

Solar PV Standard Plan — Simplified Central/String Inverter Systems for One- and Two-Family Dwellings

SCOPE: Use this plan ONLY for utility-interactive central/string inverter systems not exceeding a system AC inverter output rating of 10kW on the roof of a one- or two-family dwelling or accessory structure. The photovoltaic system must interconnect to the load side of a single-phase AC service panel of nominal 120/240Vac with a bus bar rating of 225A or less. This plan is not intended for bipolar systems, hybrid systems or systems that utilize storage batteries, charge controllers, trackers, more than two inverters or more than one DC combiner (noninverter-integrated) per inverter. Systems must be in compliance with current California Building Standards Codes and local amendments of the authority having jurisdiction (AHJ). Other Articles of the California Electrical Code (CEC) shall apply as specified in 690.3.

MANUFACTURER'S SPECIFICATION SHEETS MUST BE PROVIDED for proposed inverter, modules, combiner/junction boxes and racking systems. Installation instructions for bonding and grounding equipment shall be provided, and local AHJs may require additional details. Listed and labeled equipment shall be installed and used in accordance with any instructions included in the listing or labeling (CEC 110.3). Equipment intended for use with PV system shall be identified and listed for the application (CEC 690.4[D]).

Job Address:		Permit #:							
Contractor/Engineer Name:		License # and Class:							
Signature:	Date:	Phone Number:	_						
Total # of Inverters installed: Calculation Sheets" and the "Load Cer		one inverter, complete and attach the "Supplementa" if a new load center is to be used.)	al						
Inverter 1 AC Output Power Rating	3:	Watts							
Inverter 2 AC Output Power Rating	g (if applicable): _	Watts							
Combined Inverter Output Power	Rating:	≤ 10,000 Watts							
Location Ambient Temperatures (Chec	k box next to which	ich lowest expected temperature is used):							
☐ Lowest expected ambient ten Average ambient high temperat	 Lowest expected ambient temperature for the location (T_L) = Between -1° to -5° C Lowest expected ambient temperature for the location (T_L) = Between -6° to -10° C Average ambient high temperature (T_H) = 47° C Note: For a lower T_L or a higher T_H, use the Comprehensive Standard Plan 								
DC Information:									
Module Manufacturer:		Model:							
2) Module V _{oc} (from module namepl	ate):Volts	3) Module I _{sc} (from module nameplate):Amps							
4) Module DC output power under st	tandard test cond	ditions (STC) = Watts (STC)							

