should be noted that the proposed temporary school is only anticipated to contribute about 7 percent of traffic to the study intersection. With signal timing adjustments and a 225 feet of full width storage on the westbound left-turn lane (NC 119) per the Cambridge Park improvements and an extended northbound leftturn lane (Old Hillsborough Road) with approximately 550 feet of full width storage, the study intersection is anticipated to operate with overall delays comparable to No-Build (2020) conditions and queuing is anticipated to be contained within the turn lanes. Based on the low amount of added overall traffic to the study intersection, the future impact of NCDOT TIP Project U-6013, and the temporary nature of the development, only extending the northbound left-turn lane (Old Hillsborough Road) to approximately 550 feet of full width storage is recommended by the proposed site at this study intersection.



# Old Hillsborough Road and Jones Drive

The existing unsignalized intersection of Old Hillsborough Road and Jones Drive was analyzed under No-Build (2020) and Build (2020) conditions with the lane configurations and traffic control shown in Table 5. Refer to Table 5 for a summary of the analysis results. Synchro capacity analysis reports are attached in Appendix E. Simtraffic reports are attached in Appendix G.

Table 5: Analysis Summary of Old Hillsborough Road and Jones Drive

| ANALYSIS<br>SCENARIO          | A<br>P<br>P<br>R<br>O<br>A<br>C<br>H | LANE<br>CONFIGURATIONS | WEEKDAY AM<br>PEAK HOUR<br>LEVEL OF SERVICE |                           | WEEKDAY PM PEAK HOUR LEVEL OF SERVICE* |                           |
|-------------------------------|--------------------------------------|------------------------|---------------------------------------------|---------------------------|----------------------------------------|---------------------------|
|                               |                                      |                        | Approach<br>LOS<br>(Delay)                  | Overall<br>LOS<br>(Delay) | Approach<br>LOS<br>(Delay)             | Overall<br>LOS<br>(Delay) |
| No-Build (2020)<br>Conditions | EB                                   | 1 TH-RT                |                                             |                           |                                        |                           |
|                               | WB                                   | 1 LT-TH                | $A^1$                                       | N/A                       | A <sup>1*</sup>                        | N/A                       |
|                               | NB                                   | 1 LT-RT                | $D^2$                                       |                           | E <sup>2*</sup>                        |                           |
| Build (2020)<br>Conditions    | EB                                   | 1 TH-RT                |                                             |                           |                                        |                           |
|                               | WB                                   | 1 LT-TH                | $A^1$                                       | N/A                       | A1*                                    | N/A                       |
|                               | NB                                   | 1 LT-RT                | F <sup>2</sup>                              |                           | F <sup>2*</sup>                        |                           |
| Build (2020)                  | EB                                   | 1 TH-RT                |                                             |                           |                                        |                           |
| Conditions with               | WB                                   | 1 LT-TH                | $A^1$                                       | N/A                       | A <sup>1*</sup>                        | N/A                       |
| Improvements                  | NB                                   | 1 LT <b>, 1 RT**</b>   | $F^2$                                       |                           | F2*                                    |                           |

<sup>1.</sup> Level of service for major-street left-turn movement.

Improvements by developer in **Bold**.

Capacity analysis at the intersection of Old Hillsborough Road and Jones Drive indicates that the major-street left-turn movement is expected to operate at LOS A during the weekday AM and PM peak hours under all analysis conditions. Under No-Build (2020) conditions, the minor-street approach is expected to operate at LOS D during the weekday AM peak hour and LOS E during the weekday PM peak hour. Under Build (2020) conditions the minor-street approach is expected to operate at LOS F during the weekday AM and PM peak hours.

It should be noted that the site trip distribution was based on the anticipated districting for the ultimate location of Alamance Community Charter, to be located in the northeast quadrant of Jimmie Kerr Road and Kronsberg Court in Graham, North Carolina. Based on the anticipated school districting, the proposed temporary school is only expected to contribute approximately 2% of traffic to the total northbound approach volume at this study intersection. Additionally, the proposed development is only anticipated to contribute traffic volume to the northbound right-turn movement at this intersection which is expected to operate with



<sup>2.</sup> Level of service for minor-street approach.

<sup>\*</sup> Denotes delay expected during weekday PM peak hour of intersection. The intersection is expected to operate better during the school peak hour.

<sup>\*\*</sup>Restripe the northbound approach to include an exclusive left-turn lane and an exclusive right-turn lane with 25 feet of storage and appropriate taper.

Moving forward.

less delays than the northbound left-turn movement, as it is only expected to conflict with the eastbound through movement.

Turn lanes were considered and, while they were expected to improve delays, the turn lanes were not anticipated to improve the minor-street approach to an acceptable level-of-service during the weekday AM and PM peak hours. It was determined that a signal would be necessary for the intersection to operate at acceptable levels-of-service during the weekday AM and PM peak hours. Build (2020) traffic volumes were analyzed utilizing the criteria contained in the Manual on Uniform Traffic Control Devices (MUTCD) and it was determined that peak hour warrants would be expected to be met at the build-out of the proposed development. It should be noted that this methodology assumes that school related traffic is generated during the weekday PM peak hour, which is conservative based on the proposed school's anticipated bell schedule (8:25 AM - 3:25 PM) and since there is a lot of residential within the vicinity of the site and residential land uses typically generate traffic during two distinct peak periods, the weekday AM (7:00 - 9:00 AM) and weekday PM (4:00 - 6:00 PM) peak periods. It is also unlikely that the intersection will satisfy the MUTCD 8hour and 4-hour warrants based on the types of land uses within the study area (residential and school, which generate traffic during distinct peaks). With this in consideration, and the fact that the site will only be open for a short time, a signal is not recommended.

Due to the low contribution of site related traffic to the minor-street approach, the conservative nature of the analysis, and the temporary nature of the site, it is recommended that the developer restripe the northbound approach to include an exclusive left-turn lane and an exclusive right-turn lane with 25 feet of storage and appropriate taper. It should be noted that the northbound approach is has the pavement for an exclusive northbound right-turn lane. This improvement is expected to lower expected delays and queue lengths on the northbound approach.



#### Old Hillsborough Road and Mebane Oaks Road

The existing all-way stop controlled intersection of Old Hillsborough Road and Mebane Oaks Road was analyzed under No-Build (2020) and Build (2020) conditions with existing lane configurations and traffic control. It should be noted that the Cambridge Park adjacent development is committed to a traffic signal once warranted and approved by NCDOT. Refer to Table 6 for a summary of the analysis results. Synchro capacity analysis reports are attached in Appendix F. Simtraffic reports are attached in Appendix G.

Table 6: Analysis Summary of Old Hillsborough Road and Mebane Oaks Road

| ANALYSIS               | A<br>P<br>P<br>R | LANE                 | PEAK                       | DAY AM<br>HOUR<br>SERVICE | WEEKDAY PM PEAK HOUR LEVEL OF SERVICE* |                           |  |
|------------------------|------------------|----------------------|----------------------------|---------------------------|----------------------------------------|---------------------------|--|
| SCENARIO               | KOACH            | CONFIGURATIONS       | Approach<br>LOS<br>(Delay) | Overall<br>LOS<br>(Delay) | Approach<br>LOS<br>(Delay)             | Overall<br>LOS<br>(Delay) |  |
|                        | EB               | 1 LT-TH-RT           | C <sup>3</sup>             |                           | C3*                                    |                           |  |
| No-Build (2020)        | WB               | 1 LT-TH-RT           | B <sup>3</sup>             | С                         | B3*                                    | F*                        |  |
| Conditions             | NB               | 1 LT-TH-RT           | $B^3$                      | (15)                      | C3*                                    | (51*)                     |  |
|                        | SB               | 1 LT-TH-RT           | B <sup>3</sup>             |                           | F3*                                    |                           |  |
|                        | EB               | 1 LT-TH-RT           | C <sup>3</sup>             |                           | C3*                                    |                           |  |
| Build (2020)           | WB               | 1 LT-TH-RT           | $B^3$                      | С                         | C3*                                    | F*                        |  |
| Conditions             | NB               | 1 LT-TH-RT           | $\mathbb{C}^3$             | (19)                      | C3*                                    | (70*)                     |  |
|                        | SB               | 1 LT-TH-RT           | $\mathbb{C}^3$             | , ,                       | F3*                                    | ` ,                       |  |
| D.::1.1 (2020)         | EB               | 1 LT-TH-RT           | С                          |                           | C*                                     |                           |  |
| Build (2020)           | WB               | 1 LT-TH-RT           | A                          | С                         | B*                                     | C*                        |  |
| Conditions <u>with</u> | NB               | 1 LT, 1 TH-RT        | С                          | (24)                      | C*                                     | (21*)                     |  |
| <u>Improvements</u>    | SB               | <u>1 LT,</u> 1 TH-RT | С                          | , ,                       | B*                                     | ` ,                       |  |

<sup>3.</sup> Level of service for all-way stop-control approach.

Improvements committed by adjacent developments underlined.

Capacity analysis at the intersection of Old Hillsborough Road and Mebane Oaks Road indicates that the intersection is expected to operate at an overall LOS C during the weekday AM peak hour and an overall LOS F during the weekday PM peak hour under No-Build (2020) and Build (2020) conditions. The northbound and southbound approaches are expected to degrade from a LOS B during No-Build (2020) conditions to a LOS C during Build (2020) conditions during the weekday AM peak hour. It should be noted that these delays are just under the LOS C threshold and the development is not anticipated to have a significant impact.

Based on the improvements by adjacent developments, a traffic signal was considered. Build (2020) traffic volumes were analyzed utilizing the criteria contained in the Manual on Uniform Traffic Control Devices (MUTCD) and it was determined that peak hour warrants would not be expected to be met at the build-out of the proposed development. It is also unlikely that the intersection will satisfy the MUTCD 8-hour and 4-hour warrants based on the types of land uses within the study area (residential and school, which generate traffic during distinct peaks); however, it was determined that a traffic signal would be necessary for the intersection



<sup>\*</sup> Denotes delay expected during weekday PM peak hour of intersection. The intersection is expected to operate better during the school peak hour.

to operate at acceptable levels-of-service. It should be noted that the proposed temporary school is anticipated to contribute only about 5 percent of traffic to the study intersection. Due to the low anticipated traffic contribution by the proposed school, the committed improvements by adjacent developments, and the temporary nature of the proposed school, no improvements are recommended by the developer at this study intersection.



#### Old Hillsborough Road and Site Access

The existing unsignalized intersection of Old Hillsborough Road and Site Access was analyzed under Build (2020) conditions with the lane configurations and traffic control shown in Table 7. While this intersection is an existing intersection, it was not analyzed during the No-Build (2020) conditions because it was assumed no peak hour traffic would be using the site driveway. Refer to Table 7 for a summary of the analysis results. Synchro capacity analysis reports are attached.

Table 7: Analysis Summary of Old Hillsborough Road and Site Access

| ANALYSIS                   | A<br>P<br>P<br>R | LANE                           | PEAK                                 | DAY AM<br>HOUR<br>SERVICE | PEAK                                   | DAY PM<br>HOUR<br>SERVICE* |
|----------------------------|------------------|--------------------------------|--------------------------------------|---------------------------|----------------------------------------|----------------------------|
| SCENARIO                   | O<br>A<br>C<br>H | CONFIGURATIONS                 | Approach<br>LOS<br>(Delay)           | Overall<br>LOS<br>(Delay) | Approach<br>LOS<br>(Delay)             | Overall<br>LOS<br>(Delay)  |
| Build (2020)<br>Conditions | EB<br>WB<br>NB   | 1 TH-RT<br>1 LT-TH<br>1 LT- RT | <br>A <sup>1</sup><br>D <sup>2</sup> | N/A                       | <br>A <sup>1*</sup><br>D <sup>2*</sup> | N/A                        |

<sup>1.</sup> Level of service for major-street left-turn movement.

Capacity analysis at the intersection of Old Hillsborough Road and Site Access indicates that the major-street left-turn movement is expected to operate at a LOS A during the weekday AM and PM peak hours under Build (2020) conditions. The northbound minor-street approach is expected to operate at a LOS D during the weekday AM and PM peak hours. An eastbound right turn lane was warranted based on NCDOT turn lane warrants; however, due to the low delays of the intersection and the fact that the site is only expected to be open for a short duration (maximum of 45 days), turn lanes are not recommended.



<sup>2.</sup> Level of service for minor-street approach.

<sup>\*</sup> Denotes delay expected during weekday PM peak hour of intersection. The intersection is expected to operate better during the school peak hour.

#### **Stacking**

For a 220-student capacity charter school serving grades K-3, the MSTA School Traffic Calculator indicates an average internal stacking demand of 954 feet and a maximum high demand internal stacking need of 1,241 feet for student pick-up and drop-off. The maximum high demand internal stacking length accounts for an additional 30% of stacking length compared to the average day in the MSTA School Traffic Calculator. Two alternatives were considered for the circulation pattern of the site, as follows:

- Alternative 1 entering vehicles navigate through the site in a counterclockwise direction around the building and drop students off at the east entrance
  - o Students that sit in the passenger side of the vehicle may need to walk between cars due to the school being on the driver side of the car during (un)loading operations
    - It should be noted that it is recommended that children be seated in the back seat in vehicles until the age of 12 in North Carolina and all at the proposed temporary school are anticipated to be less than 12 years old (grades K-3)
- Alternative 2 entering vehicles navigate through the site in a clockwise direction around the building and drop students off at the west entrance
  - o Ingress and egress traffic would need to cross in order to allow vehicles to exit the site

Alternative 1 has an internal stacking length of 1,570 feet (single stacked). Alternative 2 is expected to have approximately 1,409 feet (single stacked) of internal stacking. Both alternatives are expected to meet the high demand stacking length as estimated by the MSTA School Calculator; however, Alternative 2 would require the ingress and egress traffic to cross in order to allow vehicles to exit the site. Alternative 1 is recommended due to the additional provided internal stacking length and to prevent ingress and egress traffic conflicts on-site. Refer to the Traffic Management Plan (TMP), included in Appendix I, for more information.

The pick-up/drop-off loop layout was analyzed using Synchro and SimTraffic to determine if the stacking provided is anticipated to accommodate the volume of drop-off/pick-ups during the peak school period. Based on SimTraffic simulations, the storage provided on the school loop should be more than sufficient to handle the expected stacking.

#### **Findings and Summary**

This traffic analysis was conducted to determine the potential traffic impacts for the proposed Alamance Community Charter Temporary Site. The school system has indicated the maximum student population will be 220 students. It is expected to open to students in Fall 2020 and will be located at the existing Crosslink Community Church (3457 Old Hillsborough Road) in Mebane, North Carolina.

It is estimated that the proposed development would generate approximately 474 total site trips (237 entering and 237 exiting) on the roadway network during a typical 24-hour weekday period. Of the daily traffic volume, it is anticipated that approximately 273 site trips (150 entering and 123 exiting) will occur during the weekday AM peak hour and 201 site trips (87 entering and 114 exiting) will occur during the school PM peak hour of the school.

Based on the scoping meeting attended on June 4th, 2020, the study area consists of the following intersections as identified by the City:

- Old Hillsborough Road / Trollingwood Hawfields Road and NC 119\*
- Old Hillsborough Road and Jones Drive\*



Transportation Consulting that moves us forward.

- Old Hillsborough Road and Mebane Oaks Road\*
- Old Hillsborough Road and Site Access

\*Based on the scoping meeting on June 4th, 2020, these intersections were only required to be analyzed for the City. NCDOT only required analysis at the intersection of Old Hillsborough Road and Site Access.

#### Recommendations

Based on the findings of this study, specific geometric and traffic control improvements have been identified at study intersections. The improvements are summarized below and are illustrated in Figure 10. Refer to the Traffic Management Plan (TMP) included in Appendix I for a description of on-site school operations and additional mitigation measures that may be considered.

#### **Committed Improvements by Adjacent Developments**

#### Old Hillsborough Road [NB] / Trollingwood Hawfields Road [SB] and NC 119 [EB/WB]

- Signal timing adjustments.
- Extend the westbound left-turn lane on NC 119 to approximately 225 feet of storage.

#### Old Hillsborough Road and Mebane Oaks Road

- Provide signalization once warranted and approved by NCDOT and the City.
- Construct an exclusive northbound left-turn lane with 150 feet of storage.
- Construct an exclusive southbound left-turn lane with 150 feet of storage.

#### Recommended Improvements by Developer

#### Old Hillsborough Road and Jones Drive

 Restripe the northbound approach to include a share through-left and an exclusive right turn lane with approximately 25 feet of storage and appropriate deceleration and taper length. It should be noted that the northbound approach has the pavement for an exclusive northbound right-turn lane.

It was determined that a northbound right-turn lane at the intersection of Old Hillsborough Road and Jones Drive would provide improved operations the intersection. Additional improvements at the remaining study intersections were considered, but were deemed not feasible due to the short term opening of the site.

#### Old Hillsborough Road [NB] / Trollingwood Hawfields Road [SB] and NC 119 [EB/WB]

• Extend the northbound left-turn lane on Old Hillsborough Road to include a total of approximately 550 feet of full width storage and appropriate deceleration and taper length.


Both alternatives for the drop off/pick-up patterns are expected to provide an adequate amount of storage; however, Alternative 2 would require the ingress and egress traffic to cross in order to allow vehicles to exit the site. It is recommended that Alternative 1 be implemented. It should be noted that this would result in the students potentially walking between cars due to the school being on the driver side of the car during drop off. Refer to the TMP for more information.



Transportation Consulting that moves us forward.

If you should have any questions, please feel free to contact me.

#### Sincerely,



Josh Reinke, PE State Traffic Engineering Lead Ramey Kemp & Associates, Inc.

NC Corporate License # C-0910

Attachments: Appendix A - Figures

Appendix B - MSTA Calculations Appendix C – Scoping Documentation

Appendix D - Capacity Analysis Results: Old Hillsborough Road / Trollingwood Hawfields

Road and NC 119

Appendix E - Capacity Analysis Results: Old Hillsborough Road and Jones Drive

Appendix F - Capacity Analysis Results: Old Hillsborough Road and Mebane Oaks Road

Appendix G - Capacity Analysis Results: Old Hillsborough Road and Site Access


Appendix H - SimTraffic Reports Appendix I - Traffic Management Plan

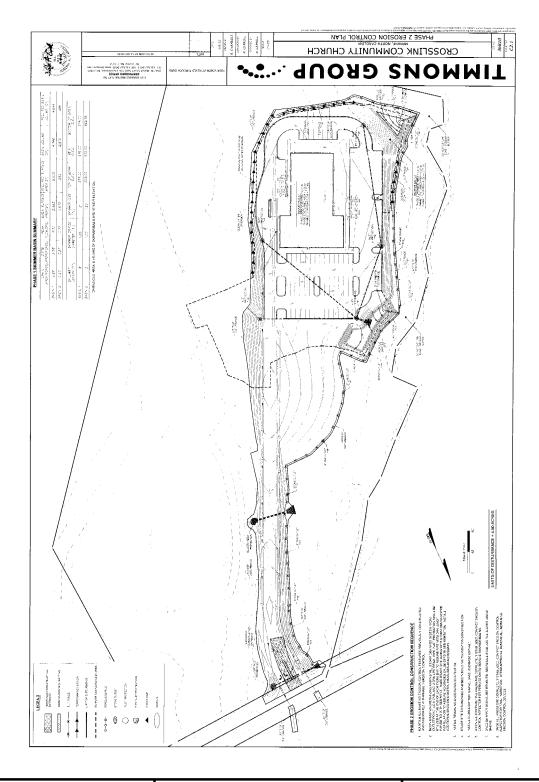


## **TECHNICAL APPENDIX**

# **APPENDIX A**

**FIGURES** 





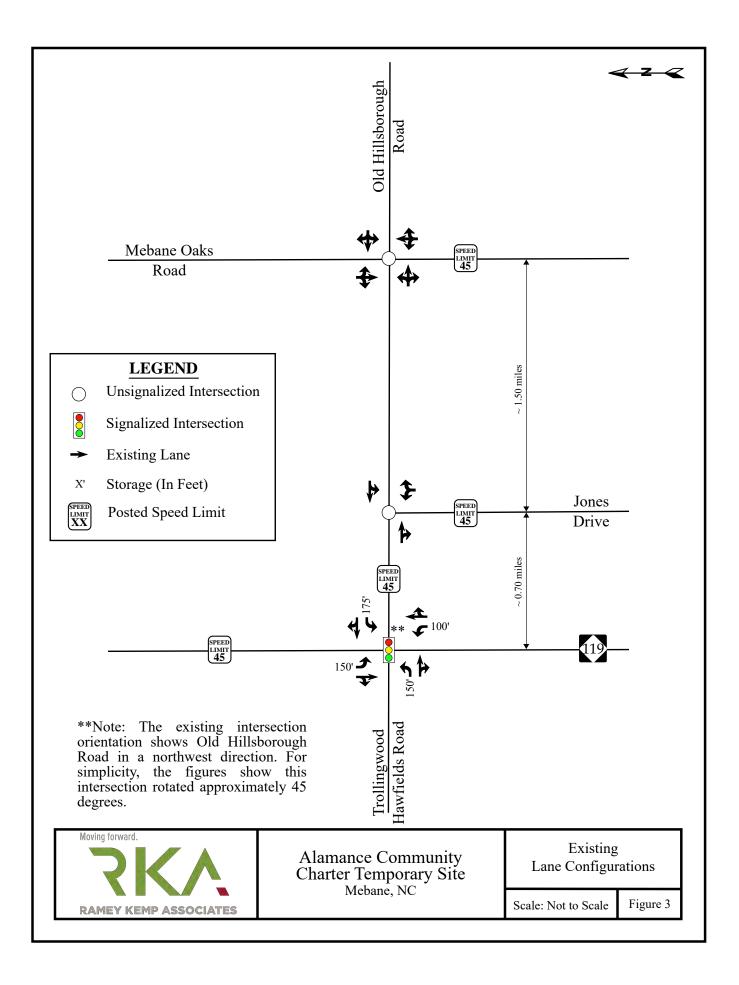

Alamance Community Charter Temporary Site Mebane, NC

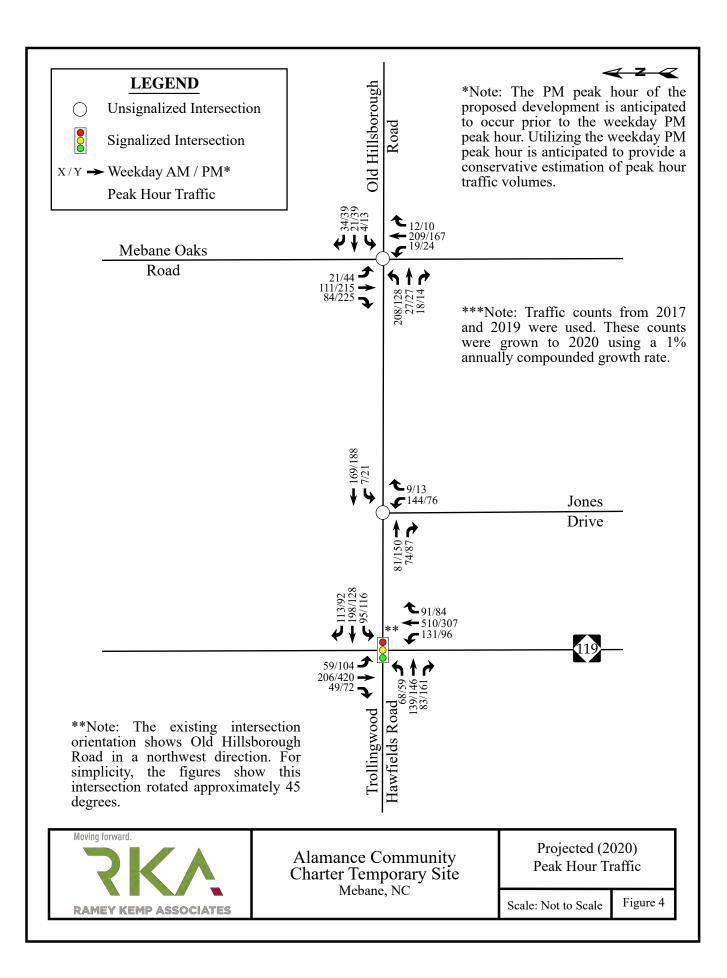
Site Location Map

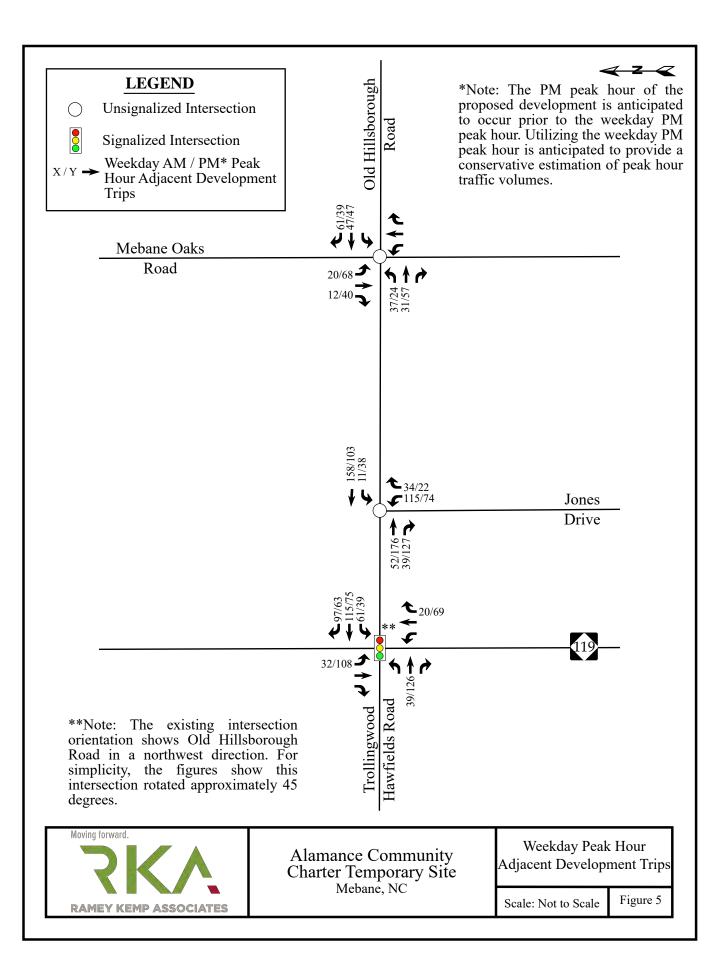
Scale: Not to Scale

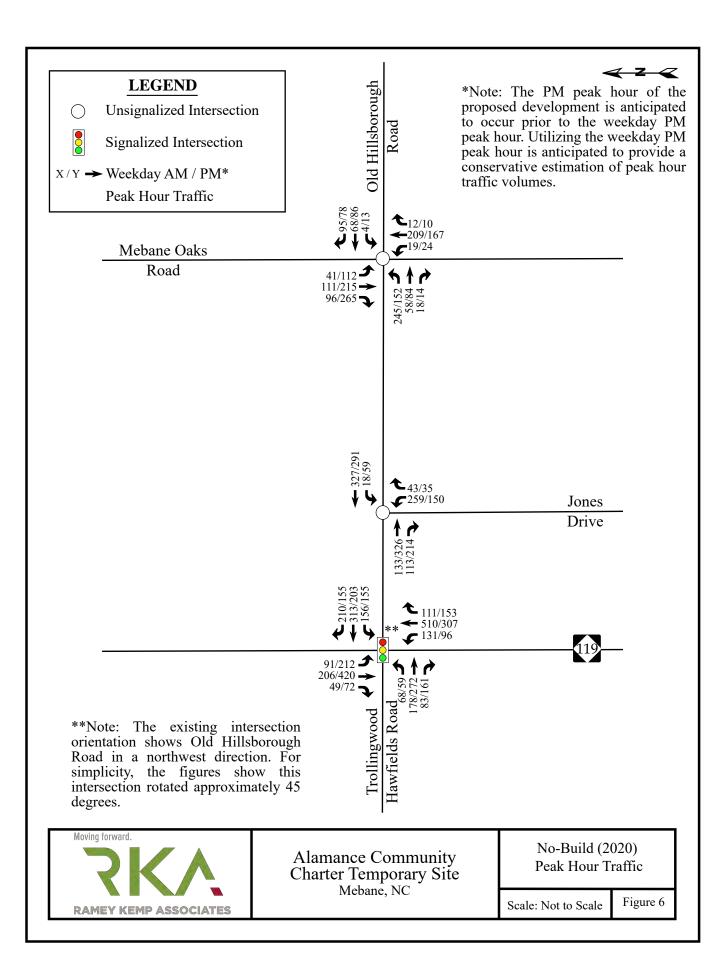
Figure 1

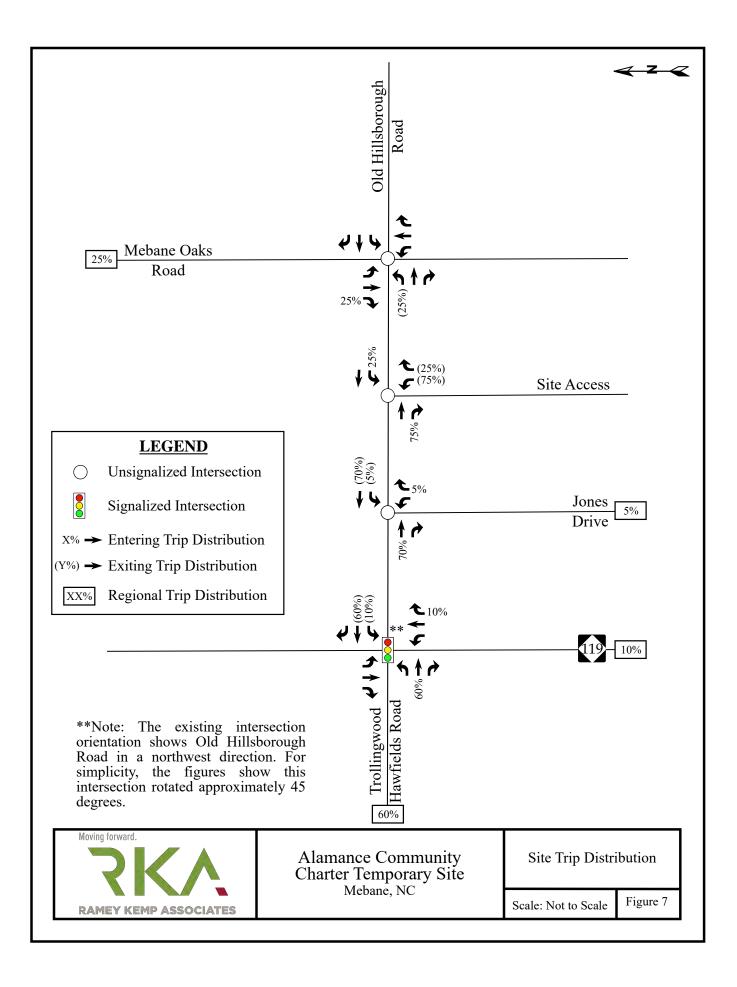


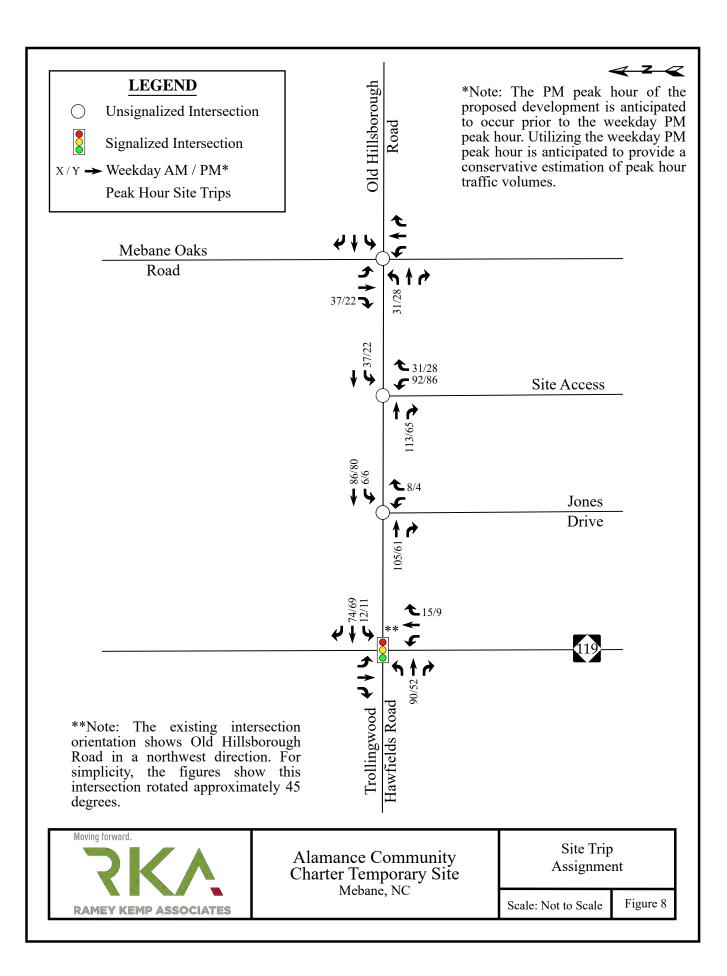


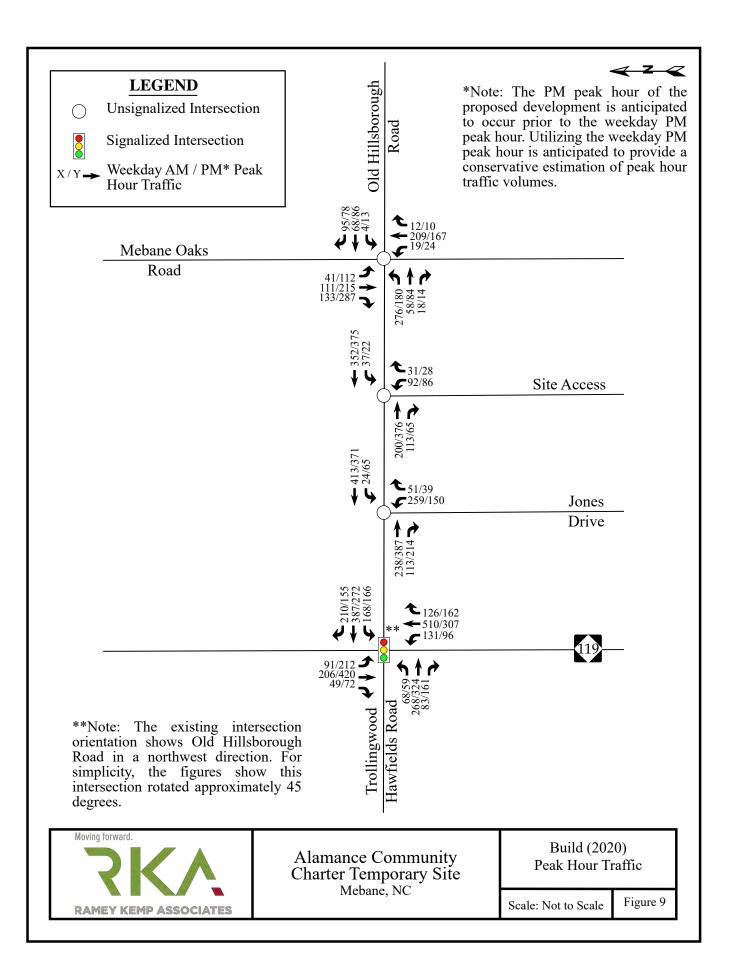


Alamance Community Charter Temporary Site Mebane, NC

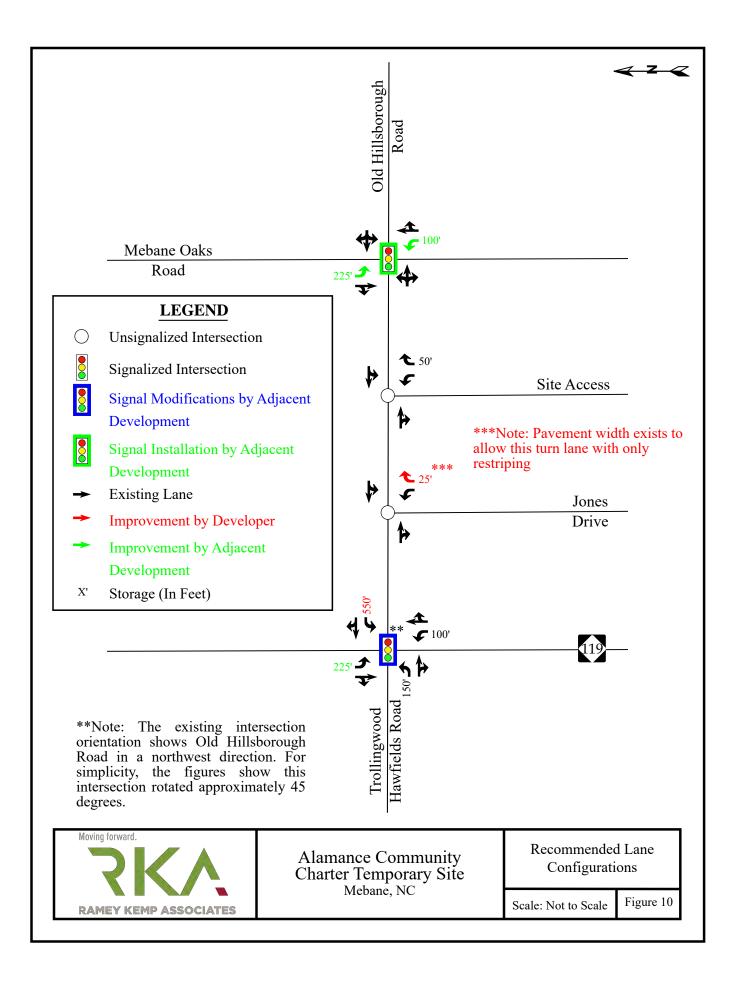

Preliminary Site Plan


Scale: Not to Scale


Figure 2














## **APPENDIX B**

**MSTA CALCULATIONS** 

### **MSTA School Traffic Calculations**

AM and PM Peak Traffic Estimates

(These numbers do not reflect peak hour traffic volumes)

|                                                                              |                |                          | School Name:       | Alamance Com            | nmunity Charter      | Temporary Site          |                        |                            |                                                |                   |              |
|------------------------------------------------------------------------------|----------------|--------------------------|--------------------|-------------------------|----------------------|-------------------------|------------------------|----------------------------|------------------------------------------------|-------------------|--------------|
|                                                                              |                |                          | Type:              | Urban Charter           | •                    |                         |                        |                            |                                                | Version           | : 102816     |
|                                                                              |                | MSTA S                   | School Que         | ue Input                |                      |                         |                        | Calcu                      | lations                                        |                   |              |
| AM PM Avg. PM Cars / Cars / Car At one Student Student Length Time           | Grade I        | Level Student Population | Number of<br>Buses | Staff<br>Members        | Student<br>Drivers   | PM<br>Total<br>Vehicles | PM<br>Peak<br>Vehicles | Average<br>Queue<br>Length | Total AM<br>Trips                              | Total PM<br>Trips | High Deman   |
| 55.94% 39.15% 22.19 48.67%                                                   | K - 1          | 10 220                   |                    | 27                      | 1                    | 87                      | 43                     | 954                        | 273                                            | 201               | 30%<br>1241  |
|                                                                              |                |                          | 3                  |                         | •                    |                         |                        |                            |                                                |                   |              |
| 52.91% 47.50% 22.19 46.12%                                                   | 11t            | h                        |                    |                         |                      |                         |                        |                            |                                                |                   |              |
| 50.08% 47.58% 22.83 55.71%                                                   | 12t            | h                        | 1                  | ı                       | •                    |                         |                        |                            |                                                |                   |              |
| 30.00 /0 41.30 /0 ZZ.03 33.1 1 /0                                            | 121            |                          |                    |                         |                      |                         |                        |                            |                                                |                   |              |
|                                                                              | S              | um >> 220                |                    | 27                      |                      | 87                      | 43                     | 954                        | 273                                            | 201               | 1241         |
|                                                                              |                |                          |                    |                         |                      |                         |                        |                            |                                                | •                 | 286          |
|                                                                              |                |                          | A 3.4 T            |                         | Grade K-10           | 1                       | DM T                   |                            |                                                |                   |              |
|                                                                              | Direc          | tion Parents             | Buses              | rips Generated<br>Staff | Trips                | Parents                 | Buses                  | rips Generated<br>Staff    |                                                |                   |              |
|                                                                              | IN             |                          | Buses              | 27                      | 111 <b>ps</b><br>150 | 87                      | Duses                  | Stati                      | Trips<br>87                                    |                   |              |
|                                                                              | OU             |                          |                    |                         | 123                  | 87                      |                        | 27                         | 114                                            | 1                 | ADT          |
|                                                                              |                |                          | AM K-              | 10 Trips                | 273                  |                         | PM K-                  | 10 Trips                   | 201                                            | ]                 | 474          |
|                                                                              |                |                          |                    |                         |                      |                         |                        |                            |                                                |                   | <b>-</b>     |
| <u>NOTES</u>                                                                 |                |                          | АМ Т               | rips Generated          |                      |                         | PM T                   | rips Generated             | 1                                              | 1                 | 4            |
| <u>110120</u>                                                                | Direction Pare | nts Buses                | Staff              |                         | Trips                | Parents                 | Buses                  | Staff                      | <u>.                                      </u> | Trips             | <del>1</del> |
| Average Queue Length does not                                                | IN             |                          |                    |                         |                      |                         |                        |                            |                                                |                   | <u> </u>     |
| include an alternative traffic pattern                                       | OUT            |                          |                    |                         |                      |                         |                        |                            |                                                |                   |              |
| required for high traffic demand days                                        |                |                          | AM 11              | th Trips                |                      |                         |                        | PM 11                      | Ith Trips                                      |                   |              |
| which is usually 30% additional length. <b>Average Queue Length</b> does not |                |                          |                    |                         |                      |                         |                        |                            |                                                |                   | <b>7</b>     |
| include the Student Loading Zone.                                            |                | A                        | M Trips Genera     | ted                     |                      |                         | PI                     | // Trips Genera            | ated                                           |                   | 1            |
| Peak traffic volumes at schools                                              | Direction Pare | nts Buses                | Staff              |                         | Trips                | Parents                 | Buses                  | Staff                      |                                                | Trips             |              |
| normally occur within a 30-minute                                            | IN             |                          |                    |                         |                      |                         |                        |                            |                                                |                   | 4            |
| time period. (justifying a PHF of 0.5)                                       | OUT            |                          | AM 12              | th Trips                |                      |                         |                        | DM 40                      | ∐<br>2th Trips                                 |                   |              |
|                                                                              |                |                          | AIVI 12            |                         |                      |                         |                        | PIVI 12                    | ·                                              |                   | 4            |
|                                                                              |                |                          | All AM             | In Out                  | 150                  |                         |                        | All PM                     | In                                             | 87                |              |
|                                                                              |                |                          | TRIPS              | Out<br>Total            | 123<br>273           |                         |                        | TRIPS                      | Out<br>Total                                   | 114<br>201        | 474          |
|                                                                              |                |                          |                    | าบเลเ                   | 213                  |                         |                        |                            | าบเลา                                          | 201               | 4/4          |

## **APPENDIX C**

## **SCOPING DOCUMENTATION**

#### **Mary Lynn Smith**

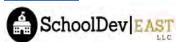
From: Jim Way <Jim@schooldev.us>
Sent: Friday, June 05, 2020 3:48 PM

To: Edwards, Charles N; Mary Lynn Smith; Hinton, Kimberly D; Hayes, Jamie; Cy Stober

**Cc:** Joshua Reinke; Cliff Ayscue

**Subject:** Re: [External] Alamance Community Charter Temporary Site - Meeting Minutes

**Importance:** High


ALL,

I have been corrected by the Alamance Community School Director for student counts at the temporary facility. Due to CDC, Covid-19 guidelines and this being a temporary space, the school will only have a maximum of 220 students at the Church site at any given time serving K-3 only. The proposed start times will be 8:25 am at the temporary facility and the afternoon bell will be 3:25 pm.

