Form 4.2-5 HCOC Assessment for Peak Runoff (DA

Compute peak runoff for pre and post developed conditions

Variables

Variables			Pre-developed DA to Project Outlet Use additional forms if more than 3 DMA			Post-developed DA to Project Outlet Use additional forms if more than 3 DMA		
			DMA A	DMA B	DMA C	DMA A	DMA B	DMA C
${ }^{1}$ Rainfall Intensity for storm duration equal to time of concentration $I_{\text {peak }}=10^{\wedge}$ (LOG Form 4.2-1 Item 4-0.6 LOG Form 4.2-4 Item $5 / 60$)								
2 Drainage Area of each DMA (ft^{2}) For DMA with outlet at project site outlet, include upstream DMA (Using example schematic in Form 3-1, DMA A will include drainage from DMA C)								
3 Ratio of pervious area to total area For DMA with outlet at project site outlet, include upstream DMA (Using example schematic in Form 3-1, DMA A will include drainage from DMA C)								
4 Pervious area infiltration rate (in/hr) Use pervious area CN and antecedent moisture condition with Appendix C-3 of the TGD for WQMP								
5 Maximum loss rate (in/hr) $F_{m}=\text { Item } 3 * \text { Item } 4$ Use area-weighted F_{m} from DMA with outlet at project site outlet, include upstream DMA (Using example schematic in Form 3-1, DMA A will include drainage from DMA C)								
6 Peak Flow from DMA (cfs)$Q_{p}=\text { Item } 2 * 0.9 *(\text { Item } 1 \text { - Item 5) }$								
7 Time of concentration adjustment factor for other DMA to site discharge point Form 4.2-4 Item 12 DMA / Other DMA upstream of site discharge point (If ratio is greater than 1.0, then use maximum value of 1.0)		DMA A	n / a			n / a		
		DMA B		n / a			n / a	
		DMA C			n / a			n / a
8 Pre-developed Q_{p} at T_{c} for DMA A: $Q_{p}=$ Item $\sigma_{\text {DMAA }}+\left[\right.$ Item $\sigma_{\text {DMAB }} *$ (Item $1_{\text {DMAA }}-$ Item $\left.5_{\text {DMAB }}\right) /\left(\text { Item } 1_{\text {DMAB }} \text { - } \text { Item } 5_{\text {DMAB }}\right)^{*}$ Item $\left.7_{\text {DMAA } 2}\right]+$ [Item $6_{\text {DMAC }} *$ (Item $1_{\text {DMAA }}$ - Item $5_{\text {DMAC }}$)/(Item $1_{\text {DMAC }}-$ Item $5_{\text {DMAC }}$) ${ }^{*}$ Item $7_{\text {DMAA } / 3}$]	${ }^{9}$ Pre-developed Q_{p} at T_{c} for DMA B:$\begin{aligned} & Q_{p}=\text { Item } 6_{D M A B}+\left[\text { Item } 6 _ { D M A A } * \left(\text { Item } 1_{D M A B}-\right.\right.\text { Item } \\ & \left.\left.5_{D M A A}\right) /\left(\text { Item } 1_{D M A A}-\text { Item } 5_{D M A A}\right) * \text { Item } 7_{D M A B / I}\right]+ \\ & {\left[\text { Item } 6_{D M A C} *\left(\text { Item } 1_{D M A B}-\text { Item } 5_{D M A C}\right) /\left(\text { Item } 1_{D M A C}-\right.\right.} \\ & \text { Item } \left.\left.5_{D M A C}\right)^{*} \text { Item } 7_{D M A B / 3}\right] \end{aligned}$			```10}\mathrm{ Pre-developed }\mp@subsup{Q}{p}{}\mathrm{ at T}\mp@subsup{T}{c}{}\mathrm{ for DMA C: Q 的 Item 6 SMAC 5 DMAA)/(Item 1 1 DMAA - Item 5 5MAA * Item 7 (IMAC/1] + [Item 6 \DMA * (Item 1 1 DMAC - Item 5 5MAB)/(Item 1 1 DMAB - Item 5 [DMAB * Item 7 7MAC/2]```				

10 Peak runoff from pre-developed condition confluence analysis (cfs): Maximum of Item 8,9, and 10 (including additional forms as needed)

11Post-developed Q_{p} at T_{c} for DMA A: Same as Item 8 for post-developed values	12 Post-developed Q_{p} at T_{c} for DMA B: Same as Item 9 for post-developed values	13 Post-developed Q_{p} at T_{c} for DMA C: Same as Item 10 for post-developed
values		