5) DC Module Layout																
Identify each source circuit (string) for inverter 1 shown on the roof plan with a Tag (e.g. A,B,C,)	Num source	ber of				lo	dentify	y, by t	_		ource c				f are t	o be
						_										
Total number of source circuits fo	r inver	er 1:				-										
6) Are DC/DC Converters u	sed?	_ \	⁄es	_ I	No	If No	o, ski	p to	Step	7. If `	Yes er	nter i	nfo b	elow	<i>I</i> .	
DC/DC Converter Model #:						D	C/DC (Conve	rter N	lax D0	Input	Volta	ge:		_ Volt	5
Max DC Output Current:			/	Amps		М	ax DC	Outp	ut Cur	rent:					_ Volt	5
Max # of DC/DC Converters in ar	Input	Circuit	t:			D	C/DC (Conve	rter M	ax DC	Input	Powe	r:		Watts	
7) Maximum System DC Vo	ltage ·	— Use	A1 o	r A2 fo	or syste	ms wit	thout I	DC/D0	Conve	rters,	and B1	l or B2	with	DC/D0	Conv	erters.
A1. Module V _{oc} (STEP 2) =		x #	‡ in se	ries (S	STEP 5)			_x 1.	12 (If -	1 ≤ T _L	≤ -5°C,	STEP :	1) =			_V
A2. Module V _{oc} (STEP 2) =																
Table 1. Maximum Number	of PV N	1odule	s in S	eries l	Based o	on Mo	dule R	ated \	/ _{oc} for	600 V	dc Rate	ed Equ	ipmer	nt (CE0	C 690.	7)
Max. Rated Module V _{oc} (*1.12) (Volts)	43.70	31.5	33	3.48	35.71	38.27	41.2	1 44	.64 4	8.70	53.57	59.52	2 66.	96 7	6.53	89.29
Max. Rated Module V _{oc} (*1.14)	29.24	30.9	16 32	2.89	35.09	37.59	40.4	9 43	.86 4	7.85	52.63	58.48	65.	79 7	5.19	87.72
Max # of Modules for 600 Vdc		17		16	15	14	13	:	12	11	10	9	8	3	7	6
Use for DC/DC converters. The val	ue calc	ulated	belov	v mus	t be les	s than	DC/D	C conv	verter ı	nax D	C input	volta	ge (ST	EP 6).		
B1. Module V _{oc} (STEP 2) =	x	# of m	nodule	es per	conver	ter (ST	EP 6)		_x 1.:	L2 (If -	1 ≤ T _L ≤	≤-5°C,	STEP	1) =		_V
B2. Module V_{oc} (STEP 2) =	>	# of n	nodule	es per	conve	rter (S	TEP 6)		x 1.:	L4 (If -	6 ≤ T _L ≤	≤ -10°C	, STEF	1) = _		_V
Table 2. Largest Module V _{oc} fo	or Singl	e-Mod	lule D	C/DC	Conve	ter Co	nfigur	ations	s (with	80 V .	AFCI Ca	ap) (CE	C 690	.7 and	d 690.1	L1)
Max. Rated Module V _{oc} (*1.12) (Volts)	1.30.4	33.0	35.7	38.4	41.1	43.8	46.4	49.1	51.8	54.5	57.1	59.8	62.5	65.2	67.9	70.5
Max. Rated Module V _{oc} (*1.14) (Volts)		32.5	35.1	37.7	40.4	43.0	45.6	48.2	50.9	53.5	56.1	58.8	61.4	64.0	66.7	69.3
DC/DC Converter Max DC Input (Step #6) (Volts)	1 34	37	40	43	46	49	52	55	58	61	64	67	70	73	76	79
8) Maximum System DC Vo Maximum System DC Vo	_		-			rters Vo		vert	er —	Only	requ	ired i	f Yes	in St	ep 6	
-	9) Maximum Source Circuit Current Is Module I _{sc} below 9.6 Amps (Step 3)? Yes No (If No, use Comprehensive Standard Plan)															

г

	Source Circuit Conductors Source Circuit Conductor Size = Min. #10 AWG copper conductor, 90° C wet (USE-2, PV Wire, XHHW-2, THWN-2, RHW-2) For up to 8 conductors in roof-mounted conduit exposed to sunlight at least ½" from the roof covering (CEC 310) Note: For over 8 conductors in the conduit or mounting height of lower than ½" from the roof, use Comprehensive Plan.												
	1) Are PV source circuits combined prior to the inverter?												
-	Sizing PV Output Circuit Conductors — If a com Output Circuit Conductor Size = Min. #6 AWG				be use	d (Step	11),						
	13) Inverter DC Disconnect Does the inverter have an integrated DC disconnect? If No, the external DC disconnect to be installed is rated forAmps (DC) and Volts (DC)												
•	4) Inverter Information Manufacturer: Model: Max. Continuous AC Output Current Rating:Amps Integrated DC Arc-Fault Circuit Protection? Yes No (If No is selected, Comprehensive Standard Plan) Grounded or Ungrounded System? Grounded Ungrounded												
AC In	formation:												
	5) Sizing Inverter Output Circuit Conductors and OCPD Inverter Output OCPD rating =Amps (Table 3) Inverter Output Circuit Conductor Size =AWG (Table 3)												
	Table 3. Minimum Inverter	Output	OCPD ar	nd Circu	it Condı	uctor Siz	e						
	Inverter Continuous Output Current Rating (Amps) (Step 14)	12	16	20	24	28	32	36	40	48			
	Minimum OCPD Size (Amps)	15	20	25	30	35	40	45	50	60			
	Minimum Conductor Size (AWG, 75° C, Copper)	14	12	10	10	8	8	6	6	6	ĺ		

16) Point of Connection to Utility

Only load side connections are permitted with this plan. Otherwise, use Comprehensive Standard Plan.