Please amend the MOU to show this new data.

Let me know if you have any questions or need to speak with the Director.

#### Jim Way



Cell: 702-528-1514 - jim@schooldev.us

Main Office: 3115 E. Lion Lane - Suite 300 - Salt Lake City, UT 84121 - P: 801-278-0800

Raleigh Office: 2144 Page Rd. - Suite 204 - Durham, NC 27703

From: "Edwards, Charles N" <cnedwards@ncdot.gov>

Date: Thursday, June 4, 2020 at 5:19 PM

**To:** Mary Lynn Smith <msmith@rameykemp.com>, "Hinton, Kimberly D" <kdhinton@ncdot.gov>, "Hayes, Jamie" <jhayes7@ncdot.gov>, Cy Stober <cstober@cityofmebane.com>, Jim Way <Jim@schooldev.us>

Cc: 'Joshua Reinke' < jreinke@rameykemp.com>

Subject: RE: [External] Alamance Community Charter Temporary Site - Meeting Minutes

Kimberly and I have conferred and we find the proposed scope and methodology acceptable.

#### C. N. Edwards Jr., PE (Chuck)

District Engineer North Carolina Department of Transportation Division of Highways Division 7, District 1

336 570 6833 cnedwards@ncdot.gov

115 East Crescent Square Drive P. O. Box 766 Graham, NC 27253



From: Mary Lynn Smith <msmith@rameykemp.com>

Sent: Thursday, June 4, 2020 2:25 PM

To: Hinton, Kimberly D <kdhinton@ncdot.gov>; Edwards, Charles N <cnedwards@ncdot.gov>; Hayes, Jamie

<jhayes7@ncdot.gov>; Cy Stober <cstober@cityofmebane.com>; Jim Way <Jim@schooldev.us>

Cc: Joshua Reinke < jreinke@rameykemp.com>

Subject: [External] Alamance Community Charter Temporary Site - Meeting Minutes

CAUTION: External email. Do not click links or open attachments unless you verify. Send all suspicious email as an attachment to <a href="mailto:report.spam@nc.gov">report.spam@nc.gov</a>

#### Good afternoon all -

Thank you all for taking the time to meet this morning on the proposed Alamance Community Charter temporary site. Please see below for a summary of the meeting minutes/scope. Feel free to let us know if you have any additional thoughts or questions and feel free to distribute these notes.

Attendees: Cy Stober (City of Mebane), Chuck Edwards (NCDOT), Kimberly Hinton (NCDOT), Jim Way (SchoolDev), Joshua Reinke (RKA), Mary Lynn Smith (RKA)

#### **Required per NCDOT:**

TMP with internal analysis and capacity analysis at site driveway only

#### Required per City:

- Traffic assessment letter with capacity analysis at site driveway and 3 adjacent intersections listed below
- TMP

#### Overview:

- Approximately 400 total students in grades K-3
- Located at Crosslink Community Church (3445 Old Hillsborough Road) In Mebane
- Build-out year: 2020
- TMP and traffic assessment letter, including internal analysis, will be provided to both the City and NCDOT, although requirements may differ and may be considered for courtesy review
- Local school bell schedules will be considered when determining the proposed school's operational hours
- MSTA School Calculator will be utilized to determine the trip generation and anticipated stacking needs

#### **Analysis Scenarios:**

- Existing (2020) conditions
- Build (2020) conditions

#### **Study Intersections:**

- Mebane Oaks Road and Old Hillsborough Road
- Old Hillsborough Road and Jones Drive
- Old Hillsborough Road and NC 119
- Old Hillsborough Road and Site Drive

#### **Existing Conditions:**

- Counts will be utilized from the Cambridge Park and Mebane Oaks Residential TIAs during typical weekday AM (7:00 9:00 AM) and PM (4:00 6:00 PM) peak hours, while schools were in session
  - Expected to provide a conservative analysis, because the proposed school may operate outside of the peak hours of the adjacent roadway
  - Counts will be grown to 2020 via a proposed 1% annually compounded growth rate, per the Cambridge Park TIA
  - o Additionally, counts will be grown with the following adjacent developments:
    - Phase 1 and Phase 2 of Cambridge Park
      - Phase 1: 122 single family homes
      - Phase 2: 160 additional single family homes
    - Adjacent developments identified in Cambridge Park
      - The Meadows
      - Magnolia Glen
  - Roadway improvements were identified for the above adjacent developments; however, due to the proximity of the temporary site's buildout, they are proposed to not be included in future analysis. These improvements will be identified in the report as committed by other developments, but will only be shown under improved files, if the improvements are necessary. The following roadway improvements are committed by the above assumed adjacent developments:
    - Mebane Oaks Road and Old Hillsborough Road
      - Provide signalization once warranted and approved by NCDOT and the City
      - Construct an exclusive northbound left-turn lane with 150 feet of storage
      - Construct an exclusive southbound left-turn lane with 150 feet of storage
    - NC 119 and Old Hillsborough Road
      - Signal timing adjustments
      - Extend the westbound left-turn lane on NC 119 to approximately 225 feet of storage
  - No other adjacent developments based on build-out years of surrounding development, including Mebane Oaks Residential (2023)
  - Traffic volumes will be balanced due to the differences in count dates
- Through volumes will be balanced at the intersection of Old Hillsborough Road and Site Drive based on adjacent intersection traffic volumes
  - No trips are assumed entering or exiting Crosslink Community Church during the school peak hours;
     therefore, turning movements will have a volume of 0 vph under existing conditions
- NCDOT TIP Project U-6013 will not be included in the existing or build analysis

#### **Additional Notes:**

- If an officer is identified to be needed based on the assessment and TMP, this may be outside of Mebane limits and will need to be communicated to all impacted jurisdictions
- City will waive bike/ped evaluation

#### MOU:

We know this one has a quick turnaround, so we would like for this email summary to serve as the MOU, if at all possible. Please see below for the proposed regional distribution based on the TIA assumptions included in the proposed Alamance Community Charter permanent site:

- 60% to/from the west via Old Hillsborough Road
- 25% to/from the north via Mebane Oaks Road
- 10% to/from the south via NC 119
- 5% to/from the south via Jones Drive

Please let us know if you have any questions or if you find all to be acceptable for the purpose of the assessment letter and TMP. Thank you!

Mary Lynn Smith, EI Traffic Engineering Associate T 919 872 5115 | D 919 872 0642



Email correspondence to and from this sender is subject to the N.C. Public Records Law and may be disclosed to third parties.

## APPENDIX D

# CAPACITY ANALYSIS RESULTS OLD HILLSBOROUGH ROAD / TROLLINGWOOD HAWFIELDS ROAD AND NC 119

Alamance Community Charter Temporary Site
1: Old Hillsborough Road/Trollingwood Hawfields Road & NC 119

|                         | ۶     | -     | •    | •     | <b>←</b> | •    | •     | <b>†</b> | /    | <b>/</b> | ţ        | 4    |
|-------------------------|-------|-------|------|-------|----------|------|-------|----------|------|----------|----------|------|
| Lane Group              | EBL   | EBT   | EBR  | WBL   | WBT      | WBR  | NBL   | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations     | ሻ     | ĵ.    |      | ሻ     | ĵ»       |      | ሻ     | ĵ»       |      | ሻ        | <b>^</b> |      |
| Traffic Volume (vph)    | 131   | 510   | 111  | 91    | 206      | 49   | 156   | 313      | 210  | 68       | 178      | 83   |
| Future Volume (vph)     | 131   | 510   | 111  | 91    | 206      | 49   | 156   | 313      | 210  | 68       | 178      | 83   |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900 | 1900  | 1900     | 1900 | 1900  | 1900     | 1900 | 1900     | 1900     | 1900 |
| Storage Length (ft)     | 150   |       | 0    | 100   |          | 0    | 150   |          | 0    | 175      |          | 0    |
| Storage Lanes           | 1     |       | 0    | 1     |          | 0    | 1     |          | 0    | 1        |          | 0    |
| Taper Length (ft)       | 100   |       |      | 100   |          |      | 100   |          |      | 100      |          |      |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00     | 1.00     | 1.00 |
| Frt                     |       | 0.973 |      |       | 0.971    |      |       | 0.940    |      |          | 0.952    |      |
| Flt Protected           | 0.950 |       |      | 0.950 |          |      | 0.950 |          |      | 0.950    |          |      |
| Satd. Flow (prot)       | 1770  | 1812  | 0    | 1770  | 1809     | 0    | 1770  | 1751     | 0    | 1770     | 1773     | 0    |
| Flt Permitted           | 0.480 |       |      | 0.094 |          |      | 0.379 |          |      | 0.097    |          |      |
| Satd. Flow (perm)       | 894   | 1812  | 0    | 175   | 1809     | 0    | 706   | 1751     | 0    | 181      | 1773     | 0    |
| Right Turn on Red       |       |       | No   |       |          | No   |       |          | No   |          |          | No   |
| Satd. Flow (RTOR)       |       |       |      |       |          |      |       |          |      |          |          |      |
| Link Speed (mph)        |       | 45    |      |       | 45       |      |       | 45       |      |          | 45       |      |
| Link Distance (ft)      |       | 1154  |      |       | 3001     |      |       | 1757     |      |          | 2247     |      |
| Travel Time (s)         |       | 17.5  |      |       | 45.5     |      |       | 26.6     |      |          | 34.0     |      |
| Peak Hour Factor        | 0.90  | 0.90  | 0.90 | 0.90  | 0.90     | 0.90 | 0.90  | 0.90     | 0.90 | 0.90     | 0.90     | 0.90 |
| Adj. Flow (vph)         | 146   | 567   | 123  | 101   | 229      | 54   | 173   | 348      | 233  | 76       | 198      | 92   |
| Shared Lane Traffic (%) |       |       |      |       |          |      |       |          |      |          |          |      |
| Lane Group Flow (vph)   | 146   | 690   | 0    | 101   | 283      | 0    | 173   | 581      | 0    | 76       | 290      | 0    |
| Turn Type               | D.P+P | NA    |      | D.P+P | NA       |      | D.P+P | NA       |      | D.P+P    | NA       |      |
| Protected Phases        | 5     | 2     |      | 1     | 6        |      | 3     | 8        |      | 7        | 4        |      |
| Permitted Phases        | 6     |       |      | 2     |          |      | 4     |          |      | 8        |          |      |
| Detector Phase          | 5     | 2     |      | 1     | 6        |      | 3     | 8        |      | 7        | 4        |      |
| Switch Phase            |       |       |      |       |          |      |       |          |      |          |          |      |
| Minimum Initial (s)     | 7.0   | 12.0  |      | 7.0   | 12.0     |      | 7.0   | 7.0      |      | 7.0      | 7.0      |      |
| Minimum Split (s)       | 12.1  | 17.6  |      | 12.1  | 17.6     |      | 12.4  | 12.4     |      | 12.1     | 12.4     |      |
| Total Split (s)         | 20.0  | 90.0  |      | 20.0  | 90.0     |      | 15.0  | 45.0     |      | 15.0     | 45.0     |      |
| Total Split (%)         | 11.8% | 52.9% |      | 11.8% | 52.9%    |      | 8.8%  | 26.5%    |      | 8.8%     | 26.5%    |      |
| Maximum Green (s)       | 14.9  | 84.4  |      | 14.9  | 84.4     |      | 9.6   | 39.6     |      | 9.9      | 39.6     |      |
| Yellow Time (s)         | 3.0   | 4.6   |      | 3.0   | 4.6      |      | 3.0   | 4.4      |      | 3.0      | 4.4      |      |
| All-Red Time (s)        | 2.1   | 1.0   |      | 2.1   | 1.0      |      | 2.4   | 1.0      |      | 2.1      | 1.0      |      |
| Lost Time Adjust (s)    | -0.1  | -0.6  |      | -0.1  | -0.6     |      | -0.4  | -0.4     |      | -1.0     | -0.4     |      |
| Total Lost Time (s)     | 5.0   | 5.0   |      | 5.0   | 5.0      |      | 5.0   | 5.0      |      | 4.1      | 5.0      |      |
| Lead/Lag                | Lead  | Lag   |      | Lead  | Lag      |      | Lead  | Lag      |      | Lead     | Lag      |      |
| Lead-Lag Optimize?      | Yes   | Yes   |      | Yes   | Yes      |      | Yes   | Yes      |      | Yes      | Yes      |      |
| Vehicle Extension (s)   | 3.0   | 3.0   |      | 3.0   | 3.0      |      | 3.0   | 3.0      |      | 3.0      | 3.0      |      |
| Minimum Gap (s)         | 3.0   | 3.0   |      | 3.0   | 3.0      |      | 3.0   | 3.0      |      | 3.0      | 3.0      |      |
| Time Before Reduce (s)  | 0.0   | 15.0  |      | 0.0   | 15.0     |      | 0.0   | 0.0      |      | 0.0      | 0.0      |      |
| Time To Reduce (s)      | 0.0   | 30.0  |      | 0.0   | 30.0     |      | 0.0   | 0.0      |      | 0.0      | 0.0      |      |
| Recall Mode             | None  | Min   |      | None  | Min      |      | None  | None     |      | None     | None     |      |
| Act Effct Green (s)     | 67.4  | 58.0  |      | 67.4  | 56.2     |      | 49.5  | 40.7     |      | 51.3     | 39.4     |      |
| Actuated g/C Ratio      | 0.49  | 0.42  |      | 0.49  | 0.41     |      | 0.36  | 0.30     |      | 0.37     | 0.29     |      |
| v/c Ratio               | 0.29  | 0.90  |      | 0.52  | 0.38     |      | 0.52  | 1.12     |      | 0.42     | 0.57     |      |
| Control Delay           | 17.4  | 52.5  |      | 25.3  | 29.4     |      | 39.2  | 121.2    |      | 37.6     | 50.3     |      |
| Queue Delay             | 0.0   | 0.0   |      | 0.0   | 0.0      |      | 0.0   | 0.0      |      | 0.0      | 0.0      |      |
| Total Delay             | 17.4  | 52.5  |      | 25.3  | 29.4     |      | 39.2  | 121.2    |      | 37.6     | 50.3     |      |

Lanes, Volumes, Timings RKA

Synchro 10 Report Page 1

| No-Build (2020)           |
|---------------------------|
| Timing Plan: AM Peak Hour |

|                         | •    | <b>→</b> | •    | •    | •    | •    | •    | <b>†</b> | /    | <b>\</b> | Ţ    | 4    |
|-------------------------|------|----------|------|------|------|------|------|----------|------|----------|------|------|
| Lane Group              | EBL  | EBT      | EBR  | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL      | SBT  | SBR  |
| LOS                     | В    | D        | LDIX | C    | C    | WDIX | D    | F        | NDIX | D        | D    | ODIT |
| Approach Delay          |      | 46.4     |      |      | 28.3 |      |      | 102.4    |      |          | 47.6 |      |
| Approach LOS            |      | D        |      |      | С    |      |      | F        |      |          | D    |      |
| Queue Length 50th (ft)  | 64   | 562      |      | 43   | 174  |      | 101  | ~594     |      | 41       | 219  |      |
| Queue Length 95th (ft)  | 100  | 761      |      | 72   | 255  |      | 206  | #1063    |      | 99       | 397  |      |
| Internal Link Dist (ft) |      | 1074     |      |      | 2921 |      |      | 1677     |      |          | 2167 |      |
| Turn Bay Length (ft)    | 150  |          |      | 100  |      |      | 150  |          |      | 175      |      |      |
| Base Capacity (vph)     | 559  | 1140     |      | 269  | 1139 |      | 333  | 519      |      | 197      | 525  |      |
| Starvation Cap Reductn  | 0    | 0        |      | 0    | 0    |      | 0    | 0        |      | 0        | 0    |      |
| Spillback Cap Reductn   | 0    | 0        |      | 0    | 0    |      | 0    | 0        |      | 0        | 0    |      |
| Storage Cap Reductn     | 0    | 0        |      | 0    | 0    |      | 0    | 0        |      | 0        | 0    |      |
| Reduced v/c Ratio       | 0.26 | 0.61     |      | 0.38 | 0.25 |      | 0.52 | 1.12     |      | 0.39     | 0.55 |      |

#### Intersection Summary

Area Type: Other

Cycle Length: 170

Actuated Cycle Length: 137.3

Natural Cycle: 120

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.12

Intersection Signal Delay: 61.6 Intersection LOS: E
Intersection Capacity Utilization 90.5% ICU Level of Service E

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Old Hillsborough Road/Trollingwood Hawfields Road & NC 119



Lanes, Volumes, Timings

Synchro 10 Report

Page 2

Build (2020) Timing Plan: AM Peak Hour

|                         | ۶     | <b>→</b> | •    | •     | <b>←</b> | •    | 4     | †     | <b>/</b> | <b>/</b> | ţ     | 4    |
|-------------------------|-------|----------|------|-------|----------|------|-------|-------|----------|----------|-------|------|
| Lane Group              | EBL   | EBT      | EBR  | WBL   | WBT      | WBR  | NBL   | NBT   | NBR      | SBL      | SBT   | SBR  |
| Lane Configurations     | ሻ     | f.       |      | ሻ     | 1>       |      | ሻ     | f.    |          | ሻ        | ĵ.    |      |
| Traffic Volume (vph)    | 131   | 510      | 126  | 91    | 206      | 49   | 168   | 387   | 210      | 68       | 268   | 83   |
| Future Volume (vph)     | 131   | 510      | 126  | 91    | 206      | 49   | 168   | 387   | 210      | 68       | 268   | 83   |
| Ideal Flow (vphpl)      | 1900  | 1900     | 1900 | 1900  | 1900     | 1900 | 1900  | 1900  | 1900     | 1900     | 1900  | 1900 |
| Storage Length (ft)     | 150   |          | 0    | 100   |          | 0    | 150   |       | 0        | 175      |       | 0    |
| Storage Lanes           | 1     |          | 0    | 1     |          | 0    | 1     |       | 0        | 1        |       | 0    |
| Taper Length (ft)       | 100   |          |      | 100   |          |      | 100   |       |          | 100      |       |      |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  | 1.00 |
| Frt                     |       | 0.969    |      |       | 0.971    |      |       | 0.950 |          |          | 0.969 |      |
| FIt Protected           | 0.950 |          |      | 0.950 |          |      | 0.950 |       |          | 0.950    |       |      |
| Satd. Flow (prot)       | 1770  | 1805     | 0    | 1770  | 1809     | 0    | 1770  | 1770  | 0        | 1770     | 1805  | 0    |
| FIt Permitted           | 0.484 |          |      | 0.087 |          |      | 0.160 |       |          | 0.094    |       |      |
| Satd. Flow (perm)       | 902   | 1805     | 0    | 162   | 1809     | 0    | 298   | 1770  | 0        | 175      | 1805  | 0    |
| Right Turn on Red       |       |          | No   |       |          | No   |       |       | No       |          |       | No   |
| Satd. Flow (RTOR)       |       |          |      |       |          |      |       |       |          |          |       |      |
| Link Speed (mph)        |       | 45       |      |       | 45       |      |       | 45    |          |          | 45    |      |
| Link Distance (ft)      |       | 1154     |      |       | 3001     |      |       | 1757  |          |          | 2247  |      |
| Travel Time (s)         |       | 17.5     |      |       | 45.5     |      |       | 26.6  |          |          | 34.0  |      |
| Peak Hour Factor        | 0.90  | 0.90     | 0.85 | 0.90  | 0.90     | 0.90 | 0.87  | 0.82  | 0.90     | 0.90     | 0.77  | 0.90 |
| Adj. Flow (vph)         | 146   | 567      | 148  | 101   | 229      | 54   | 193   | 472   | 233      | 76       | 348   | 92   |
| Shared Lane Traffic (%) | 1 10  | 001      | 1 10 | 101   |          | • •  | 100   |       | 200      | 10       | 0.10  | 02   |
| Lane Group Flow (vph)   | 146   | 715      | 0    | 101   | 283      | 0    | 193   | 705   | 0        | 76       | 440   | 0    |
| Turn Type               | D.P+P | NA       |      | D.P+P | NA       |      | D.P+P | NA    | •        | D.P+P    | NA    |      |
| Protected Phases        | 5     | 2        |      | 1     | 6        |      | 3     | 8     |          | 7        | 4     |      |
| Permitted Phases        | 6     | _        |      | 2     |          |      | 4     |       |          | 8        | •     |      |
| Detector Phase          | 5     | 2        |      | 1     | 6        |      | 3     | 8     |          | 7        | 4     |      |
| Switch Phase            | _     | _        |      | •     |          |      |       | _     |          | •        | •     |      |
| Minimum Initial (s)     | 7.0   | 12.0     |      | 7.0   | 12.0     |      | 7.0   | 7.0   |          | 7.0      | 7.0   |      |
| Minimum Split (s)       | 12.1  | 17.6     |      | 12.1  | 17.6     |      | 12.4  | 12.4  |          | 12.1     | 12.4  |      |
| Total Split (s)         | 20.0  | 90.0     |      | 20.0  | 90.0     |      | 15.0  | 45.0  |          | 15.0     | 45.0  |      |
| Total Split (%)         | 11.8% | 52.9%    |      | 11.8% | 52.9%    |      | 8.8%  | 26.5% |          | 8.8%     | 26.5% |      |
| Maximum Green (s)       | 14.9  | 84.4     |      | 14.9  | 84.4     |      | 9.6   | 39.6  |          | 9.9      | 39.6  |      |
| Yellow Time (s)         | 3.0   | 4.6      |      | 3.0   | 4.6      |      | 3.0   | 4.4   |          | 3.0      | 4.4   |      |
| All-Red Time (s)        | 2.1   | 1.0      |      | 2.1   | 1.0      |      | 2.4   | 1.0   |          | 2.1      | 1.0   |      |
| Lost Time Adjust (s)    | -0.1  | -0.6     |      | -0.1  | -0.6     |      | -0.4  | -0.4  |          | -1.0     | -0.4  |      |
| Total Lost Time (s)     | 5.0   | 5.0      |      | 5.0   | 5.0      |      | 5.0   | 5.0   |          | 4.1      | 5.0   |      |
| Lead/Lag                | Lead  | Lag      |      | Lead  | Lag      |      | Lead  | Lag   |          | Lead     | Lag   |      |
| Lead-Lag Optimize?      | Yes   | Yes      |      | Yes   | Yes      |      | Yes   | Yes   |          | Yes      | Yes   |      |
| Vehicle Extension (s)   | 3.0   | 3.0      |      | 3.0   | 3.0      |      | 3.0   | 3.0   |          | 3.0      | 3.0   |      |
| Minimum Gap (s)         | 3.0   | 3.0      |      | 3.0   | 3.0      |      | 3.0   | 3.0   |          | 3.0      | 3.0   |      |
| Time Before Reduce (s)  | 0.0   | 15.0     |      | 0.0   | 15.0     |      | 0.0   | 0.0   |          | 0.0      | 0.0   |      |
| Time To Reduce (s)      | 0.0   | 30.0     |      | 0.0   | 30.0     |      | 0.0   | 0.0   |          | 0.0      | 0.0   |      |
| Recall Mode             | None  | Min      |      | None  | Min      |      | None  | None  |          | None     | None  |      |
| Act Effct Green (s)     | 71.4  | 61.9     |      | 71.4  | 60.0     |      | 50.7  | 41.8  |          | 52.5     | 40.5  |      |
| Actuated g/C Ratio      | 0.50  | 0.43     |      | 0.50  | 0.42     |      | 0.36  | 0.29  |          | 0.37     | 0.28  |      |
| v/c Ratio               | 0.30  | 0.43     |      | 0.54  | 0.42     |      | 0.30  | 1.36  |          | 0.37     | 0.26  |      |
| Control Delay           | 17.3  | 53.8     |      | 27.5  | 29.0     |      | 80.2  | 211.7 |          | 39.6     | 66.6  |      |
| Queue Delay             | 0.0   | 0.0      |      | 0.0   | 0.0      |      | 0.0   | 0.0   |          | 0.0      | 0.0   |      |
| Total Delay             | 17.3  | 53.8     |      | 27.5  | 29.0     |      | 80.2  | 211.7 |          | 39.6     | 66.6  |      |
| Total Delay             | 11.3  | 55.0     |      | 21.3  | 23.0     |      | 00.2  | Z11.1 |          | 55.0     | 00.0  |      |

Lanes, Volumes, Timings RKA

Synchro 10 Report Page 1

Build (2020) Timing Plan: AM Peak Hour

|                         | •    | <b>→</b> | •   | •    | •    | •   | •    | <b>†</b> | /   | <b>\</b> | Ţ    | 4   |
|-------------------------|------|----------|-----|------|------|-----|------|----------|-----|----------|------|-----|
| L O                     | EDI  | EDT      | -   | WDI  | WDT  | WDD | NDI. | NDT      | NDD | ODL      | CDT  | CDD |
| Lane Group              | EBL  | EBT      | EBR | WBL  | WBT  | WBR | NBL  | NBT      | NBR | SBL      | SBT  | SBR |
| LOS                     | В    | D        |     | С    | С    |     | F    | F        |     | D        | Е    |     |
| Approach Delay          |      | 47.6     |     |      | 28.6 |     |      | 183.5    |     |          | 62.7 |     |
| Approach LOS            |      | D        |     |      | С    |     |      | F        |     |          | Е    |     |
| Queue Length 50th (ft)  | 65   | 605      |     | 44   | 176  |     | 120  | ~854     |     | 43       | 383  |     |
| Queue Length 95th (ft)  | 100  | 806      |     | 77   | 254  |     | #304 | #1207    |     | 102      | #557 |     |
| Internal Link Dist (ft) |      | 1074     |     |      | 2921 |     |      | 1677     |     |          | 2167 |     |
| Turn Bay Length (ft)    | 150  |          |     | 100  |      |     | 150  |          |     | 175      |      |     |
| Base Capacity (vph)     | 566  | 1092     |     | 258  | 1095 |     | 211  | 519      |     | 189      | 514  |     |
| Starvation Cap Reductn  | 0    | 0        |     | 0    | 0    |     | 0    | 0        |     | 0        | 0    |     |
| Spillback Cap Reductn   | 0    | 0        |     | 0    | 0    |     | 0    | 0        |     | 0        | 0    |     |
| Storage Cap Reductn     | 0    | 0        |     | 0    | 0    |     | 0    | 0        |     | 0        | 0    |     |
| Reduced v/c Ratio       | 0.26 | 0.65     |     | 0.39 | 0.26 |     | 0.91 | 1.36     |     | 0.40     | 0.86 |     |

#### Intersection Summary

Area Type: Other

Cycle Length: 170

Actuated Cycle Length: 142.3

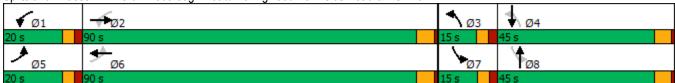
Natural Cycle: 150

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.36

Intersection Signal Delay: 93.7 Intersection LOS: F
Intersection Capacity Utilization 95.3% ICU Level of Service F

Analysis Period (min) 15


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Old Hillsborough Road/Trollingwood Hawfields Road & NC 119



Lanes, Volumes, Timings

Synchro 10 Report

Page 2

Alamance Community Charter Temporary Site But 1: Old Hillsborough Road/Trollingwood Hawfields Road & NC 119

|                         | ۶     | -     | •    | •     | <b>←</b> | •    | 4     | <b>†</b> | ~    | <b>/</b> | ţ     | 4    |
|-------------------------|-------|-------|------|-------|----------|------|-------|----------|------|----------|-------|------|
| Lane Group              | EBL   | EBT   | EBR  | WBL   | WBT      | WBR  | NBL   | NBT      | NBR  | SBL      | SBT   | SBR  |
| Lane Configurations     | *     | ĵ.    |      | ሻ     | f)       |      | ሻ     | <b>^</b> |      | ሻ        | 1>    |      |
| Traffic Volume (vph)    | 131   | 510   | 126  | 91    | 206      | 49   | 168   | 387      | 210  | 68       | 268   | 83   |
| Future Volume (vph)     | 131   | 510   | 126  | 91    | 206      | 49   | 168   | 387      | 210  | 68       | 268   | 83   |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900 | 1900  | 1900     | 1900 | 1900  | 1900     | 1900 | 1900     | 1900  | 1900 |
| Storage Length (ft)     | 150   |       | 0    | 225   |          | 0    | 550   |          | 0    | 175      |       | 0    |
| Storage Lanes           | 1     |       | 0    | 1     |          | 0    | 1     |          | 0    | 1        |       | 0    |
| Taper Length (ft)       | 100   |       |      | 100   |          |      | 100   |          |      | 100      |       |      |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00     | 1.00  | 1.00 |
| Frt                     |       | 0.969 |      |       | 0.971    |      |       | 0.950    |      |          | 0.969 |      |
| Flt Protected           | 0.950 |       |      | 0.950 |          |      | 0.950 |          |      | 0.950    |       |      |
| Satd. Flow (prot)       | 1770  | 1805  | 0    | 1770  | 1809     | 0    | 1770  | 1770     | 0    | 1770     | 1805  | 0    |
| FIt Permitted           | 0.461 |       |      | 0.060 |          |      | 0.244 |          |      | 0.059    |       |      |
| Satd. Flow (perm)       | 859   | 1805  | 0    | 112   | 1809     | 0    | 455   | 1770     | 0    | 110      | 1805  | 0    |
| Right Turn on Red       |       |       | No   |       |          | No   |       |          | No   |          |       | No   |
| Satd. Flow (RTOR)       |       |       |      |       |          |      |       |          |      |          |       |      |
| Link Speed (mph)        |       | 40    |      |       | 45       |      |       | 45       |      |          | 45    |      |
| Link Distance (ft)      |       | 1154  |      |       | 3001     |      |       | 1757     |      |          | 2247  |      |
| Travel Time (s)         |       | 19.7  |      |       | 45.5     |      |       | 26.6     |      |          | 34.0  |      |
| Peak Hour Factor        | 0.90  | 0.90  | 0.85 | 0.90  | 0.90     | 0.90 | 0.87  | 0.82     | 0.90 | 0.90     | 0.77  | 0.90 |
| Adj. Flow (vph)         | 146   | 567   | 148  | 101   | 229      | 54   | 193   | 472      | 233  | 76       | 348   | 92   |
| Shared Lane Traffic (%) |       |       |      |       |          |      |       |          |      |          |       |      |
| Lane Group Flow (vph)   | 146   | 715   | 0    | 101   | 283      | 0    | 193   | 705      | 0    | 76       | 440   | 0    |
| Turn Type               | D.P+P | NA    |      | D.P+P | NA       |      | D.P+P | NA       |      | D.P+P    | NA    |      |
| Protected Phases        | 5     | 2     |      | 1     | 6        |      | 3     | 8        |      | 7        | 4     |      |
| Permitted Phases        | 6     |       |      | 2     |          |      | 4     |          |      | 8        |       |      |
| Detector Phase          | 5     | 2     |      | 1     | 6        |      | 3     | 8        |      | 7        | 4     |      |
| Switch Phase            |       |       |      |       |          |      |       |          |      |          |       |      |
| Minimum Initial (s)     | 7.0   | 12.0  |      | 7.0   | 12.0     |      | 7.0   | 7.0      |      | 7.0      | 7.0   |      |
| Minimum Split (s)       | 12.1  | 17.6  |      | 12.1  | 17.6     |      | 12.4  | 12.4     |      | 12.1     | 12.4  |      |
| Total Split (s)         | 13.0  | 72.0  |      | 13.0  | 72.0     |      | 22.0  | 72.0     |      | 13.0     | 63.0  |      |
| Total Split (%)         | 7.6%  | 42.4% |      | 7.6%  | 42.4%    |      | 12.9% | 42.4%    |      | 7.6%     | 37.1% |      |
| Maximum Green (s)       | 7.9   | 66.4  |      | 7.9   | 66.4     |      | 16.6  | 66.6     |      | 7.9      | 57.6  |      |
| Yellow Time (s)         | 3.0   | 4.6   |      | 3.0   | 4.6      |      | 3.0   | 4.4      |      | 3.0      | 4.4   |      |
| All-Red Time (s)        | 2.1   | 1.0   |      | 2.1   | 1.0      |      | 2.4   | 1.0      |      | 2.1      | 1.0   |      |
| Lost Time Adjust (s)    | -0.1  | -0.6  |      | -0.1  | -0.6     |      | -0.4  | -0.4     |      | -1.0     | -0.4  |      |
| Total Lost Time (s)     | 5.0   | 5.0   |      | 5.0   | 5.0      |      | 5.0   | 5.0      |      | 4.1      | 5.0   |      |
| Lead/Lag                | Lead  | Lag   |      | Lead  | Lag      |      | Lead  | Lag      |      | Lead     | Lag   |      |
| Lead-Lag Optimize?      | Yes   | Yes   |      | Yes   | Yes      |      | Yes   | Yes      |      | Yes      | Yes   |      |
| Vehicle Extension (s)   | 3.0   | 3.0   |      | 3.0   | 3.0      |      | 3.0   | 3.0      |      | 3.0      | 3.0   |      |
| Minimum Gap (s)         | 3.0   | 3.0   |      | 3.0   | 3.0      |      | 3.0   | 3.0      |      | 3.0      | 3.0   |      |
| Time Before Reduce (s)  | 0.0   | 15.0  |      | 0.0   | 15.0     |      | 0.0   | 0.0      |      | 0.0      | 0.0   |      |
| Time To Reduce (s)      | 0.0   | 30.0  |      | 0.0   | 30.0     |      | 0.0   | 0.0      |      | 0.0      | 0.0   |      |
| Recall Mode             | None  | Min   |      | None  | Min      |      | None  | None     |      | None     | None  |      |
| Act Effct Green (s)     | 75.0  | 67.0  |      | 75.0  | 67.0     |      | 74.8  | 67.0     |      | 76.6     | 59.3  |      |
| Actuated g/C Ratio      | 0.44  | 0.39  |      | 0.44  | 0.39     |      | 0.44  | 0.39     |      | 0.45     | 0.35  |      |
| v/c Ratio               | 0.35  | 1.00  |      | 0.80  | 0.40     |      | 0.60  | 1.01     |      | 0.57     | 0.70  |      |
| Control Delay           | 29.3  | 85.1  |      | 71.6  | 39.0     |      | 35.4  | 86.7     |      | 44.6     | 55.0  |      |
| Queue Delay             | 0.0   | 0.0   |      | 0.0   | 0.0      |      | 0.0   | 0.0      |      | 0.0      | 0.0   |      |
| Total Delay             | 29.3  | 85.1  |      | 71.6  | 39.0     |      | 35.4  | 86.7     |      | 44.6     | 55.0  |      |