14 Peak runoff from post-developed condition confluence analysis (cfs):
Maximum of Item 11, 12, and 13 (including additional forms as needed)
15 Peak runoff reduction needed to meet HCOC Requirement (cfs):
$\mathrm{Q}_{\text {pHcoc }}=($ Item $14 * 0.95)$ - Item 10

Form 4.2-5 HCOC Assessment for Peak Runoff (DA)

Compute peak runoff for pre and post developed conditions

Variables		Pre-developed DA to Project Outlet			Post-developed DA to Project Outlet		
		DMA	DMA	DMA	DMA	DMA	DMA
${ }^{1}$ Rainfall Intensity for storm duration equal to time of concentration$I_{\text {peak }}=10^{\wedge}(\text { LOG Form 4.2-1 Item 4-0.6 LOG Form 4.2-4 Item } 5 / 60)$							
2 Drainage Area of each DMA (ft^{2}) For DMA with outlet at project site outlet, include upstream DMA (Using example schematic in Form 3-1, DMA A will include drainage from DMA C)							
3 Ratio of pervious area to total area For DMA with outlet at project site outlet, include upstream DMA (Using example schematic in Form 3-1, DMA A will include drainage from DMA C)							
4 Pervious area infiltration rate (in/hr) Use pervious area CN and antecedent moisture condition with Appendix C-3 of the TGD for WQMP							
5 Maximum loss rate (in/hr) $F_{m}=\text { Item } 3 * \text { Item } 4$ Use area-weighted F_{m} from DMA with outlet at project site outlet, include upstream DMA (Using example schematic in Form 3-1, DMA A will include drainage from DMA C)							
6 Peak Flow from DMA (cfs)$Q_{p}=\text { Item } 2 * 0.9 *(\text { Item } 1 \text { - Item 5) }$							
7 Time of concentration adjustment factor for other DMA to site discharge point Form 4.2-4 Item 12 DMA / Other DMA upstream of site discharge point (If ratio is greater than 1.0, then use maximum value of 1.0)	DMA D	n / a			n / a		
	DMA E		n / a			n / a	
	DMA F			n / a			n / a

8 Pre-developed Q_{p} at T_{c} for DMA
$Q_{p}=$ Item $6_{\text {DMAA }}+\left[\right.$ Item $6_{\text {DMAB }} *$ (Item $1_{\text {DMAA }}$ - Item $\left.5_{D M A B}\right) /\left(\right.$ Item $1_{D M A B}-$ Item $5_{D M A B}$)* Item $\left.7_{D M A A / 2}\right]+$ [Item $6_{\text {DMAC }} *$ (Item $1_{\text {DMAA }}$ - Item $\left.5_{\text {DMAC }}\right) /\left(\right.$ Item $1_{\text {DMAC }}$ Item $\left.5_{\text {DMAC }}\right)^{*}$ Item $7_{\text {DMAA/3 }}$]

9 Pre-developed Q_{p} at T_{c} for DMA $Q_{p}=$ Item $6_{D M A B}+\left[\right.$ Item $6_{\text {DMAA }} *$ (Item $1_{\text {DMAB }}$ - Item $\left.5_{\text {DMAA }}\right) /\left(\right.$ Item $1_{\text {DMAA }}-$ Item $\left.5_{\text {DMAA }}\right) *$ Item $\left.7_{D M A B / 1}\right]+$ [Item $6_{\text {DMAC }} *$ (Item $1_{\text {DMAB }}$ - Item $5_{\text {DMAC }}$)/(Item $1_{\text {DMAC }}$ Item $\left.5_{\text {DMAC }}\right)^{*}$ Item $7_{\text {DMAB/3 }}$]

10 Pre-developed Q_{p} at T_{c} for DMA $Q_{p}=$ Item $6_{\text {DMAC }}+\left[\right.$ Item $6_{\text {DMAA }} *$ (Item $1_{\text {DMAC }}$ - Item $\left.5_{\text {DMAA }}\right) /\left(\right.$ Item $1_{\text {DMAA }}-$ Item $\left.5_{\text {DMAA }}\right) *$ Item $\left.7_{D M A C / 1}\right]+$ [Item $6_{D M A B} *$ (Item $1_{D M A C}-$ Item $\left.5_{D M A B}\right) /\left(\right.$ Item $1_{D M A B}$ - Item $\left.5_{\text {DMAB }}\right)^{*}$ Item $7_{\text {DMAC/2 }}$]

10 Reserved

11 Post-developed Q_{p} at T_{c} for DMA : Same as Item 8 for post-developed values	12 Post-developed Q_{p} at T_{c} for DMA : Same as Item 9 for post-developed values	13 Post-developed Q_{p} at T_{c} for DMA : Same as Item 10 for post-developed values
14 Reserved		
15 Reserved		