Is the PV OCPD positioned at the opposite end from input feeder location or main OCPD location?

Yes
No If Yes, circle the Max Combined PV System OCPD(s) at 120% value as determined from Step 15 (or Step S20), bus bar Rating, and Main OCPD as shown in Table 4.

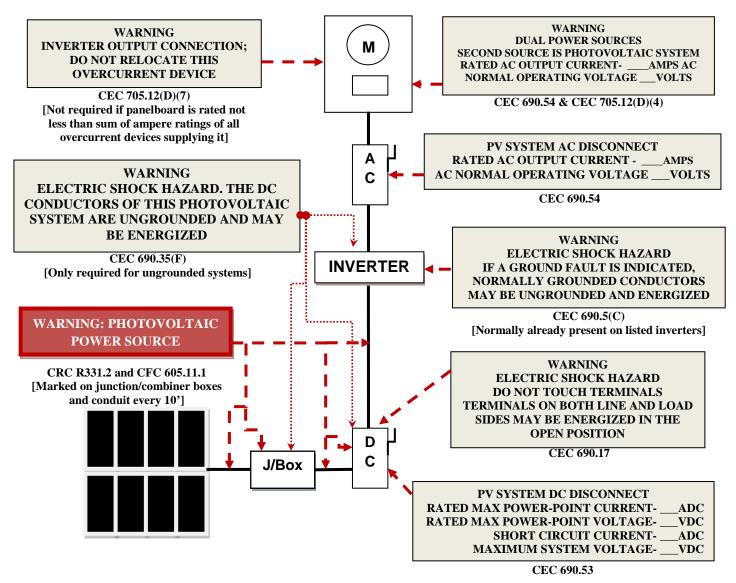
If No, circle the Max Combined PV System OCPD(s) at 100% value as determined from Step 15 (or Step S20), bus bar Rating, and Main OCPD as shown in Table 4.

Per 705.12(D)(2): [Inverter output OCPD size [Step #15 or S20] + Main OCPD Size] ≤ [bus size x (100% or 120%)]

Table 4. Maximum Combined Supply OCPDs Based on Bus Bar Rating (Amps) per CEC 705.12(D)(2)									
Bus Bar Rating	100	125	125	200	200	200	225	225	225
Main OCPD	100	100	125	150	175	200	175	200	225
Max Combined PV System OCPD(s) at 120% of Bus Bar Rating	20	50	25	60*	60*	40	60*	60*	45
Max Combined PV System OCPD(s) at 100% Bus Bar Rating	0	25	0	50	25	0	50	25	0

^{*}This value has been lowered to 60 A from the calculated value to reflect 10 kW AC size maximum.

Reduction of the main breaker is not permitted with this plan. Otherwise, use Comprehensive Standard Plan.