Lanes, Volumes, Timings RKA

Synchro 10 Report Page 1

Timing Plan: AM Peak Hour

#### 1: Old Hillsborough Road/Trollingwood Hawfields Road & NC 119

|                         | •    | -     | *   | •    | •    | •   | 1    | T    | _   | -    | ¥    | 4   |
|-------------------------|------|-------|-----|------|------|-----|------|------|-----|------|------|-----|
| Lane Group              | EBL  | EBT   | EBR | WBL  | WBT  | WBR | NBL  | NBT  | NBR | SBL  | SBT  | SBR |
| LOS                     | С    | F     |     | Е    | D    |     | D    | F    |     | D    | D    |     |
| Approach Delay          |      | 75.6  |     |      | 47.6 |     |      | 75.6 |     |      | 53.5 |     |
| Approach LOS            |      | Е     |     |      | D    |     |      | Е    |     |      | D    |     |
| Queue Length 50th (ft)  | 93   | ~805  |     | 62   | 226  |     | 126  | ~804 |     | 46   | 428  |     |
| Queue Length 95th (ft)  | 141  | #1082 |     | #169 | 312  |     | 177  | #909 |     | 93   | 456  |     |
| Internal Link Dist (ft) |      | 1074  |     |      | 2921 |     |      | 1677 |     |      | 2167 |     |
| Turn Bay Length (ft)    | 150  |       |     | 225  |      |     | 550  |      |     | 175  |      |     |
| Base Capacity (vph)     | 422  | 712   |     | 127  | 713  |     | 336  | 698  |     | 136  | 630  |     |
| Starvation Cap Reductn  | 0    | 0     |     | 0    | 0    |     | 0    | 0    |     | 0    | 0    |     |
| Spillback Cap Reductn   | 0    | 0     |     | 0    | 0    |     | 0    | 0    |     | 0    | 0    |     |
| Storage Cap Reductn     | 0    | 0     |     | 0    | 0    |     | 0    | 0    |     | 0    | 0    |     |
| Reduced v/c Ratio       | 0.35 | 1.00  |     | 0.80 | 0.40 |     | 0.57 | 1.01 |     | 0.56 | 0.70 |     |

#### Intersection Summary

Area Type: Other

Cycle Length: 170

Actuated Cycle Length: 169.8

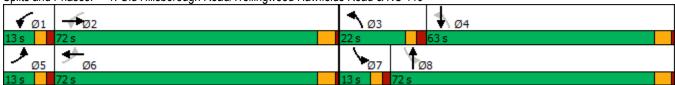
Natural Cycle: 150

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.01

Intersection Signal Delay: 67.3 Intersection LOS: E
Intersection Capacity Utilization 95.3% ICU Level of Service F

Analysis Period (min) 15


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Old Hillsborough Road/Trollingwood Hawfields Road & NC 119



Lanes, Volumes, Timings

Synchro 10 Report

Page 2

No-Build (2020) Timing Plan: PM Peak Hour

|                         | ۶     | <b>→</b> | •    | •     | <b>←</b>       | •    | 4     | †     | ~    | <b>/</b> | ţ     | -√   |
|-------------------------|-------|----------|------|-------|----------------|------|-------|-------|------|----------|-------|------|
| Lane Group              | EBL   | EBT      | EBR  | WBL   | WBT            | WBR  | NBL   | NBT   | NBR  | SBL      | SBT   | SBR  |
| Lane Configurations     | ች     | f.       |      | *     | f <sub>è</sub> |      | ሻ     | £     |      | ች        | f)    |      |
| Traffic Volume (vph)    | 96    | 307      | 153  | 212   | 420            | 72   | 155   | 203   | 155  | 59       | 272   | 161  |
| Future Volume (vph)     | 96    | 307      | 153  | 212   | 420            | 72   | 155   | 203   | 155  | 59       | 272   | 161  |
| Ideal Flow (vphpl)      | 1900  | 1900     | 1900 | 1900  | 1900           | 1900 | 1900  | 1900  | 1900 | 1900     | 1900  | 1900 |
| Storage Length (ft)     | 150   | ,,,,,    | 0    | 100   | ,,,,,          | 0    | 150   |       | 0    | 175      |       | 0    |
| Storage Lanes           | 1     |          | 0    | 1     |                | 0    | 1     |       | 0    | 1        |       | 0    |
| Taper Length (ft)       | 100   |          |      | 100   |                |      | 100   |       | •    | 100      |       |      |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00 | 1.00  | 1.00           | 1.00 | 1.00  | 1.00  | 1.00 | 1.00     | 1.00  | 1.00 |
| Frt                     |       | 0.950    |      |       | 0.978          |      |       | 0.935 |      |          | 0.944 |      |
| Flt Protected           | 0.950 |          |      | 0.950 |                |      | 0.950 |       |      | 0.950    |       |      |
| Satd. Flow (prot)       | 1770  | 1770     | 0    | 1770  | 1822           | 0    | 1770  | 1742  | 0    | 1770     | 1758  | 0    |
| FIt Permitted           | 0.155 |          |      | 0.145 |                |      | 0.177 |       |      | 0.312    |       |      |
| Satd. Flow (perm)       | 289   | 1770     | 0    | 270   | 1822           | 0    | 330   | 1742  | 0    | 581      | 1758  | 0    |
| Right Turn on Red       |       |          | No   |       |                | No   |       |       | No   |          |       | No   |
| Satd. Flow (RTOR)       |       |          |      |       |                |      |       |       |      |          |       |      |
| Link Speed (mph)        |       | 45       |      |       | 45             |      |       | 45    |      |          | 45    |      |
| Link Distance (ft)      |       | 1154     |      |       | 3001           |      |       | 1757  |      |          | 2247  |      |
| Travel Time (s)         |       | 17.5     |      |       | 45.5           |      |       | 26.6  |      |          | 34.0  |      |
| Peak Hour Factor        | 0.90  | 0.90     | 0.90 | 0.90  | 0.90           | 0.90 | 0.90  | 0.90  | 0.90 | 0.90     | 0.90  | 0.90 |
| Adj. Flow (vph)         | 107   | 341      | 170  | 236   | 467            | 80   | 172   | 226   | 172  | 66       | 302   | 179  |
| Shared Lane Traffic (%) |       |          |      |       |                |      |       |       |      |          |       |      |
| Lane Group Flow (vph)   | 107   | 511      | 0    | 236   | 547            | 0    | 172   | 398   | 0    | 66       | 481   | 0    |
| Turn Type               | D.P+P | NA       |      | D.P+P | NA             |      | D.P+P | NA    |      | D.P+P    | NA    |      |
| Protected Phases        | 5     | 2        |      | 1     | 6              |      | 3     | 8     |      | 7        | 4     |      |
| Permitted Phases        | 6     |          |      | 2     |                |      | 4     |       |      | 8        |       |      |
| Detector Phase          | 5     | 2        |      | 1     | 6              |      | 3     | 8     |      | 7        | 4     |      |
| Switch Phase            |       |          |      |       |                |      |       |       |      |          |       |      |
| Minimum Initial (s)     | 7.0   | 12.0     |      | 7.0   | 12.0           |      | 7.0   | 7.0   |      | 7.0      | 7.0   |      |
| Minimum Split (s)       | 12.1  | 17.6     |      | 12.1  | 17.6           |      | 12.4  | 12.4  |      | 12.1     | 12.4  |      |
| Total Split (s)         | 20.0  | 90.0     |      | 20.0  | 90.0           |      | 15.0  | 45.0  |      | 15.0     | 45.0  |      |
| Total Split (%)         | 11.8% | 52.9%    |      | 11.8% | 52.9%          |      | 8.8%  | 26.5% |      | 8.8%     | 26.5% |      |
| Maximum Green (s)       | 14.9  | 84.4     |      | 14.9  | 84.4           |      | 9.6   | 39.6  |      | 9.9      | 39.6  |      |
| Yellow Time (s)         | 3.0   | 4.6      |      | 3.0   | 4.6            |      | 3.0   | 4.4   |      | 3.0      | 4.4   |      |
| All-Red Time (s)        | 2.1   | 1.0      |      | 2.1   | 1.0            |      | 2.4   | 1.0   |      | 2.1      | 1.0   |      |
| Lost Time Adjust (s)    | -0.1  | -0.6     |      | -0.1  | -0.6           |      | -0.4  | -0.4  |      | -1.0     | -0.4  |      |
| Total Lost Time (s)     | 5.0   | 5.0      |      | 5.0   | 5.0            |      | 5.0   | 5.0   |      | 4.1      | 5.0   |      |
| Lead/Lag                | Lead  | Lag      |      | Lead  | Lag            |      | Lead  | Lag   |      | Lead     | Lag   |      |
| Lead-Lag Optimize?      | Yes   | Yes      |      | Yes   | Yes            |      | Yes   | Yes   |      | Yes      | Yes   |      |
| Vehicle Extension (s)   | 3.0   | 3.0      |      | 3.0   | 3.0            |      | 3.0   | 3.0   |      | 3.0      | 3.0   |      |
| Minimum Gap (s)         | 3.0   | 3.0      |      | 3.0   | 3.0            |      | 3.0   | 3.0   |      | 3.0      | 3.0   |      |
| Time Before Reduce (s)  | 0.0   | 15.0     |      | 0.0   | 15.0           |      | 0.0   | 0.0   |      | 0.0      | 0.0   |      |
| Time To Reduce (s)      | 0.0   | 30.0     |      | 0.0   | 30.0           |      | 0.0   | 0.0   |      | 0.0      | 0.0   |      |
| Recall Mode             | None  | Min      |      | None  | Min            |      | None  | None  |      | None     | None  |      |
| Act Effct Green (s)     | 56.1  | 42.0     |      | 56.1  | 46.4           |      | 50.4  | 44.7  |      | 53.1     | 40.3  |      |
| Actuated g/C Ratio      | 0.44  | 0.33     |      | 0.44  | 0.37           |      | 0.40  | 0.35  |      | 0.42     | 0.32  |      |
| v/c Ratio               | 0.44  | 0.87     |      | 0.83  | 0.82           |      | 0.70  | 0.65  |      | 0.20     | 0.86  |      |
| Control Delay           | 23.4  | 55.7     |      | 47.4  | 47.2           |      | 42.6  | 44.0  |      | 25.1     | 58.5  |      |
| Queue Delay             | 0.0   | 0.0      |      | 0.0   | 0.0            |      | 0.0   | 0.0   |      | 0.0      | 0.0   |      |
| Total Delay             | 23.4  | 55.7     |      | 47.4  | 47.2           |      | 42.6  | 44.0  |      | 25.1     | 58.5  |      |

Lanes, Volumes, Timings
RKA

Synchro 10 Report
Page 1

| No-Build        | (2020)    |
|-----------------|-----------|
| ming Plan: PM F | Peak Hour |

|                         | •    | <b>→</b> | •    | •    | ←    | •    | 4    | <b>†</b> | /    | -    | . ↓  | 4    |
|-------------------------|------|----------|------|------|------|------|------|----------|------|------|------|------|
| Lane Group              | EBL  | EBT      | EBR  | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL  | SBT  | SBR  |
| LOS                     | C    | E        | LDIX | D    | D    | WEIN | D    | D        | HOIL | C    | E    | ODIT |
| Approach Delay          |      | 50.1     |      |      | 47.3 |      |      | 43.6     |      |      | 54.4 |      |
| Approach LOS            |      | D        |      |      | D    |      |      | D        |      |      | D    |      |
| Queue Length 50th (ft)  | 47   | 394      |      | 112  | 400  |      | 87   | 283      |      | 31   | 372  |      |
| Queue Length 95th (ft)  | 79   | 534      |      | #238 | 557  |      | #184 | #504     |      | 72   | #671 |      |
| Internal Link Dist (ft) |      | 1074     |      |      | 2921 |      |      | 1677     |      |      | 2167 |      |
| Turn Bay Length (ft)    | 150  |          |      | 100  |      |      | 150  |          |      | 175  |      |      |
| Base Capacity (vph)     | 315  | 1197     |      | 300  | 1232 |      | 245  | 615      |      | 351  | 559  |      |
| Starvation Cap Reductn  | 0    | 0        |      | 0    | 0    |      | 0    | 0        |      | 0    | 0    |      |
| Spillback Cap Reductn   | 0    | 0        |      | 0    | 0    |      | 0    | 0        |      | 0    | 0    |      |
| Storage Cap Reductn     | 0    | 0        |      | 0    | 0    |      | 0    | 0        |      | 0    | 0    |      |
| Reduced v/c Ratio       | 0.34 | 0.43     |      | 0.79 | 0.44 |      | 0.70 | 0.65     |      | 0.19 | 0.86 |      |

#### Intersection Summary

Area Type: Other

Cycle Length: 170

Actuated Cycle Length: 126.6

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.87

Intersection Signal Delay: 48.7 Intersection LOS: D
Intersection Capacity Utilization 86.6% ICU Level of Service E

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Old Hillsborough Road/Trollingwood Hawfields Road & NC 119



Lanes, Volumes, Timings

RKA

Synchro 10 Report

Page 2

# Alamance Community Charter Temporary Site 1: Old Hillsborough Road/Trollingwood Hawfields Road & NC 119

|                         | ۶     | <b>→</b> | •    | •     | <b>←</b> | •    | 1     | †     | <i>&gt;</i> | <b>/</b> | <b>↓</b> | ✓    |
|-------------------------|-------|----------|------|-------|----------|------|-------|-------|-------------|----------|----------|------|
| Lane Group              | EBL   | EBT      | EBR  | WBL   | WBT      | WBR  | NBL   | NBT   | NBR         | SBL      | SBT      | SBR  |
| Lane Configurations     | ኻ     | f)       |      | *     | 1>       |      | ሻ     | f)    |             | ኻ        | £        |      |
| Traffic Volume (vph)    | 96    | 307      | 162  | 212   | 420      | 72   | 166   | 272   | 155         | 59       | 324      | 161  |
| Future Volume (vph)     | 96    | 307      | 162  | 212   | 420      | 72   | 166   | 272   | 155         | 59       | 324      | 161  |
| Ideal Flow (vphpl)      | 1900  | 1900     | 1900 | 1900  | 1900     | 1900 | 1900  | 1900  | 1900        | 1900     | 1900     | 1900 |
| Storage Length (ft)     | 150   |          | 0    | 100   |          | 0    | 150   |       | 0           | 175      |          | 0    |
| Storage Lanes           | 1     |          | 0    | 1     |          | 0    | 1     |       | 0           | 1        |          | 0    |
| Taper Length (ft)       | 100   |          |      | 100   |          |      | 100   |       |             | 100      |          |      |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00  | 1.00        | 1.00     | 1.00     | 1.00 |
| Frt                     |       | 0.947    |      |       | 0.978    |      |       | 0.950 |             |          | 0.952    |      |
| Flt Protected           | 0.950 |          |      | 0.950 |          |      | 0.950 |       |             | 0.950    |          |      |
| Satd. Flow (prot)       | 1770  | 1764     | 0    | 1770  | 1822     | 0    | 1770  | 1770  | 0           | 1770     | 1773     | 0    |
| Flt Permitted           | 0.165 |          |      | 0.141 |          |      | 0.097 |       |             | 0.175    |          |      |
| Satd. Flow (perm)       | 307   | 1764     | 0    | 263   | 1822     | 0    | 181   | 1770  | 0           | 326      | 1773     | 0    |
| Right Turn on Red       |       |          | No   |       |          | No   |       |       | No          |          |          | No   |
| Satd. Flow (RTOR)       |       |          |      |       |          |      |       |       |             |          |          |      |
| Link Speed (mph)        |       | 45       |      |       | 45       |      |       | 45    |             |          | 45       |      |
| Link Distance (ft)      |       | 1154     |      |       | 3001     |      |       | 1757  |             |          | 2247     |      |
| Travel Time (s)         |       | 17.5     |      |       | 45.5     |      |       | 26.6  |             |          | 34.0     |      |
| Peak Hour Factor        | 0.90  | 0.90     | 0.88 | 0.90  | 0.90     | 0.90 | 0.87  | 0.80  | 0.90        | 0.90     | 0.84     | 0.90 |
| Adj. Flow (vph)         | 107   | 341      | 184  | 236   | 467      | 80   | 191   | 340   | 172         | 66       | 386      | 179  |
| Shared Lane Traffic (%) |       |          |      |       |          |      |       |       |             |          |          |      |
| Lane Group Flow (vph)   | 107   | 525      | 0    | 236   | 547      | 0    | 191   | 512   | 0           | 66       | 565      | 0    |
| Turn Type               | D.P+P | NA       |      | D.P+P | NA       |      | D.P+P | NA    |             | D.P+P    | NA       |      |
| Protected Phases        | 5     | 2        |      | 1     | 6        |      | 3     | 8     |             | 7        | 4        |      |
| Permitted Phases        | 6     |          |      | 2     |          |      | 4     |       |             | 8        |          |      |
| Detector Phase          | 5     | 2        |      | 1     | 6        |      | 3     | 8     |             | 7        | 4        |      |
| Switch Phase            |       |          |      |       |          |      |       |       |             |          |          |      |
| Minimum Initial (s)     | 7.0   | 12.0     |      | 7.0   | 12.0     |      | 7.0   | 7.0   |             | 7.0      | 7.0      |      |
| Minimum Split (s)       | 12.1  | 17.6     |      | 12.1  | 17.6     |      | 12.4  | 12.4  |             | 12.1     | 12.4     |      |
| Total Split (s)         | 20.0  | 90.0     |      | 20.0  | 90.0     |      | 15.0  | 45.0  |             | 15.0     | 45.0     |      |
| Total Split (%)         | 11.8% | 52.9%    |      | 11.8% | 52.9%    |      | 8.8%  | 26.5% |             | 8.8%     | 26.5%    |      |
| Maximum Green (s)       | 14.9  | 84.4     |      | 14.9  | 84.4     |      | 9.6   | 39.6  |             | 9.9      | 39.6     |      |
| Yellow Time (s)         | 3.0   | 4.6      |      | 3.0   | 4.6      |      | 3.0   | 4.4   |             | 3.0      | 4.4      |      |
| All-Red Time (s)        | 2.1   | 1.0      |      | 2.1   | 1.0      |      | 2.4   | 1.0   |             | 2.1      | 1.0      |      |
| Lost Time Adjust (s)    | -0.1  | -0.6     |      | -0.1  | -0.6     |      | -0.4  | -0.4  |             | -1.0     | -0.4     |      |
| Total Lost Time (s)     | 5.0   | 5.0      |      | 5.0   | 5.0      |      | 5.0   | 5.0   |             | 4.1      | 5.0      |      |
| Lead/Lag                | Lead  | Lag      |      | Lead  | Lag      |      | Lead  | Lag   |             | Lead     | Lag      |      |
| Lead-Lag Optimize?      | Yes   | Yes      |      | Yes   | Yes      |      | Yes   | Yes   |             | Yes      | Yes      |      |
| Vehicle Extension (s)   | 3.0   | 3.0      |      | 3.0   | 3.0      |      | 3.0   | 3.0   |             | 3.0      | 3.0      |      |
| Minimum Gap (s)         | 3.0   | 3.0      |      | 3.0   | 3.0      |      | 3.0   | 3.0   |             | 3.0      | 3.0      |      |
| Time Before Reduce (s)  | 0.0   | 15.0     |      | 0.0   | 15.0     |      | 0.0   | 0.0   |             | 0.0      | 0.0      |      |
| Time To Reduce (s)      | 0.0   | 30.0     |      | 0.0   | 30.0     |      | 0.0   | 0.0   |             | 0.0      | 0.0      |      |
| Recall Mode             | None  | Min      |      | None  | Min      |      | None  | None  |             | None     | None     |      |
| Act Effct Green (s)     | 57.6  | 43.6     |      | 57.6  | 47.9     |      | 50.4  | 44.7  |             | 53.2     | 40.3     |      |
| Actuated g/C Ratio      | 0.45  | 0.34     |      | 0.45  | 0.37     |      | 0.39  | 0.35  |             | 0.41     | 0.31     |      |
| v/c Ratio               | 0.43  | 0.88     |      | 0.83  | 0.80     |      | 0.97  | 0.83  |             | 0.28     | 1.01     |      |
| Control Delay           | 22.7  | 55.9     |      | 48.8  | 45.6     |      | 91.5  | 54.0  |             | 27.4     | 86.0     |      |
| Queue Delay             | 0.0   | 0.0      |      | 0.0   | 0.0      |      | 0.0   | 0.0   |             | 0.0      | 0.0      |      |
| Total Delay             | 22.7  | 55.9     |      | 48.8  | 45.6     |      | 91.5  | 54.0  |             | 27.4     | 86.0     |      |

Lanes, Volumes, Timings RKA

Synchro 10 Report Page 1

#### 1: Old Hillsborough Road/Trollingwood Hawfields Road & NC 119

|                         | •    | -    | •   | •    | •    | •   | 1    | <b>†</b> | ~   | -    | Į.   | 4   |
|-------------------------|------|------|-----|------|------|-----|------|----------|-----|------|------|-----|
| Lane Group              | EBL  | EBT  | EBR | WBL  | WBT  | WBR | NBL  | NBT      | NBR | SBL  | SBT  | SBR |
| LOS                     | С    | Е    |     | D    | D    |     | F    | D        |     | С    | F    |     |
| Approach Delay          |      | 50.3 |     |      | 46.6 |     |      | 64.2     |     |      | 79.9 |     |
| Approach LOS            |      | D    |     |      | D    |     |      | Е        |     |      | Е    |     |
| Queue Length 50th (ft)  | 47   | 410  |     | 112  | 400  |     | 111  | 404      |     | 32   | ~499 |     |
| Queue Length 95th (ft)  | 79   | 554  |     | #244 | 556  |     | #300 | #613     |     | 74   | #768 |     |
| Internal Link Dist (ft) |      | 1074 |     |      | 2921 |     |      | 1677     |     |      | 2167 |     |
| Turn Bay Length (ft)    | 150  |      |     | 100  |      |     | 150  |          |     | 175  |      |     |
| Base Capacity (vph)     | 321  | 1178 |     | 298  | 1217 |     | 196  | 617      |     | 261  | 557  |     |
| Starvation Cap Reductn  | 0    | 0    |     | 0    | 0    |     | 0    | 0        |     | 0    | 0    |     |
| Spillback Cap Reductn   | 0    | 0    |     | 0    | 0    |     | 0    | 0        |     | 0    | 0    |     |
| Storage Cap Reductn     | 0    | 0    |     | 0    | 0    |     | 0    | 0        |     | 0    | 0    |     |
| Reduced v/c Ratio       | 0.33 | 0.45 |     | 0.79 | 0.45 |     | 0.97 | 0.83     |     | 0.25 | 1.01 |     |

#### Intersection Summary

Area Type: Other

Cycle Length: 170

Actuated Cycle Length: 128.2

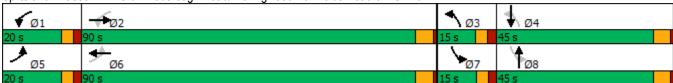
Natural Cycle: 110

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.01

Intersection Signal Delay: 59.6 Intersection LOS: E
Intersection Capacity Utilization 90.5% ICU Level of Service E

Analysis Period (min) 15


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Old Hillsborough Road/Trollingwood Hawfields Road & NC 119



Lanes, Volumes, Timings

Synchro 10 Report

Page 2

Alamance Community Charter Temporary Site But 1: Old Hillsborough Road/Trollingwood Hawfields Road & NC 119

|                         | ۶     | <b>→</b> | •    | •     | <b>←</b> | •    | 1     | †        | ~    | <b>/</b> | <b>↓</b> | 4    |
|-------------------------|-------|----------|------|-------|----------|------|-------|----------|------|----------|----------|------|
| Lane Group              | EBL   | EBT      | EBR  | WBL   | WBT      | WBR  | NBL   | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations     | ሻ     | f.       |      | ሻ     | 1>       |      | ሻ     | <b>*</b> |      | ሻ        | 1•       |      |
| Traffic Volume (vph)    | 96    | 307      | 162  | 212   | 420      | 72   | 166   | 272      | 155  | 59       | 324      | 161  |
| Future Volume (vph)     | 96    | 307      | 162  | 212   | 420      | 72   | 166   | 272      | 155  | 59       | 324      | 161  |
| Ideal Flow (vphpl)      | 1900  | 1900     | 1900 | 1900  | 1900     | 1900 | 1900  | 1900     | 1900 | 1900     | 1900     | 1900 |
| Storage Length (ft)     | 150   |          | 0    | 225   |          | 0    | 550   |          | 0    | 175      |          | 0    |
| Storage Lanes           | 1     |          | 0    | 1     |          | 0    | 1     |          | 0    | 1        |          | 0    |
| Taper Length (ft)       | 100   |          |      | 100   |          |      | 100   |          |      | 100      |          |      |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00     | 1.00     | 1.00 |
| Frt                     |       | 0.947    |      |       | 0.978    |      |       | 0.950    |      |          | 0.952    |      |
| Flt Protected           | 0.950 |          |      | 0.950 |          |      | 0.950 |          |      | 0.950    |          |      |
| Satd. Flow (prot)       | 1770  | 1764     | 0    | 1770  | 1822     | 0    | 1770  | 1770     | 0    | 1770     | 1773     | 0    |
| Flt Permitted           | 0.119 |          |      | 0.143 |          |      | 0.130 |          |      | 0.259    |          |      |
| Satd. Flow (perm)       | 222   | 1764     | 0    | 266   | 1822     | 0    | 242   | 1770     | 0    | 482      | 1773     | 0    |
| Right Turn on Red       |       |          | No   |       |          | No   |       |          | No   |          |          | No   |
| Satd. Flow (RTOR)       |       |          |      |       |          |      |       |          |      |          |          |      |
| Link Speed (mph)        |       | 40       |      |       | 45       |      |       | 45       |      |          | 45       |      |
| Link Distance (ft)      |       | 1154     |      |       | 3001     |      |       | 1757     |      |          | 2247     |      |
| Travel Time (s)         |       | 19.7     |      |       | 45.5     |      |       | 26.6     |      |          | 34.0     |      |
| Peak Hour Factor        | 0.90  | 0.90     | 0.88 | 0.90  | 0.90     | 0.90 | 0.87  | 0.80     | 0.90 | 0.90     | 0.84     | 0.90 |
| Adj. Flow (vph)         | 107   | 341      | 184  | 236   | 467      | 80   | 191   | 340      | 172  | 66       | 386      | 179  |
| Shared Lane Traffic (%) |       |          |      |       |          |      |       |          |      |          |          |      |
| Lane Group Flow (vph)   | 107   | 525      | 0    | 236   | 547      | 0    | 191   | 512      | 0    | 66       | 565      | 0    |
| Turn Type               | D.P+P | NA       |      | D.P+P | NA       |      | D.P+P | NA       |      | D.P+P    | NA       |      |
| Protected Phases        | 5     | 2        |      | 1     | 6        |      | 3     | 8        |      | 7        | 4        |      |
| Permitted Phases        | 6     |          |      | 2     |          |      | 4     |          |      | 8        |          |      |
| Detector Phase          | 5     | 2        |      | 1     | 6        |      | 3     | 8        |      | 7        | 4        |      |
| Switch Phase            |       |          |      |       |          |      |       |          |      |          |          |      |
| Minimum Initial (s)     | 7.0   | 12.0     |      | 7.0   | 12.0     |      | 7.0   | 7.0      |      | 7.0      | 7.0      |      |
| Minimum Split (s)       | 12.1  | 17.6     |      | 12.1  | 17.6     |      | 12.4  | 12.4     |      | 12.1     | 12.4     |      |
| Total Split (s)         | 13.0  | 72.0     |      | 13.0  | 72.0     |      | 22.0  | 72.0     |      | 13.0     | 63.0     |      |
| Total Split (%)         | 7.6%  | 42.4%    |      | 7.6%  | 42.4%    |      | 12.9% | 42.4%    |      | 7.6%     | 37.1%    |      |
| Maximum Green (s)       | 7.9   | 66.4     |      | 7.9   | 66.4     |      | 16.6  | 66.6     |      | 7.9      | 57.6     |      |
| Yellow Time (s)         | 3.0   | 4.6      |      | 3.0   | 4.6      |      | 3.0   | 4.4      |      | 3.0      | 4.4      |      |
| All-Red Time (s)        | 2.1   | 1.0      |      | 2.1   | 1.0      |      | 2.4   | 1.0      |      | 2.1      | 1.0      |      |
| Lost Time Adjust (s)    | -0.1  | -0.6     |      | -0.1  | -0.6     |      | -0.4  | -0.4     |      | -1.0     | -0.4     |      |
| Total Lost Time (s)     | 5.0   | 5.0      |      | 5.0   | 5.0      |      | 5.0   | 5.0      |      | 4.1      | 5.0      |      |
| Lead/Lag                | Lead  | Lag      |      | Lead  | Lag      |      | Lead  | Lag      |      | Lead     | Lag      |      |
| Lead-Lag Optimize?      | Yes   | Yes      |      | Yes   | Yes      |      | Yes   | Yes      |      | Yes      | Yes      |      |
| Vehicle Extension (s)   | 3.0   | 3.0      |      | 3.0   | 3.0      |      | 3.0   | 3.0      |      | 3.0      | 3.0      |      |
| Minimum Gap (s)         | 3.0   | 3.0      |      | 3.0   | 3.0      |      | 3.0   | 3.0      |      | 3.0      | 3.0      |      |
| Time Before Reduce (s)  | 0.0   | 15.0     |      | 0.0   | 15.0     |      | 0.0   | 0.0      |      | 0.0      | 0.0      |      |
| Time To Reduce (s)      | 0.0   | 30.0     |      | 0.0   | 30.0     |      | 0.0   | 0.0      |      | 0.0      | 0.0      |      |
| Recall Mode             | None  | Min      |      | None  | Min      |      | None  | None     |      | None     | None     |      |
| Act Effct Green (s)     | 58.4  | 50.1     |      | 58.4  | 50.3     |      | 66.5  | 62.0     |      | 69.5     | 51.5     |      |
| Actuated g/C Ratio      | 0.40  | 0.34     |      | 0.40  | 0.35     |      | 0.46  | 0.43     |      | 0.48     | 0.35     |      |
| v/c Ratio               | 0.61  | 0.86     |      | 1.23  | 0.87     |      | 0.71  | 0.68     |      | 0.21     | 0.90     |      |
| Control Delay           | 42.1  | 60.5     |      | 171.6 | 60.6     |      | 40.8  | 41.9     |      | 23.0     | 64.5     |      |
| Queue Delay             | 0.0   | 0.0      |      | 0.0   | 0.0      |      | 0.0   | 0.0      |      | 0.0      | 0.0      |      |
| Total Delay             | 42.1  | 60.5     |      | 171.6 | 60.6     |      | 40.8  | 41.9     |      | 23.0     | 64.5     |      |

Lanes, Volumes, Timings RKA

Synchro 10 Report Page 1

Timing Plan: PM Peak Hour

# 1: Old Hillsborough Road/Trollingwood Hawfields Road & NC 119

|                         | •    | -    | •   | •    | ←    | •   | 1    | Ť    |     | -    | <b>↓</b> | 4   |
|-------------------------|------|------|-----|------|------|-----|------|------|-----|------|----------|-----|
| Lane Group              | EBL  | EBT  | EBR | WBL  | WBT  | WBR | NBL  | NBT  | NBR | SBL  | SBT      | SBR |
| LOS                     | D    | Е    |     | F    | Е    |     | D    | D    |     | С    | Е        |     |
| Approach Delay          |      | 57.4 |     |      | 94.0 |     |      | 41.6 |     |      | 60.2     |     |
| Approach LOS            |      | Е    |     |      | F    |     |      | D    |     |      | Е        |     |
| Queue Length 50th (ft)  | 66   | 504  |     | ~209 | 527  |     | 102  | 408  |     | 32   | 522      |     |
| Queue Length 95th (ft)  | 108  | 657  |     | #398 | 684  |     | 194  | 532  |     | 70   | #746     |     |
| Internal Link Dist (ft) |      | 1074 |     |      | 2921 |     |      | 1677 |     |      | 2167     |     |
| Turn Bay Length (ft)    | 150  |      |     | 225  |      |     | 550  |      |     | 175  |          |     |
| Base Capacity (vph)     | 176  | 837  |     | 192  | 864  |     | 298  | 839  |     | 311  | 728      |     |
| Starvation Cap Reductn  | 0    | 0    |     | 0    | 0    |     | 0    | 0    |     | 0    | 0        |     |
| Spillback Cap Reductn   | 0    | 0    |     | 0    | 0    |     | 0    | 0    |     | 0    | 0        |     |
| Storage Cap Reductn     | 0    | 0    |     | 0    | 0    |     | 0    | 0    |     | 0    | 0        |     |
| Reduced v/c Ratio       | 0.61 | 0.63 |     | 1.23 | 0.63 |     | 0.64 | 0.61 |     | 0.21 | 0.78     |     |

#### Intersection Summary

Area Type: Other

Cycle Length: 170

Actuated Cycle Length: 145.5

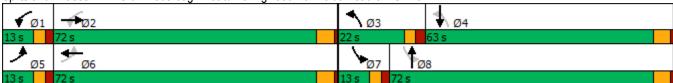
Natural Cycle: 110

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.23

Intersection Signal Delay: 64.4 Intersection LOS: E
Intersection Capacity Utilization 90.5% ICU Level of Service E

Analysis Period (min) 15


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Old Hillsborough Road/Trollingwood Hawfields Road & NC 119