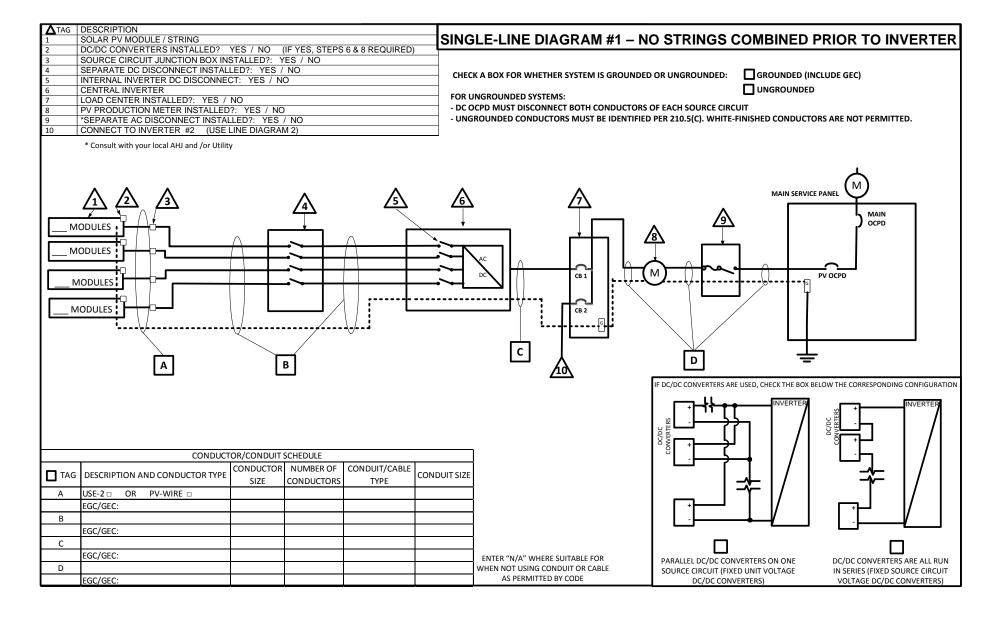

17 & 18 & 19) Labels and Grounding and Bonding

This content is covered by the labels on the next page and the Single Line Diagram(s). For background information, refer to the Comprehensive Standard Plan.

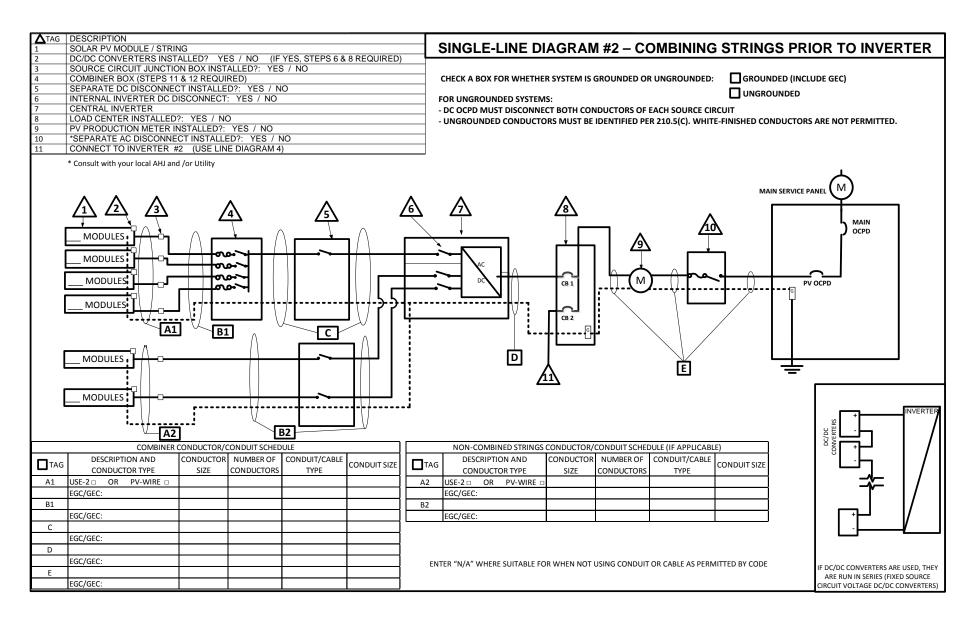
Solar PV Standard Plan – Simplified Central/String Inverter Systems for One- and Two-Family Dwellings

Markings

CEC Articles 690 and 705 and CRC Section R331 require the following labels or markings be installed at these components of the photovoltaic system:


Code Abbreviations:

California Electrical Code (CEC)
California Residential Code (CRC)
California Fire Code (CFC)


Informational note: ANSI Z535.4 provides guidelines for the design of safety signs and labels for application to products. A phenolic plaque with contrasting colors between the text and background would meet the intent of the code for permanency. No type size is specified, but 20 point (3/8") should be considered the minimum.

CEC 705.12 requires a permanent plaque or directory denoting all electric power sources on or in the premises.