Lanes, Volumes, Timings

Synchro 10 Report

Page 2

# **APPENDIX E**

# CAPACITY ANALYSIS RESULTS OLD HILLSBOROUGH ROAD AND JONES DRIVE

| Intersection             |       |       |        |          |        |       |
|--------------------------|-------|-------|--------|----------|--------|-------|
| Int Delay, s/veh         | 9.8   |       |        |          |        |       |
|                          |       | EDD   | \\/DI  | WDT      | NDI    | NIDD  |
|                          | EBT   | EBR   | WBL    | WBT      | NBL    | NBR   |
| Lane Configurations      | 122   | 110   | 10     | <b>€</b> | 750    | 42    |
| Traffic Vol, veh/h       | 133   | 113   | 18     | 327      | 259    | 43    |
| Future Vol, veh/h        | 133   | 113   | 18     | 327      | 259    | 43    |
| Conflicting Peds, #/hr   | _ 0   | _ 0   | 0      | _ 0      | 0      | 0     |
| 3                        | Free  | Free  | Free   | Free     | Stop   | Stop  |
| RT Channelized           | -     | None  | -      |          | -      | None  |
| Storage Length           | -     | -     | -      | -        | 0      | -     |
| Veh in Median Storage, # |       | -     | -      | 0        | 0      | -     |
| Grade, %                 | 0     | -     | -      | 0        | 0      | -     |
| Peak Hour Factor         | 90    | 90    | 90     | 90       | 90     | 90    |
| Heavy Vehicles, %        | 2     | 2     | 2      | 2        | 2      | 2     |
| Mvmt Flow                | 148   | 126   | 20     | 363      | 288    | 48    |
|                          |       |       |        |          |        |       |
| Major/Minor NA           | nior1 | N     | Major  |          | Minor1 |       |
|                          | ajor1 |       | Major2 |          | Minor1 | 011   |
| Conflicting Flow All     | 0     | 0     | 274    | 0        | 614    | 211   |
| Stage 1                  | -     | -     | -      | -        | 211    | -     |
| Stage 2                  | -     | -     | -      | -        | 403    | -     |
| Critical Hdwy            | -     | -     | 4.12   | -        | 6.42   | 6.22  |
| Critical Hdwy Stg 1      | -     | -     | -      | -        | 5.42   | -     |
| Critical Hdwy Stg 2      | -     | -     | -      | -        | 5.42   | -     |
| Follow-up Hdwy           | -     | -     | 2.218  | -        | 3.518  | 3.318 |
| Pot Cap-1 Maneuver       | -     | -     | 1289   | -        | 455    | 829   |
| Stage 1                  | -     | -     | -      | -        | 824    | -     |
| Stage 2                  | -     | _     | -      | _        | 675    | _     |
| Platoon blocked, %       | _     | _     |        | _        | 0.0    |       |
| Mov Cap-1 Maneuver       | _     | _     | 1289   | _        | 446    | 829   |
| Mov Cap-1 Maneuver       | _     | _     | 1203   | _        | 446    | - 023 |
|                          |       | -     | _      |          |        |       |
| Stage 1                  | -     | -     | -      | -        | 824    | -     |
| Stage 2                  | -     | -     | -      | -        | 662    | -     |
|                          |       |       |        |          |        |       |
| Approach                 | EB    |       | WB     |          | NB     |       |
| HCM Control Delay, s     | 0     |       | 0.4    |          | 28.5   |       |
| HCM LOS                  | v     |       | 0.1    |          | D      |       |
| TIOW LOO                 |       |       |        |          | J      |       |
|                          |       |       |        |          |        |       |
| Minor Lane/Major Mvmt    | 1     | NBLn1 | EBT    | EBR      | WBL    | WBT   |
| Capacity (veh/h)         |       | 477   | -      |          | 1289   | -     |
| HCM Lane V/C Ratio       |       | 0.703 | -      | -        | 0.016  | -     |
| HCM Control Delay (s)    |       | 28.5  | -      | -        | 7.8    | 0     |
| HCM Lane LOS             |       | D     | -      | -        | Α      | Α     |
| HCM 95th %tile Q(veh)    |       | 5.4   | -      | -        | 0      | -     |
| ( )                      |       |       |        |          |        |       |

| Int Delay, s/veh   34.9     34.9       Movement   EBT   EBR   WBL   WBT   NBL   NBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Intersection            |       |         |         |         |        |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|---------|---------|---------|--------|---------|
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Int Delay, s/veh        | 34.9  |         |         |         |        |         |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Movement                | EBT   | EBR     | WBL     | WBT     | NBL    | NBR     |
| Traffic Vol, veh/h 238 113 24 413 259 51 Future Vol, veh/h 238 113 24 413 259 51 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Free Free Free Free Stop Stop RT Channelized - None - None - None Storage Length 0 0 - Veh in Median Storage, # 0 0 0 0 - Grade, % 0 0 0 0 - Peak Hour Factor 72 90 80 82 90 84 Heavy Vehicles, % 2 2 2 2 2 2 2 2 Mvmt Flow 331 126 30 504 288 61  Major/Minor Major1 Major2 Minor1  Conflicting Flow All 0 0 457 0 958 394 Stage 1 564 - Critical Hdwy 1 - 4.12 - 6.42 6.22 Critical Hdwy Stg 1 5.42 - Critical Hdwy Stg 1 5.42 - Critical Hdwy Stg 2 5.42 - Follow-up Hdwy - 2.218 - 3.518 3.318 Pot Cap-1 Maneuver - 1104 - 285 655 Stage 1 661 - Stage 2 661 - Stage 1 661 - Stage 1 661 - Stage 1 5.42 - Follow-up Hdwy 2.218 - 3.518 3.318 Pot Cap-1 Maneuver - 1104 - 285 655 Stage 1 661 - Stage 2 569 - Platon blocked, % 681 - Stage 2 569 - Platon blocked, % 681 - Stage 1 681 - Stage 2 569 - Platon blocked, % 681 - Stage 1 681 - Stage 2 569 - Platon blocked, % 681 - Stage 1 681 - Stage 2 569 - Platon blocked, % 681 - Stage 1 681 - Stage 1 681 - Stage 2 569 - Platon blocked, % 681 - Stage 1 681 - Stage 2 569 - Platon blocked, % 681 - Stage 1 681 - Stage 1 681 - Stage 2 569 - Platon blocked, % 681 - Stage 1 681 - Stage 2 542 - Critical Hdw Stg 2 544 - Stage 1 681 - Stage 1 681 - Stage 2 544 - Stage 1 681 - Stage 1 681 - Stage 2 544 - Stage 1 681 - Stage 2 544 - Stage 1 681 - Stage 1 681 - Stage 2 544 - Stage 1 681 - Stage 1 681 - Stage 2 544 - Stage 1 681 - Stage 1 681 - Stage 2 544 - Stage 2 544 - Stage 2 544 - Stage 2 5 |                         |       |         |         |         |        |         |
| Conflicting Peds, #/hr         0         0         0         0         0         0           Sign Control         Free         Free         Free         Free         Stop         Stop           RT Channelized         - None         - None         - None         None         None           Storage Length         0         0         -         0         -           Veh in Median Storage, #         0         0         0         -           Grade, %         0         0         0         -           Peak Hour Factor         72         90         80         82         90         84           Heavy Vehicles, %         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         3         34         4         4         4         2         4         4         2 </td <td></td> <td></td> <td>113</td> <td>24</td> <td></td> <td></td> <td>51</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |       | 113     | 24      |         |        | 51      |
| Sign Control         Free RT Channelized         Free None         Free None         Free None         Free None         Stop None           Storage Length         -         -         -         0         0         -         0         -         -         0         0         -         -         0         0         -         -         0         0         -         -         0         0         -         -         0         0         -         -         0         0         -         -         0         0         -         -         0         0         -         -         0         0         -         -         0         0         -         -         0         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>259</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |       |         |         |         | 259    |         |
| RT Channelized         None         None         None         None           Storage Length         -         -         -         0         -           Veh in Median Storage, #         0         -         -         0         0         -           Grade, %         0         -         -         0         0         -           Peak Hour Factor         72         90         80         82         90         84           Heavy Vehicles, %         2         2         2         2         2         2         2         2           White Flow         331         126         30         504         288         61           Major/Minor         Major         Minor1         Minor1         Minor1         Minor1           Conflicting Flow All         0         0         457         0         958         394           Stage 1         -         -         -         394         -         Stage 1         -         -         394         -         Stage 2         -         -         642         6.22         Critical Howy Stg 2         -         -         5.42         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | 0     |         |         |         |        |         |
| Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | Free  |         |         |         | Stop   | Stop    |
| Veh in Median Storage, #         0         -         -         0         0         -         Grade, %         0         -         -         0         0         -         Peak Hour Factor         72         90         80         82         90         84           Heavy Vehicles, %         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         3         3         4         3         3         4         3         3         4         3         3         4         3         3         4         3         4         4         2         2         4         4         2         2         4 <td< td=""><td></td><td>-</td><td>None</td><td>-</td><td>None</td><td></td><td>None</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | -     | None    | -       | None    |        | None    |
| Grade, %         0         -         -         0         0         -           Peak Hour Factor         72         90         80         82         90         84           Heavy Vehicles, %         2         2         2         2         2         2         2         2         2         2         Major/Line         Major/Line         Minor         Minor </td <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                          |                         |       | -       | -       |         |        | -       |
| Peak Hour Factor         72         90         80         82         90         84           Heavy Vehicles, %         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         3         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | # 0   | -       | -       |         |        | -       |
| Heavy Vehicles, %   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |       |         |         |         |        |         |
| Mymt Flow         331         126         30         504         288         61           Major/Minor         Major1         Major2         Minor1           Conflicting Flow All         0         0         457         0         958         394           Stage 1         -         -         -         394         -         -         284         -         -         -         394         -         -         -         394         -         -         -         394         -         -         -         394         -         -         -         394         -         -         -         394         -         -         -         394         -         -         -         394         -         -         -         394         -         -         -         564         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |       |         |         |         |        |         |
| Major/Minor         Major1         Major2         Minor1           Conflicting Flow All         0         457         0         958         394           Stage 1         -         -         -         394         -           Stage 2         -         -         -         564         -           Critical Hdwy         -         4.12         -         6.42         6.22           Critical Hdwy Stg 1         -         -         -         5.42         -           Critical Hdwy Stg 2         -         -         -         5.42         -           Follow-up Hdwy         -         -         2.218         -         3.518         3.318           Pot Cap-1 Maneuver         -         1104         -         ~285         655           Stage 1         -         -         -         681         -           Stage 2         -         -         -         -         -           Mov Cap-1 Maneuver         -         1104         -         ~274         655           Mov Cap-2 Maneuver         -         -         -         -         -         -         -         -         -         -         -<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |       |         |         |         |        |         |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mvmt Flow               | 331   | 126     | 30      | 504     | 288    | 61      |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |       |         |         |         |        |         |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Major/Minor Major/Minor | ajor1 | ı       | Major2  | I       | Minor1 |         |
| Stage 1       -       -       -       394       -         Stage 2       -       -       -       564       -         Critical Hdwy       -       4.12       -       6.42       6.22         Critical Hdwy Stg 1       -       -       -       5.42       -         Critical Hdwy Stg 2       -       -       -       5.42       -         Follow-up Hdwy       -       -       2.218       -       3.518       3.318         Pot Cap-1 Maneuver       -       1104       -       -       285       655         Stage 1       -       -       -       681       -       -         Stage 2       -       -       -       569       -       -         Mov Cap-1 Maneuver       -       -       1104       -       -       274       655         Mov Cap-2 Maneuver       -       -       -       274       -       55         Mov Cap-2 Maneuver       -       -       -       681       -       -         Stage 1       -       -       -       681       -       -       -       -       744       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |       |         |         | 0       | 958    | 394     |
| Stage 2       -       -       -       564       -         Critical Hdwy       -       -       4.12       -       6.42       6.22         Critical Hdwy Stg 1       -       -       -       5.42       -         Critical Hdwy Stg 2       -       -       5.42       -         Follow-up Hdwy       -       -       2.218       -       3.518       3.318         Pot Cap-1 Maneuver       -       1104       -       285       655       655       655       543       -       661       -       -       681       -       -       -       681       -       -       -       -       669       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |       | -       |         |         |        |         |
| Critical Hdwy       -       4.12       -       6.42       6.22         Critical Hdwy Stg 1       -       -       -       5.42       -         Critical Hdwy Stg 2       -       -       -       5.42       -         Follow-up Hdwy       -       -       2.218       -       3.518       3.318         Pot Cap-1 Maneuver       -       1104       -       -       285       655         Stage 1       -       -       -       681       -         Stage 2       -       -       -       -       669       -         Platoon blocked, %       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </td <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | -     | -       | -       | -       |        | -       |
| Critical Hdwy Stg 1       -       -       -       5.42       -         Critical Hdwy Stg 2       -       -       -       5.42       -         Follow-up Hdwy       -       -       2.218       -       3.518       3.318         Pot Cap-1 Maneuver       -       1104       -       -       285       655         Stage 1       -       -       -       681       -         Stage 2       -       -       -       -       681       -         Mov Cap-1 Maneuver       -       -       1104       -       -       274       655         Mov Cap-2 Maneuver       -       -       -       -       681       -         Stage 1       -       -       -       -       681       -         Stage 2       -       -       -       -       547       -     Approach  EB  WB  NB  HCM Control Delay, s  O  O  S  B  WB  WB  Capacity (veh/h)  305  - 1104  - HCM Lane V/C Ratio  1.143  - 0.027  - HCM Control Delay (s)  133.1  - 0.027  - HCM Control Delay (s)  R  A  HCM Sth %tile Q(veh)  14.5  - 0.1  - Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | -     | -       | 4.12    | -       |        | 6.22    |
| Critical Hdwy Stg 2       -       -       -       5.42       -         Follow-up Hdwy       -       -       2.218       -       3.518       3.318         Pot Cap-1 Maneuver       -       -       1104       -       ~285       655         Stage 1       -       -       -       681       -         Stage 2       -       -       -       -       669       -         Platoon blocked, %       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | -     | -       | -       | -       |        | -       |
| Follow-up Hdwy - 2.218 - 3.518 3.318  Pot Cap-1 Maneuver - 1104 - 285 655     Stage 1 681 - 681 - 569 - 7  Platoon blocked, % 569 - 7  Mov Cap-1 Maneuver - 1104 - 274 655  Mov Cap-2 Maneuver 1104 - 274 655  Mov Cap-2 Maneuver 681 - 547 - 681 - 547 - 7  Stage 1 681 - 547 - 7  Approach EB WB NB  HCM Control Delay, s 0 0.5 133.1  HCM LOS F  Minor Lane/Major Mvmt NBLn1 EBT EBR WBL WBT  Capacity (veh/h) 305 - 1104 - 1104 - 1104  HCM Lane V/C Ratio 1.143 - 0.027 - 1104  HCM Control Delay (s) 133.1 - 8.4 0  HCM Lane LOS F - A A  HCM 95th %tile Q(veh) 14.5 - 0.1 - Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | -     | -       | -       | -       |        | -       |
| Pot Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | -     | -       | 2.218   | -       |        | 3.318   |
| Stage 1       -       -       -       681       -         Stage 2       -       -       -       569       -         Platoon blocked, %       -       -       -       -         Mov Cap-1 Maneuver       -       -       1104       -       274       655         Mov Cap-2 Maneuver       -       -       -       681       -         Stage 1       -       -       -       681       -         Stage 2       -       -       -       547       -     Approach  EB  WB  NB  HCM Control Delay, s  0 0.5 133.1  F  Minor Lane/Major Mvmt  NBLn1  EBT  EBR  WBL  WBT  Capacity (veh/h) 305 - 1104 - HCM Lane V/C Ratio 1.143 - 0.027 - HCM Control Delay (s) 133.1 - 8.4 0 HCM Control Delay (s) 133.1 - A A HCM Sth Wtile Q(veh) 14.5 - A A HCM 95th Wtile Q(veh) 14.5 - 0.1 - Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | -     | -       |         | -       |        |         |
| Stage 2       -       -       -       569       -         Platoon blocked, %       -       -       -       -         Mov Cap-1 Maneuver       -       -       1104       -       ~ 274       655         Mov Cap-2 Maneuver       -       -       -       -       681       -         Stage 1       -       -       -       -       681       -         Stage 2       -       -       -       -       547       -         Approach       EB       WB       NB         HCM Control Delay, s       0       0.5       133.1       -       -       133.1         HCM Lane V/C Ratio       1.143       -       -       0.027       -         HCM Lane LOS       F       -       -       A       A         HCM 95th %tile Q(veh)       14.5       -       -       0.1       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | -     | -       | -       | -       | 681    | -       |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | -     | -       | -       | -       | 569    | -       |
| Mov Cap-2 Maneuver       -       -       -       274       -         Stage 1       -       -       -       681       -         Stage 2       -       -       -       547       -             Approach       EB       WB       NB         HCM Control Delay, s       0       0.5       133.1         HCM LOS       F            Minor Lane/Major Mvmt       NBLn1       EBT       EBR       WBL       WBT         Capacity (veh/h)       305       -       -       1104       -         HCM Lane V/C Ratio       1.143       -       -       0.027       -         HCM Control Delay (s)       133.1       -       -       8.4       0         HCM Lane LOS       F       -       -       A       A         HCM 95th %tile Q(veh)       14.5       -       0.1       -         Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | -     | -       |         | -       |        |         |
| Mov Cap-2 Maneuver       -       -       -       ~ 274       -         Stage 1       -       -       -       681       -         Stage 2       -       -       -       547       -    Approach         EB       WB       NB         HCM Control Delay, s       0       0.5       133.1         HCM LOS       F    Minor Lane/Major Mvmt          NBLn1       EBR       WBL       WBT         Capacity (veh/h)       305       -       -       1104       -         HCM Lane V/C Ratio       1.143       -       -       0.027       -         HCM Control Delay (s)       133.1       -       -       8.4       0         HCM Lane LOS       F       -       -       A       A         HCM 95th %tile Q(veh)       14.5       -       0.1       -         Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                       | -     | -       | 1104    | -       | ~ 274  | 655     |
| Stage 1       -       -       -       681       -         Stage 2       -       -       -       547       -         Approach       EB       WB       NB         HCM Control Delay, s       0       0.5       133.1         HCM LOS       F       -       1104       -         Minor Lane/Major Mvmt       NBLn1       EBT       EBR       WBL       WBT         Capacity (veh/h)       305       -       -       1104       -         HCM Lane V/C Ratio       1.143       -       -       0.027       -         HCM Control Delay (s)       133.1       -       -       8.4       0         HCM Lane LOS       F       -       -       A       A         HCM 95th %tile Q(veh)       14.5       -       0.1       -         Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | -     | -       | -       | -       | ~ 274  | -       |
| Approach         EB         WB         NB           HCM Control Delay, s         0         0.5         133.1           HCM LOS         F    Minor Lane/Major Mvmt  NBLn1  EBT  EBR  WBL  WBT  Capacity (veh/h)  305  - 1104  - 1104  - HCM Lane V/C Ratio  1.143  - 0.027  - HCM Control Delay (s)  133.1  - 8.4  0  HCM Control Delay (s)  F  - A  A  HCM 95th %tile Q(veh)  14.5  - 0.1  - Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | -     | -       | -       | -       | 681    | -       |
| Approach         EB         WB         NB           HCM Control Delay, s         0         0.5         133.1           HCM LOS         F    Minor Lane/Major Mvmt  NBLn1  EBT  EBR  WBL  WBT  Capacity (veh/h)  305  - 1104  - 1104  - HCM Lane V/C Ratio  1.143  - 0.027  - HCM Control Delay (s)  133.1  - 8.4  0  HCM Lane LOS  F  - A  A  HCM 95th %tile Q(veh)  14.5  - 0.1  - Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | -     | -       | -       | -       | 547    | -       |
| HCM Control Delay, s 0 0.5 133.1  HCM LOS F  Minor Lane/Major Mvmt NBLn1 EBT EBR WBL WBT  Capacity (veh/h) 305 1104 -  HCM Lane V/C Ratio 1.143 0.027 -  HCM Control Delay (s) 133.1 8.4 0  HCM Lane LOS F - A A  HCM 95th %tile Q(veh) 14.5 - 0.1 -  Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                       |       |         |         |         |        |         |
| HCM Control Delay, s 0 0.5 133.1  HCM LOS F  Minor Lane/Major Mvmt NBLn1 EBT EBR WBL WBT  Capacity (veh/h) 305 1104 -  HCM Lane V/C Ratio 1.143 0.027 -  HCM Control Delay (s) 133.1 8.4 0  HCM Lane LOS F - A A  HCM 95th %tile Q(veh) 14.5 - 0.1 -  Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Approach                | EB    |         | WB      |         | NB     |         |
| Minor Lane/Major Mvmt         NBLn1         EBT         EBR         WBL         WBT           Capacity (veh/h)         305         -         -         1104         -           HCM Lane V/C Ratio         1.143         -         -         0.027         -           HCM Control Delay (s)         133.1         -         -         8.4         0           HCM Lane LOS         F         -         -         A         A           HCM 95th %tile Q(veh)         14.5         -         -         0.1         -           Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |       |         |         |         |        |         |
| Minor Lane/Major Mvmt         NBLn1         EBT         EBR         WBL         WBT           Capacity (veh/h)         305         -         -         1104         -           HCM Lane V/C Ratio         1.143         -         -         0.027         -           HCM Control Delay (s)         133.1         -         -         8.4         0           HCM Lane LOS         F         -         -         A         A           HCM 95th %tile Q(veh)         14.5         -         -         0.1         -           Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                       | U     |         | 0.0     |         |        |         |
| Capacity (veh/h)       305       -       -       1104       -         HCM Lane V/C Ratio       1.143       -       -       0.027       -         HCM Control Delay (s)       133.1       -       -       8.4       0         HCM Lane LOS       F       -       -       A       A         HCM 95th %tile Q(veh)       14.5       -       -       0.1       -         Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TOW LOO                 |       |         |         |         | '      |         |
| Capacity (veh/h)       305       -       -       1104       -         HCM Lane V/C Ratio       1.143       -       -       0.027       -         HCM Control Delay (s)       133.1       -       -       8.4       0         HCM Lane LOS       F       -       -       A       A         HCM 95th %tile Q(veh)       14.5       -       -       0.1       -         Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Minor Lang/Major Mumt   | N     | VIDI n1 | EDT     | EDD     | \\/DI  | \\/DT   |
| HCM Lane V/C Ratio 1.143 0.027 - HCM Control Delay (s) 133.1 8.4 0 HCM Lane LOS F - A A HCM 95th %tile Q(veh) 14.5 0.1 - Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | ľ     |         |         |         |        |         |
| HCM Control Delay (s) 133.1 8.4 0  HCM Lane LOS F A A  HCM 95th %tile Q(veh) 14.5 0.1 -  Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |       |         |         |         |        |         |
| HCM Lane LOS         F         -         -         A         A           HCM 95th %tile Q(veh)         14.5         -         -         0.1         -           Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |       |         |         |         |        |         |
| HCM 95th %tile Q(veh) 14.5 0.1 -  Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |       |         |         |         |        |         |
| Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |       |         |         |         |        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |       | 14.5    |         |         | 0.1    |         |
| ~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | .,    | ^ -     | ,       |         | 20     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~: Volume exceeds capa  | acity | \$: De  | lay exc | eeds 30 | )0s    | +: Comp |

| Delay, siveh  24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ntersection       |          |          |          |         |        |         |                      |                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|----------|----------|---------|--------|---------|----------------------|--------------------------------|
| e Configurations  filic Vol, veh/h  238  113  24  413  259  51  Tre Vol, veh/h  238  113  24  413  259  51  Tre Vol, veh/h  238  113  24  413  259  51  Tre Vol, veh/h  238  113  24  413  259  51  Tre Vol, veh/h  238  113  24  413  259  51  Tre Vol, veh/h  238  113  24  413  259  51  Tre Vol, veh/h  238  113  24  413  259  51  Tre Vol, veh/h  200  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt Delay, s/veh   | 24.2     |          |          |         |        |         |                      |                                |
| e Configurations  filic Vol, veh/h  238  113  24  413  259  51  Tre Vol, veh/h  238  113  24  413  259  51  Tre Vol, veh/h  238  113  24  413  259  51  Tre Vol, veh/h  238  113  24  413  259  51  Tre Vol, veh/h  238  113  24  413  259  51  Tre Vol, veh/h  238  113  24  413  259  51  Tre Vol, veh/h  238  113  24  413  259  51  Tre Vol, veh/h  200  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Novement          | FRT      | FBR      | WBI      | WRT     | NBI    | NBR     |                      |                                |
| fific Vol, veh/h         238         113         24         413         259         51           ure Vol, veh/h         238         113         24         413         259         51           infilicting Peds, #/hr         0         0         0         0         0         0           n Control         Free         Free         Free         Free         Stop         Stop           Channelized         - None         - None         - None         - None         - None           rage Length         0         0         0         0         0         0           de, %         0         0         0         0         0         0           de, %         0         0         0         0         0         0           in Median Storage, #         0         0         0         0         0         0           de, %         0         0         - 5         0         84         9         84           volvelides, %         2         2         2         2         2         2         2         2         3         394         394         39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |          | LDIT     | 1102     |         |        |         |                      |                                |
| ure Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |          | 113      | 24       |         |        |         |                      |                                |
| ### Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |          |          |          |         |        |         |                      |                                |
| n Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |          |          |          |         |        |         |                      |                                |
| Channelized - None - None - None age Length 0 25 in Median Storage, # 0 0 0 5 de, % 0 0 0 0 - de, % 0 0 0 0 - de, % 0 0 0 0 0 0 - de, % 0 0 0 0 0 0 - de, % 0 0 0 0 0 0 - de, % 0 0 0 0 0 0 - de, % 0 0 0 0 0 0 - de, % 0 0 0 0 0 0 - de, % 0 0 0 0 0 0 - de, % 0 0 0 0 0 0 - de, % 0 0 0 0 0 0 - de, % 0 0 0 0 0 0 - de, % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |          |          |          |         |        |         |                      |                                |
| rage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |          |          |          |         |        |         |                      |                                |
| tin Median Storage, # 0 0 0 0 - de, % 0 0 0 0 - de, % 0 0 0 0 - de, % 0 0 0 0 0 - de, % de North Follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |          |          |          | INOHE   |        |         |                      |                                |
| de, % 0 0 0 0 -   Ik Hour Factor 72 90 80 82 90 84   Ik Hour Factor 72 90 80 82 90 84   Ik Hour Factor 72 90 80 82 90 84   Ik Hour Factor 72 90 80 82 90 84   Ik Hour Factor 72 90 80 82 90 84   Ik Hour Factor 84   Ik Hour Factor 84   Ik Hour Store 84   Ik Hour Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |          |          |          | 0       |        |         |                      |                                |
| Richard   Factor   72   90   80   82   90   84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | _        |          |          |         |        |         |                      |                                |
| nty Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | -        |          |          |         |        |         |                      |                                |
| or/Minor         Major1         Major2         Minor1           filicting Flow All         0         0         457         0         958         394           Stage 1         -         -         -         564         -           stage 2         -         -         -         564         -           ical Hdwy         -         -         4.12         -         6.42         6.22           ical Hdwy Stg 1         -         -         -         5.42         -         -           cal Hdwy Stg 2         -         -         -         5.42         -         -           cal Hdwy Stg 2         -         -         -         5.42         -         -           cal Hdwy Stg 2         -         -         -         5.42         -         -           cal Hdwy Stg 2         -         -         -         5.42         -         -           cal Hdwy Stg 2         -         -         -         5.42         -         -           Cap-1 Maneuver         -         1104         -         -         27.65         -         -         -         -         -         -         -         - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |          |          |          |         |        |         |                      |                                |
| or/Minor         Major1         Major2         Minor1           officiting Flow All         0         0         457         0         958         394           Stage 1         -         -         -         394         -         -         -         394         -         -         -         -         -         564         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |          |          |          |         |        |         |                      |                                |
| Stage 1 394 - Stage 2 564 564 564 564 564 564 564 564 564 564 564 564 564 564 542 542 542 542 542 542 542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VIIICI IOW        | 331      | 120      | 30       | JU4     | 200    | UI      |                      |                                |
| Stage 1 394 - Stage 2 564 564 564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | aior/Minor        | Maior1   |          | Maior2   | ı       | Minor1 |         |                      |                                |
| Stage 1 394 - Stage 2 564 564 564 564 564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |          |          |          |         |        | 30/     |                      |                                |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |          | -        |          |         |        |         |                      |                                |
| ical Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                 |          | _        |          |         |        |         |                      |                                |
| ical Hdwy Stg 1 5.42 5.42 5.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |          |          |          |         |        |         |                      |                                |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |          |          |          |         |        |         |                      |                                |
| Ow-up Hdwy - 2.218 - 3.518 3.318  Cap-1 Maneuver - 1104 - 285 655  Stage 1 681 - 569 - 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          | _        |          |         |        |         |                      |                                |
| Cap-1 Maneuver       -       -       1104       -       ~ 285       655         Stage 1       -       -       -       681       -         Stage 2       -       -       -       569       -         coon blocked, %       -       -       -       -         c Cap-1 Maneuver       -       -       1104       -       ~ 274       655         c Cap-2 Maneuver       -       -       -       681       -       -       -       274       -       -       -       547       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |          | -        |          |         |        |         |                      |                                |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |          |          |          |         |        |         |                      |                                |
| Stage 2       -       -       -       569       -         doon blocked, %       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                 |          |          | 1104     |         |        |         |                      |                                |
| Coop   Coop |                   |          | -        | -        |         |        |         |                      |                                |
| V Cap-1 Maneuver       -       -       1104       -       ~ 274       655         V Cap-2 Maneuver       -       -       -       ~ 274       -         Stage 1       -       -       -       681       -         Stage 2       -       -       -       547       -            Wroach       EB       WB       NB         M Control Delay, s       0       0.5       92         M LOS       F            F       B       WBL       WBT         Vocacity (veh/h)       274       655       -       1104       -         M Lane V/C Ratio       1.05       0.093       -       -       0.027       -         M Control Delay (s)       109.1       11.1       -       8.4       0         M Lane LOS       F       B       -       -       A       A         M 95th %tile Q(veh)       11.3       0.3       -       -       0.1       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |          | -        | _        | _       | 503    | -       |                      |                                |
| V Cap-2 Maneuver       -       -       -       274       -         Stage 1       -       -       -       681       -         Stage 2       -       -       -       547       -         W Control Delay, s       0       0.5       92         M LOS       F            F WBL WBT         Vocacity (veh/h)       274       655       -       -       1104       -         M Lane V/C Ratio       1.05       0.093       -       -       0.027       -         M Control Delay (s)       109.1       11.1       -       -       8.4       0         M Lane LOS       F       B       -       -       A       A         M 95th %tile Q(veh)       11.3       0.3       -       -       0.1       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |          |          | 1104     | -       | ~ 27/  | 655     |                      |                                |
| Stage 1       -       -       -       681       -         Stage 2       -       -       -       547       -         Forcach       EB       WB       NB         M Control Delay, s       0       0.5       92         M LOS       F             F       WBL       WBT         Description of the control                                                                                                                                                                                                                                                                                                                                                                                              |                   |          |          | 1104     |         |        |         |                      |                                |
| Stage 2 547 -  Proach EB WB NB  M Control Delay, s 0 0.5 92  M LOS F  Or Lane/Major Mvmt NBLn1 NBLn2 EBT EBR WBL WBT  Practity (veh/h) 274 655 1104 -  M Lane V/C Ratio 1.05 0.093 0.027 -  M Control Delay (s) 109.1 11.1 - 8.4 0  M Lane LOS F B - A A  M 95th %tile Q(veh) 11.3 0.3 - 0.1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |          | -        | -        |         |        |         |                      |                                |
| Stroach   EB   WB   NB   W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |          |          |         |        |         |                      |                                |
| M Control Delay, s 0 0.5 92 M LOS F  or Lane/Major Mvmt NBLn1 NBLn2 EBT EBR WBL WBT Dacity (veh/h) 274 655 1104 - M Lane V/C Ratio 1.05 0.093 0.027 - M Control Delay (s) 109.1 11.1 - 8.4 0 M Lane LOS F B - A A M 95th %tile Q(veh) 11.3 0.3 - 0.1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Slaye 2           | -        | <u>-</u> | _        | _       | J41    | -       |                      |                                |
| M Control Delay, s 0 0.5 92 M LOS F  or Lane/Major Mvmt NBLn1 NBLn2 EBT EBR WBL WBT Dacity (veh/h) 274 655 1104 - M Lane V/C Ratio 1.05 0.093 0.027 - M Control Delay (s) 109.1 11.1 - 8.4 0 M Lane LOS F B - A A M 95th %tile Q(veh) 11.3 0.3 - 0.1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pproach           | EB       |          | WB       |         | NB     |         |                      |                                |
| M LOS F  or Lane/Major Mvmt NBLn1 NBLn2 EBT EBR WBL WBT  pacity (veh/h) 274 655 1104 -  M Lane V/C Ratio 1.05 0.093 0.027 -  M Control Delay (s) 109.1 11.1 8.4 0  M Lane LOS F B A A  M 95th %tile Q(veh) 11.3 0.3 - 0.1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                 |          |          |          |         |        |         |                      |                                |
| or Lane/Major Mvmt NBLn1 NBLn2 EBT EBR WBL WBT Dacity (veh/h) 274 655 1104 - M Lane V/C Ratio 1.05 0.093 0.027 - M Control Delay (s) 109.1 11.1 8.4 0 M Lane LOS F B A A M 95th %tile Q(veh) 11.3 0.3 0.1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ICM LOS           |          |          | 0.0      |         |        |         |                      |                                |
| Pacity (veh/h) 274 655 1104 - M Lane V/C Ratio 1.05 0.093 0.027 - M Control Delay (s) 109.1 11.1 8.4 0 M Lane LOS F B A A M 95th %tile Q(veh) 11.3 0.3 0.1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |          |          |          |         |        |         |                      |                                |
| Pacity (veh/h) 274 655 1104 - M Lane V/C Ratio 1.05 0.093 0.027 - M Control Delay (s) 109.1 11.1 8.4 0 M Lane LOS F B A A M 95th %tile Q(veh) 11.3 0.3 0.1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nor Lane/Major Mv | vmt_ l   | NBLn1 I  | NBLn2    | EBT     | EBR    | WBL     | WBT                  |                                |
| M Lane V/C Ratio 1.05 0.093 0.027 - M Control Delay (s) 109.1 11.1 8.4 0 M Lane LOS F B A A M 95th %tile Q(veh) 11.3 0.3 0.1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | apacity (veh/h)   |          | 274      | 655      | -       | -      | 1104    |                      |                                |
| M Control Delay (s) 109.1 11.1 8.4 0 M Lane LOS F B A A M 95th %tile Q(veh) 11.3 0.3 0.1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M Lane V/C Ratio  | )        |          |          | -       | -      |         | -                    |                                |
| M Lane LOS F B A A M 95th %tile Q(veh) 11.3 0.3 0.1 - es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |          |          |          | -       |        |         | 0                    |                                |
| M 95th %tile Q(veh) 11.3 0.3 0.1 - es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CM Lane LOS       |          |          |          | -       | _      |         |                      |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | eh)      |          |          | -       |        |         |                      |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | otes              |          |          |          |         |        |         |                      |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | capacity | \$: De   | elay exc | eeds 30 | 00s -  | +: Comr | outation Not Defined | *: All major volume in platoon |

HCM Control Delay (s)

HCM 95th %tile Q(veh)

HCM Lane LOS

| -                      |            |       |        |                 |        |       |
|------------------------|------------|-------|--------|-----------------|--------|-------|
| Intersection           |            |       |        |                 |        |       |
| Int Delay, s/veh       | 7.2        |       |        |                 |        |       |
| Movement               | EBT        | EBR   | WBL    | WBT             | NBL    | NBR   |
| Lane Configurations    | <u>EB1</u> | EDK   | WDL    |                 | INBL   | NDK   |
| Traffic Vol, veh/h     | 326        | 214   | 59     | <b>4</b><br>291 | 150    | 35    |
| Future Vol, veh/h      | 326        | 214   | 59     | 291             | 150    | 35    |
| Conflicting Peds, #/hr |            | 0     | 0      | 0               | 0      | 0     |
| Sign Control           | Free       | Free  | Free   | Free            | Stop   | Stop  |
| RT Channelized         | -          | None  | -      | None            | -      | None  |
| Storage Length         | _          | -     | _      | -               | 0      | -     |
| Veh in Median Storag   | e.# 0      | _     | _      | 0               | 0      | _     |
| Grade, %               | 0, # 0     | _     | _      | 0               | 0      | _     |
| Peak Hour Factor       | 90         | 90    | 90     | 90              | 90     | 90    |
| Heavy Vehicles, %      | 2          | 2     | 2      | 2               | 2      | 2     |
| Mymt Flow              | 362        | 238   | 66     | 323             | 167    | 39    |
| WWITELLOW              | 302        | 200   | 00     | 020             | 101    | 00    |
|                        |            |       |        |                 |        |       |
| Major/Minor            | Major1     |       | Major2 |                 | Minor1 |       |
| Conflicting Flow All   | 0          | 0     | 600    | 0               | 936    | 481   |
| Stage 1                | -          | -     | -      | -               | 481    | -     |
| Stage 2                | -          | -     | -      | -               | 455    | -     |
| Critical Hdwy          | -          | -     | 4.12   | -               | V      | 6.22  |
| Critical Hdwy Stg 1    | -          | -     | -      | -               | 5.42   | -     |
| Critical Hdwy Stg 2    | -          | -     | -      | -               | 5.42   | -     |
| Follow-up Hdwy         | -          | -     | 2.218  | -               | 3.518  | 3.318 |
| Pot Cap-1 Maneuver     | -          | -     | 977    | -               | 294    | 585   |
| Stage 1                | -          | -     | -      | -               | 622    | -     |
| Stage 2                | -          | -     | -      | -               | 639    | -     |
| Platoon blocked, %     | -          | -     |        | -               |        |       |
| Mov Cap-1 Maneuver     | -          | -     | 977    | -               | 270    | 585   |
| Mov Cap-2 Maneuver     | -          | -     | -      | -               | 270    | -     |
| Stage 1                | -          | -     | -      | -               | 622    | -     |
| Stage 2                | -          | -     | -      | -               | 587    | -     |
|                        |            |       |        |                 |        |       |
| Approach               | EB         |       | WB     |                 | NB     |       |
| HCM Control Delay, s   |            |       | 1.5    |                 | 39.2   |       |
| HCM LOS                | U          |       | 1.0    |                 | 59.Z   |       |
| I IOIVI LOO            |            |       |        |                 |        |       |
|                        |            |       |        |                 |        |       |
| Minor Lane/Major Mvr   | nt I       | NBLn1 | EBT    | EBR             | WBL    | WBT   |
| Capacity (veh/h)       |            | 301   | -      | -               | 977    | -     |
| HCM Lane V/C Ratio     |            | 0.683 | -      | -               | 0.067  | -     |
|                        |            | 20.0  |        |                 |        |       |

No-Build (2020) Timing Plan: PM Peak Hour

HCM 6th TWSC Synchro 10 Report RKA Synchro 10 Report Page 1

8.9

0.2

Α

39.2

Ε

4.6

0

Α

| Interception                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |       |        |      |        |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|--------|------|--------|------|
| Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.5   |       |        |      |        |      |
| Int Delay, s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.5   |       |        |      |        |      |
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EBT    | EBR   | WBL    | WBT  | NBL    | NBR  |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f)     |       |        | र्स  | W      |      |
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 387    | 214   | 65     | 371  | 150    | 39   |
| Future Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 387    | 214   | 65     | 371  | 150    | 39   |
| Conflicting Peds, #/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0      | 0     | 0      | 0    | 0      | 0    |
| Sign Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Free   | Free  | Free   | Free | Stop   | Stop |
| RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -      | None  | -      | None | -      | None |
| Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -      | -     | -      | -    | 0      | -    |
| Veh in Median Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e,# 0  | -     | -      | 0    | 0      | -    |
| Grade, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0      | -     | -      | 0    | 0      | -    |
| Peak Hour Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84     | 90    | 86     | 81   | 90     | 86   |
| Heavy Vehicles, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2      | 2     | 2      | 2    | 2      | 2    |
| Mvmt Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 461    | 238   | 76     | 458  | 167    | 45   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        |      |        |      |
| Mai au/Min au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA=:A  |       | M-:0   |      | \      |      |
| Major/Minor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Major1 |       | Major2 |      | Minor1 | =00  |
| Conflicting Flow All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0      | 0     | 699    | 0    | 1190   | 580  |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -      | -     | -      | -    | 580    | -    |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -      | -     | -      | -    | 610    | -    |
| Critical Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -      | -     | 4.12   | -    | 6.42   | 6.22 |
| Critical Hdwy Stg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -      | -     | -      | -    | 5.42   | -    |
| Critical Hdwy Stg 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -      | -     | -      | -    | 5.42   | -    |
| Follow-up Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -      | -     | 2.218  | -    | 0.0.0  |      |
| Pot Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      | -     | 898    | -    | 207    | 514  |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -      | -     | -      | -    | 560    | -    |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -      | -     | -      | -    | 542    | -    |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      | -     |        | -    |        |      |
| Mov Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      | -     | 898    | -    | 183    | 514  |
| Mov Cap-2 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      | -     | -      | -    | 183    | -    |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -      | -     | -      | -    | 560    | -    |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -      | -     | -      | -    | 480    | -    |
| , and the second |        |       |        |      |        |      |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ED     |       | WD     |      | ND     |      |
| Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EB     |       | WB     |      | NB     |      |
| HCM Control Delay, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0      |       | 1.3    |      | 109.4  |      |
| HCM LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |       |        |      | F      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        |      |        |      |
| Minor Lane/Major Mvr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nt l   | NBLn1 | EBT    | EBR  | WBL    | WBT  |
| Capacity (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 212   | _      | -    | 898    | -    |
| HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 1     | _      | _    | 0.084  | _    |
| HCM Control Delay (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )      | 109.4 | _      | _    | 9.4    | 0    |
| HCM Lane LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,      | F     | -      | _    | Α      | A    |
| LIOM OF the Office Office to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 0.0   |        |      | 0.0    |      |

Synchro 10 Report HCM 6th TWSC Page 1 RKA

0.3

8.9

HCM 95th %tile Q(veh)

| Intersection           |         |        |        |          |          |        |   |
|------------------------|---------|--------|--------|----------|----------|--------|---|
| Int Delay, s/veh       | 12      |        |        |          |          |        |   |
| Mayamant               | ГРТ     | EDD    | WDI    | WDT      | NDI      | NDD    |   |
| Movement               | EBT     | EBR    | WBL    | WBT      | NBL      | NBR    |   |
| Lane Configurations    | 4       |        |        | र्स      | <b>^</b> | 7      |   |
| Traffic Vol, veh/h     | 387     | 214    | 65     | 371      | 150      | 39     |   |
| Future Vol, veh/h      | 387     | 214    | 65     | 371      | 150      | 39     |   |
| Conflicting Peds, #/hr | 0       | 0      | 0      | 0        | 0        | 0      |   |
| Sign Control           | Free    | Free   | Free   | Free     | Stop     | Stop   |   |
| RT Channelized         | -       | None   | -      | None     | -        |        |   |
| Storage Length         | -       | -      | -      | -        | 0        | 25     |   |
| Veh in Median Storage, | , # 0   | -      | -      | 0        | 0        | -      |   |
| Grade, %               | 0       | -      | -      | 0        | 0        | -      |   |
| Peak Hour Factor       | 84      | 90     | 86     | 81       | 90       | 86     |   |
| Heavy Vehicles, %      | 2       | 2      | 2      | 2        | 2        | 2      |   |
| Mymt Flow              | 461     | 238    | 76     | 458      | 167      | 45     |   |
| WWW.                   | 701     | 200    | 70     | 700      | 101      | 70     |   |
|                        |         |        |        |          |          |        |   |
| Major/Minor N          | //ajor1 | l      | Major2 |          | Minor1   |        | ĺ |
| Conflicting Flow All   | 0       | 0      | 699    | 0        | 1190     | 580    |   |
| Stage 1                | -       | -      | -      | -        | 580      | -      |   |
| Stage 2                | _       | _      | _      | _        | 610      | -      |   |
| Critical Hdwy          | _       | _      | 4.12   | _        | 6.42     | 6.22   |   |
| Critical Hdwy Stg 1    |         |        | 7.12   | _        | 5.42     | - 0.22 |   |
| Critical Hdwy Stg 2    |         | -      | _      | <u>-</u> | 5.42     | _      |   |
|                        |         | -      | 2.218  |          | 3.518    |        |   |
| Follow-up Hdwy         | -       | -      |        | -        |          |        |   |
| Pot Cap-1 Maneuver     | -       | -      | 898    | -        | 207      | 514    |   |
| Stage 1                | -       | -      | -      | -        | 560      | -      |   |
| Stage 2                | -       | -      | -      | -        | 542      | -      |   |
| Platoon blocked, %     | -       | -      |        | -        |          |        |   |
| Mov Cap-1 Maneuver     | -       | -      | 898    | -        | 183      | 514    |   |
| Mov Cap-2 Maneuver     | -       | -      | -      | -        | 183      | -      |   |
| Stage 1                | -       | -      | -      | -        | 560      | -      |   |
| Stage 2                | _       | _      | -      | _        | 480      | -      |   |
| Olago Z                |         |        |        |          | 700      |        |   |
|                        |         |        |        |          |          |        |   |
| Approach               | EB      |        | WB     |          | NB       |        |   |
| HCM Control Delay, s   | 0       |        | 1.3    |          | 78.7     |        |   |
| HCM LOS                |         |        |        |          | F        |        |   |
|                        |         |        |        |          |          |        |   |
| NA:                    |         | NDI 4  | UDL C  | FOT      | EDE      | VA/DI  |   |
| Minor Lane/Major Mvmt  | t l     | NBLn11 |        | EBT      | EBR      | WBL    |   |
| Capacity (veh/h)       |         | 183    | 514    | -        | -        | 898    |   |
| HCM Lane V/C Ratio     |         | 0.911  |        | -        | -        | 0.084  |   |
| HCM Control Delay (s)  |         | 96.6   | 12.7   | -        | -        | 9.4    |   |
| HCM Lane LOS           |         | F      | В      | -        | -        | Α      |   |
| HCM 95th %tile Q(veh)  |         | 7      | 0.3    | -        | -        | 0.3    |   |
|                        |         |        |        |          |          |        |   |

# **APPENDIX F**

# CAPACITY ANALYSIS RESULTS OLD HILLSBOROUGH ROAD AND MEBANE OAKS ROAD

1

NΒ

18.2

1

С

Conflicting Lanes Left

Conflicting Lanes Right

HCM Control Delay

**HCM LOS** 

Conflicting Approach Right

EΒ

14.1

В

| Intersection              |      |      |      |      |      |      |      |      |      |      |      |      |
|---------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Intersection Delay, s/veh | 15.1 |      |      |      |      |      |      |      |      |      |      |      |
| Intersection LOS          | С    |      |      |      |      |      |      |      |      |      |      |      |
|                           |      |      |      |      |      |      |      |      |      |      |      |      |
| Movement                  | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations       |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h        | 245  | 58   | 18   | 4    | 68   | 95   | 19   | 209  | 12   | 41   | 111  | 96   |
| Future Vol, veh/h         | 245  | 58   | 18   | 4    | 68   | 95   | 19   | 209  | 12   | 41   | 111  | 96   |
| Peak Hour Factor          | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %         | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                 | 272  | 64   | 20   | 4    | 76   | 106  | 21   | 232  | 13   | 46   | 123  | 107  |
| Number of Lanes           | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                  | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach         | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes            | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
|                           |      |      |      |      |      |      |      |      |      |      |      |      |

SB

11.9

1

В

1

WB

14.4

В

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 8%    | 76%   | 2%    | 17%   |  |
| Vol Thru, %            | 87%   | 18%   | 41%   | 45%   |  |
| Vol Right, %           | 5%    | 6%    | 57%   | 39%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 240   | 321   | 167   | 248   |  |
| LT Vol                 | 19    | 245   | 4     | 41    |  |
| Through Vol            | 209   | 58    | 68    | 111   |  |
| RT Vol                 | 12    | 18    | 95    | 96    |  |
| Lane Flow Rate         | 267   | 357   | 186   | 276   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.459 | 0.606 | 0.313 | 0.46  |  |
| Departure Headway (Hd) | 6.194 | 6.116 | 6.063 | 6.004 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 581   | 589   | 592   | 598   |  |
| Service Time           | 4.242 | 4.161 | 4.116 | 4.051 |  |
| HCM Lane V/C Ratio     | 0.46  | 0.606 | 0.314 | 0.462 |  |
| HCM Control Delay      | 14.4  | 18.2  | 11.9  | 14.1  |  |
| HCM Lane LOS           | В     | С     | В     | В     |  |
| HCM 95th-tile Q        | 2.4   | 4     | 1.3   | 2.4   |  |

Cap

Service Time

HCM Lane V/C Ratio

**HCM Control Delay** 

HCM Lane LOS

HCM 95th-tile Q

| Intersection               |      |       |       |       |       |      |      |      |      |      |      |      |
|----------------------------|------|-------|-------|-------|-------|------|------|------|------|------|------|------|
| Intersection Delay, s/veh  | 19.1 |       |       |       |       |      |      |      |      |      |      |      |
| Intersection LOS           | С    |       |       |       |       |      |      |      |      |      |      |      |
|                            |      |       |       |       |       |      |      |      |      |      |      |      |
| Movement                   | EBL  | EBT   | EBR   | WBL   | WBT   | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations        |      | 4     |       |       | 4     |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 276  | 58    | 18    | 4     | 68    | 95   | 19   | 209  | 12   | 41   | 111  | 133  |
| Future Vol, veh/h          | 276  | 58    | 18    | 4     | 68    | 95   | 19   | 209  | 12   | 41   | 111  | 133  |
| Peak Hour Factor           | 0.86 | 0.90  | 0.90  | 0.90  | 0.90  | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.79 |
| Heavy Vehicles, %          | 2    | 2     | 2     | 2     | 2     | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 321  | 64    | 20    | 4     | 76    | 106  | 21   | 232  | 13   | 46   | 123  | 168  |
| Number of Lanes            | 0    | 1     | 0     | 0     | 1     | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |       |       | WB    |       |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |       |       | EB    |       |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |       |       | 1     |       |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |       |       | NB    |       |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |       |       | 1     |       |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |       |       | SB    |       |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |       |       | 1     |       |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 24.9 |       |       | 13    |       |      | 16.1 |      |      | 18   |      |      |
| HCM LOS                    | С    |       |       | В     |       |      | С    |      |      | С    |      |      |
|                            |      |       |       |       |       |      |      |      |      |      |      |      |
| Lane                       |      | NBLn1 | EBLn1 | WBLn1 | SBLn1 |      |      |      |      |      |      |      |
| Vol Left, %                |      | 8%    | 78%   | 2%    | 14%   |      |      |      |      |      |      |      |
| Vol Thru, %                |      | 87%   | 16%   | 41%   | 39%   |      |      |      |      |      |      |      |
| Vol Right, %               |      | 5%    | 5%    | 57%   | 47%   |      |      |      |      |      |      |      |
| Sign Control               |      | Stop  | Stop  | Stop  | Stop  |      |      |      |      |      |      |      |
| Traffic Vol by Lane        |      | 240   | 352   | 167   | 285   |      |      |      |      |      |      |      |
| LT Vol                     |      | 19    | 276   | 4     | 41    |      |      |      |      |      |      |      |
| Through Vol                |      | 209   | 58    | 68    | 111   |      |      |      |      |      |      |      |
| RT Vol                     |      | 12    | 18    | 95    | 133   |      |      |      |      |      |      |      |
| Lane Flow Rate             |      | 267   | 405   | 186   | 337   |      |      |      |      |      |      |      |
| Geometry Grp               |      | 1     | 1     | 1     | 1     |      |      |      |      |      |      |      |
| Degree of Util (X)         |      | 0.493 | 0.726 | 0.338 | 0.588 |      |      |      |      |      |      |      |
| Departure Headway (Hd)     |      | 6.655 | 6.446 | 6.564 | 6.273 |      |      |      |      |      |      |      |
| Convergence, Y/N           |      | Yes   | Yes   | Yes   | Yes   |      |      |      |      |      |      |      |
| Can                        |      | 530   | 550   | E11   | 572   |      |      |      |      |      |      |      |

HCM 6th AWSC Synchro 10 Report RKA Synchro 10 Report Page 1

539

4.737

0.495

16.1

С

2.7

559

4.517

0.725

24.9

С

6

544

4.656

0.342

13

1.5

В

573

4.349

0.588

18

С

3.8

|                         | ٠     | -     | •    | •     | <b>←</b>             | •    | •     | <b>†</b> | ~    | <b>&gt;</b> | Ţ     | 1    |
|-------------------------|-------|-------|------|-------|----------------------|------|-------|----------|------|-------------|-------|------|
| Lane Group              | EBL   | EBT   | EBR  | WBL   | WBT                  | WBR  | NBL   | NBT      | NBR  | SBL         | SBT   | SBR  |
| Lane Configurations     |       | 4     |      |       | 4                    |      | 7     | £        |      | Ĭ           | ĵ.    |      |
| Traffic Volume (vph)    | 276   | 58    | 18   | 4     | 68                   | 95   | 19    | 209      | 12   | 41          | 111   | 133  |
| Future Volume (vph)     | 276   | 58    | 18   | 4     | 68                   | 95   | 19    | 209      | 12   | 41          | 111   | 133  |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900 | 1900  | 1900                 | 1900 | 1900  | 1900     | 1900 | 1900        | 1900  | 1900 |
| Storage Length (ft)     | 0     |       | 0    | 0     |                      | 0    | 150   |          | 0    | 150         |       | 0    |
| Storage Lanes           | 0     |       | 0    | 0     |                      | 0    | 1     |          | 0    | 1           |       | 0    |
| Taper Length (ft)       | 100   |       |      | 100   |                      |      | 100   |          |      | 100         |       |      |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00 | 1.00  | 1.00                 | 1.00 | 1.00  | 1.00     | 1.00 | 1.00        | 1.00  | 1.00 |
| Frt                     |       | 0.993 |      |       | 0.923                |      |       | 0.992    |      |             | 0.913 |      |
| Flt Protected           |       | 0.962 |      |       | 0.999                |      | 0.950 |          |      | 0.950       |       |      |
| Satd. Flow (prot)       | 0     | 1779  | 0    | 0     | 1718                 | 0    | 1770  | 1848     | 0    | 1770        | 1701  | 0    |
| Flt Permitted           |       | 0.667 |      |       | 0.992                |      | 0.950 |          |      | 0.950       |       |      |
| Satd. Flow (perm)       | 0     | 1234  | 0    | 0     | 1706                 | 0    | 1770  | 1848     | 0    | 1770        | 1701  | 0    |
| Right Turn on Red       |       |       | Yes  |       |                      | Yes  |       |          | Yes  |             |       | Yes  |
| Satd. Flow (RTOR)       |       | 3     |      |       | 85                   |      |       | 2        |      |             | 56    |      |
| Link Speed (mph)        |       | 45    |      |       | 45                   |      |       | 45       |      |             | 45    |      |
| Link Distance (ft)      |       | 2370  |      |       | 1258                 |      |       | 1812     |      |             | 1946  |      |
| Travel Time (s)         |       | 35.9  |      |       | 19.1                 |      |       | 27.5     |      |             | 29.5  |      |
| Peak Hour Factor        | 0.86  | 0.90  | 0.90 | 0.90  | 0.90                 | 0.90 | 0.90  | 0.90     | 0.90 | 0.90        | 0.90  | 0.79 |
| Adj. Flow (vph)         | 321   | 64    | 20   | 4     | 76                   | 106  | 21    | 232      | 13   | 46          | 123   | 168  |
| Shared Lane Traffic (%) |       |       |      |       |                      |      |       |          |      |             |       |      |
| Lane Group Flow (vph)   | 0     | 405   | 0    | 0     | 186                  | 0    | 21    | 245      | 0    | 46          | 291   | 0    |
| Turn Type               | Perm  | NA    |      | Perm  | NA                   |      | Prot  | NA       |      | Prot        | NA    |      |
| Protected Phases        |       | 2     |      |       | 6                    |      | 3     | 8        |      | 7           | 4     |      |
| Permitted Phases        | 2     |       |      | 6     |                      |      |       |          |      |             |       |      |
| Detector Phase          | 2     | 2     |      | 6     | 6                    |      | 3     | 8        |      | 7           | 4     |      |
| Switch Phase            |       |       |      |       |                      |      |       |          |      |             |       |      |
| Minimum Initial (s)     | 12.0  | 12.0  |      | 12.0  | 12.0                 |      | 7.0   | 10.0     |      | 7.0         | 10.0  |      |
| Minimum Split (s)       | 19.0  | 19.0  |      | 19.0  | 19.0                 |      | 14.0  | 17.0     |      | 14.0        | 17.0  |      |
| Total Split (s)         | 69.0  | 69.0  |      | 69.0  | 69.0                 |      | 14.0  | 37.0     |      | 14.0        | 37.0  |      |
| Total Split (%)         | 57.5% | 57.5% |      | 57.5% | 57.5%                |      | 11.7% | 30.8%    |      | 11.7%       | 30.8% |      |
| Maximum Green (s)       | 62.0  | 62.0  |      | 62.0  | 62.0                 |      | 7.0   | 30.0     |      | 7.0         | 30.0  |      |
| Yellow Time (s)         | 5.0   | 5.0   |      | 5.0   | 5.0                  |      | 5.0   | 5.0      |      | 5.0         | 5.0   |      |
| All-Red Time (s)        | 2.0   | 2.0   |      | 2.0   | 2.0                  |      | 2.0   | 2.0      |      | 2.0         | 2.0   |      |
| Lost Time Adjust (s)    |       | -2.0  |      |       | -2.0                 |      | -2.0  | -2.0     |      | -2.0        | -2.0  |      |
| Total Lost Time (s)     |       | 5.0   |      |       | 5.0                  |      | 5.0   | 5.0      |      | 5.0         | 5.0   |      |
| Lead/Lag                |       |       |      |       |                      |      | Lead  | Lag      |      | Lead        | Lag   |      |
| Lead-Lag Optimize?      |       |       |      |       |                      |      | Yes   | Yes      |      | Yes         | Yes   |      |
| Vehicle Extension (s)   | 3.0   | 3.0   |      | 3.0   | 3.0                  |      | 3.0   | 3.0      |      | 3.0         | 3.0   |      |
| Recall Mode             | None  | None  |      | None  | None                 |      | None  | None     |      | None        | None  |      |
| Act Effct Green (s)     |       | 34.4  |      |       | 34.4                 |      | 10.5  | 20.1     |      | 10.5        | 22.8  |      |
| Actuated g/C Ratio      |       | 0.47  |      |       | 0.47                 |      | 0.14  | 0.28     |      | 0.14        | 0.31  |      |
| v/c Ratio               |       | 0.69  |      |       | 0.22                 |      | 0.08  | 0.48     |      | 0.18        | 0.51  |      |
| Control Delay           |       | 24.1  |      |       | 8.3                  |      | 41.8  | 30.4     |      | 41.4        | 24.1  |      |
| Queue Delay             |       | 0.0   |      |       | 0.0                  |      | 0.0   | 0.0      |      | 0.0         | 0.0   |      |
| Total Delay             |       | 24.1  |      |       | 8.3                  |      | 41.8  | 30.4     |      | 41.4        | 24.1  |      |
| LOS                     |       | C     |      |       | A                    |      | D     | C        |      | D           | C     |      |
| Approach Delay          |       | 24.1  |      |       | 8.3                  |      |       | 31.3     |      |             | 26.4  |      |
| Approach LOS            |       | C     |      |       | Α                    |      |       | C C      |      |             | C     |      |
| ppi0d0i1 E00            |       |       |      |       | $\overline{\Lambda}$ |      |       |          |      |             | 0     |      |

|                                | ۶           | <b>→</b> | •          | •        | <b>←</b>   | •         | •          | <b>†</b> | <b>/</b> | <b>\</b> | ļ    | 4   |
|--------------------------------|-------------|----------|------------|----------|------------|-----------|------------|----------|----------|----------|------|-----|
| Lane Group                     | EBL         | EBT      | EBR        | WBL      | WBT        | WBR       | NBL        | NBT      | NBR      | SBL      | SBT  | SBR |
| Queue Length 50th (ft)         |             | 148      |            |          | 26         |           | 9          | 99       |          | 19       | 70   |     |
| Queue Length 95th (ft)         |             | 319      |            |          | 76         |           | 41         | 227      |          | 71       | 237  |     |
| Internal Link Dist (ft)        |             | 2290     |            |          | 1178       |           |            | 1732     |          |          | 1866 |     |
| Turn Bay Length (ft)           |             |          |            |          |            |           | 150        |          |          | 150      |      |     |
| Base Capacity (vph)            |             | 1024     |            |          | 1430       |           | 253        | 943      |          | 253      | 895  |     |
| Starvation Cap Reductn         |             | 0        |            |          | 0          |           | 0          | 0        |          | 0        | 0    |     |
| Spillback Cap Reductn          |             | 0        |            |          | 0          |           | 0          | 0        |          | 0        | 0    |     |
| Storage Cap Reductn            |             | 0        |            |          | 0          |           | 0          | 0        |          | 0        | 0    |     |
| Reduced v/c Ratio              |             | 0.40     |            |          | 0.13       |           | 0.08       | 0.26     |          | 0.18     | 0.33 |     |
| Intersection Summary           |             |          |            |          |            |           |            |          |          |          |      |     |
| Area Type: (                   | Other       |          |            |          |            |           |            |          |          |          |      |     |
| Cycle Length: 120              |             |          |            |          |            |           |            |          |          |          |      |     |
| Actuated Cycle Length: 73      |             |          |            |          |            |           |            |          |          |          |      |     |
| Natural Cycle: 60              |             |          |            |          |            |           |            |          |          |          |      |     |
| Control Type: Actuated-Unco    | ordinated   |          |            |          |            |           |            |          |          |          |      |     |
| Maximum v/c Ratio: 0.69        |             |          |            |          |            |           |            |          |          |          |      |     |
| Intersection Signal Delay: 23  |             |          |            |          | tersection |           |            |          |          |          |      |     |
| Intersection Capacity Utilizat | ion 65.9%   |          |            | IC       | U Level c  | f Service | С          |          |          |          |      |     |
| Analysis Period (min) 15       |             |          |            |          |            |           |            |          |          |          |      |     |
| Splits and Phases: 3: Meb      | ane Oaks Ro | oad & O  | ld Hillsbo | rough Ro | ad         |           |            |          |          |          |      |     |
| A                              |             |          |            |          |            | 4         | <b>7</b> 2 | 1 _      |          |          |      |     |
|                                |             |          |            |          |            | 14 s      | Ø3         | ▼ Ø-     | 4        |          |      |     |
| +-                             |             |          |            |          |            | 1         |            | <b>+</b> |          |          |      |     |
| ♥ Ø6                           |             |          |            |          |            |           | Ø7         | Ø        | 3        |          |      |     |

Synchro 10 Report Lanes, Volumes, Timings Page 2 RKA

| Intersection              |      |      |      |      |      |      |      |      |      |      |      |      |
|---------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Intersection Delay, s/veh | 51   |      |      |      |      |      |      |      |      |      |      |      |
| Intersection LOS          | F    |      |      |      |      |      |      |      |      |      |      |      |
|                           |      |      |      |      |      |      |      |      |      |      |      |      |
| Movement                  | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations       |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h        | 152  | 84   | 14   | 13   | 86   | 78   | 24   | 167  | 10   | 112  | 215  | 265  |
| Future Vol, veh/h         | 152  | 84   | 14   | 13   | 86   | 78   | 24   | 167  | 10   | 112  | 215  | 265  |
| Peak Hour Factor          | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %         | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                 | 169  | 93   | 16   | 14   | 96   | 87   | 27   | 186  | 11   | 124  | 239  | 294  |
| Number of Lanes           | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| A  -                      | ED   |      |      | WD   |      |      | ND   |      |      | 00   |      |      |

| Approach                   | EB   | WB | NB   | SB   |
|----------------------------|------|----|------|------|
| Opposing Approach          | WB   | EB | SB   | NB   |
| Opposing Lanes             | 1    | 1  | 1    | 1    |
| Conflicting Approach Left  | SB   | NB | EB   | WB   |
| Conflicting Lanes Left     | 1    | 1  | 1    | 1    |
| Conflicting Approach Right | NB   | SB | WB   | EB   |
| Conflicting Lanes Right    | 1    | 1  | 1    | 1    |
| HCM Control Delay          | 19.1 | 15 | 15.5 | 87.2 |
| HCM LOS                    | С    | В  | С    | F    |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 12%   | 61%   | 7%    | 19%   |  |
| Vol Thru, %            | 83%   | 34%   | 49%   | 36%   |  |
| Vol Right, %           | 5%    | 6%    | 44%   | 45%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 201   | 250   | 177   | 592   |  |
| LT Vol                 | 24    | 152   | 13    | 112   |  |
| Through Vol            | 167   | 84    | 86    | 215   |  |
| RT Vol                 | 10    | 14    | 78    | 265   |  |
| Lane Flow Rate         | 223   | 278   | 197   | 658   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.429 | 0.55  | 0.386 | 1.09  |  |
| Departure Headway (Hd) | 7.191 | 7.43  | 7.4   | 5.967 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 505   | 489   | 490   | 612   |  |
| Service Time           | 5.191 | 5.43  | 5.4   | 4.007 |  |
| HCM Lane V/C Ratio     | 0.442 | 0.569 | 0.402 | 1.075 |  |
| HCM Control Delay      | 15.5  | 19.1  | 15    | 87.2  |  |
| HCM Lane LOS           | С     | С     | В     | F     |  |
| HCM 95th-tile Q        | 2.1   | 3.3   | 1.8   | 19.4  |  |

Intersection

Geometry Grp

Service Time

Cap

Degree of Util (X)

Convergence, Y/N

HCM Lane V/C Ratio

**HCM Control Delay** 

HCM Lane LOS

HCM 95th-tile Q

Departure Headway (Hd)

| Intersection Delay, s/veh  | 70   |       |       |       |       |      |      |      |      |       |      |      |
|----------------------------|------|-------|-------|-------|-------|------|------|------|------|-------|------|------|
| Intersection LOS           | F    |       |       |       |       |      |      |      |      |       |      |      |
|                            |      |       |       |       |       |      |      |      |      |       |      |      |
| Movement                   | EBL  | EBT   | EBR   | WBL   | WBT   | WBR  | NBL  | NBT  | NBR  | SBL   | SBT  | SBR  |
| Lane Configurations        |      | 4     |       |       | 4     |      |      | 4    |      |       | 4    |      |
| Traffic Vol, veh/h         | 180  | 84    | 14    | 13    | 86    | 78   | 24   | 167  | 10   | 112   | 215  | 287  |
| Future Vol, veh/h          | 180  | 84    | 14    | 13    | 86    | 78   | 24   | 167  | 10   | 112   | 215  | 287  |
| Peak Hour Factor           | 0.84 | 0.90  | 0.90  | 0.90  | 0.90  | 0.90 | 0.90 | 0.90 | 0.90 | 0.90  | 0.90 | 0.87 |
| Heavy Vehicles, %          | 2    | 2     | 2     | 2     | 2     | 2    | 2    | 2    | 2    | 2     | 2    | 2    |
| Mvmt Flow                  | 214  | 93    | 16    | 14    | 96    | 87   | 27   | 186  | 11   | 124   | 239  | 330  |
| Number of Lanes            | 0    | 1     | 0     | 0     | 1     | 0    | 0    | 1    | 0    | 0     | 1    | 0    |
| Approach                   | EB   |       |       | WB    |       |      | NB   |      |      | SB    |      |      |
| Opposing Approach          | WB   |       |       | EB    |       |      | SB   |      |      | NB    |      |      |
| Opposing Lanes             | 1    |       |       | 1     |       |      | 1    |      |      | 1     |      |      |
| Conflicting Approach Left  | SB   |       |       | NB    |       |      | EB   |      |      | WB    |      |      |
| Conflicting Lanes Left     | 1    |       |       | 1     |       |      | 1    |      |      | 1     |      |      |
| Conflicting Approach Right | NB   |       |       | SB    |       |      | WB   |      |      | EB    |      |      |
| Conflicting Lanes Right    | 1    |       |       | 1     |       |      | 1    |      |      | 1     |      |      |
| HCM Control Delay          | 23.2 |       |       | 15.9  |       |      | 16.5 |      |      | 124.5 |      |      |
| HCM LOS                    | С    |       |       | С     |       |      | С    |      |      | F     |      |      |
|                            |      |       |       |       |       |      |      |      |      |       |      |      |
| Lane                       |      | NBLn1 | EBLn1 | WBLn1 | SBLn1 |      |      |      |      |       |      |      |
| Vol Left, %                |      | 12%   | 65%   | 7%    | 18%   |      |      |      |      |       |      |      |
| Vol Thru, %                |      | 83%   | 30%   | 49%   | 35%   |      |      |      |      |       |      |      |
| Vol Right, %               |      | 5%    | 5%    | 44%   | 47%   |      |      |      |      |       |      |      |
| Sign Control               |      | Stop  | Stop  | Stop  | Stop  |      |      |      |      |       |      |      |
| Traffic Vol by Lane        |      | 201   | 278   | 177   | 614   |      |      |      |      |       |      |      |
| LT Vol                     |      | 24    | 180   | 13    | 112   |      |      |      |      |       |      |      |
| Through Vol                |      | 167   | 84    | 86    | 215   |      |      |      |      |       |      |      |
| RT Vol                     |      | 10    | 14    | 78    | 287   |      |      |      |      |       |      |      |
| Lane Flow Rate             |      | 223   | 323   | 197   | 693   |      |      |      |      |       |      |      |

1

1.192

6.192

Yes

589

4.214

1.177

124.5

24.5

F

0.397

7.826

Yes

462

5.826

0.426

15.9

С

1.9

0.445

7.598

Yes

478

5.598

0.467

16.5

С

2.3

0.636

7.696

Yes

472

5.696

0.684

23.2

С

4.4

Page 1

| Lane Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | ٠     | <b>→</b> | $\rightarrow$ | •     | <b>←</b> | •    | •     | <b>†</b> | <b>/</b> | <b>&gt;</b> | <b>↓</b> | 1    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|----------|---------------|-------|----------|------|-------|----------|----------|-------------|----------|------|
| Traffic Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lane Group              | EBL   | EBT      | EBR           | WBL   | WBT      | WBR  | NBL   | NBT      | NBR      | SBL         | SBT      | SBR  |
| Traffic Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lane Configurations     |       | 4        |               |       | 4        |      | ሻ     | <b>₽</b> |          | 7           | î»       |      |
| Ideal Flow (ryphp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Traffic Volume (vph)    | 180   | 84       | 14            | 13    | 86       | 78   | 24    | 167      | 10       | 112         |          | 287  |
| Storage Langth (ff)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Future Volume (vph)     | 180   | 84       | 14            | 13    | 86       | 78   | 24    | 167      | 10       | 112         | 215      | 287  |
| Storage Lanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ideal Flow (vphpl)      | 1900  | 1900     | 1900          | 1900  | 1900     | 1900 | 1900  | 1900     | 1900     | 1900        | 1900     | 1900 |
| Taper Length (ff)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Storage Length (ft)     | 0     |          | 0             | 0     |          | 0    | 150   |          | 0        | 150         |          | 0    |
| Lane Util. Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Storage Lanes           | 0     |          | 0             | 0     |          | 0    | 1     |          | 0        | 1           |          | 0    |
| Fit Protected 0.993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Taper Length (ft)       | 100   |          |               | 100   |          |      | 100   |          |          | 100         |          |      |
| Fit Protected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lane Util. Factor       | 1.00  | 1.00     | 1.00          | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00     | 1.00        | 1.00     | 1.00 |
| Satd. Flow (prot)   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Frt                     |       | 0.993    |               |       | 0.940    |      |       | 0.992    |          |             | 0.913    |      |
| Fit Permitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flt Protected           |       | 0.968    |               |       | 0.996    |      | 0.950 |          |          | 0.950       |          |      |
| Satd. Flow (perm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Satd. Flow (prot)       | 0     | 1791     | 0             | 0     | 1744     | 0    | 1770  | 1848     | 0        | 1770        | 1701     | 0    |
| Night Turn on Red   Yes   Ye | Flt Permitted           |       | 0.691    |               |       | 0.966    |      | 0.450 |          |          | 0.598       |          |      |
| Satid. Flow (RTOR)   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Satd. Flow (perm)       | 0     | 1278     | 0             | 0     | 1691     | 0    | 838   | 1848     | 0        | 1114        | 1701     | 0    |
| Link Speed (mph)         45         45         45         45         45           Link Distance (ft)         2370         1258         1812         1946           Travel Time (s)         35.9         19.1         27.5         29.5           Peak Hour Factor         0.84         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Right Turn on Red       |       |          | Yes           |       |          | Yes  |       |          | Yes      |             |          | Yes  |
| Link Distance (ft)         2370         1258         1812         1946           Travel Time (s)         35,9         19.1         27.5         29.5           Peak Hour Factor         0.84         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Satd. Flow (RTOR)       |       | 3        |               |       | 42       |      |       | 3        |          |             | 79       |      |
| Travel Time (s)         35.9         19.1         27.5         29.5           Peak Hour Factor         0.84         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Link Speed (mph)        |       | 45       |               |       | 45       |      |       | 45       |          |             | 45       |      |
| Peak Hour Factor         0.84         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Link Distance (ft)      |       | 2370     |               |       | 1258     |      |       | 1812     |          |             | 1946     |      |
| Adj. Flow (vph)         214         93         16         14         96         87         27         186         11         124         239         330           Shared Lane Traffic (%)         Lane Group Flow (vph)         0         323         0         0         197         0         27         197         0         124         569         0           Turn Type         Perm         NA         Perm         NA         D.P+P         NA           Protected Phases         2         6         8         8         7         4           Permitted Phases         2         6         6         8         8         7         4           Switch Phase         2         2         6         6         8         8         7         4           Minimum Initial (s)         12.0         12.0         12.0         10.0         10.0         7.0         10.0           Minimum Split (s)         19.0         19.0         19.0         17.0         17.0         14.0         17.0           Total Split (s)         58.0         58.0         58.0         58.0         48.3         48.3%         48.3%         48.3         48.0         41.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Travel Time (s)         |       | 35.9     |               |       | 19.1     |      |       | 27.5     |          |             | 29.5     |      |
| Shared Lane Traffic (%)   Lane Group Flow (vph)   0   323   0   0   197   0   27   197   0   124   569   0   17m Type   Perm   NA   Perm   NA   Perm   NA   Perm   NA   D.P+P   NA   Protected Phases   2   6   8   8   7   4   Permitted Phases   2   2   6   6   8   8   7   4   Permitted Phases   2   2   6   6   8   8   8   7   4   Permitted Phases   2   2   6   6   8   8   8   7   4   Permitted Phases   2   2   6   6   8   8   8   7   4   Permitted Phases   2   2   6   6   8   8   8   Permitted Phases   2   2   2   6   6   8   8   8   Permitted Phases   2   2   2   6   6   8   8   8   Permitted Phases   2   2   2   6   6   8   8   8   Permitted Phases   2   2   2   6   6   8   8   8   Permitted Phases   2   2   2   6   6   8   8   8   Permitted Phases   2   2   2   2   6   6   8   8   8   Permitted Phases   2   2   2   2   6   6   8   8   8   Permitted Phases   2   2   2   2   6   6   8   8   8   Permitted Phases   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Peak Hour Factor        | 0.84  | 0.90     | 0.90          | 0.90  | 0.90     | 0.90 | 0.90  | 0.90     | 0.90     | 0.90        | 0.90     | 0.87 |
| Lane Group Flow (vph)         0         323         0         0         197         0         27         197         0         124         569         0           Turn Type         Perm         NA         Perm         NA         Perm         NA         D.P+P         NA           Protected Phases         2         6         8         8         8         8           Detector Phase         2         2         6         6         8         8         7         4           Switch Phase         2         2         6         6         8         8         7         4           Minimum Spit (s)         12.0         12.0         12.0         10.0         10.0         7.0         10.0           Minimum Spit (s)         19.0         19.0         19.0         17.0         17.0         14.0         17.0           Total Spit (s)         58.0         58.0         58.0         58.0         48.0         48.0         14.0         62.0           Total Spit (s)         48.3%         48.3%         48.3%         48.3%         40.0%         40.0%         11.7%         51.7%           Maximum Green (s)         51.0         51.0 <td>Adj. Flow (vph)</td> <td>214</td> <td>93</td> <td>16</td> <td>14</td> <td>96</td> <td>87</td> <td>27</td> <td>186</td> <td>11</td> <td>124</td> <td>239</td> <td>330</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Adj. Flow (vph)         | 214   | 93       | 16            | 14    | 96       | 87   | 27    | 186      | 11       | 124         | 239      | 330  |
| Lane Group Flow (vph)         0         323         0         0         197         0         27         197         0         124         569         0           Turn Type         Perm         NA         Perm         NA         Perm         NA         D.P+P         NA           Protected Phases         2         6         8         8         8         8           Detector Phase         2         2         6         6         8         8         7         4           Switch Phase         2         2         6         6         8         8         7         4           Minimum Spit (s)         12.0         12.0         12.0         10.0         10.0         7.0         10.0           Minimum Spit (s)         19.0         19.0         19.0         17.0         17.0         14.0         17.0           Total Spit (s)         58.0         58.0         58.0         58.0         48.0         48.0         14.0         62.0           Total Spit (s)         48.3%         48.3%         48.3%         48.3%         40.0%         40.0%         11.7%         51.7%           Maximum Green (s)         51.0         51.0 <td>Shared Lane Traffic (%)</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Shared Lane Traffic (%) |       |          |               |       |          |      |       |          |          |             |          |      |
| Protected Phases         2         6         8         7         4           Permitted Phases         2         2         6         8         8           Detector Phase         2         2         6         6         8         8           Switch Phase           Minimum Initial (s)         12.0         12.0         12.0         10.0         10.0         7.0         10.0           Minimum Initial (s)         12.0         19.0         19.0         19.0         17.0         17.0         7.0         10.0           Minimum Initial (s)         19.0         19.0         19.0         19.0         17.0         17.0         17.0         14.0         17.0           Minimum Initial (s)         19.0         19.0         19.0         19.0         17.0         17.0         17.0         14.0         14.0         17.0         17.0         17.0         14.0         14.0         14.0         14.0         62.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | 0     | 323      | 0             | 0     | 197      | 0    | 27    | 197      | 0        | 124         | 569      | 0    |
| Protected Phases         2         6         8         7         4           Permitted Phases         2         2         6         8         8           Detector Phase         2         2         6         6         8         8           Switch Phase           Minimum Initial (s)         12.0         12.0         12.0         10.0         10.0         7.0         10.0           Minimum Initial (s)         12.0         19.0         19.0         19.0         17.0         17.0         7.0         10.0           Minimum Initial (s)         19.0         19.0         19.0         19.0         17.0         17.0         17.0         14.0         17.0           Minimum Initial (s)         19.0         19.0         19.0         19.0         17.0         17.0         17.0         14.0         14.0         17.0         17.0         17.0         14.0         14.0         14.0         14.0         62.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Turn Type               | Perm  | NA       |               | Perm  | NA       |      | Perm  | NA       |          | D.P+P       | NA       |      |
| Detector Phase   2   2   6   6   8   8   8   7   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Protected Phases        |       | 2        |               |       | 6        |      |       | 8        |          | 7           | 4        |      |
| Switch Phase         Minimum Initial (s)         12.0         12.0         12.0         12.0         12.0         10.0         10.0         7.0         10.0           Minimum Split (s)         19.0         19.0         19.0         19.0         17.0         17.0         14.0         17.0           Total Split (s)         58.0         58.0         58.0         58.0         48.0         48.0         14.0         62.0           Total Split (%)         48.3%         48.3%         48.3%         40.0%         40.0%         11.7%         51.7%           Maximum Green (s)         51.0         51.0         51.0         51.0         51.0         51.0         51.0         51.0         55.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Permitted Phases        | 2     |          |               | 6     |          |      | 8     |          |          | 8           |          |      |
| Minimum Initial (s)         12.0         12.0         12.0         12.0         10.0         10.0         7.0         10.0           Minimum Split (s)         19.0         19.0         19.0         17.0         17.0         14.0         17.0           Total Split (s)         58.0         58.0         58.0         58.0         48.0         48.0         14.0         62.0           Total Split (%)         48.3%         48.3%         48.3%         40.0%         40.0%         11.7%         51.7%           Maximum Green (s)         51.0         51.0         51.0         51.0         41.0         41.0         7.0         55.0           Yellow Time (s)         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0 <td< td=""><td>Detector Phase</td><td>2</td><td>2</td><td></td><td>6</td><td>6</td><td></td><td>8</td><td>8</td><td></td><td>7</td><td>4</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Detector Phase          | 2     | 2        |               | 6     | 6        |      | 8     | 8        |          | 7           | 4        |      |
| Minimum Split (s)         19.0         19.0         19.0         19.0         17.0         17.0         14.0         17.0           Total Split (s)         58.0         58.0         58.0         58.0         48.0         48.0         14.0         62.0           Total Split (%)         48.3%         48.3%         48.3%         40.0%         40.0%         11.7%         51.7%           Maximum Green (s)         51.0         51.0         51.0         51.0         41.0         41.0         7.0         55.0           Yellow Time (s)         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0 <t< td=""><td>Switch Phase</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Switch Phase            |       |          |               |       |          |      |       |          |          |             |          |      |
| Total Split (s)         58.0         58.0         58.0         58.0         48.0         48.0         14.0         62.0           Total Split (%)         48.3%         48.3%         48.3%         48.3%         40.0%         40.0%         11.7%         51.7%           Maximum Green (s)         51.0         51.0         51.0         51.0         41.0         41.0         7.0         55.0           Yellow Time (s)         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Minimum Initial (s)     | 12.0  | 12.0     |               | 12.0  | 12.0     |      | 10.0  | 10.0     |          | 7.0         | 10.0     |      |
| Total Split (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Minimum Split (s)       | 19.0  | 19.0     |               | 19.0  | 19.0     |      | 17.0  | 17.0     |          | 14.0        | 17.0     |      |
| Maximum Green (s)         51.0         51.0         51.0         51.0         51.0         51.0         7.0         55.0           Yellow Time (s)         5.0         5.0         5.0         5.0         5.0         5.0         5.0           All-Red Time (s)         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0 <td>Total Split (s)</td> <td>58.0</td> <td>58.0</td> <td></td> <td>58.0</td> <td>58.0</td> <td></td> <td>48.0</td> <td>48.0</td> <td></td> <td>14.0</td> <td>62.0</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total Split (s)         | 58.0  | 58.0     |               | 58.0  | 58.0     |      | 48.0  | 48.0     |          | 14.0        | 62.0     |      |
| Yellow Time (s)         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total Split (%)         | 48.3% | 48.3%    |               | 48.3% | 48.3%    |      | 40.0% | 40.0%    |          | 11.7%       | 51.7%    |      |
| All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum Green (s)       | 51.0  | 51.0     |               | 51.0  | 51.0     |      | 41.0  | 41.0     |          | 7.0         | 55.0     |      |
| Lost Time Adjust (s)         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yellow Time (s)         | 5.0   | 5.0      |               | 5.0   | 5.0      |      | 5.0   | 5.0      |          | 5.0         | 5.0      |      |
| Lost Time Adjust (s)         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | All-Red Time (s)        | 2.0   | 2.0      |               | 2.0   | 2.0      |      | 2.0   | 2.0      |          | 2.0         | 2.0      |      |
| Total Lost Time (s)         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         20         20.8         20.8         27.7         20.8         20.8         20.8         27.7         31.5         Actual Mode         Min         Min         Min         Min         Min         Min         Min         None         None         None         None         None         None         None         None         27.7         31.5         Actual Edificación         20.8         27.7         31.5         Actual Edificación         20.8         27.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |       | -2.0     |               |       | -2.0     |      | -2.0  | -2.0     |          | -2.0        | -2.0     |      |
| Lead-Lag Optimize?         Yes         Yes         Yes           Vehicle Extension (s)         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.1         5.2         31.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.6         20.1         4.6         20.1         4.6         20.1         4.6         20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |       | 5.0      |               |       | 5.0      |      | 5.0   | 5.0      |          | 5.0         | 5.0      |      |
| Lead-Lag Optimize?         Yes         Yes         Yes           Vehicle Extension (s)         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.1         5.2         31.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.6         20.1         4.6         20.1         4.6         20.1         4.6         20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . ,                     |       |          |               |       |          |      | Lag   | Lag      |          | Lead        |          |      |
| Recall Mode         Min         Min         Min         Min         None         None         None           Act Effct Green (s)         27.9         27.9         20.8         20.8         27.7         31.5           Actuated g/C Ratio         0.40         0.40         0.30         0.30         0.39         0.45           v/c Ratio         0.64         0.28         0.11         0.36         0.23         0.71           Control Delay         25.2         13.9         23.8         24.8         14.6         20.1           Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0           Total Delay         25.2         13.9         23.8         24.8         14.6         20.1           LOS         C         B         C         C         B         C           Approach Delay         25.2         13.9         24.7         19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lead-Lag Optimize?      |       |          |               |       |          |      | Yes   |          |          | Yes         |          |      |
| Act Effct Green (s)       27.9       27.9       20.8       20.8       27.7       31.5         Actuated g/C Ratio       0.40       0.40       0.30       0.30       0.39       0.45         v/c Ratio       0.64       0.28       0.11       0.36       0.23       0.71         Control Delay       25.2       13.9       23.8       24.8       14.6       20.1         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0         Total Delay       25.2       13.9       23.8       24.8       14.6       20.1         LOS       C       B       C       C       B       C         Approach Delay       25.2       13.9       24.7       19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vehicle Extension (s)   | 3.0   | 3.0      |               | 3.0   | 3.0      |      | 3.0   | 3.0      |          | 3.0         | 3.0      |      |
| Actuated g/C Ratio       0.40       0.40       0.30       0.30       0.39       0.45         v/c Ratio       0.64       0.28       0.11       0.36       0.23       0.71         Control Delay       25.2       13.9       23.8       24.8       14.6       20.1         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0         Total Delay       25.2       13.9       23.8       24.8       14.6       20.1         LOS       C       B       C       C       B       C         Approach Delay       25.2       13.9       24.7       19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Recall Mode             | Min   | Min      |               | Min   | Min      |      | None  | None     |          | None        | None     |      |
| v/c Ratio     0.64     0.28     0.11     0.36     0.23     0.71       Control Delay     25.2     13.9     23.8     24.8     14.6     20.1       Queue Delay     0.0     0.0     0.0     0.0     0.0     0.0       Total Delay     25.2     13.9     23.8     24.8     14.6     20.1       LOS     C     B     C     C     B     C       Approach Delay     25.2     13.9     24.7     19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Act Effct Green (s)     |       | 27.9     |               |       | 27.9     |      | 20.8  | 20.8     |          | 27.7        | 31.5     |      |
| v/c Ratio     0.64     0.28     0.11     0.36     0.23     0.71       Control Delay     25.2     13.9     23.8     24.8     14.6     20.1       Queue Delay     0.0     0.0     0.0     0.0     0.0     0.0       Total Delay     25.2     13.9     23.8     24.8     14.6     20.1       LOS     C     B     C     C     B     C       Approach Delay     25.2     13.9     24.7     19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Actuated g/C Ratio      |       | 0.40     |               |       | 0.40     |      | 0.30  | 0.30     |          | 0.39        | 0.45     |      |
| Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <th< td=""><td></td><td></td><td>0.64</td><td></td><td></td><td>0.28</td><td></td><td>0.11</td><td>0.36</td><td></td><td>0.23</td><td>0.71</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |       | 0.64     |               |       | 0.28     |      | 0.11  | 0.36     |          | 0.23        | 0.71     |      |
| Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0           Total Delay         25.2         13.9         23.8         24.8         14.6         20.1           LOS         C         B         C         C         B         C           Approach Delay         25.2         13.9         24.7         19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Control Delay           |       | 25.2     |               |       | 13.9     |      | 23.8  | 24.8     |          | 14.6        | 20.1     |      |
| Total Delay         25.2         13.9         23.8         24.8         14.6         20.1           LOS         C         B         C         C         B         C           Approach Delay         25.2         13.9         24.7         19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |       |          |               |       |          |      |       |          |          |             |          |      |
| LOS         C         B         C         C         B         C           Approach Delay         25.2         13.9         24.7         19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                       |       |          |               |       |          |      |       |          |          |             |          |      |
| Approach Delay 25.2 13.9 24.7 19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |       |          |               |       |          |      |       |          |          |             |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |       |          |               |       |          |      |       |          |          |             |          |      |
| Approach LOO D O D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Approach LOS            |       | С        |               |       | В        |      |       | С        |          |             | В        |      |