Solar PV Standard Plan – Simplified Central/String Inverter System for One- and Two-Family Dwellings

Solar PV Standard Plan – Simplified Central/String Inverter System for One- and Two-Family Dwellings

Supplemental Calculation Sheets for Inverter #2 (Only include if <u>second</u> inverter is used)

DC Information:

Module Manufacturer: _		Model:							
S2) Module V _{oc} (from modu	le nameplate):Volts	S3) Module I _{sc} (from module nameplate):Amps							
S4) Module DC output p	ower under standard test c	onditions (STC) = Watts (STC)							
S5) DC Module Layout									
Identify each source circuit (string) for inverter 1 shown on the roof plan with a Tag (e.g. A,B,C,)	Number of modules per source circuit for inverter 1	Identify, by tag, which source circuits on the roof are to be paralleled (if none, put N/A)							
		Combiner 1:							
		Combiner 2:							
Total number of source circuits	for inverter 1:								
S6) Are DC/DC Converte	rs used? □ Yes □ No	If No, skip to Step S7. If Yes, enter info below.							
DC/DC Converter Model #:		DC/DC Converter Max DC Input Voltage: Volts							
Max DC Output Current:	Amps	Max DC Output Current:Volts							
Max # of DC/DC Converters in	an Input Circuit:	DC/DC Converter Max DC Input Power: Watts							

S7) Maximum System DC V	oltage	— Use	A1 or A	2 for sys	tems w	ithout	DC/D0	C conv	erters/	, and B	1 or B2	2 with	DC/D	C Conv	erters.
A1. Module V _{oc} (STEP S2) =		x#	in serie	s (STEP :	S5)		x	1.12 (lf -1 ≤	T _L ≤ -5°	C, STE	P S1) =	·		V
\square A2. Module V_{oc} (STEP S2) =		x#	in serie	s (STEP :	S5)		x	1.14 (If -6 ≤	T _L ≤ -10	°C, ST	EP S1)	=		V
Table 1. Maximum Number o	of PV Mo	ndules i	n Series	s Based	on Mo	lule Ra	ated V	′ for	600 V	dc Rate	d Fau	inmen	t (CFC	` 690 `	7)
Max. Rated Module V _{oc} (*1.12) (Volts)	29.76	31.51	33.48	35.71	38.27				18.70	53.57	59.52				89.29
Max. Rated Module V _{oc} (*1.14) (Volts)	29.24	30.96	32.89	35.09	37.59	40.49	9 43.	.86 4	17.85	52.63	58.48	65.7	79 7	5.19	87.72
Max # of Modules for 600 Vdc	18	17	16	15	14	13	1	2	11	10	9	8		7	6
Use for DC/DC converters. The val	ue calcul	ated be	low mu	ıst be le	ss than	DC/DC	conv	erter	max D	C input	voltag	ge (STE	P S6).		
B1. Module V _{oc} (STEP S2) =	¥	# of mo	ndules r	ner conv	erter (9	TEP SE	5)	v	1 12 (lf -1 < 1	- < -5°	C STF	P S1) :	=	V
D2 Madula V (CTED C2)															
B2. Module V_{oc} (STEP 52) =	^					7121 30		^				- 0, 0 !			·
Table 2. Largest Module V _{oc} fo	r Single	-Modul	e DC/D	C Conve	rter Co	nfigura	ations	(with	80 V <i>i</i>	AFCI Ca	ip) (CE	C 690	.7 and	690.1	11)
Max. Rated Module V _{nc} (*1.12) (Volts)	30.4	33.0 3	5.7 38	.4 41.1	43.8	46.4	49.1	51.8	54.5	57.1	59.8	62.5	65.2	67.9	70.5
Max. Rated Module V _{oc} (*1.14) (Volts)	29.8	32.5 3	5.1 37	.7 40.4	43.0	45.6	48.2	50.9	53.5	56.1	58.8	61.4	64.0	66.7	69.3
	DC/DC Converter Max DC Input (Step 6) (Volts) 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79														
S8) Maximum System DC Voltage from DC/DC Converters to Inverter — Only required if Yes in Step S6 Maximum System DC Voltage = Volts															
S9) Maximum Source Circu Is Module I _{sc} below 9.6			S3)?	□ Ye	es c	No No	(If N	o, us	e Co	mpre	hensi	ve St	anda	ard P	lan)
S10) Sizing Source Circuit Co Source Circuit Conductor THWN-2, RHW-2) For up to 8 conductors in Note: For over 8 conductor Plan.	Size =	Min. #	condu	uit expo	sed to	sunli	ght a	t leas	st ½" 1	rom t	he ro	of cov	ering	(CEC	-
S11) Are PV source circuits combined prior to the inverter?															
S12) Sizing PV Output Circuit Output Circuit Conductor								T be	used	d (Ste	o S11),			
Does the inverter have an integrated DC disconnect? Yes No If Yes, proceed to Step S14. If No, the external DC disconnect to be installed is rated forAmps (DC) and Volts (DC)															