Lanes, Volumes, Timings Synchro 10 Report RKA

|                                | ۶          | <b>→</b> | •            | •         | <b>←</b>    | •          | •               | <b>†</b> | <b>/</b> | <b>/</b> | ļ    | 4   |
|--------------------------------|------------|----------|--------------|-----------|-------------|------------|-----------------|----------|----------|----------|------|-----|
| Lane Group                     | EBL        | EBT      | EBR          | WBL       | WBT         | WBR        | NBL             | NBT      | NBR      | SBL      | SBT  | SBR |
| Queue Length 50th (ft)         |            | 98       |              |           | 39          |            | 9               | 66       |          | 28       | 149  |     |
| Queue Length 95th (ft)         |            | 261      |              |           | 117         |            | 34              | 159      |          | 83       | 387  |     |
| Internal Link Dist (ft)        |            | 2290     |              |           | 1178        |            |                 | 1732     |          |          | 1866 |     |
| Turn Bay Length (ft)           |            |          |              |           |             |            | 150             |          |          | 150      |      |     |
| Base Capacity (vph)            |            | 995      |              |           | 1325        |            | 560             | 1237     |          | 530      | 1412 |     |
| Starvation Cap Reductn         |            | 0        |              |           | 0           |            | 0               | 0        |          | 0        | 0    |     |
| Spillback Cap Reductn          |            | 0        |              |           | 0           |            | 0               | 0        |          | 0        | 0    |     |
| Storage Cap Reductn            |            | 0        |              |           | 0           |            | 0               | 0        |          | 0        | 0    |     |
| Reduced v/c Ratio              |            | 0.32     |              |           | 0.15        |            | 0.05            | 0.16     |          | 0.23     | 0.40 |     |
| Intersection Summary           |            |          |              |           |             |            |                 |          |          |          |      |     |
| Area Type: (                   | Other      |          |              |           |             |            |                 |          |          |          |      |     |
| Cycle Length: 120              |            |          |              |           |             |            |                 |          |          |          |      |     |
| Actuated Cycle Length: 70.5    |            |          |              |           |             |            |                 |          |          |          |      |     |
| Natural Cycle: 55              |            |          |              |           |             |            |                 |          |          |          |      |     |
| Control Type: Actuated-Unco    | ordinated  |          |              |           |             |            |                 |          |          |          |      |     |
| Maximum v/c Ratio: 0.71        |            |          |              |           |             |            |                 |          |          |          |      |     |
| Intersection Signal Delay: 20  |            |          |              |           | tersection  |            |                 |          |          |          |      |     |
| Intersection Capacity Utilizat | ion 79.1%  |          |              | IC        | U Level c   | of Service | D               |          |          |          |      |     |
| Analysis Period (min) 15       |            |          |              |           |             |            |                 |          |          |          |      |     |
| Splits and Phases: 3: Meb      | ane Oaks R | Road & O | ld Hillsbo   | rough Ro  | nad         |            |                 |          |          |          |      |     |
|                                | ano canon  | 1044 4 0 | 14 1 1111000 | - ough re | <u> </u>    |            |                 |          |          |          |      |     |
| →ø2                            |            |          |              |           | <b>▼</b> Ø4 |            |                 |          |          |          |      |     |
| 58 s                           |            |          |              |           | 62 s        |            |                 |          |          |          |      |     |
| <b>₩</b> Ø6                    |            |          |              |           | Ø7          | -          | T <sub>Ø8</sub> |          |          |          |      |     |
| 58 s                           |            |          |              |           | 14 s        | 48         | s               |          |          |          |      |     |

Lanes, Volumes, Timings
RKA

Synchro 10 Report
Page 2

# **APPENDIX G**

# CAPACITY ANALYSIS ROAD OLD HILLSBOROUGH ROAD AND SITE ACCESS

| Build (2020)              |
|---------------------------|
| Timing Plan: AM Peak Hour |

| Intersection                         |        |          |        |      |         |       |   |
|--------------------------------------|--------|----------|--------|------|---------|-------|---|
| Int Delay, s/veh                     | 6.4    |          |        |      |         |       |   |
| Movement                             | EBT    | EBR      | WBL    | WBT  | NBL     | NBR   | I |
| Lane Configurations                  | ĵ.     |          |        | 4    | ች       | 7     |   |
| Traffic Vol, veh/h                   | 176    | 113      | 37     | 345  | 92      | 31    |   |
| Future Vol, veh/h                    | 176    | 113      | 37     | 345  | 92      | 31    |   |
| Conflicting Peds, #/hr               |        | 0        | 0      | 0    | 0       | 0     |   |
| Sign Control                         | Free   | Free     | Free   | Free | Stop    | Stop  |   |
| RT Channelized                       | -      |          | -      | None | _       | None  |   |
| Storage Length                       | -      | -        | _      | -    | 0       | 50    |   |
| Veh in Median Storage                | e,# 0  | -        | -      | 0    | 0       | -     |   |
| Grade, %                             | 0      | -        | _      | 0    | 0       | -     |   |
| Peak Hour Factor                     | 90     | 50       | 50     | 90   | 50      | 50    |   |
| Heavy Vehicles, %                    | 0      | 2        | 0      | 2    | 0       | 0     |   |
| Mvmt Flow                            | 196    | 226      | 74     | 383  | 184     | 62    |   |
| WWW.CT IOW                           | 100    | LLU      | , ,    | 000  | 101     | 02    |   |
|                                      |        |          |        |      |         |       |   |
|                                      | Major1 |          | Major2 | N    | /linor1 |       | Į |
| Conflicting Flow All                 | 0      | 0        | 422    | 0    | 840     | 309   |   |
| Stage 1                              | -      | -        | -      | -    | 309     | -     |   |
| Stage 2                              | -      | -        | -      | -    | 531     | -     |   |
| Critical Hdwy                        | -      | -        | 4.1    | -    | 6.4     | 6.2   |   |
| Critical Hdwy Stg 1                  | -      | -        | -      | -    | 5.4     | -     |   |
| Critical Hdwy Stg 2                  | -      | -        | -      | -    | 5.4     | -     |   |
| Follow-up Hdwy                       | -      | -        | 2.2    | -    | 3.5     | 3.3   |   |
| Pot Cap-1 Maneuver                   | -      | -        | 1148   | -    | 338     | 736   |   |
| Stage 1                              | -      | -        | -      | -    | 749     | -     |   |
| Stage 2                              | _      | -        | -      | -    | 594     | -     |   |
| Platoon blocked, %                   | -      | -        |        | -    |         |       |   |
| Mov Cap-1 Maneuver                   | -      | -        | 1148   | _    | 310     | 736   |   |
| Mov Cap-2 Maneuver                   |        | _        | -      | _    | 310     | -     |   |
| Stage 1                              | _      | -        | _      | -    | 749     | -     |   |
| Stage 2                              | _      | _        | _      | _    | 545     | _     |   |
| Olago Z                              |        |          |        |      | 070     |       |   |
|                                      |        |          |        |      |         |       |   |
| Approach                             | EB     |          | WB     |      | NB      |       |   |
| HCM Control Delay, s                 | 0      |          | 1.4    |      | 26.7    |       |   |
| HCM LOS                              |        |          |        |      | D       |       |   |
|                                      |        |          |        |      |         |       |   |
| Minor Lane/Major Mvr                 | nt I   | NBLn11   | NRI n2 | EBT  | EBR     | WBL   |   |
| Capacity (veh/h)                     | 116 1  | 310      | 736    |      |         | 1148  |   |
| HCM Lane V/C Ratio                   |        |          | 0.084  |      | -       | 0.064 |   |
|                                      | \      | 32.2     |        | -    |         | 8.4   |   |
| HCM Long LOS                         | )      |          | 10.3   | -    | -       |       |   |
| HCM Lane LOS<br>HCM 95th %tile Q(veh | .)     | D<br>3.6 | 0.3    | -    | -       | 0.2   |   |
| HOIVI 95(II %tile Q(Ver              | 1)     | 3.0      | 0.3    | -    | -       | 0.2   |   |

| Intersection           |          |       |           |      |        |          |
|------------------------|----------|-------|-----------|------|--------|----------|
| Int Delay, s/veh       | 6.4      |       |           |      |        |          |
|                        |          |       | WDI       | MOT  | ND     | NDD      |
| Movement               | EBT      | EBR   | WBL       | WBT  | NBL    | NBR      |
| Lane Configurations    | ĵ.       |       |           | ની   |        | 7        |
| Traffic Vol, veh/h     | 176      |       | 37        | 345  | 92     | 31       |
| Future Vol, veh/h      | 176      |       | 37        | 345  | 92     | 31       |
| Conflicting Peds, #/hr | 0        |       | 0         | 0    | 0      | 0        |
| Sign Control           | Free     | Free  | Free      | Free | Stop   | Stop     |
| RT Channelized         | -        | None  | -         | None | -      | None     |
| Storage Length         | -        |       | -         | -    | 0      | 50       |
| Veh in Median Storage, | # 0      | -     | -         | 0    | 0      | -        |
| Grade, %               | 0        |       | _         | 0    | 0      | _        |
| Peak Hour Factor       | 90       |       | 50        | 90   | 50     | 50       |
| Heavy Vehicles, %      | 2        |       | 0         | 2    | 0      | 0        |
| Mymt Flow              | 196      |       | 74        | 383  | 184    | 62       |
| WOIT FIOW              | 196      | 220   | 74        | 383  | 184    | 62       |
|                        |          |       |           |      |        |          |
| Major/Minor M          | /lajor1  |       | Major2    | ı    | Minor1 |          |
| Conflicting Flow All   | 0        |       |           | 0    | 840    | 309      |
| Stage 1                |          |       | 422       | -    | 309    | 309      |
|                        | -        |       |           |      |        |          |
| Stage 2                | -        |       | -         | -    | 531    | -        |
| Critical Hdwy          | -        | -     |           | -    | 6.4    | 6.2      |
| Critical Hdwy Stg 1    | -        | -     | -         | -    | 5.4    | -        |
| Critical Hdwy Stg 2    | -        | -     |           | -    | 5.4    | -        |
| Follow-up Hdwy         | -        | -     | 2.2       | -    | 3.5    | 3.3      |
| Pot Cap-1 Maneuver     | -        | -     | 1148      | -    | 338    | 736      |
| Stage 1                | -        | -     | -         | -    | 749    | -        |
| Stage 2                | -        | -     | -         | -    | 594    | -        |
| Platoon blocked, %     | _        |       |           | -    |        |          |
| Mov Cap-1 Maneuver     | _        |       | 1148      | -    | 310    | 736      |
| Mov Cap-1 Maneuver     | <u>-</u> |       | -         | _    | 310    | -        |
| Stage 1                | -        |       |           | _    | 749    | _        |
|                        |          |       |           |      |        |          |
| Stage 2                | -        | -     | -         | -    | 545    | -        |
|                        |          |       |           |      |        |          |
| Approach               | EB       |       | WB        |      | NB     |          |
| HCM Control Delay, s   | 0        |       | 1.4       |      | 26.7   |          |
|                        | U        |       | 1.4       |      |        |          |
| HCM LOS                |          |       |           |      | D      |          |
|                        |          |       |           |      |        |          |
| Minor Lane/Major Mvmt  |          | NBLn1 | NBLn2     | EBT  | EBR    | WBL      |
| Capacity (veh/h)       |          | 310   |           |      |        | 1148     |
| HCM Lane V/C Ratio     |          |       | 0.084     | _    |        | 0.064    |
| HCM Control Delay (s)  |          | 32.2  |           | _    |        | 8.4      |
| HCM Lane LOS           |          | J2.2  | 10.3<br>B | _    | _      | 0.4<br>A |
| HCM 95th %tile Q(veh)  |          | 3.6   | 0.3       |      |        | 0.2      |
| HOW SOUL WILLE MICHAIN |          | 3.0   | 0.3       | -    | -      | 0.2      |
|                        |          |       |           |      |        |          |

HCM Control Delay (s)

HCM 95th %tile Q(veh)

HCM Lane LOS

36.9 11.6

В

0.3

Ε

3.8

| Intersection                 |            |        |         |            |          |                |
|------------------------------|------------|--------|---------|------------|----------|----------------|
| Int Delay, s/veh             | 6.2        |        |         |            |          |                |
|                              | EBT        | EBR    | WBL     | WPT        | NBL      | NBR            |
| Movement Lana Configurations |            | EBK    | WBL     | WBT        |          |                |
| Lane Configurations          | <b>}</b>   | 65     | 22      | <b>€</b>   | <b>أ</b> | <b>7</b><br>28 |
| Traffic Vol, veh/h           | 361<br>361 | 65     |         | 350<br>350 | 86<br>86 | 28             |
| Future Vol, veh/h            | 301        | 00     | 22      | 350        | 00       | 20             |
| Conflicting Peds, #/hr       | Free       | Free   | Free    | Free       | Stop     |                |
| Sign Control RT Channelized  |            | None   |         | None       |          | Stop           |
|                              | -          |        | -       |            | -        | None           |
| Storage Length               | - 4 0      | -      | -       | -          | 0        | 50             |
| Veh in Median Storage        |            | -      | -       | 0          | 0        | -              |
| Grade, %                     | 0          | -      | -       | 0          | 0        | -              |
| Peak Hour Factor             | 90         | 50     | 50      | 90         | 50       | 50             |
| Heavy Vehicles, %            | 2          | 0      | 0       | 2          | 0        | 0              |
| Mvmt Flow                    | 401        | 130    | 44      | 389        | 172      | 56             |
|                              |            |        |         |            |          |                |
| Major/Minor                  | Major1     | ı      | Major2  | N          | /linor1  |                |
| Conflicting Flow All         | 0          | 0      | 531     | 0          | 943      | 466            |
| Stage 1                      | -          | -      | -       | _          | 466      | -              |
| Stage 2                      | _          | _      | _       | _          | 477      | _              |
| Critical Hdwy                | _          | _      | 4.1     | _          | 6.4      | 6.2            |
| Critical Hdwy Stg 1          | _          | _      | - '     | _          | 5.4      | -              |
| Critical Hdwy Stg 2          | _          | _      | _       | _          | 5.4      | _              |
| Follow-up Hdwy               | _          | _      | 2.2     | _          | 3.5      | 3.3            |
| Pot Cap-1 Maneuver           | _          | _      | 1047    | _          | 294      | 601            |
| Stage 1                      | _          | _      | -       | _          | 636      | -              |
| Stage 2                      |            |        | _       | _          | 629      | _              |
| Platoon blocked, %           | _          | -      | _       | -          | 029      | -              |
| Mov Cap-1 Maneuver           |            |        | 1047    | -          | 278      | 601            |
| Mov Cap-1 Maneuver           |            | -      | 1047    | -          | 278      | - 001          |
| Stage 1                      | -          | -      | _       | -          | 636      |                |
|                              | -          | -      | -       | -          | 595      | _              |
| Stage 2                      | -          | -      | -       | -          | 595      | -              |
|                              |            |        |         |            |          |                |
| Approach                     | EB         |        | WB      |            | NB       |                |
| HCM Control Delay, s         | 0          |        | 0.9     |            | 30.7     |                |
| HCM LOS                      |            |        |         |            | D        |                |
|                              |            |        |         |            |          |                |
| Minor Long/Major Myn         | ot I       | NBLn11 | VIDI 20 | EBT        | EBR      | WBL            |
| Minor Lane/Major Mvn         | IL         |        |         | EDI        |          |                |
| Capacity (veh/h)             |            | 278    | 601     | -          | -        | 1047           |
| HCM Lane V/C Ratio           |            | 0.619  | 0.093   | -          | -        | 0.042          |

Build (2020)

Timing Plan: PM Peak Hour

HCM 6th TWSC Synchro 10 Report RKA Synchro 10 Report Page 1

0

Α

8.6

Α

0.1

| Intersection           |        |              |        |            |           |       |
|------------------------|--------|--------------|--------|------------|-----------|-------|
| Int Delay, s/veh       | 6.2    |              |        |            |           |       |
| Movement               | EBT    | EBR          | WBL    | WBT        | NBL       | NBR   |
| Lane Configurations    | 1>     | רטוע         | TTDL   | ₩ <u>₩</u> | NDL<br>T  | TVDIX |
| Traffic Vol, veh/h     | 361    | 65           | 22     | 350        | 86        | 28    |
| Future Vol, veh/h      | 361    | 65           | 22     | 350        | 86        | 28    |
| Conflicting Peds, #/hr | 0      | 0.5          | 0      | 0          | 0         | 0     |
| Sign Control           | Free   | Free         | Free   | Free       | Stop      | Stop  |
| RT Channelized         | -      | None         | -      | None       | Stop<br>- | None  |
| Storage Length         | -      | NOTIC        | -      | None -     | 0         | 50    |
| Veh in Median Storage  | .# 0   | -            | -      | 0          | 0         |       |
|                        | •      | -            |        |            |           | -     |
| Grade, %               | 0      | -            | -      | 0          | 0         | -     |
| Peak Hour Factor       | 90     | 50           | 50     | 90         | 50        | 50    |
| Heavy Vehicles, %      | 2      | 0            | 0      | 2          | 0         | 0     |
| Mvmt Flow              | 401    | 130          | 44     | 389        | 172       | 56    |
|                        |        |              |        |            |           |       |
| Major/Minor I          | Major1 | N            | Major2 | N          | /linor1   |       |
| Conflicting Flow All   | 0      | 0            | 531    | 0          | 943       | 466   |
| Stage 1                | -      | -            | -      | -          | 466       | -     |
| Stage 2                | _      | _            | _      | _          | 477       | _     |
| Critical Hdwy          | _      | <u>-</u>     | 4.1    | -          | 6.4       | 6.2   |
| Critical Hdwy Stg 1    | -      | -            | 4.1    | -          | 5.4       | 0.2   |
|                        |        | -            |        |            | 5.4       |       |
| Critical Hdwy Stg 2    | -      | -            | - 2.2  | -          |           | - 2 2 |
| Follow-up Hdwy         | -      | <del>-</del> | 2.2    | -          | 3.5       | 3.3   |
| Pot Cap-1 Maneuver     | -      | -            | 1047   | -          | 294       | 601   |
| Stage 1                | -      | -            | -      | -          | 636       | -     |
| Stage 2                | -      | -            | -      | -          | 629       | -     |
| Platoon blocked, %     | -      | -            | 10.15  | -          | 070       | 001   |
| Mov Cap-1 Maneuver     | -      | -            | 1047   | -          | 278       | 601   |
| Mov Cap-2 Maneuver     | -      | -            | -      | -          | 278       | -     |
| Stage 1                | -      | -            | -      | -          | 636       | -     |
| Stage 2                | -      | -            | -      | -          | 595       | -     |
|                        |        |              |        |            |           |       |
| Approach               | EB     |              | WB     |            | NB        |       |
| HCM Control Delay, s   | 0      |              | 0.9    |            | 30.7      |       |
| HCM LOS                | U      |              | 0.9    |            | 30.7<br>D |       |
| I IOIVI LUO            |        |              |        |            | U         |       |
|                        |        |              |        |            |           |       |
| Minor Lane/Major Mvm   | it l   | NBLn11       | NBLn2  | EBT        | EBR       | WBL   |
| Capacity (veh/h)       |        | 278          | 601    |            |           | 1047  |
| HCM Lane V/C Ratio     |        | 0.619        |        | _          | -         | 0.042 |
| HCM Control Delay (s)  |        | 36.9         | 11.6   | _          | _         | 8.6   |
| HCM Lane LOS           |        | E            | В      | -          | -         | Α     |
| HCM 95th %tile Q(veh)  |        | 3.8          | 0.3    | -          | _         | 0.1   |
|                        |        |              |        |            |           |       |

# **APPENDIX H**

**SIMTRAFFIC REPORTS** 

# Intersection: 1: Old Hillsborough Road/Trollingwood Hawfields Road & NC 119

| Movement              | EB  | EB   | WB  | WB   | NB  | NB   | B7   | SB  | SB   |  |
|-----------------------|-----|------|-----|------|-----|------|------|-----|------|--|
| Directions Served     | L   | TR   | L   | TR   | L   | TR   | T    | L   | TR   |  |
| Maximum Queue (ft)    | 249 | 727  | 173 | 226  | 250 | 1750 | 548  | 238 | 422  |  |
| Average Queue (ft)    | 117 | 471  | 71  | 123  | 170 | 1465 | 245  | 74  | 240  |  |
| 95th Queue (ft)       | 271 | 709  | 145 | 223  | 321 | 2029 | 812  | 198 | 405  |  |
| Link Distance (ft)    |     | 1094 |     | 2949 |     | 1676 | 1720 |     | 2213 |  |
| Upstream Blk Time (%) |     |      |     |      |     | 35   |      |     |      |  |
| Queuing Penalty (veh) |     |      |     |      |     | 226  |      |     |      |  |
| Storage Bay Dist (ft) | 150 |      | 100 |      | 150 |      |      | 175 |      |  |
| Storage Blk Time (%)  | 0   | 37   | 5   | 14   | 12  | 73   |      |     | 23   |  |
| Queuing Penalty (veh) | 1   | 53   | 14  | 14   | 70  | 126  |      |     | 18   |  |

#### Intersection: 2: Jones Drive & Old Hillsborough Road

| Movement              | EB   | WB   | NB   |
|-----------------------|------|------|------|
|                       |      |      |      |
| Directions Served     | TR   | LT   | LR   |
| Maximum Queue (ft)    | 8    | 37   | 158  |
| Average Queue (ft)    | 1    | 6    | 81   |
| 95th Queue (ft)       | 8    | 29   | 143  |
| Link Distance (ft)    | 1720 | 1598 | 1357 |
| Upstream Blk Time (%) |      |      |      |
| Queuing Penalty (veh) |      |      |      |
| Storage Bay Dist (ft) |      |      |      |
| Storage Blk Time (%)  |      |      |      |
| Queuing Penalty (veh) |      |      |      |

# Intersection: 3: Mebane Oaks Road & Old Hillsborough Road

| EB   | WB                      | NB                                   | SB                                                  |
|------|-------------------------|--------------------------------------|-----------------------------------------------------|
| LTR  | LTR                     | LTR                                  | LTR                                                 |
| 200  | 92                      | 129                                  | 104                                                 |
| 95   | 52                      | 56                                   | 50                                                  |
| 177  | 89                      | 119                                  | 93                                                  |
| 2286 | 1209                    | 1757                                 | 1897                                                |
|      |                         |                                      |                                                     |
|      |                         |                                      |                                                     |
|      |                         |                                      |                                                     |
|      |                         |                                      |                                                     |
|      |                         |                                      |                                                     |
|      | LTR<br>200<br>95<br>177 | LTR LTR<br>200 92<br>95 52<br>177 89 | LTR LTR LTR<br>200 92 129<br>95 52 56<br>177 89 119 |

#### **Network Summary**

Network wide Queuing Penalty: 521

# Intersection: 1: Old Hillsborough Road/Trollingwood Hawfields Road & NC 119

| Movement              | EB  | EB   | WB  | WB   | NB  | NB   | B7   | SB  | SB   |  |
|-----------------------|-----|------|-----|------|-----|------|------|-----|------|--|
| Directions Served     | L   | TR   | L   | TR   | L   | TR   | T    | L   | TR   |  |
| Maximum Queue (ft)    | 250 | 819  | 132 | 228  | 250 | 1776 | 1613 | 274 | 874  |  |
| Average Queue (ft)    | 132 | 527  | 57  | 112  | 178 | 1672 | 769  | 149 | 583  |  |
| 95th Queue (ft)       | 291 | 808  | 112 | 218  | 318 | 1968 | 1852 | 325 | 937  |  |
| Link Distance (ft)    |     | 1094 |     | 2949 |     | 1676 | 1720 |     | 2213 |  |
| Upstream Blk Time (%) |     |      |     |      |     | 65   | 1    |     |      |  |
| Queuing Penalty (veh) |     |      |     |      |     | 518  | 6    |     |      |  |
| Storage Bay Dist (ft) | 150 |      | 100 |      | 150 |      |      | 175 |      |  |
| Storage Blk Time (%)  | 1   | 39   | 2   | 13   | 19  | 72   |      | 0   | 66   |  |
| Queuing Penalty (veh) | 5   | 57   | 6   | 13   | 135 | 139  |      | 1   | 50   |  |

#### Intersection: 2: Jones Drive & Old Hillsborough Road

| Movement              | EB   | WB   | NB   |
|-----------------------|------|------|------|
| Movement              | ED   | VVD  | IND  |
| Directions Served     | TR   | LT   | LR   |
| Maximum Queue (ft)    | 4    | 123  | 444  |
| Average Queue (ft)    | 0    | 20   | 214  |
| 95th Queue (ft)       | 4    | 95   | 503  |
| Link Distance (ft)    | 1720 | 1592 | 1357 |
| Upstream Blk Time (%) |      |      |      |
| Queuing Penalty (veh) |      |      |      |
| Storage Bay Dist (ft) |      |      |      |
| Storage Blk Time (%)  |      |      |      |
| Queuing Penalty (veh) |      |      |      |

#### Intersection: 3: Mebane Oaks Road & Old Hillsborough Road

| Movement              | EB   | WB   | NB   | SB   |
|-----------------------|------|------|------|------|
| Directions Served     | LTR  | LTR  | LTR  | LTR  |
| Maximum Queue (ft)    | 225  | 94   | 130  | 111  |
| Average Queue (ft)    | 114  | 54   | 55   | 56   |
| 95th Queue (ft)       | 217  | 95   | 115  | 102  |
| Link Distance (ft)    | 2286 | 1209 | 1757 | 1897 |
| Upstream Blk Time (%) |      |      |      |      |
| Queuing Penalty (veh) |      |      |      |      |
| Storage Bay Dist (ft) |      |      |      |      |
| Storage Blk Time (%)  |      |      |      |      |
| Queuing Penalty (veh) |      |      |      |      |

# Intersection: 4: Site Access & Old Hillsborough Road

| Movement              | EB   | WB   | NB  | NB  |
|-----------------------|------|------|-----|-----|
| Directions Served     | TR   | LT   | L   | R   |
| Maximum Queue (ft)    | 14   | 119  | 172 | 145 |
| Average Queue (ft)    | 2    | 37   | 88  | 49  |
| 95th Queue (ft)       | 13   | 97   | 166 | 118 |
| Link Distance (ft)    | 1592 | 1719 | 684 |     |
| Upstream Blk Time (%) |      |      |     |     |
| Queuing Penalty (veh) |      |      |     |     |
| Storage Bay Dist (ft) |      |      |     | 50  |
| Storage Blk Time (%)  |      |      | 29  | 1   |
| Queuing Penalty (veh) |      |      | 18  | 2   |

#### Intersection: 17: Site Access

| Movement              | NB  | SB  |
|-----------------------|-----|-----|
| Directions Served     | T   | R   |
| Maximum Queue (ft)    | 36  | 12  |
| Average Queue (ft)    | 8   | 2   |
| 95th Queue (ft)       | 31  | 13  |
| Link Distance (ft)    | 177 | 684 |
| Upstream Blk Time (%) |     |     |
| Queuing Penalty (veh) |     |     |
| Storage Bay Dist (ft) |     |     |
| Storage Blk Time (%)  |     |     |
| Queuing Penalty (veh) |     |     |

#### Intersection: 19:

| Movement              | NB  |
|-----------------------|-----|
| Directions Served     | T   |
| Maximum Queue (ft)    | 120 |
| Average Queue (ft)    | 79  |
| 95th Queue (ft)       | 124 |
| Link Distance (ft)    | 110 |
| Upstream Blk Time (%) | 3   |
| Queuing Penalty (veh) | 7   |
| Storage Bay Dist (ft) |     |
| Storage Blk Time (%)  |     |
| Queuing Penalty (veh) |     |

Intersection: 20:

| Movement              | EB  |
|-----------------------|-----|
| Directions Served     | L   |
| Maximum Queue (ft)    | 142 |
| Average Queue (ft)    | 77  |
| 95th Queue (ft)       | 127 |
| Link Distance (ft)    | 127 |
| Upstream Blk Time (%) | 0   |
| Queuing Penalty (veh) | 1   |
| Storage Bay Dist (ft) |     |
| Storage Blk Time (%)  |     |
| Queuing Penalty (veh) |     |

# **Network Summary**

Network wide Queuing Penalty: 958

# Intersection: 1: Old Hillsborough Road/Trollingwood Hawfields Road & NC 119

| Movement              | EB  | EB   | B10  | WB  | WB   | NB  | NB   | B7   | SB  | SB   |  |
|-----------------------|-----|------|------|-----|------|-----|------|------|-----|------|--|
| Directions Served     | L   | TR   | T    | L   | TR   | L   | TR   | T    | L   | TR   |  |
| Maximum Queue (ft)    | 249 | 1187 | 1531 | 237 | 296  | 650 | 1481 | 261  | 274 | 474  |  |
| Average Queue (ft)    | 129 | 1141 | 805  | 111 | 159  | 377 | 1150 | 83   | 132 | 313  |  |
| 95th Queue (ft)       | 284 | 1278 | 1925 | 235 | 294  | 825 | 1822 | 477  | 289 | 447  |  |
| Link Distance (ft)    |     | 1094 | 1885 |     | 2949 |     | 1676 | 1720 |     | 2213 |  |
| Upstream Blk Time (%) |     | 54   | 9    |     |      |     | 11   |      |     |      |  |
| Queuing Penalty (veh) |     | 0    | 0    |     |      |     | 89   |      |     |      |  |
| Storage Bay Dist (ft) | 150 |      |      | 225 |      | 550 |      |      | 175 |      |  |
| Storage Blk Time (%)  | 2   | 60   |      | 7   | 3    |     | 53   |      | 13  | 33   |  |
| Queuing Penalty (veh) | 13  | 87   |      | 19  | 3    |     | 103  |      | 58  | 25   |  |

#### Intersection: 2: Jones Drive & Old Hillsborough Road

| Movement              | EB   | WB   | NB   | NB  |
|-----------------------|------|------|------|-----|
| Directions Served     | TR   | LT   | L    | R   |
| Maximum Queue (ft)    | 13   | 78   | 336  | 125 |
| Average Queue (ft)    | 1    | 17   | 212  | 69  |
| 95th Queue (ft)       | 8    | 63   | 435  | 156 |
| Link Distance (ft)    | 1720 | 1580 | 1357 |     |
| Upstream Blk Time (%) |      |      |      |     |
| Queuing Penalty (veh) |      |      |      |     |
| Storage Bay Dist (ft) |      |      |      | 25  |
| Storage Blk Time (%)  |      |      | 84   | 5   |
| Queuing Penalty (veh) |      |      | 51   | 14  |

# Intersection: 3: Mebane Oaks Road & Old Hillsborough Road

| Movement              | EB   | WB   | NB  | NB   | SB  | SB   |  |
|-----------------------|------|------|-----|------|-----|------|--|
| Directions Served     | LTR  | LTR  | L   | TR   | L   | TR   |  |
| Maximum Queue (ft)    | 318  | 147  | 52  | 194  | 98  | 155  |  |
| Average Queue (ft)    | 170  | 59   | 10  | 83   | 24  | 76   |  |
| 95th Queue (ft)       | 301  | 120  | 36  | 166  | 77  | 160  |  |
| Link Distance (ft)    | 2279 | 1202 |     | 1754 |     | 1895 |  |
| Upstream Blk Time (%) |      |      |     |      |     |      |  |
| Queuing Penalty (veh) |      |      |     |      |     |      |  |
| Storage Bay Dist (ft) |      |      | 150 |      | 150 |      |  |
| Storage Blk Time (%)  |      |      |     | 2    |     | 1    |  |
| Queuing Penalty (veh) |      |      |     | 0    |     | 1    |  |

# Intersection: 4: Site Access & Old Hillsborough Road

| Movement              | EB   | WB   | NB  | NB  |
|-----------------------|------|------|-----|-----|
| Directions Served     | TR   | LT   | L   | R   |
| Maximum Queue (ft)    | 27   | 101  | 197 | 138 |
| Average Queue (ft)    | 3    | 37   | 94  | 44  |
| 95th Queue (ft)       | 18   | 96   | 181 | 112 |
| Link Distance (ft)    | 1580 | 1719 | 684 |     |
| Upstream Blk Time (%) |      |      |     |     |
| Queuing Penalty (veh) |      |      |     |     |
| Storage Bay Dist (ft) |      |      |     | 50  |
| Storage Blk Time (%)  |      |      | 32  | 1   |
| Queuing Penalty (veh) |      |      | 20  | 2   |

#### Intersection: 17: Site Access

| Movement              | NB  | SB  |
|-----------------------|-----|-----|
| Directions Served     | T   | R   |
| Maximum Queue (ft)    | 45  | 23  |
| Average Queue (ft)    | 13  | 3   |
| 95th Queue (ft)       | 42  | 19  |
| Link Distance (ft)    | 177 | 684 |
| Upstream Blk Time (%) |     |     |
| Queuing Penalty (veh) |     |     |
| Storage Bay Dist (ft) |     |     |
| Storage Blk Time (%)  |     |     |
| Queuing Penalty (veh) |     |     |

#### Intersection: 19:

| Movement              | NB  |
|-----------------------|-----|
| Directions Served     | T   |
| Maximum Queue (ft)    | 120 |
| Average Queue (ft)    | 83  |
| 95th Queue (ft)       | 132 |
| Link Distance (ft)    | 110 |
| Upstream Blk Time (%) | 4   |
| Queuing Penalty (veh) | 10  |
| Storage Bay Dist (ft) |     |
| Storage Blk Time (%)  |     |
| Queuing Penalty (veh) |     |

Intersection: 20:

| Movement              | EB  | B21 |
|-----------------------|-----|-----|
| Directions Served     | L   | T   |
| Maximum Queue (ft)    | 150 | 4   |
| Average Queue (ft)    | 80  | 0   |
| 95th Queue (ft)       | 137 | 4   |
| Link Distance (ft)    | 127 | 318 |
| Upstream Blk Time (%) | 1   |     |
| Queuing Penalty (veh) | 2   |     |
| Storage Bay Dist (ft) |     |     |
| Storage Blk Time (%)  |     |     |
| Queuing Penalty (veh) |     |     |

# **Network Summary**

Network wide Queuing Penalty: 497

# Intersection: 1: Old Hillsborough Road/Trollingwood Hawfields Road & NC 119

| Movement              | EB  | EB   | B10  | WB  | WB   | NB  | NB   | B7   | SB  | SB   |  |
|-----------------------|-----|------|------|-----|------|-----|------|------|-----|------|--|
| Directions Served     | L   | TR   | T    | L   | TR   | L   | TR   | Т    | L   | TR   |  |
| Maximum Queue (ft)    | 250 | 874  | 15   | 172 | 245  | 250 | 1782 | 1627 | 274 | 1399 |  |
| Average Queue (ft)    | 144 | 579  | 2    | 81  | 125  | 192 | 1677 | 884  | 128 | 873  |  |
| 95th Queue (ft)       | 299 | 913  | 21   | 157 | 232  | 322 | 2008 | 1993 | 309 | 1678 |  |
| Link Distance (ft)    |     | 1094 | 1885 |     | 2949 |     | 1676 | 1720 |     | 2213 |  |
| Upstream Blk Time (%) |     | 1    |      |     |      |     | 70   | 5    |     |      |  |
| Queuing Penalty (veh) |     | 0    |      |     |      |     | 557  | 36   |     |      |  |
| Storage Bay Dist (ft) | 150 |      |      | 100 |      | 150 |      |      | 175 |      |  |
| Storage Blk Time (%)  | 1   | 41   |      | 10  | 15   | 24  | 70   |      | 0   | 66   |  |
| Queuing Penalty (veh) | 4   | 60   |      | 30  | 15   | 170 | 136  |      | 0   | 50   |  |

#### Intersection: 2: Jones Drive & Old Hillsborough Road

| Movement              | EB   | WB   | NB   |
|-----------------------|------|------|------|
| Directions Served     | TR   | LT   | LR   |
| Maximum Queue (ft)    | 9    | 250  | 966  |
| Average Queue (ft)    | 1    | 69   | 414  |
| 95th Queue (ft)       | 6    | 297  | 989  |
| Link Distance (ft)    | 1720 | 1592 | 1357 |
| Upstream Blk Time (%) |      |      | 0    |
| Queuing Penalty (veh) |      |      | 0    |
| Storage Bay Dist (ft) |      |      |      |
| Storage Blk Time (%)  |      |      |      |
| Queuing Penalty (veh) |      |      |      |

# Intersection: 3: Mebane Oaks Road & Old Hillsborough Road

| Movement              | EB   | WB   | NB   | SB   |
|-----------------------|------|------|------|------|
| Directions Served     | LTR  | LTR  | LTR  | LTR  |
| Maximum Queue (ft)    | 223  | 122  | 131  | 113  |
| Average Queue (ft)    | 118  | 54   | 58   | 58   |
| 95th Queue (ft)       | 220  | 104  | 120  | 100  |
| Link Distance (ft)    | 2286 | 1209 | 1757 | 1897 |
| Upstream Blk Time (%) |      |      |      |      |
| Queuing Penalty (veh) |      |      |      |      |
| Storage Bay Dist (ft) |      |      |      |      |
| Storage Blk Time (%)  |      |      |      |      |
| Queuing Penalty (veh) |      |      |      |      |

# Intersection: 4: Site Access & Old Hillsborough Road

| Movement              | EB   | WB   | NB  | NB  |
|-----------------------|------|------|-----|-----|
| Directions Served     | TR   | LT   | L   | R   |
| Maximum Queue (ft)    | 13   | 91   | 156 | 118 |
| Average Queue (ft)    | 1    | 29   | 86  | 46  |
| 95th Queue (ft)       | 9    | 77   | 171 | 106 |
| Link Distance (ft)    | 1592 | 1719 | 679 |     |
| Upstream Blk Time (%) |      |      |     |     |
| Queuing Penalty (veh) |      |      |     |     |
| Storage Bay Dist (ft) |      |      |     | 50  |
| Storage Blk Time (%)  |      |      | 27  | 1   |
| Queuing Penalty (veh) |      |      | 16  | 2   |

#### Intersection: 17: Site Access

| Movement              | EB  | SB  |
|-----------------------|-----|-----|
| Directions Served     | L   | TR  |
| Maximum Queue (ft)    | 108 | 65  |
| Average Queue (ft)    | 84  | 17  |
| 95th Queue (ft)       | 120 | 54  |
| Link Distance (ft)    | 98  | 679 |
| Upstream Blk Time (%) | 3   |     |
| Queuing Penalty (veh) | 8   |     |
| Storage Bay Dist (ft) |     |     |
| Storage Blk Time (%)  |     |     |
| Queuing Penalty (veh) |     |     |

#### Intersection: 18:

| Movement              | NE  |
|-----------------------|-----|
| Directions Served     | R   |
| Maximum Queue (ft)    | 74  |
| Average Queue (ft)    | 20  |
| 95th Queue (ft)       | 60  |
| Link Distance (ft)    | 138 |
| Upstream Blk Time (%) |     |
| Queuing Penalty (veh) |     |
| Storage Bay Dist (ft) |     |
| Storage Blk Time (%)  |     |
| Queuing Penalty (veh) |     |

# Intersection: 19:

| NB  |
|-----|
| T   |
| 119 |
| 77  |
| 126 |
| 102 |
| 4   |
| 9   |
|     |
|     |
|     |
|     |

#### Intersection: 21:

| Movement              | WB  | B20 |
|-----------------------|-----|-----|
| Directions Served     | R   | Т   |
| Maximum Queue (ft)    | 122 | 6   |
| Average Queue (ft)    | 70  | 0   |
| 95th Queue (ft)       | 114 | 6   |
| Link Distance (ft)    | 103 | 305 |
| Upstream Blk Time (%) | 1   |     |
| Queuing Penalty (veh) | 2   |     |
| Storage Bay Dist (ft) |     |     |
| Storage Blk Time (%)  |     |     |
| Queuing Penalty (veh) |     |     |

#### **Network Summary**

Network wide Queuing Penalty: 1095

# Intersection: 1: Old Hillsborough Road/Trollingwood Hawfields Road & NC 119

| Movement              | EB  | EB   | WB  | WB   | NB  | NB   | SB  | SB   |  |
|-----------------------|-----|------|-----|------|-----|------|-----|------|--|
| Directions Served     | L   | TR   | L   | TR   | L   | TR   | L   | TR   |  |
| Maximum Queue (ft)    | 250 | 455  | 200 | 692  | 250 | 623  | 274 | 1034 |  |
| Average Queue (ft)    | 92  | 289  | 165 | 387  | 211 | 416  | 121 | 715  |  |
| 95th Queue (ft)       | 225 | 441  | 239 | 727  | 319 | 801  | 313 | 1246 |  |
| Link Distance (ft)    |     | 1094 |     | 2949 |     | 1676 |     | 2213 |  |
| Upstream Blk Time (%) |     |      |     |      |     |      |     |      |  |
| Queuing Penalty (veh) |     |      |     |      |     |      |     |      |  |
| Storage Bay Dist (ft) | 150 |      | 100 |      | 150 |      | 175 |      |  |
| Storage Blk Time (%)  | 0   | 31   | 37  | 38   | 51  | 36   |     | 70   |  |
| Queuing Penalty (veh) | 2   | 33   | 202 | 89   | 203 | 63   |     | 46   |  |

#### Intersection: 2: Jones Drive & Old Hillsborough Road

| Movement              | EB   | WB   | NB   |
|-----------------------|------|------|------|
|                       |      |      | IND  |
| Directions Served     | TR   | LT   | LR   |
| Maximum Queue (ft)    | 9    | 104  | 148  |
| Average Queue (ft)    | 1    | 43   | 73   |
| 95th Queue (ft)       | 8    | 98   | 136  |
| Link Distance (ft)    | 1720 | 1598 | 1357 |
| Upstream Blk Time (%) |      |      |      |
| Queuing Penalty (veh) |      |      |      |
| Storage Bay Dist (ft) |      |      |      |
| Storage Blk Time (%)  |      |      |      |
| Queuing Penalty (veh) |      |      |      |

# Intersection: 3: Mebane Oaks Road & Old Hillsborough Road

| EB   | WB                      | NB                                   | SB                                                 |
|------|-------------------------|--------------------------------------|----------------------------------------------------|
| LTR  | LTR                     | LTR                                  | LTR                                                |
| 137  | 96                      | 108                                  | 873                                                |
| 70   | 50                      | 47                                   | 600                                                |
| 125  | 88                      | 98                                   | 1230                                               |
| 2286 | 1209                    | 1757                                 | 1897                                               |
|      |                         |                                      |                                                    |
|      |                         |                                      |                                                    |
|      |                         |                                      |                                                    |
|      |                         |                                      |                                                    |
|      |                         |                                      |                                                    |
|      | LTR<br>137<br>70<br>125 | LTR LTR<br>137 96<br>70 50<br>125 88 | LTR LTR LTR<br>137 96 108<br>70 50 47<br>125 88 98 |

#### **Network Summary**

Network wide Queuing Penalty: 638

# Intersection: 1: Old Hillsborough Road/Trollingwood Hawfields Road & NC 119

| Movement              | EB  | EB   | WB  | WB   | NB  | NB   | SB  | SB   |
|-----------------------|-----|------|-----|------|-----|------|-----|------|
| Directions Served     | L   | TR   | L   | TR   | L   | TR   | L   | TR   |
| Maximum Queue (ft)    | 249 | 558  | 200 | 1250 | 250 | 1229 | 275 | 2143 |
| Average Queue (ft)    | 114 | 327  | 178 | 653  | 222 | 797  | 133 | 1540 |
| 95th Queue (ft)       | 255 | 514  | 246 | 1403 | 314 | 1410 | 332 | 2497 |
| Link Distance (ft)    |     | 1094 |     | 2949 |     | 1676 |     | 2213 |
| Upstream Blk Time (%) |     |      |     |      |     | 0    |     | 18   |
| Queuing Penalty (veh) |     |      |     |      |     | 0    |     | 0    |
| Storage Bay Dist (ft) | 150 |      | 100 |      | 150 |      | 175 |      |
| Storage Blk Time (%)  | 0   | 33   | 52  | 35   | 53  | 46   |     | 75   |
| Queuing Penalty (veh) | 0   | 35   | 284 | 82   | 272 | 89   |     | 49   |

#### Intersection: 2: Jones Drive & Old Hillsborough Road

| Movement              | EB   | WB   | NB   |
|-----------------------|------|------|------|
| Directions Served     | TR   | LT   | LR   |
| Maximum Queue (ft)    | 17   | 152  | 196  |
| Average Queue (ft)    | 1    | 43   | 91   |
| 95th Queue (ft)       | 12   | 120  | 164  |
| Link Distance (ft)    | 1720 | 1592 | 1357 |
| Upstream Blk Time (%) |      |      |      |
| Queuing Penalty (veh) |      |      |      |
| Storage Bay Dist (ft) |      |      |      |
| Storage Blk Time (%)  |      |      |      |
| Queuing Penalty (veh) |      |      |      |

# Intersection: 3: Mebane Oaks Road & Old Hillsborough Road

| Movement              | EB   | WB   | NB   | SB   |
|-----------------------|------|------|------|------|
| Directions Served     | LTR  | LTR  | LTR  | LTR  |
| Maximum Queue (ft)    | 150  | 91   | 96   | 1335 |
| Average Queue (ft)    | 80   | 48   | 44   | 821  |
| 95th Queue (ft)       | 138  | 82   | 84   | 1483 |
| Link Distance (ft)    | 2286 | 1209 | 1757 | 1897 |
| Upstream Blk Time (%) |      |      |      |      |
| Queuing Penalty (veh) |      |      |      |      |
| Storage Bay Dist (ft) |      |      |      |      |
| Storage Blk Time (%)  |      |      |      |      |
| Queuing Penalty (veh) |      |      |      |      |

## Intersection: 4: Site Access & Old Hillsborough Road

| Movement              | EB   | WB   | NB  | NB  |
|-----------------------|------|------|-----|-----|
| Directions Served     | TR   | LT   | L   | R   |
| Maximum Queue (ft)    | 9    | 75   | 128 | 103 |
| Average Queue (ft)    | 1    | 21   | 74  | 31  |
| 95th Queue (ft)       | 6    | 65   | 127 | 82  |
| Link Distance (ft)    | 1592 | 1719 | 684 |     |
| Upstream Blk Time (%) |      |      |     |     |
| Queuing Penalty (veh) |      |      |     |     |
| Storage Bay Dist (ft) |      |      |     | 50  |
| Storage Blk Time (%)  |      |      | 21  | 1   |
| Queuing Penalty (veh) |      |      | 12  | 1   |

## Intersection: 17: Site Access

| Movement              | NB  | SB  |
|-----------------------|-----|-----|
| Directions Served     | T   | R   |
| Maximum Queue (ft)    | 25  | 6   |
| Average Queue (ft)    | 2   | 0   |
| 95th Queue (ft)       | 16  | 6   |
| Link Distance (ft)    | 177 | 684 |
| Upstream Blk Time (%) |     |     |
| Queuing Penalty (veh) |     |     |
| Storage Bay Dist (ft) |     |     |
| Storage Blk Time (%)  |     |     |
| Queuing Penalty (veh) |     |     |

## Intersection: 19:

| Movement              | NB  |
|-----------------------|-----|
| Directions Served     | T   |
| Maximum Queue (ft)    | 105 |
| Average Queue (ft)    | 55  |
| 95th Queue (ft)       | 98  |
| Link Distance (ft)    | 110 |
| Upstream Blk Time (%) | 1   |
| Queuing Penalty (veh) | 1   |
| Storage Bay Dist (ft) |     |
| Storage Blk Time (%)  |     |
| Queuing Penalty (veh) |     |

Intersection: 20:

| Movement              | EB  |
|-----------------------|-----|
| Directions Served     | L   |
| Maximum Queue (ft)    | 106 |
| Average Queue (ft)    | 53  |
| 95th Queue (ft)       | 93  |
| Link Distance (ft)    | 127 |
| Upstream Blk Time (%) | 0   |
| Queuing Penalty (veh) | 0   |
| Storage Bay Dist (ft) |     |
| Storage Blk Time (%)  |     |
| Queuing Penalty (veh) |     |

## **Network Summary**

Network wide Queuing Penalty: 825

## Intersection: 1: Old Hillsborough Road/Trollingwood Hawfields Road & NC 119

| Movement              | EB  | EB   | WB  | WB   | NB  | NB   | SB  | SB   |  |
|-----------------------|-----|------|-----|------|-----|------|-----|------|--|
| Directions Served     | L   | TR   | L   | TR   | L   | TR   | L   | TR   |  |
| Maximum Queue (ft)    | 250 | 718  | 325 | 2595 | 327 | 463  | 275 | 892  |  |
| Average Queue (ft)    | 137 | 448  | 311 | 1735 | 213 | 299  | 109 | 610  |  |
| 95th Queue (ft)       | 287 | 739  | 376 | 3376 | 433 | 447  | 293 | 978  |  |
| Link Distance (ft)    |     | 1094 |     | 2949 |     | 1676 |     | 2213 |  |
| Upstream Blk Time (%) |     |      |     | 24   |     |      |     |      |  |
| Queuing Penalty (veh) |     |      |     | 0    |     |      |     |      |  |
| Storage Bay Dist (ft) | 150 |      | 225 |      | 550 |      | 175 |      |  |
| Storage Blk Time (%)  | 0   | 43   | 83  | 18   |     |      |     | 56   |  |
| Queuing Penalty (veh) | 1   | 46   | 452 | 42   |     |      |     | 37   |  |

## Intersection: 2: Jones Drive & Old Hillsborough Road

| Movement              | EB   | WB   | NB   | NB  |  |
|-----------------------|------|------|------|-----|--|
| Directions Served     | TR   | LT   | L    | R   |  |
| Maximum Queue (ft)    | 36   | 170  | 306  | 125 |  |
| Average Queue (ft)    | 4    | 58   | 103  | 44  |  |
| 95th Queue (ft)       | 24   | 138  | 264  | 114 |  |
| Link Distance (ft)    | 1720 | 1580 | 1357 |     |  |
| Upstream Blk Time (%) |      |      |      |     |  |
| Queuing Penalty (veh) |      |      |      |     |  |
| Storage Bay Dist (ft) |      |      |      | 25  |  |
| Storage Blk Time (%)  |      |      | 64   | 5   |  |
| Queuing Penalty (veh) |      |      | 29   | 8   |  |

## Intersection: 3: Mebane Oaks Road & Old Hillsborough Road

| Movement              | EB   | WB   | NB  | NB   | SB  | SB   |  |
|-----------------------|------|------|-----|------|-----|------|--|
| Directions Served     | LTR  | LTR  | L   | TR   | L   | TR   |  |
| Maximum Queue (ft)    | 240  | 163  | 56  | 146  | 153 | 302  |  |
| Average Queue (ft)    | 139  | 78   | 14  | 64   | 45  | 141  |  |
| 95th Queue (ft)       | 227  | 148  | 45  | 134  | 114 | 269  |  |
| Link Distance (ft)    | 2279 | 1202 |     | 1754 |     | 1895 |  |
| Upstream Blk Time (%) |      |      |     |      |     |      |  |
| Queuing Penalty (veh) |      |      |     |      |     |      |  |
| Storage Bay Dist (ft) |      |      | 150 |      | 150 |      |  |
| Storage Blk Time (%)  |      |      |     | 1    | 0   | 7    |  |
| Queuing Penalty (veh) |      |      |     | 0    | 1   | 9    |  |

## Intersection: 4: Site Access & Old Hillsborough Road

| Movement              | EB   | WB   | NB  | NB |
|-----------------------|------|------|-----|----|
| Directions Served     | TR   | LT   | L   | R  |
| Maximum Queue (ft)    | 4    | 102  | 145 | 91 |
| Average Queue (ft)    | 0    | 27   | 70  | 33 |
| 95th Queue (ft)       | 4    | 81   | 123 | 79 |
| Link Distance (ft)    | 1580 | 1719 | 684 |    |
| Upstream Blk Time (%) |      |      |     |    |
| Queuing Penalty (veh) |      |      |     |    |
| Storage Bay Dist (ft) |      |      |     | 50 |
| Storage Blk Time (%)  |      |      | 20  | 1  |
| Queuing Penalty (veh) |      |      | 11  | 1  |

## Intersection: 17: Site Access

| Movement              | NB  |
|-----------------------|-----|
| Directions Served     | Т   |
| Maximum Queue (ft)    | 23  |
| Average Queue (ft)    | 2   |
| 95th Queue (ft)       | 17  |
| Link Distance (ft)    | 177 |
| Upstream Blk Time (%) |     |
| Queuing Penalty (veh) |     |
| Storage Bay Dist (ft) |     |
| Storage Blk Time (%)  |     |
| Queuing Penalty (veh) |     |

## Intersection: 19:

| Movement              | NB  |
|-----------------------|-----|
| Directions Served     | T   |
| Maximum Queue (ft)    | 109 |
| Average Queue (ft)    | 62  |
| 95th Queue (ft)       | 108 |
| Link Distance (ft)    | 110 |
| Upstream Blk Time (%) | 1   |
| Queuing Penalty (veh) | 3   |
| Storage Bay Dist (ft) |     |
| Storage Blk Time (%)  |     |
| Queuing Penalty (veh) |     |

## Intersection: 20:

| Movement              | EB  |
|-----------------------|-----|
| Directions Served     | L   |
| Maximum Queue (ft)    | 105 |
| Average Queue (ft)    | 58  |
| 95th Queue (ft)       | 95  |
| Link Distance (ft)    | 127 |
| Upstream Blk Time (%) | 0   |
| Queuing Penalty (veh) | 0   |
| Storage Bay Dist (ft) |     |
| Storage Blk Time (%)  |     |
| Queuing Penalty (veh) |     |

## **Network Summary**

Network wide Queuing Penalty: 641

## Intersection: 1: Old Hillsborough Road/Trollingwood Hawfields Road & NC 119

| Movement              | EB  | EB   | WB  | WB   | NB  | NB   | B7   | SB  | SB   |  |
|-----------------------|-----|------|-----|------|-----|------|------|-----|------|--|
| Directions Served     | L   | TR   | L   | TR   | L   | TR   | T    | L   | TR   |  |
| Maximum Queue (ft)    | 250 | 538  | 200 | 961  | 250 | 1331 | 46   | 275 | 2062 |  |
| Average Queue (ft)    | 126 | 310  | 173 | 506  | 199 | 927  | 4    | 105 | 1536 |  |
| 95th Queue (ft)       | 271 | 496  | 247 | 972  | 319 | 1686 | 39   | 282 | 2423 |  |
| Link Distance (ft)    |     | 1094 |     | 2949 |     | 1676 | 1720 |     | 2213 |  |
| Upstream Blk Time (%) |     |      |     |      |     | 4    |      |     | 19   |  |
| Queuing Penalty (veh) |     |      |     |      |     | 27   |      |     | 0    |  |
| Storage Bay Dist (ft) | 150 |      | 100 |      | 150 |      |      | 175 |      |  |
| Storage Blk Time (%)  | 1   | 34   | 54  | 36   | 38  | 54   |      | 0   | 74   |  |
| Queuing Penalty (veh) | 7   | 36   | 296 | 85   | 193 | 103  |      | 0   | 49   |  |

## Intersection: 2: Jones Drive & Old Hillsborough Road

| Movement              | EB   | WB   | NB   |
|-----------------------|------|------|------|
| Directions Served     | TR   | LT   | LR   |
| Maximum Queue (ft)    | 17   | 134  | 203  |
| Average Queue (ft)    | 1    | 50   | 103  |
| 95th Queue (ft)       | 9    | 114  | 197  |
| Link Distance (ft)    | 1720 | 1592 | 1357 |
| Upstream Blk Time (%) |      |      |      |
| Queuing Penalty (veh) |      |      |      |
| Storage Bay Dist (ft) |      |      |      |
| Storage Blk Time (%)  |      |      |      |
| Queuing Penalty (veh) |      |      |      |

## Intersection: 3: Mebane Oaks Road & Old Hillsborough Road

| Movement              | EB   | WB   | NB   | SB   |
|-----------------------|------|------|------|------|
| Directions Served     | LTR  | LTR  | LTR  | LTR  |
| Maximum Queue (ft)    | 141  | 79   | 97   | 1326 |
| Average Queue (ft)    | 75   | 46   | 42   | 970  |
| 95th Queue (ft)       | 128  | 76   | 83   | 1608 |
| Link Distance (ft)    | 2286 | 1209 | 1757 | 1897 |
| Upstream Blk Time (%) |      |      |      | 2    |
| Queuing Penalty (veh) |      |      |      | 0    |
| Storage Bay Dist (ft) |      |      |      |      |
| Storage Blk Time (%)  |      |      |      |      |
| Queuing Penalty (veh) |      |      |      |      |

## Intersection: 4: Site Access & Old Hillsborough Road

| Movement              | EB   | WB   | NB  | NB  |
|-----------------------|------|------|-----|-----|
| Directions Served     | TR   | LT   | L   | R   |
| Maximum Queue (ft)    | 8    | 91   | 188 | 111 |
| Average Queue (ft)    | 1    | 25   | 88  | 37  |
| 95th Queue (ft)       | 6    | 77   | 182 | 93  |
| Link Distance (ft)    | 1592 | 1719 | 679 |     |
| Upstream Blk Time (%) |      |      |     |     |
| Queuing Penalty (veh) |      |      |     |     |
| Storage Bay Dist (ft) |      |      |     | 50  |
| Storage Blk Time (%)  |      |      | 29  | 1   |
| Queuing Penalty (veh) |      |      | 16  | 1   |

## Intersection: 17: Site Access

| Movement              | EB  | SB  |
|-----------------------|-----|-----|
| Directions Served     | L   | TR  |
| Maximum Queue (ft)    | 107 | 50  |
| Average Queue (ft)    | 74  | 10  |
| 95th Queue (ft)       | 109 | 39  |
| Link Distance (ft)    | 98  | 679 |
| Upstream Blk Time (%) | 1   |     |
| Queuing Penalty (veh) | 2   |     |
| Storage Bay Dist (ft) |     |     |
| Storage Blk Time (%)  |     |     |
| Queuing Penalty (veh) |     |     |

## Intersection: 18:

| Movement              | NE  |
|-----------------------|-----|
| Directions Served     | R   |
| Maximum Queue (ft)    | 39  |
| Average Queue (ft)    | 6   |
| 95th Queue (ft)       | 28  |
| Link Distance (ft)    | 138 |
| Upstream Blk Time (%) |     |
| Queuing Penalty (veh) |     |
| Storage Bay Dist (ft) |     |
| Storage Blk Time (%)  |     |
| Queuing Penalty (veh) |     |

## Intersection: 19:

| Movement              | NB  |  |
|-----------------------|-----|--|
| Directions Served     | T   |  |
| Maximum Queue (ft)    | 117 |  |
| Average Queue (ft)    | 65  |  |
| 95th Queue (ft)       | 107 |  |
| Link Distance (ft)    | 102 |  |
| Upstream Blk Time (%) | 1   |  |
| Queuing Penalty (veh) | 2   |  |
| Storage Bay Dist (ft) |     |  |
| Storage Blk Time (%)  |     |  |
| Queuing Penalty (veh) |     |  |

## Intersection: 21:

| Movement              | WB  |
|-----------------------|-----|
| Directions Served     | R   |
| Maximum Queue (ft)    | 100 |
| Average Queue (ft)    | 56  |
| 95th Queue (ft)       | 92  |
| Link Distance (ft)    | 103 |
| Upstream Blk Time (%) | 0   |
| Queuing Penalty (veh) | 0   |
| Storage Bay Dist (ft) |     |
| Storage Blk Time (%)  |     |
| Queuing Penalty (veh) |     |

## **Network Summary**

Network wide Queuing Penalty: 818

## **APPENDIX I**

TRAFFIC MANAGEMENT PLAN

#### RAMEY KEMP ASSOCIATES

Moving forward.



T 919 872 5115

5808 Faringdon Place Raleigh, NC 27609

July 8, 2020

C. N. Edwards Jr., PE (Chuck) Division 7, District 1, District Engineer North Carolina Department of Transportation 115 East Crescent Square Drive P. O. Box 766 Graham, NC 27253

Phone: 336 570 6833

Email: <a href="mailto:cnedwards@ncdot.gov">cnedwards@ncdot.gov</a>

Subject: Alamance Community Charter School Temporary Site - Traffic Management Plan

Alamance, North Carolina

Dear Mr. Edwards,

This letter provides a Traffic Management Plan (TMP) for the proposed Alamance Community Charter Temporary School to be located at Crosslink Community Church (3457 Old Hillsborough Road) in Mebane, North Carolina. This TMP was prepared in accordance with the North Carolina Department of Transportation (NCDOT) Municipal and School Transportation Assistance (MSTA) guidelines and the City of Mebane's (City) Unified Development Ordinance (UDO) requirements. Based on discussion with the project team, the temporary school will consist of 220 students at any given time in grades K-3. The temporary school is anticipated to be operational for a maximum of 45 days and no buses are anticipated to be provided during that time.

#### Introduction

The temporary school is expected to have up to 400 total students enrolled; however, **due to the COVID-19** pandemic and because it will be in a temporary space, the temporary school is expected to only have a maximum of 220 students at any given time. Based on discussion with the project team, all students will be in grades K-3. Access to the temporary school campus for all parent trips will be provided via the Crosslink Community Church driveway (Site Access, as denoted in the Traffic Analysis letter) along Old Hillsborough Road. Based on the most recent NCDOT AADT data (2017), Old Hillsborough Road has an annual average daily traffic (AADT) volume of approximately 6,300 vehicles per day (vpd) within the study area.

One of the concerns of the MSTA and the City was the impact of the proposed temporary school during the operation of other local schools. Audrey W Garrett Elementary and Hawfields Middle School are located in the eastern quadrant at the intersection of NC 119 and Old Hillsborough Road. The existing schools' bell schedules and the proposed temporary school's bell schedule are as follows:

• Audrey W Garrett Elementary: 8:00 AM - 3:25 PM



Transportation Consulting that moves us forward. Alamance Community Charter Temporary School | 2

- Hawfields Middle School: 7:50 AM 2:40 PM
- Proposed Alamance Community Charter Temporary School: 8:25 AM 3:25 PM

Based on the above bell schedules, the proposed temporary school is sufficiently staggered from local schools during the weekday AM peak hour. During the school PM peak hour, the temporary school is sufficiently staggered from Hawfields Middle School.

#### **Trip Generation**

Average weekday daily and peak hour trips for the proposed temporary school were generated by utilizing the MSTA School Calculator, which is based on traffic count data that has been collected at school sites statewide. The calculator provides a conservative estimate of the anticipated traffic generated by the proposed school on an average school day.

The proposed temporary school is anticipated to have a maximum of 400 total students enrolled at the school; however, due to the COVID-19 pandemic and because it will be a temporary space, the school is expected to only have a maximum of 220 students at any given time on campus. Additionally, the temporary site is not anticipated to offer any buses. For a charter school (grades K-3) with 220 students and no buses, the Traffic Calculator estimates 27 staff members, 123 parent drivers during the weekday AM peak hour, and 87 parent drivers during the school PM peak hour. Refer to Table 1, below, for a summary of the trip generation.

**AM PEAK** PM PEAK HOUR TRIP DAILY LAND USE HOUR (VPH) (VPH) **GENERATOR TRIPS Exiting** Entering **Entering Exiting** Alamance Community 27 Staff 54 27 0 0 27 **Charter Temporary** School **Parents** 123 123 87 87 420 (220 Students) **Total Site Trips** 474 150 123 87 114

**Table 1: Trip Generation Summary** 

It is estimated that the proposed development would generate approximately 474 total site trips (237 entering and 237 exiting) on the roadway network during a typical 24-hour weekday period. Of the daily traffic volume, it is anticipated that approximately 273 site trips (150 entering and 123 exiting) will occur during the weekday AM peak hour and 201 site trips (87 entering and 114 exiting) will occur during the school PM peak hour of the school. Based on the MSTA School Calculator, these parent trips are expected to generate approximately 954 feet of queuing during an average day and 1,241 feet of queuing during a stacking high demand day, which accounts for 30% additional stacking length. Table 2 summarizes the stacking based on a maximum of 220 students being dropped-off or picked-up by parents at any given time.



Table 1 - Stacking Summary

| LANDLICE                                                               | STACKING<br>CALCULATIONS (FEET) |                |  |  |
|------------------------------------------------------------------------|---------------------------------|----------------|--|--|
| LAND USE                                                               | AVERAGE                         | HIGH<br>DEMAND |  |  |
| Alamance<br>Community<br>Charter<br>Temporary School<br>(220 Students) | 954                             | 1,241          |  |  |

Two alternatives were considered for the circulation pattern of the site, as follows:

- Alternative 1 entering vehicles navigate through the site in a counterclockwise direction around the building and drop students off at the east entrance
  - o Students that sit in the passenger side of the vehicle may need to walk between cars due to the school being on the driver side of the car during (un)loading operations
    - It should be noted that it is recommended that children be seated in the back seat in vehicles until the age of 12 in North Carolina and all at the proposed temporary school are anticipated to be less than 12 years old (grades K-3)
- Alternative 2 entering vehicles navigate through the site in a clockwise direction around the building and drop students off at the west entrance
  - o Ingress and egress traffic would need to cross in order to allow vehicles to exit the site

Alternative 1 has an internal stacking length of 1,570 feet (single stacked). Alternative 2 is expected to have approximately 1,409 feet (single stacked) of internal stacking. Both alternatives are expected to meet the high demand stacking length as estimated by the MSTA School Calculator; however, Alternative 2 would require the ingress and egress traffic to cross in order to allow vehicles to exit the site. Alternative 1 is recommended due to the additional provided internal stacking length and to prevent ingress and egress traffic conflicts onsite. Refer to the Morning Drop-Off Operations and Afternoon Pick-Up Operations sections of this TMP for more information.

#### **On-Site School Operations**

All before and after school activities should be coordinated with a representative(s) of the proposed temporary school to determine if there is any conflict with conventional drop-off/pick-up times and operations. NCDOT's MSTA group requires all roadways internally within the development be analyzed with a speed limit of 10 miles per hour (mph); therefore, the maximum safe speed on the campus is recommended to be 10 mph.

#### **On-Site Parking**

Staff shall park in the designated staff parking lot located on the north side of the temporary school. School visitors and parents requiring additional time to unload shall park in the visitor parking area located on the west side of the temporary school.



#### **Morning Drop-Off Operations**

The following are recommendations for operations of staff, visitor/parents, and carpool users during the morning unloading operations. Table 2, below, summarizes the morning schedule. The queuing lanes, designated parking areas, and loading area are illustrated in the site plan.

Table 2 - Morning Schedule

| Time         | Event                 |
|--------------|-----------------------|
| 7:10-7:40 AM | Staff arrive          |
| 7:55-8:25 AM | Morning bell drop-off |
| 8:25 AM      | Morning bell rings    |

In the event of a delayed school opening the same schedule will be followed, but the start times for each event will be shifted the same amount of time. Carpool vehicles should not be allowed on-site prior to the unloading operation schedule.

#### Staff:

- Staff should arrive a minimum of 15 minutes before the first unloading operations to avoid conflicts with carpool traffic.
- A staff member(s) shall rope and/or cone off the second row of parking spaces within the designated staff parking lot (nearest the temporary school building) a minimum of 15 minutes before unloading operations begin, encouraging parent vehicles to utilize the outer loop.
- A staff member(s) shall remove the rope and/or cones at the parking spaces within the designated staff parking lot a minimum of 15 minutes after unloading operations end.

#### <u>Visitors/Parents:</u>

• School Visitors/Parents needing additional time to unload during morning unloading operations shall park on the west side of the temporary school. It should be noted that these carpool vehicles will have to traverse through the majority of the designated vehicle stacking lane prior to utilizing the designated visitor parking area. Visitors/Parents are encouraged to continue to traverse in a counter-clockwise direction once leaving the campus. Visitors/Parents walking students should park on the left-hand side, closest to the temporary school building, so that students will not need to cross the vehicle stacking lane. Sidewalks should be utilized, where appropriate.

#### Carpool Vehicles:

- Student(s) shall unload when the vehicle comes to a complete stop within the designated drop-off/pick-up loading area and then proceed to the temporary school. It is recommended that students proceed to the temporary school by navigating in front of their respective vehicle, if necessary. Representative(s) of the temporary school shall assist in directing the student(s) as needed. Five (5) vehicles shall be unloading at any given time during the morning unloading operations, per NCDOT MSTA guidelines. Parents should not proceed to exit the site until representative(s) indicate that it is safe to go.
- Carpool vehicles shall leave the designated drop-off/pick-up loading area when the proceeding vehicles have unloaded and started to exit, as directed by a representative(s) of the temporary school. It is recommended that no vehicle be allowed to pass another vehicle unless directed by a representative(s) of the temporary school.



Transportation Consulting that moves us forward.

Students are encouraged to carpool. It is recommended that the temporary school present carpooling options to parents during open house each year.

#### **Afternoon Pick-Up Operations**

The following are recommendations for operations of staff, visitor/parents, and carpool users during the afternoon loading operations. Table 3, below, summarizes the afternoon schedule. The queuing lanes, designated parking areas, and loading area are illustrated in the site plan.

Table 3 - Afternoon Schedule

| Time         | Event                  |
|--------------|------------------------|
| 3:25 PM      | Afternoon bell rings   |
| 3:25-3:55 PM | Afternoon bell pick-up |
| 4:00 PM      | Staff leaves           |

In the event of an early dismissal the same schedule will be followed, but the start times for each event will be shifted the same amount of time.

#### Staff:

- Any staff member needing to leave early shall leave a minimum of 30 minutes before loading operations to avoid conflicts with carpool traffic.
- A staff member(s) shall rope and/or cone off the second row of parking spaces within the designated staff parking lot (nearest the temporary school building) a minimum of 15 minutes before loading operations begin, encouraging parent vehicles to utilize the outer loop.
- A staff member(s) shall remove the rope and/or cones at the parking spaces within the designated staff parking lot a minimum of 15 minutes after loading operations end.

#### Visitors/Parents:

School Visitors/Parents needing additional time to load during afternoon loading operations shall park on the west side of the temporary school. It should be noted that these carpool vehicles will have to traverse through the majority of the designated vehicle stacking lane prior to utilizing the designated visitor parking area. Visitors/Parents are encouraged to continue to traverse in a counter-clockwise direction once leaving the campus. Visitors/Parents walking students should park on the left-hand side, closest to the temporary school building, so that students will not need to cross the vehicle stacking lane. Sidewalks should be utilized, where appropriate.