Г

S14	Manufacturer: Model: Amps Integrated DC Arc-Fault Circuit Protection? □ Yes □ No (If No is selected, Comprehensive Standard Plan) Grounded or Ungrounded System? □ Grounded □ Ungrounded									
	SC Information: S15) Sizing Inverter Output Circuit Conductors and OCPD Inverter Output OCPD rating =Amps (Table 3) Inverter Output Circuit Conductor Size = AWG (Table 3)									
	Table 3. Minimum Inverter	Output	OCPD ar	nd Circu	it Condu	ıctor Siz	e			
	Inverter Continuous Output Current Rating (Amps) (Step 14)	12	16	20	24	28	32	36	40	48
	Minimum OCPD Size (Amps)	15	20	25	30	35	40	45	50	60
	Minimum Conductor Size (AWG, 75° C, Copper)	14	12	10	10	8	8	6	6	6
	(-,,,,	l	l							

Load Center Calculations (Omit if a load center will not be installed for PV OCPDs)

S20) Load Center Output: Calculate the sum of the maximum AC outputs from each inverter.
Inverter #1 Max Continuous AC Output Current Rating [STEP S14] × 1.25 = Amps
Inverter #2 Max Continuous AC Output Current Rating [STEP S14] × 1.25 = Amps
Total inverter currents connected to load center (sum of above) = Amps
Conductor Size:AWG Overcurrent Protection Device:Amps Load center bus bar rating:Amps The sum of the ampere ratings of overcurrent devices in circuits supplying power to a bus bar or conductor shall not exceed 120 percent of the rating of the bus bar or conductor.

Solar PV Standard Plan – Simplified Central/String Inverter System for One- and Two-Family Dwellings

1	DESCRIPTION SOLAR PV MODULE / STRING	SINGLE-LINE DIAGRAM #3 – ADDITIONAL INVERTER FOR DIAGRAM #1
3	DC/DC CONVERTERS INSTALLED? YES / NO (IF YES, STEPS 6 & 8 REQUIRED) SOURCE CIRCUIT JUNCTION BOX INSTALLED?: YES / NO	INVERTER # 2
4	SEPARATE DC DISCONNECT INSTALLED?: YES / NO	
5	INTERNAL INVERTER DC DISCONNECT: YES / NO	
6	CENTRAL INVERTER	CHECK A BOX FOR WHETHER SYSTEM IS GROUNDED OR UNGROUNDED: GROUNDED (INCLUDE GEC)
7	*SEPARATE AC DISCONNECT INSTALLED?: YES / NO	
8	TO LOAD CENTER ON LINE DIAGRAM 1	FOR UNGROUNDED SYSTEMS:
[] [] [* Consult with your local AHJ and /or Utility MODULES MODULES MODULES MODULES MODULES MODULES B B	- DC OCPD MUST DISCONNECT BOTH CONDUCTORS OF EACH SOURCE CIRCUIT - UNGROUNDED CONDUCTORS MUST BE IDENTIFIED PER 210.5(C). WHITE-FINISHED CONDUCTORS ARE NOT PERMITTED. OCCUPATION
		INVERTER ODV, DC
	CONDUCTOR/CONDUIT SCHEDULE	-¾- / -¾- /
□TAG	DESCRIPTION AND CONDUCTOR TYPE CONDUCTOR NUMBER OF CONDUIT/CABLE CONDUCTORS TYPE CONDUCTORS TYPE	
A	USE-2 □ OR PV-WIRE □	
- 	EGC/GEC:	
<u> </u>	EGC/GEC.	
В		
	EGC/GEC:	ENTER "N/A" WHERE SUITABLE FOR WHEN PARALLEL DC/DC CONVERTERS ON ONE DC/DC CONVERTERS ARE ALL RUN
С		NOT USING CONDUIT OR CABLE AS SOURCE CIRCUIT (FIXED UNIT VOLTAGE IN SERIES (FIXED SOURCE CIRCUIT
	EGC/GEC:	PERMITTED BY CODE DC/DC CONVERTERS) VOLTAGE DC/DC CONVERTERS)
		, , , , , , , , , , , , , , , , , , , ,