#### Carpool Vehicles:

- Student(s) shall load when the vehicle comes to a complete stop within the designated drop-off/pickup loading area and then proceed from the temporary school. It is recommended that students proceed to their vehicle by navigating around the front of their respective vehicle, if necessary. Representative(s) of the temporary school shall assist in directing the student(s) as needed. Five (5) vehicles shall be loading at any given time during the afternoon loading operations, per NCDOT MSTA guidelines. Even once students are loaded, parents should not proceed to exit the site until representative(s) indicate that it is safe to go.
- Carpool vehicles shall leave the designated drop-off/pick-up loading area when the proceeding vehicles have loaded and started to exit, as directed by a representative(s) of the temporary school. It is



recommended that no vehicle be allowed to pass another vehicle unless directed by a representative(s) of the temporary school.

#### Staff Requirements for Traffic Control during Unloading/Loading Operations

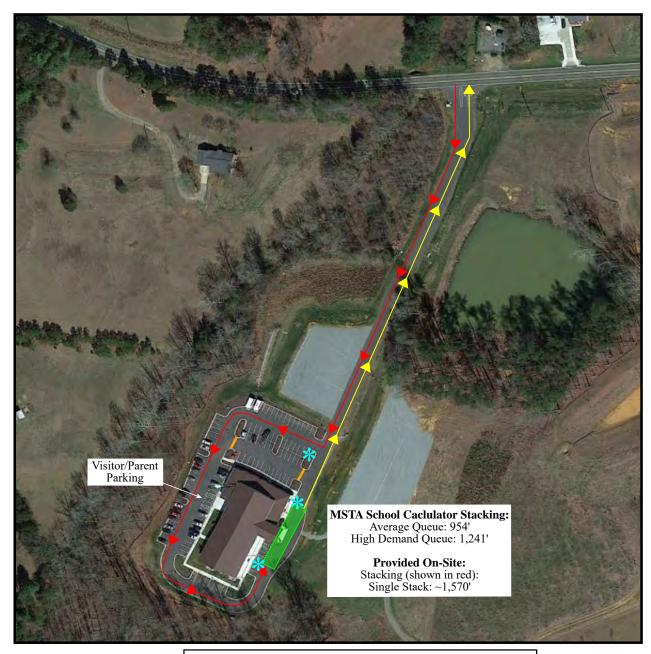
It is recommended that a minimum of three (3) representatives of the proposed temporary school (or officers) are present during morning and afternoon unloading and loading operations, respectively. These staff members are as follows:

- One (1) staff member should be placed at the end of the designated temporary school vehicle stacking lane, just upstream of the designated drop-off/pick-up (un)loading area, directing vehicles to enter the loading area as the proceeding vehicles have exited the loading area. This staff member is responsible to oversee safety of the (un)loading area as well as maintaining efficiency of the unloading and loading process.
- One (1) staff member should be placed at the end of the designated drop-off/pick-up (un)loading area, directing vehicles to exit the site once all students within the (un)loading zone are safely on the sidewalk and navigating to the temporary school entrance. It is recommended that students proceed to/from their vehicle by navigating around the front of their respective vehicle, if necessary. This staff member should monitor the safety of students (un)loading from the passenger side of their vehicle, as necessary.
- One (1) staff member should be placed at the first row of parking spaces within the designated staff parking lot (furthest from the temporary school building). This staff member is responsible to monitor entering vehicles and to route the pick-up/drop-off line, as appropriate.

Additional staff members may be placed on the sidewalk adjacent to the designated loading area to ensure students are safety unloaded/loaded out/into their vehicles. Additional staff may also be positioned at the adjacent side of the temporary school to ensure student walkers and visitors are able to safely navigate to their appropriate building entrance.

Please let us know if you have any questions regarding this information.

Sincerely, RAMEY KEMP & ASSOCIATES, INC.


Joshua Reinke, P.E. State Traffic Engineering Lead

NC Corporate License # C-0910



Attachments: Stacking Plan







#### **LEGEND**

Proposed Student Loading/Unloading Zone

— Internal Circulation Queue (Entering)

— Internal Circulation Queue (Exiting)

\* Traffic Control Personnel / Staff Member

Traffic Cones



Alamance Community Charter Temporary Site Mebane, NC Internal Circulation Map

Scale: Not to Scale

Figure



# STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

ROY COOPER
GOVERNOR

J. ERIC BOYETTE
SECRETARY

July 28, 2020

MEMORANDUM In reply, refer to

File No. SCH-2020-007T

**TO:** Charles N. Edwards Jr., PE - District 2 Engineer

Dawn McPherson - Division Traffic Engineer Brian Thomas, PE - Regional Traffic Engineer

David B. Phipps, PE – Central Regional Field Operations Engineer Doumit Y. Ishak – Congestion Management Regional Engineer

FROM: Kimberly Hinton, Project Engineer

Municipal & School Transportation Assistance

**SUBJECT:** Final MSTA Review of Alamance Community Charter – Temporary Site, Located at 3457

Old Hillsborough Road in Mebane, Alamance County

Municipal & School Transportation Assistance has performed a review of the sealed Traffic Analysis letter prepared by Ramey Kemp & Associates and site plan prepared by Timmons for the subject site.

The key dates regarding this development are as follows:

| Received by MSTA | 7/8/2020 | Sealed Letter             | 7/8/2020 |
|------------------|----------|---------------------------|----------|
|                  |          | Sealed Site Plan (in TIA) | 7/8/2020 |

- The Traffic Analysis and Site Plan do meet our queue length criteria for high demand days. However, the Design Queue length of 1,500 feet for staking should be maintained. Reverse loading requires additional queue length.
  - MSTA recommends a staggered bell schedule of a minimum of 30 minutes between grade groups and Elementary school staff. COVID-19 student maximum is 220 students at one time. Traffic Analysis does explain how this will be achieved.

This review is based on a maximum of 400 students in grades K-3rd grades in a Charter School understanding the COVID-19 pandemic maximum is 220 students at one time at the temporary site at Crosslink Community Church. If the school is projected to accommodate a higher number of students than shown, then further review will be required. The MSTA School Traffic Calculator indicates this campus should provide the maximum COVID-19 student population queue length of 954 feet for an average school day and 286 additional feet for high demand days (1,241 feet). The school's campus provides 1,500 linear feet of queue length.

## **Concerns and Recommendations**

Municipal & School Transportation Assistance (MSTA) and Congestion Management section has performed a review of the sealed Traffic Analysis Letter. MSTA as part of the Final review has the following concerns and recommendations below and others as shown on *Figure 1*.

Alamance Community Charter – Temporary Site July 28, 2020 Page 2 of 4

#### **COVID-19 Logistics**

Transportation Management Plan (TMP): The TMP should be shared with parents & staff prior to the students returning to school and should include the COVID-19 Logistics of how the maximum 220 student grouping will alternate with remaining 180 student grouping. If the groupings will occur on the same day, this should be a minimum of 30 minutes before bell schedules.

#### Stagger Bell Schedules - Existing Schools near by

Alamance Community provides an AM period bell schedule with 25 minutes separation with schools near-by. There is no separation in the PM period. MSTA recommends a maximum 30-minute stagger.

#### Stagger Bell Schedules for Alamance Community Students

The AM drop-off and PM pick-up periods may need to be expanded and staggered using a method that works for the school if the school experiences congestion at the driveway. During this adjustment time of COVID-19 traffic patterns, it is understood 30-minute staggered may not be accomplished. Another staggering solution may be necessary, for example, assign parents with a 15-minute drop-off/pick-up window or assign grades/grade groupings with targeted time.

#### Reverse Student Loading

The Traffic Analysis identifies Alternative 1 as a one-way parent traffic patten that does not have conflicts with other moving vehicles. MSTA concurs.

#### Stacking Length

Reverse loading may take longer for students to load/unload and for staff to establish a safe zone clear of students before vehicles move out of the parent loading zone. Parents and staff should follow the guidance established in the TMP.

#### **Assigned Parking**

This Alternative 1 has vehicle to vehicle conflict and pedestrian to vehicle conflicts by traversing through the parking areas. To prevent parents, volunteers or visitors using the parking areas near AM/PM loading periods, assign staff parking. Install signage to identify assigned parking or signage to direct to gravel parking areas away from the parent traffic pattern. Assigned parking spaces should be assigned to staff. Staff that would come in late and leave early should park in the gravel lot southeast of the school.

#### East Parking Lot

Create a one-way traffic flow using some type of traffic barricade, not traffic cones, to a Kindergarten Park & Walk area

#### Kindergarten Park & Walk in

The Kindergarten students and handicap students should be designated thirteen (13) parking spaces beside the east. The Charter is approved for 90 Kindergarten students. Kindergarten students take longer to get in and out of the vehicle, which will increase the queue length needed.

#### Advanced Identification

Implement an "Advanced Identification" loading process during the PM student loading period to increase organization and efficiency of the student loading process.

#### Circumventing the Loading Zone

The TMP should advise the parents not to circumvent but follow established guidelines for a safe and organized transportation plan.

We appreciate the opportunity to serve "Alamance Community Charter School" System and hope you find our services helpful as together we continue to provide "Safe Roads to Safe Schools."



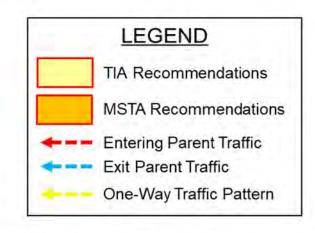
## **NOTES**

- 1. Designate the Parent Loading Zone with four to five loading bays the building's main entrance. The loading zone should be identified. Each bay should be a minimum of 8 feet wide and the lengths of 20 feet for the end bays and 28 feet for the middle bays.
- 2. Identify Short Term Parking Spaces just past the Parent Loading Zone. At least 10 parking spaces should be identified by installing "Visitor Parking" signs and/or pavement markings at the spaces to be assigned. These spaces are for parents requiring extended periods of time to load. If a parent stops in the loading zone, to wait to load their student, a loading assistant should direct that parent to the Visitor Parking.
- 3. Implement an "Advanced Identification" loading process during the PM student loading period to increase organization and efficiency of the student loading process.
- 4. Install Pedestrian sidewalk, crosswalk, and curb cuts per ADA standards.
- 5. Create One-Way Traffic flow in West Parking lot with some type of traffic barricade (not traffic cones) and signage to enforce one-way traffic pattern in the West Parking lot. This access should be for only Kindergarten students, Handicap students and Assigned Staff Parking during loading operations. Students in grades 1st-3rd should not load in this area.

## **Alamance Community Charter Temporary Site** Crosslink Community Church

440 Maximum Student Population 220 Student Population (COVID-19 Maximum Allotment at one time) 954 Feet Average Queue 286 Feet 30% High Demand 1241 Feet Total Desired Queue

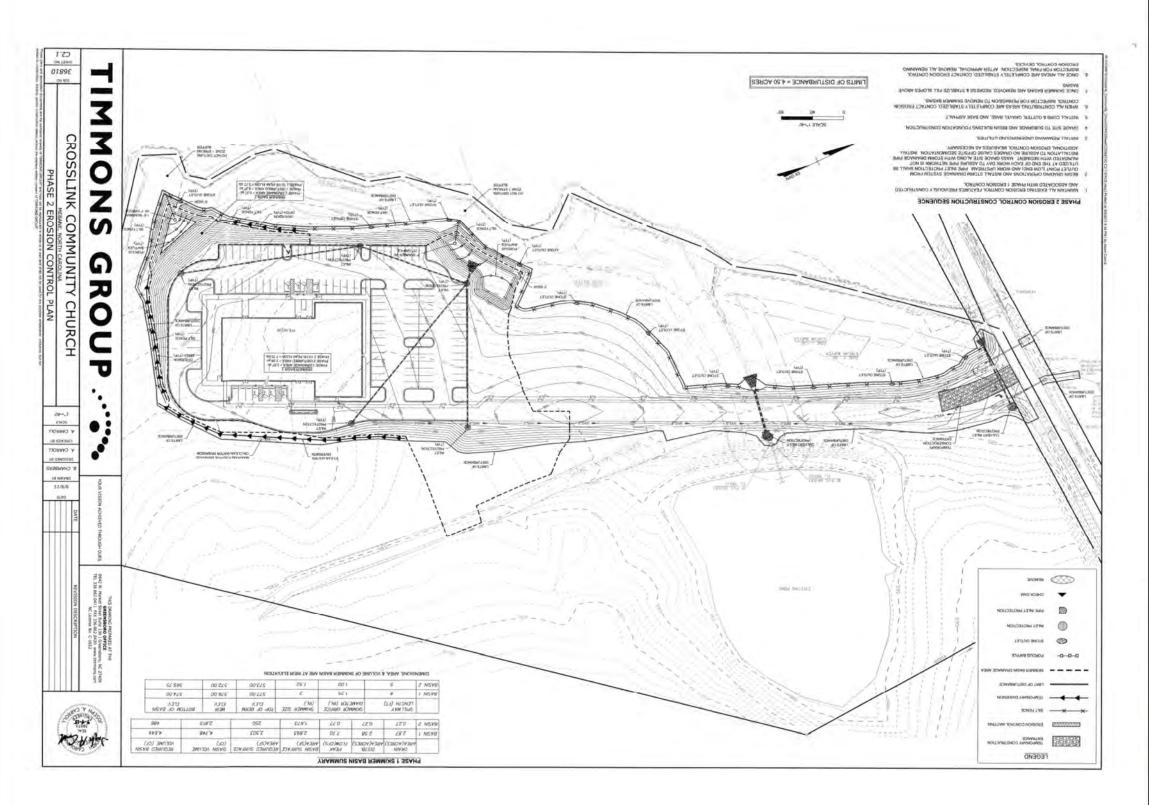
## This Design Provides


1500 Feet Total Single Queue

\*Reverse Loading - Design queue should






CONCEPT PLAN NOT FOR CONSTRUCTION



# Municipal & School Transportation Assistance

Figure 1 Alamance Community Charter - Temporary Proposed Traffic Pattern

7/23/2020





Alamance Community Charter Temporary Site Mebane, NC

Preliminary Site Plan

Scale: Not to Scale

Figure 2



# STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

ROY COOPER
GOVERNOR

J. ERIC BOYETTE
SECRETARY

July 28, 2020

#### **ALAMANCE COUNTY**

Joshua Reinke, PE Ramey Kemp & Associates, Inc. 5808 Faringdon Place, Suite 100 Raleigh, NC 27609

Subject: Proposed Alamance Charter School Temporary Site Located on SR 2126, Old Hillsborough Road Review of Traffic Analysis

Dear Mr. Reinke,

Pursuant to NCGS 136-18(29a), District and Municipal School and Transportation Assistance Unit (MSTA) staff have completed review of the traffic study for the above subject. Based on the information provided, I offer the following comments.

#### **General:**

The proposed site consists of a temporary charter school with a maximum student population of 220 students in grades K-3. The school will occupy the existing church and utilize the existing access and parking and internal circulation lanes. The site is expected to generate approximately 474 daily trips and require a minimum of 1241' of internal storage to accommodate anticipated parent vehicle queues. No buses will be provided. The temporary school is anticipated to be operational at this location for a maximum of 45 days pending completion of the permanent facility located on Jimmie Kerr Road in Graham.

#### **Methodology:**

Due to the current NCDOT moratorium on traffic volume data collection as a result of Covid-19 impacts, background traffic was determined utilizing data from recent studies for adjacent developments and adjusted accordingly. As noted in the study, the available data represents peak times that do not necessarily coincide with the peak operational periods of the subject site. Actual background traffic volumes during the site peak periods

Website: www.ncdot.gov

would be expected to be lower than those reported and used. Also, all trips generated by these adjacent developments were included in the background traffic. As noted, this a conservative approach and may skew operational analysis outcomes to appear worse than what would be expected under actual conditions and this was considered by staff during review. The study identified and listed a number of future road improvements at the study intersections committed by NCDOT or by adjacent developments as previously stipulated by NCDOT and the City. Appropriately, these improvements were not considered in the analysis as they would not be in place during the operational life span of the temporary school.

#### **Intersection Analysis Outcomes and Recommendations:**

#### NC 119/Trollingwood/Hawfield Road/Old Hillsborough Road Intersection:

The study indicates a reduction of the intersection level of service and increase in delay in the 2020 build scenario and recommends extension of the northbound left turn lane. Based on assessment of this location, this improvement is not feasible within the project timeline due to anticipated cost, impacts to adjacent properties and utilities and anticipated marginal benefit. NCDOT will monitor operations at the intersection and adjust traffic signal timing as needed. No additional improvements are required of the school. The study noted that future improvements associated with the Cambridge Park development and NCDOT TIP project are planned to improve operation at this intersection.

#### Old Hillsborough Road/Jones Road Intersection:

The study indicates acceptable operation on Old Hillsborough Road and a typical increase in delay on the minor side street movements in the 2020 build scenario and recommends re-striping to provide a 25' right turn lane on northbound Jones Road. This improvement is not feasible within the project timeline due to cost and anticipated marginal benefit. No additional improvements are required of the school. Improvements at this intersection have previously been stipulated to be constructed by the developer in association with phase 2 of the Cambridge Park Subdivision.

#### Old Hillsborough Road and Mebane-Oaks Road Intersection:

The study indicates that this intersection is expected to operate acceptably in the 2020 Build scenario in the current configuration under all-way stop control. We concur. No additional improvements are required of the school. NCDOT has committed to construct turn lanes and a traffic signal at this intersection. The project is currently scheduled for construction in 2021.

#### Old Hillsborough Road and Site Access:

The study indicates that this intersection is expected to operate acceptably in the 2020 Build Scenario in the current configuration. We concur. No additional improvements are required of the school.

In summary, there are no external improvements which qualify for reimbursement by NCDOT associated with this school.

#### **Internal Operations:**

As a condition of the pending driveway permit the school shall implement the following:

- Do not exceed maximum student population of 220 K-3 on premise at any time
- Provide a minimum of 1500' of internal storage to accommodate anticipated queues at the parent pickup/drop-off with consideration of potential of additional delay due to reverse loading configuration.
- Provide 5 student loading bays 8'X20'
- Provide 10 short term parking spaces in the vicinity of the parent loading zone to accommodate parents with need for extended loading time.
- Provide adequate staff and visitor parking
- Ensure ADA accessibility and accommodation
- Implement the Traffic Management Plan included in the study with appropriate and sufficient staffing
- Stagger bell times at least 30 minutes relative to adjacent school schedules

All costs associated with internal modifications and implementation of the traffic management plan are the responsibility of the school and are not reimbursable by NCDOT.

#### **Permitting:**

It is necessary to obtain an approved driveway permit prior to commencement of school operations. As a condition of the permit, the permitee shall be responsible for design and construction of the above stipulated internal improvements in accordance with NCDOT requirements. An approved permit will be issued upon receipt of approved site plan.

Feel free to contact me if you have any questions.

Sincerely,

Inla

C. N. Edwards Jr., PE

**District Engineer** 

Cc: J. M. Mills, PE, Division Engineer Kimberly Hinton, NCDOT MSTA Brian Thomas, PE, Regional Traffic Engineer Dawn McPherson, Division Traffic Engineer



Richard C. Kirkland, Jr., MAI 9408 Northfield Court Raleigh, North Carolina 27603 Phone (919) 414-8142 rkirkland2@gmail.com www.kirklandappraisals.com

July 3, 2020

Mr. Steve Hubrich Hubrich Contracting, Inc. 4321 Medical Park Drive, Suite 100 Durham, NC 27704

Mr. Hubrich:

I have considered the likely impact of the proposed Alamance Community School temporary use at 3445 Old Hillsborough Road, Mebane, North Carolina.

The scope of this assignment is to address the likely impact this may have on nearby properties. To this end I have reviewed the site plan and considered the visual impacts on nearby properties.

This letter is a limited report of a real property appraisal consulting assignment. My client is Hubrich Contracting, Inc., represented to me by Mr. Steve Hubrich. The intended use is to assist in the Special Use Permit application. The effective date of this consultation is July 3, 2020.

#### Credentials/Experience

I have been a commercial appraiser for over 20 years and I regularly appraise agricultural properties, agricultural business properties, residential subdivisions, and commercial properties. I also regularly conduct impact analysis for a variety of adjoining and nearby uses such as waste water treatment plants, solid waste facilities, water towers, greenways, open space, water frontage, and solar projects. I have an MAI through the Appraisal Institute. The MAI membership designation is awarded after rigorous education requirements, a final comprehensive exam, specialized experience submittals that are peer reviewed, and must meet standards and ethics requirements. Typically, the time required to obtain an MAI after getting state certification ranges from 5 to 15 years. The MAI designation has long been recognized by courts of law, government agencies, and financial institutions for the additional experience and training it represents over and above state certification requirements.

I have provided research based on matched pairs, which is a methodology that has been accepted by the North Carolina Superior Court as well as Planning Boards, Boards of Adjustment, Town Councils, and other government bodies in numerous states for similar matters.

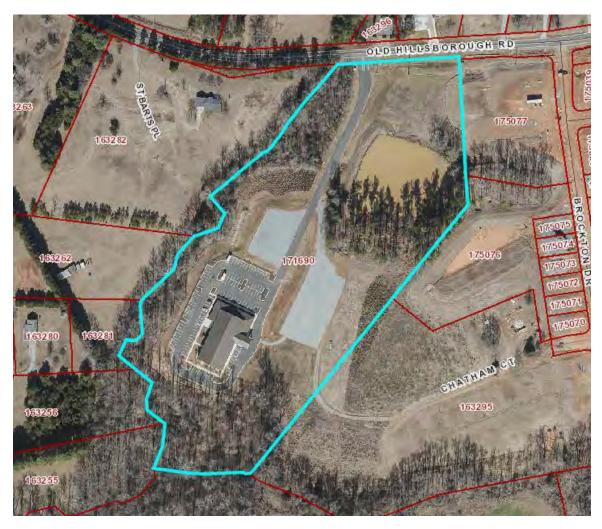
The data I have compiled strongly supports compatibility of schools with adjoining residential, agricultural and rural residential uses.

#### Methodology

I have utilized the Matched Pair or Paired Data Analysis in this impact analysis. Paired Data Analysis is outlined in **The Appraisal of Real Estate** Twelfth Edition published by The Appraisal Institute and described on Page 438 and 439 as a method for Quantitative Adjustments. This method is more greatly defined and broken out into multiple submethods in the **Real Estate Damages** Third Edition by Randall Bell, PhD, MAI, which is also published by The Appraisal Institute, starting on Page 33.

Paired Sales Analysis considers the sale of a property to a different property with only one difference in order to determine the impact that difference had on a sales price. In this instance, I have considered sales of properties next to a rural school to properties not next to a school in the same area in order to determine if the rural school had any impact on market transactions. I have considered groups of properties to one matched pair as a control group as suggested by Dr. Bell.

#### Determining what is an External Obsolescence


An external obsolescence is a use of property that, because of its characteristics, might have a negative impact on the value of adjacent or nearby properties because of identifiable impacts. Determining whether a use would be considered an external obsolescence requires a study that isolates that use, eliminates any other causing factors, and then studies the sales of nearby versus distant comparable properties. The presence of one or a combination of key factors does not mean the use will be an external obsolescence, but a combination of these factors tend to be present when market data reflects that a use is an external obsolescence.

External obsolescence is evaluated by appraisers based on several factors. These factors include but are not limited to:

- 1) Traffic. I have relied on evidence from the Traffic Impact Analysis on this regard, but I further note that homes near schools clearly show no impact on value, which necessarily includes no impact from similar traffic patterns.
- 2) Odor. Schools are not known to be significant odor producers. This issue is more related to things such as waste water treatment plants and poultry facilities.
- 3) Noise. Schools are not significant noise generators and at night and weekends there would be no sound.
- 4) Environmental. Schools do not produce toxic or hazardous waste as part of operation.

#### **Proposed Use Description**

The proposed use will temporarily utilize the existing church building at 3445 Old Hillsborough Road, Mebane, NC. No changes to the existing building are planned for this temporary use and the temporary use is expected to be less than 90 days.



#### **Discussion on Duration of Use**

A temporary use of less than 90 days is not likely to have an impact on adjoining property values regardless of the use. This time frame is too short for any knowledgeable market participant to sell anything at a discount that will be cured in short order. So while this impact letter will address the nature of schools and adjoining property values not being negatively impacted by schools, I wish to reiterate that this temporary use is just too temporary to register in market values.

#### Discussion on School Use in General

I regularly appraise a wide variety of properties as part of my appraisal practice. Properties in close proximity to schools are generally considered to be enhanced by that proximity and developers often choose such sites over other similar sites for that reasons.

Marketing brochures for new homes frequently point out close proximity to schools as a positive feature for new homes. The marketing material for one of the matched pairs shown later in this analysis specifically mentioned the location across from the school as a positive feature and amenity to the home. I have never seen any evidence of any negative impact due to proximity to schools in my appraisal work.

Schools do typically have some setbacks and reasonable screening from nearby residential uses, though not from the primary thoroughfare for access.

A good example of this is in Cary at the corner of Roberts Road and Green Level Church Road, where Wake County just built a multistory high school building and directly across the street Standard Pacific simultaneously began developing a new subdivision.



As shown in the map above, the high school was being constructed on the north side of Roberts Road. The map above is an aerial from 2013 with 2018 lot lines overlaid. On the following page, I show this same location with the 2017 aerial overlay with 2020 lot lines overlaid. Multiple subdivisions have been constructed in the area with steadily increasing land and home values.



#### **Market Data**

I considered the following school sites in order to illustrate compatibility between schools and adjoining residential uses.

Comparable 1 - Lucas Middle School, 923 Snow Hill Road, Durham, NC



This school site is located just north of Snow Hill Road and west of Treyburn. The building is 425 feet from the nearest property lines. The school adjoins Snow Hill Road Park. The property includes a large single school building with three wings and a football field and surrounding asphalt paved track. This school was constructed in 2011 with the opening school year in 2012.

#### Adjoining Use Breakdown

|              | Acreage | Parcels |
|--------------|---------|---------|
| Residential  | 9.14%   | 85.71%  |
| Agricultural | 90.86%  | 14.29%  |
| Total        | 100.00% | 100.00% |

I searched nearby home sales along Snow Hill Road after the school was completed to determine if any of the sales show any impact from the school construction.

The home at 920 Snow Hill Road sold on 4/25/14 which was two years after the Lucas Middle School opened. That home sold for \$168,500 with a \$3,500 financing concession for an effective sales price of \$165,000 for a 1,524 square foot two-story dwelling built in 1985 with an attached two-car garage all located on a 0.572 acres. The indicated sales price works out to be \$108.26 per square foot of GLA. This is a three bedroom dwelling with two and a half bathrooms. The property also includes a detached 1 car garage/workshop. MLS write up indicates the property "needs a little love."

I compared that sale to 605 Infinity Road that sold on 6/19/14 for \$175,000 with a \$5,000 financing concession for an effective sales price of \$170,000 for a 1,662 s.f. two-story dwelling built in 1994 with an attached two-car carport on a 0.51 acre lot. The indicated sales price works out to be \$102.29 per square foot. This is a three bedroom dwelling with two and a half bathrooms. The property includes a large deck and stone patio and is noted as "move in ready."

No adjustments applied to these sales shows no impact on the Snow Hill property, which in fact sold for more per square foot.

Adjusting this comparable upward by \$5,000 for the inferior carport, downward by \$7,875 for age, downward by \$8,500 for superior upfit/condition, but upward by \$5,000 for lack of a detached garage, the indicated adjusted comparable value is \$163,625, or \$98.45 per square foot as compared to the Snow Hill Comparable at \$168,500, or \$108.26 per square foot.

This matched pair shows no negative impact due to the proximity to Lucas Middle School.



Mr. Steve Hubrich July 3, 2020

I also looked at 1009 Snow Hill Road which sold on 12/19/2017 for \$170,000 for a 1,539 s.f. one-story, brick dwelling built in 1972 on 0.84 acres. This brick ranch indicated new paint and flooring throughout as well as new kitchen counter tops, and new vanities in the bathroom. The MLS also notes the roof was replaced in 2009 along with new doors and windows in 2015. This is a three bedroom and two bathroom dwelling. This property sold in 33 days. This sale included a \$4,000 sales concession for an indicated sales price of \$166,000.

I compared this to 111 Barclay Road which sold on 6/9/17 for \$160,000 for a 1,280 s.f. one-story dwelling built in 1963 on 0.50 acres. This brick ranch has a new kitchen and bathroom with new granite counters and breakfast bar, as well as new exterior and interior paint, new roof, and new heat pump. The property also includes an attached single car garage. The dwelling includes three bedrooms and two bathrooms, a fenced back yard and is located within a subdivision. This property sold in 39 days. This sale included the seller paying for the loan with no amount stated. I have used \$4,000 for this estimated cost, for an adjusted indicated price of \$156,000.

These ranches are similar in style and age, but there is a size difference that requires adjustment. Adjusting the comparable upward by \$18,130 for the difference in size, as well as upward by \$7,020 for an inferior age, but downward by \$10,000 for the single car garage and downward by \$5,000 for the location in a subdivision, I derive an adjusted indication of value of \$166,150.

Based on this matched pair I discern no impact on property value attributable to the proximity to the school.

Mr. Steve Hubrich July 3, 2020



#### 2 - Gravelly Hill Middle School, 4801 West Ten Road, Efland



This school site is located in Orange County south of I-40 on the north side of West Ten Road. The tract identified as 19 above was recently partly rezoned for an industrial use, but has historically been agricultural.

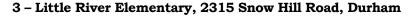
#### Adjoining Use Breakdown

|              | Acreage | Parcels |
|--------------|---------|---------|
| Residential  | 5.74%   | 63.16%  |
| Agricultural | 65.57%  | 31.58%  |
| Industrial   | 28.68%  | 5.26%   |
| Total        | 100.00% | 100.00% |

The homes across West Ten Road from the school are as close as 310 feet to the closest parking lot area for the school.

Parcel 10, with a street address of 4804 W Ten Road, sold on June 20, 2018 for \$122,000 for a 1,848 square foot manufactured home built in 1997 on 1 acre. This is a three

Mr. Steve Hubrich July 3, 2020


bedroom, two-bathroom dwelling with a 96 s.f. covered back deck and a storage shed. This works out to be \$66.02 per square foot. This home is

I have compared this home to 703 Dewey Road which is a 1,602 s.f. manufactured home built in 1994 with three bedrooms and two bathrooms on a 1.88 acre lot that sold for \$125,000 on June 30, 2019. This works out to be \$78.03 per square foot. This is a nearby similar manufactured home, but it also adjoins land owned by Orange County that is in close proximity to Seven Mile Creek Preserved open space. Furthermore, Dewey Road is an easement at this location with minimal traffic. Adjusting this price per square foot downward by 5% for the smaller size and 10% for the preserved adjoining land, I derive an adjusted price per square foot of \$66.33 per square foot.

I have also compared the subject property to 915 Buckhorn Road in Mebane. That manufactured home includes 1,165 square feet with three bedrooms and two bathrooms that was built in 1994 on 2.21 acres. This home sold on June 1, 2018 for \$95,000, or \$81.55 per square foot. Adjusting this value per square foot downward by 15% for the significantly smaller size, I derive an indicated value of \$69.31 per square foot.

Finally, I considered 6334 Olde Scarlett Court which is a 1,976 square foot manufactured home with four bedrooms and three bathrooms built in 1999 on a 1 acre lot that sold on June 22, 2018 for \$132,500. This works out to \$67.05 per square foot. This is a similar size, age, and lot size and requires no adjustment.

All three of those comparables show no impact on Parcel 10 due to the adjacent rural school site.



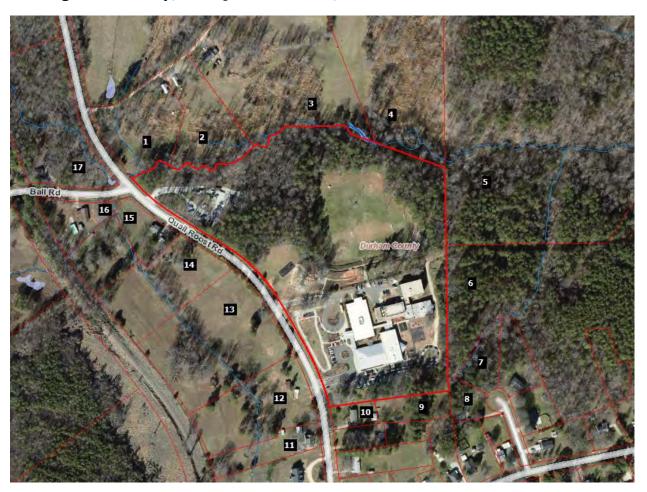


This school site is located on the east side of Snow Hill Road and has an adjoining elderly care center, fire department and Durham Technical Community College as well as residential single family uses.

#### Adjoining Use Breakdown

|                           | Acreage | Parcels |
|---------------------------|---------|---------|
| Residential               | 12.41%  | 75.00%  |
| Agricultural              | 67.35%  | 8.33%   |
| Institutional (Fire Dept) | 6.25%   | 8.33%   |
| School                    | 13.99%  | 8.33%   |
| Total                     | 100.00% | 100.00% |

Parcel 8 sold on March 19, 2018 for \$188,000 for a dwelling built in 1978 with 1,292 square feet on 0.49 acres. This home is brick with three bedrooms and two bathrooms. The sales price works out to \$145.51 per square foot. This home was advertised as having a custom designer kitchen with lots of upgrades including stainless steel appliances, bamboo flooring, and granite kitchen counters.


I have compared this to 1900 Torredge Road which is a dwelling that sold on July 2, 2018 for \$185,000 for a 1,352 square foot brick dwelling built in 1976 with three bedrooms and two bathrooms. This is on a 0.49 acre lot. The indicated price works out to \$136.83 per square foot. Adjusting this upward by 10% for inferior upgrades, the indicated price is \$150.51 per square foot. This is within 3% of Parcel 8 and does not support an indication of a negative impact.

Mr. Steve Hubrich July 3, 2020

I have also compared Parcel 8 to 1607 Infinity Road which sold on September 20, 2018 for a 1,870 square foot brick dwelling built in 1974 on a 0.50-acre lot with three bedrooms, two bathrooms, a carport, and a detached two-car garage. This sold for \$215,000, or \$114.97 per square foot. Adjusting this upward by 15% for an inferior larger size, 10% for inferior upgrades, but downward by 10% for the superior parking, I derive an adjusted indication of value of \$132.22 per square foot. This is 10% lower than the value of the home adjoining the school and actually suggests a slight premium for adjoining the school.

I also compared Parcel 8 to 1009 Snow Hill Road which is a one story brick dwelling built in 1972 with three bedrooms and two bathrooms on a 0.84-acre lot and a gross living area of 1,539 square feet. This sold on December 18, 2018 for \$170,000, or \$110.46 per square foot. Adjusting this upward by 10% for size, 10% for quality and 2% for time, I derive an adjusted indication of value of \$134.76 per square foot. This is 8% less than the value of the home adjoining the school and actually suggests a slight premium for adjoining the school.

#### 4 - Mangum Elementary, 9008 Quail Roost Road, Bahama



This school site is located on the west side of Quail Roost Road at Ball Road with a mix of adjoining residential and agricultural uses.

#### Adjoining Use Breakdown

|              | Acreage | Parcels |
|--------------|---------|---------|
| Residential  | 20.71%  | 88.24%  |
| Agricultural | 79.29%  | 11.76%  |
| Total        | 100.00% | 100.00% |

I considered Parcel 11, with a street address of 8813 Quail Roost Road, that sold on January 11, 2018 for \$141,500 for a 1,298 square foot dwelling built in 1941 with two bedrooms and one bathroom. This is on a 1.14-acre lot. The property is reported as having a 3-bedroom septic and has an unfinished 2<sup>nd</sup> level walk up, screened porch, basement garage, and detached two-car garage. I specifically note that the marketing for this property highlights the fact that this home is directly across the street from Mangum as a beneficial feature. This purchase works out to be \$109.01 per square foot.

I have compared this to 8219 Cassam Road that sold on September 5, 2017 for \$169,000 for a 1,102 square foot dwelling with three bedrooms and one bathroom built in 1959 on a 7.15-acre parcel. This has an attached carport. Adjusting this property downward for the excess land the indicated purchase price is \$109,000. This adjustment is based on \$9,000

Mr. Steve Hubrich July 3, 2020

per acre for the difference in acreage. The value of the site based on 1 acre and the home is \$115,000, or \$104.36 per square foot. Adjusting this downward by 5% for the smaller size, downward 5% for the superior year built, but upward for the lack of parking and potential second floor space, I derive an adjusted indication of value of \$104.36 per square foot. This is 4% less than the value of the site adjoining the school.

I therefore conclude that this matched pair supports no impact on Parcel 11 due to the proximity to the school. The marketing highlighting the school proximity further supports this assertion.

#### **Data Summary**

Public and private schools are commonly located in residential and rural areas with no impact on adjoining property values as shown in the matched pair data.

I regularly appraise subdivision developments and proximity to schools is considered a positive in most marketing packages for subdivisions. This is further illustrated throughout the MLS where the school districts are a prominent searchable feature and access to good private schools is often noted in the comments section of the MLS.

The schools shown above are located in proximity to multiple residential and agricultural uses.

Matched pair analysis shows no impact on the adjoining residential property value.

## Conclusion

I conclude that the proposed temporary use is harmonious with the location and surrounding uses and further that it will have no negative impact on those adjoining or nearby properties. This is especially true given the highly temporary nature of the proposed use

Matched pairs show no impact on property value at the comparable schools identified.

If you have any further questions please call me any time.

Sincerely,

Richard C. Kirkland, Jr., MAI State Certified General Appraiser

Dalen (Child fr

## Mebane Fire Dept. Monthly Report

|                                    | June    | Year to Date | % Change from 2019 |
|------------------------------------|---------|--------------|--------------------|
| Structural Response                |         |              |                    |
| Totals                             | 27      | 114          | -2%                |
|                                    |         |              |                    |
| Average Personnel Per Response     | 12      | 13           |                    |
| Average Volunteer Response         | 4       | 4            |                    |
| Non Structural Responses           |         |              |                    |
| Totals                             | 61      | 328          | -2%                |
| Total Fire Response                | 88      | 442          | -2%                |
| Location (Year to Date)            | North   | South        |                    |
| Total Number/Precentage            | 236/53% | 206/47%      |                    |
|                                    | North   | South        |                    |
| Average Fire Response Time         | 5:21    | 6:05         |                    |
| Precentage of Calls Inside City    | 55%     | 51%          |                    |
| Precentage of Calls Outside City   | 30%     | 34%          |                    |
| Precentage of Calls for Mutual Aid | 15%     | 15%          |                    |
| EMT Response                       | 140     | 823          | -20%               |
| Location (Year to Date)            | North   | South        |                    |
| Total Number/ Precentage           | 457/56% | 366/44%      |                    |
|                                    |         |              |                    |
| CPS Seats Checked                  | 1       | 70           |                    |
| Seats Distributed                  | 0       | 0            |                    |
| Smoke Alarms Checked/Installed     | 4       | 15           |                    |
| Station Tours/Programs             | 0       | 4            |                    |
| # of Participants                  | 0       | 80           |                    |
| Events Conducted/Attended          | 2       | 12           |                    |