Solar PV Standard Plan – Simplified Central/String Inverter System for One- and Two-Family Dwellings

	DLAR PV MODULE / STRING					SIN	GLE-LINE DIAGE	RAM #4	– ADDITI	ONAL IN	NVERTER F	OR DIAGRAM #2	
3 SC 4 CC 5 SE 6 IN ⁻ 7 CE 8 *SI 9 TC	C/DC CONVERTERS INSTALL DURCE CIRCUIT JUNCTION E DUMBINER BOX (STEPS 11 & 1 EPARATE DC DISCONNECT II TERNAL INVERTER DC DISC ENTRAL INVERTER EPARATE AC DISCONNECT D LOAD CENTER ON LINE DIA Consult with your local AHJ and /c	SOX INSTALL 2 REQUIRED NSTALLED?: ONNECT: Y INSTALLED? AGRAM 3	ED?: YES / N D) YES / NO ES / NO	, 51EYS 6 & 8 RE(QUIKED)	CHECK A	RTER # 2 A BOX FOR WHETHER SYSTEI GROUNDED SYSTEMS: PD MUST DISCONNECT BOTH DUNDED CONDUCTORS MUS	I CONDUCTOR	RS OF EACH SOL	IRCE CIRCUIT	GROUNDED (INCLI UNGROUNDED SHED CONDUCTORS	·	
	MODULES MODULES AI	4 0 00 0 0 000 0 0 00		\$ C B2	6	A	AC DC	3	······································			DC/DC WVERTERS THE PROPERTY OF THE PROPERTY	TER
	COMBINER C	ONDUCTOR/O	CONDUIT SCHED	ULE			NON-COMBINED STRINGS	CONDUCTOR/	CONDUIT SCHED	ULE (IF APPLICA	ABLE)	`L_;\- /	
TAG US	DESCRIPTION AND CONDUCTOR TYPE SE-2 □ OR PV-WIRE □	CONDUCTOR SIZE	NUMBER OF CONDUCTORS	CONDUIT/CABLE TYPE	CONDUIT SIZE	TAG A2	DESCRIPTION AND CONDUCTOR TYPE USE-2 □ OR PV-WIRE □	CONDUCTOR SIZE	NUMBER OF CONDUCTORS	CONDUIT/CAB TYPE	CONDUIT SIZE	* /	
	GC/GEC:			_		D2	EGC/GEC:					[-]-	
B1 EG	GC/GEC:					B2	EGC/GEC:						ᆈ
С	,												
	GC/GEC:											IF DC/DC CONVERTERS ARE USED, TI	HFY
D	20/050					ENTER "N/	A" WHERE SUITABLE FOR WHEN	I NOT USING CO	ONDUIT OR CABLE	AS PERMITTED	BY CODE	ARE RUN IN SERIES (FIXED SOURC	Ε
EG	GC/GEC:				<u> </u>							CIRCUIT VOLTAGE DC/DC CONVERTE	.RS)

SOLAR PV STANDARD PLAN Roof Layout Diagram for One- and Two-Family Dwellings	

Items required: roof layout of all panels, modules, clear access pathways and approximate locations of electrical disconnecting means and roof access points.